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characteristics and their own performance requirements. As before, book-ahead
calls specify their starting and finishing times, and are assumed to book far ahead
relative to the holding times of the instantaneous-request calls. The book-ahead
calls may be constrained by an upper-limit on the capacity that can be reserved
for them. Instantaneous-request calls are admitted if the probability of interruption
(or some other form of service degradation in response to the conflict) for that call
is below a threshold, but now this threshold can be class-dependent, and now the
interrupt probability is calculated by a normal approximation based on the central
limit theorem. Simulation experiments show that the normal approximation per-
forms as well as the previous detailed calculation in single-class examples, and that
the normal approximation can be applied to multi-class examples.
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1. Introduction and summary

This paper is a sequel to Greenberg, Srikant and Whitt [13] in which we
studied resource sharing in a telecommunications system when some customers
are allowed to book ahead their service requests, i.e., make advanced reserva-
tions. In particular, in [13] we developed an admission control algorithm for book-
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ahead (BA) calls that specify their starting and finishing times in advance and
immediate-request (IR) calls that start to receive service immediately, if admitted,
and have unspecified holding times governed by a probability distribution. We
think of the IR calls as ordinary voice calls and the BA calls as large-bandwidth
calls, such as video conference calls, possibly using multiple resources as with
multicast, that might well need advance reservation in order to get access (avoid
very high blocking probabilities). After allowing the BA calls to book ahead
(usually subject to some constraints, such as a minimum book-ahead time and
an upper-limit on the total capacity that can be reserved), we want to provide
as good service as possible to the IR calls. There are also other potential appli-
cations, e.g., related to the Internet resource reservation protocol (RSVP); see
[13] for additional references. See Coffman, Jelenkovic and Poonen [6] for a re-
cent theoretical study of booking ahead for a resource with capacity for a single
customer.

Our main idea in [13] was to achieve more efficient use of limited resources
than can be achieved by strict partitioning by allowing a small probability of
conflict between an admitted IR call of uncertain duration and BA calls with
scheduled starting times. We think of the BA calls tending to book relatively far
ahead (in the time scale of IR call holding times) and the most recently arriving
IR calls being interrupted if necessary, although the actual resolution of the con-
flict could be different. In many applications, it will not actually be necessary to
interrupt calls. Instead, the bandwidth or quality of service may be temporar-
ily reduced, e.g., by bit dropping or coarser encoding in video. The admission
control algorithm based on interruptions can also be applied with other forms of
service degradation. Then the interruption probability should be interpreted as
the probability of conflict.

A main conclusion of [13] was that allowing occasional service interruptions
or service degradation can yield significantly greater resource utilization and rev-
enue than admission control schemes that do not allow them. It was also observed
that a relatively simple nearly-decomposable Markov-chain (ND-MC) algorithm
provides a useful approximation for long-run average performance when BA calls
book for ahead and have relatively long holding times, and provides an upper
bound on revenue more generally. However, most of [13] was devoted to the de-
sign and performance of the admission control algorithm. That will be our focus
here as well.

Thinking of the BA calls as large-bandwidth calls, such as video conference
calls, and the IR calls as ordinary voice calls, in [13] we let the BA calls have
very general bandwidth requirements, book-ahead times (time until starting to
receive service) and holding times (service durations), but we considered only a
single class of IR calls with unit bandwidth requirements and a common holding-
time distribution. We let BA calls be admitted subject to an upper limit on the
reserved bandwidth for BA calls and possibly a minimum book-ahead time. We
let each successive IR call be admitted if the probability that it will be interrupted
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is below a specified threshold. In [13] our admission control algorithm strongly
exploited the fact that there was only a single IR class with common bandwidth
requirements.

The main purpose of this paper is to extend our previous admission control
algorithm to cover multiple classes of IR calls, with possibly different bandwidth
requirements, holding-time distributions and interrupt-probability thresholds. To
achieve this goal, we replace our previous interrupt probability calculation by a
normal approximation based on the central limit theorem (CLT). We show that
the normal approximation is effective, first, by showing that it does as well as our
previous algorithm in the previous single-IR-class simulation experiments and,
second, by showing that it also applies to treat multiple-IR-class examples.

The new CLT framework also allows us to exploit information about the
IR calls in progress. In particular, for non-exponential holding-time distribu-
tions, we can exploit the ages (elapsed holding times) of IR calls in progress to
compute the conditional distribution of the remaining holding time. In [13] we
partially exploited the holding-time distribution by using the equilibrium-excess
distribution for all IR calls in progress, but we did not exploit the ages.

The CLT-based algorithm for multiple IR classes proposed here is an alterna-
tive to an effective-bandwidth (EB) or large-deviations (LD) approach developed
by Wischik and Greenberg [18]. The EB approach is an interesting extension
of previous EB analysis because it includes a new time dimension. The EB ap-
proach also applies to multiple IR classes, allowing the exploitation of ages, and
may have useful application, but preliminary studies indicated that it was less
effective than the detailed interrupt probability calculation for scenarios as con-
sidered in [13]. We do not make direct comparison with the EB approach here,
but since the CLT approach here closely matches the previous approximation in
[13], we conclude that the CLT approach shares the advantages of the detailed
calculation in [13] for the kinds of scenarios considered in [13].

We also think that CLT asymptotics tend to be more appropriate than
LD asymptotics in this setting, because we are likely to be computing larger
probabilities. This is so because we are basing our admission decision on an
interrupt probability threshold that applies to an individual IR call. A key point
is that the long-run interrupt probability, i.e., the long-run proportion of admitted
IR calls that are interrupted, will tend to be much smaller than this threshold.
For example, the interrupt probability threshold might be 1072, while the long-
run interrupt probability might be 10~%; then it is the larger probability 1072
that we want to compute accurately. It is well known that the CLT tends to
be more appropriate for larger tail probabilities. We make a specific numerical
comparison here in Section 7.

The point just made also has implications for applying the admission control
procedure. In applications, we directly set the interrupt probability thresholds,
but our ultimate goal may be to achieve a certain long-run interrupt probability.
For that purpose, we need to apply simulations or system measurements to de-
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termine the interrupt probability threshold that meets the goal. Asin [13],in our
experiments we observe a nearly linear relation between the interrupt probability
threshold and the long-run interrupt probability.

It is important to note that performance of the admission control algorithm
for IR calls depends on both the long-run blocking probability and the long-
run interrupt probability for IR calls. As we decrease the interrupt probability
threshold, the long-run interrupt probability will decrease and the long-run block-
ing probability will increase, so that we obtain a curve of interrupt probability
and blocking probability pairs, as shown in figures later in this paper. In [13]
we demonstrated that some approximate interrupt probability calculations are
better than others because the whole curve is lower (closer to the origin in the
positive quadrant). Here we show that the CLT approximation is as good as the
previous detailed approximation by showing that the curves tend to fall on top
of each other.

The comparison of different algorithms raises the question of optimality. As
noted in [13], the admission control problem can be formulated with appropriate
costs and rewards as a Markov decision problem (MDP). However, the states
are complicated, involving the BA reservation profiles. As a consequence, ad-
mission control based solely on an interrupt probability calculation is typically
not optimal, because it fails to account for the impact of admission upon future
calls. (We elaborate in Section 6.) Nevertheless, the proposed admission control
algorithm seems to be effective.

In addition to near optimality, we also require that the computation be fast,
because it must be performed in real time, at each successive IR call arrival.
Moreover, the BA call profile must be updated as BA calls arrive and depart.
The simulation experiments demonstrate that the algorithm is sufficiently fast. In
practice, it may be convenient to turn off the algorithm when the risk of conflict
is negligible, e.g., when there is no chance of interruption, and then turn it on
again when the interrupt probability calculation is needed. This can be done by
simply monitoring the total bandwidth being used and reserved, assuming a fixed
bandwidth allocation for each call.

In [13] we considered two cases for the IR holding-time distribution: (1)
an exponential distribution and (2) a general distribution. The exponential case
is easier because the remaining holding times of all calls in progress also have
the same exponential distributions, whether or not we condition upon the ages,
by the lack-of-memory property. However, even for the exponential IR holding-
time distribution, the interrupt probability is difficult to compute, because the
profile of reserved BA calls may be quite complicated, involving several different
potential interruption times. For our interrupt probability calculation, we assume
that the most recent arrival will be interrupted. Assuming the BA calls book
relatively far ahead, this means that the interrupt probability calculation depends
only on the BA calls in service or already reserved and the IR calls in service; i.e.,
at each IR arrival epoch it is not necessary to consider future service requests
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of any kind. The first potential interruption time, if any, is the time that an
interruption would occur if the candidate IR call is admitted and none of the IR
calls in progress (including the newly admitted call) complete service. Subsequent
times at which the BA call profile (reservation level) increase constitute additional
potential interruption times for the admitted IR call.

The exact interrupt probability given a set of potential interruption times
{T1,...,T;} was displayed in (5.2) of [13], but it is quite complicated because
it involves the probability distribution of the vector giving the number of IR
service completions in each of the intervals (7;_1,7;], 1 <7 < k. Hence, in [13] we
considered approximations for the interrupt probability, the most promising being
the sum of the probabilities of an interruption at a single time over successive
potential interruption times. The idea is that one term is likely to dominate
the sum, but it might not be the first. It is clear that the sum of the interrupt
probabilities is an upper bound on the exact interrupt probability, but the sum
appears to be a good approximation for the exact interrupt probability. To see
why this should be so, think of a fixed BA call profile and successive IR arrivals.
The IR calls will be admitted until there is an initial conflict. If the IR calls
require less bandwidth than BA calls, then the impact of admitting one IR call
should be relatively small, so that this initial conflict, when there is one, is likely
to occur at only one potential interruption time.

To substantiate the sum approximation, we now also consider the maximum
interrupt probability over all potential interruption times, which is a lower bound
on the exact interrupt probability. We report results showing that the maximum
and sum bounds perform similarly, showing that both are good approximations
for the exact interrupt probability. We use the sum because it is conservative.

A word of caution is appropriate, however, because it is possible to construct
scenarios in which the max and sum bounds differ greatly. For (an unrealistic)
example, if the BA calls require very small bandwidths and have very short
holding times, then there can be an enormous number of potential interruption
times. Thus, in applications it may be desirable, at least occasionally, to apply
both the max and sum calculations to verify that they are good approximations
for the exact interrupt probability.

At this point, it is appropriate to point out that an attractive feature of
the EB approach in [18] is that the bandwidth requirements of each call over
time are summarized by a deterministic function. In that framework, a new
call is not admitted if the total (deterministic) required (effective) bandwidth in
the future ever exceeds capacity. Thus, the interrupt probability calculation is
avoided. We think that an explicit calculation of the interrupt probability should
be preferable, provided that the computation can indeed be done sufficiently,
accurately (allowing for approximation) and quickly. Otherwise, the EB approach
is a viable alternative.

Here is how the rest of this paper is organized. In Section 2 we specify the
new CLT-based interrupt probability calculation. In Section 3 we discuss simula-
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tion experiments. In Section 4 we discuss additional ways to provide appropriate
grades of service to different IR classes, to use in addition to the book-ahead
feature. In Section 5 we discuss how appropriate minimum book-ahead times for
BA calls might be determined. In Section 6 we indicate that even though our
admission-control policy based on interrupt probabilities seems to be effective,
it is not optimal in a Markov decision process framework. In Section 7 we pro-
vide insight into CLT and LD approximations by numerically comparing their
performance for binomial distributions.

2. The CLT-Based Algorithm

Suppose that there are n IR calls in progress at an arrival epoch of a new
IR call. Let the IR calls in progress be represented by triples (a;,b;, I;), 1 <
i < n, where a; is the age (elapsed holding time), b; is the constant required
bandwidth and F; is the original cumulative distribution function (cdf) of the
holding time, say Z;, for IR call ¢, i.e., Fi(t) = P(Z; < t),t > 0. Let F? be the
associated complementary cdf (ccdf), i.e., F7(t) =1 — F;(t). Let Fi(¢|a;) denote
the conditional cdf and F?(t|a;) the associated conditional ccdf of the remaining
holding time given the age, i.e.,

Ff(tla;) = P(Z; > t+ ;| Z; > a;) = F7(t+ a;) [ Ff (a;) - (2.1)

Without loss of generality, suppose that 0 is the arrival epoch of the new
IR call. Let it have constant required bandwidth b; and holding-time cdf Fy. If
the new call is admitted, then the bandwidth required for IR calls at time 0 is
b=>br+> " b;. Let C be the total available capacity. Clearly, if b > C| then
the new IR cannot be admitted.

If b < ', then we consider the probability that the new IR call will be
interrupted. As in [13], the BA calls are assumed to book relatively far ahead,
announcing their holding times, so that their service starting and finishing times
are known. Hence we can construct a BA call profile giving the total reserved
bandwidth as a function of time in the future. The first potential interruption
time 717 is the first time that b plus the reserved BA bandwidth exceeds C. Of
course, interruptions may not actually occur at time 7T} because by that time
some of the IR calls in progress may have departed.

Each new successive maximum of the reserved bandwidth for BA calls, be-
vond its value at T, represents a new potential interruption time. Let these times
be denoted by T;. We may elect to consider only the first L potential interrup-
tion times for some specified L. When the possible BA bandwidth requirements
are all integer multiples of a minimum bandwidth, then it is easy to compute
an upper bound on the number of potential interruption times, using the upper
limit for BA calls or the total capacity if there is no upper limit. In our examples
the maximum number of potential interruption times is usually less than 10.
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For the (exact) overall interrupt probability, denoted by p;, we need to
consider all the potential interruption times 73,...,77. Let p;(1;) denote the
interrupt probability considering only only the single time point 7;. The sum
approximation is

L
pi ~ pi(sum) = > pi(1}), (2.2)
=1
while the maz approximation is
i R D = i(15) - 2.
pi & pi(max) = max pi(T;) (23)

As indicated earlier, these two approximations are bounds, i.e.,
pi(max) < p; < pi(sum) , (2.4)

provided that no potential interruption times have been omitted in the calculation
of p;(sum). The admission control algorithm admits the new call if p; < pr,
where pr is the interrupt probability threshold (for the customer class of the
newly arriving IR call).

We now approximate the probability of interruption p;(7;) at 7;. by a nor-
mal approximation. This normal approximation is justified by the CLT for in-
dependent, non-identically distributed random variables, where the sum is not
dominated by a few summands; see p. 262 of Feller [10].Given a normal approxi-
mation for p;(7;) for each j, we obtain the CLTsum and CLTmax approximations
for p; by inserting the normal approximation for p;(7}) into (2.3)-(2.4).

Let m; and 0]2 denote the mean and variance of the total bandwidth required
by all IR calls at time 7;. Then, since the presence of each IR call at time 77 is
a Bernoulli random variable,

mj = brFf(T;) + > biFi (T az) (2.5)
k=1
and
ol = BIFF(T) Fi(T;) + Y biFi (1] ar) Fi(T5]ax) - (2.6)
k=1

Let B; be the reserved BA bandwidth at time 77. To express the approx-
imate probability of interruption at time 7 alone, let N(m,o?) be a random
variable having the normal distribution with mean m and variance o2, let ® be
the cdf of N(0,1),1i.e., ®(t) = P(N(0,1) < t), and let ®° be the associated ccdf.
The approximate interrupt probability at time 7}, denoted by p;(77;), is then

gj

pi(T}) = P(N(mj,02) > C — B;) = &° (m) . (2.7)
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Remark 2.1. If there are at most L potential interruption times for some finite
L, and if interruptions are indeed rare events, then p;(max) and p;(sum) should
be approximately equivalent. The rare event scenario naturally occurs in large
systems with a large number n of small IR sources and a small number of large-
bandwidth (order n) BA calls reserved at any time. We might then have for large
n

logpi(T5) €™, 1<j<L, (2.8)
or, more precisely,
1
—log pi(T;) = —9; as n—o0. (2.9)
n
However, a standard large deviations consequence of (2.9) is that
1 .
;log pi(max) — — \min, d; as n— o0 (2.10)
and
! log p;(sum) — in_4; — (2.11)
— log p;(sum 1I£r;1élL ; as n— 0o, .

so that p;(max) and p;(sum) are asymptotically equivalent in the sense of (2.10)
and (2.11). (Note that e™® and Le™™® are equivalent in this scaling.) We give a
supporting large deviations result in the appendix.

Remark 2.2. So far, we have assumed that BA calls are of known duration.
However, we may not always want to require that BA calls specify their holding
times. It is significant that the CLT algorithm extends if only a holding-time cdf
is available for each BA call, along with the start time and bandwidth.

Given this revised information, we can act as if each BA call has no termi-
nation time, but instead have a random required bandwidth at each time, just
like the IR calls in progress. We can consider all BA arrival times as potential
interruption times. Instead of the known required BA bandwidth B; at time 77,
we can compute instead the mean and variance, just as in (2.5) and (2.6) without
the ages. Instead of (2.7), we now have

pi(1;) = P(N(m; + EBj, 0% + Var B;) > C)

= 0°((C—m; — EB))/\Jo? + Var B;) . (2.12)

Remark 2.3. In this section we have assumed that all calls use constant fixed
bandwidth while they are in progress. That is clearly appropriate when constant
bandwidths are assigned to each call, as in circuit-switched networks. However,
it is also possible to consider advanced reservation with uncertain variable band-
width requirements for each source. It is again significant that the CL'T approach
can be extended to serve as an approximation in that setting too.
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First, however, with variable bandwidth requirements, conflict is more likely
to mean service degradation (e.g., packet loss) rather than total interruption.
With that in mind, it is natural to change the control for an arriving call. We
would admit the IR call if the probability of conflict at time t is less than a
specified conflict threshold for all ¢.

Thus it is directly appropriate to use the algorithm CLTmax, except that we
must consider more time points. It is natural to use a finite collection of points
including BA call arrival epochs. With variable bandwidth processes, we can still
use the CLT, but the formulas for the means and variances in (2.5) and (2.6) are
no longer valid. For IR calls, we could use a semi-Markov bandwidth process as
in Duffield and Whitt [8], which includes the familiar on-off model with general
on-time and off-time distributions as a special case. Algorithms for computing
the means and variances for the generalizations of (2.5) and (2.6) are given in [8].

If the bandwidth requirements of BA calls are also uncertain, then the BA
bandwidth requirements can be included in the approximation; i.e., instead of
(2.7), we would have (2.12).

Due to randomness in the BA call profile, either due to the uncertainty in
the holding times or due to variable bandwidth requirements, it is possible for
an admitted BA call to be denied service when its service is about to commence.
Thus, in these cases, we also have to consider an “interrupt probability” for BA
calls. Further investigation is required to fully understand the role of the various
admission controls for these scenarios.

3. Simulation Experiments

We start by considering previous examples in [13] in order to see how
well the CLT approximation compares to the detailed calculation, the previous
independent-peaks approximation (IPA), in the single-class case. We also want
to see how the maximum lower bound for the interrupt probability compares to
the sum upper bound, both for IPA and the new CLT approximation.

We first reconsider the simulation experiment in Example 3 from [13].
The available capacity (number of servers) is s = 100. The arrival rates, re-
quired bandwidths and mean holding times for IR and BA calls, respectively, are
A1 =60, Ap =2,b; =1, bp = 10, ,ul»_l = ,ugl = 1. We assume that the arrival
processes are independent Poisson processes and that the service times are inde-
pendent exponential random variables. We assume that the BA bookahead times
(times before starting) are all 20, so that the BA calls indeed book relatively far
ahead. (Other cases were also considered; e.g., see Section 8 of [13].)

As in [13], we consider 10 different values of the IR interrupt probability
threshold pr. For each value of pr, the simulation run length was 100,000 time
units, after deleting 25 times units to eliminate transients. Thus, we simulate
roughly 6 million IR arrivals and 2 million BA arrivals for each threshold value.
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Note that the offered load and capacity are 80 and 100, so that the loading
is normal. Without the booking ahead feature, the blocking probabilities for the
BA and IR calls can be determined by the Kaufman [14] - Roberts [16] recursion
or by numerical inversion [4]. Without booking ahead, the blocking probabilities
for the BA and IR calls are 0.151 and 0.0112, respectively, but with booking
ahead, the BA blocking probability goes way down to 0.000038 (without using
any upper limit on BA calls). Clearly, the book-ahead feature greatly helps the
BA calls. On the other hand, the IR calls suffer as a consequence. If we allow no
possibility of interruption, then the IR blocking probability increases to 0.264.

We might well decide that the change from (0.151, 0.011) for the BA and IR
blocking probabilities to (0.000038, 0.264) is giving too much advantage to BA
calls at the expense of IR calls. Indeed, with our admission control scheme, the
overall utilization is maximized (yielding 76.3 out of 80) by first placing an upper
limit of 50 on BA calls. This upper limit causes the BA blocking probability to
increase to 0.037, which is still a big improvement over the 0.151 value without
booking ahead. With the upper limit of 50 imposed on BA calls, the IR blocking
probability allowing no interruptions decreases to 0.19.

We obtain substantially lower IR blocking probabilities by allowing a small
probability of IR call interruption. Figure 1 shows the pairs of (long-run) blocking
probabilities and interrupt blocking probabilities achievable with different inter-
rupt probability thresholds (when an upper limit of 50 has been placed on the
BA calls). Figure 1 shows that, by allowing a small IR interrupt probability of
0.0002 (which is achieved by choosing an interrupt threshold of about 0.05), the
IR blocking probability is reduced from 0.19 to about 0.05.

Table 1 shows IR blocking probability and interrupt probability pairs as a
function of the interrupt probability threshold for the two approximations CLT-
max and CLTsum. In Table 1 the blocking probability (interrupt probability)
is consistently slightly smaller (larger), showing that the performance of the two
approximations is very similar. (There is one exception for Py in line 2 of the
table, which we attribute to estimation error.)

Figure 1 shows four curves, one each for IPA, [IPAmax, CLTsum and CLT-
max. The four curves are very close. In particular, there is no clear separation
between the curves comparable to the curves for the three different approxima-
tion procedures in Figure 2 of [13]. Since these curves here nearly fall on top
of each other, we conclude that the four procedures perform approximately the
same. Since the long-run interrupt probability is quite small in this example
(being between 107* and 107?), there remains considerable variability in this
example. Hence we will also support the conclusion with other examples having
larger IR blocking and interrupt probabilities.

Results for such an example, corresponding to Example 2 of [13] are dis-
played in Figure 2. The four curves for IPA, [PAmax, CLTsum and CLTmax
even more clearly fall on top of each other in this example. Moreover, this ex-
ample is potentially more difficult because the reserved BA calls have a more
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Figure 1. CLT and IPA approximations for s = 100, A\; = 60, Ag = 2, by = 1, bp = 10,
pur = pup =1, UL on BA calls is 50

Pr pr under CLLTmax | pr under CLLTsum | P;r under CLTmax | P; under CLTsum

0.0774 0.000715 0.000686 0.048153 0.048208
0.0599 0.000445 0.000363 0.049065 0.049023
0.0464 0.000322 0.000194 0.049555 0.050115
0.0359 0.000187 0.000100 0.050026 0.051246
0.0278 0.000115 0.000055 0.050443 0.051569
0.0215 0.000074 0.000030 0.051201 0.052308
0.0167 0.000044 0.000016 0.052121 0.052464
0.0129 0.000031 0.000007 0.052193 0.052982
0.0100 0.000019 0.000002 0.052755 0.053889
Table 1

The realized interrupt probability p; and blocking probability P; as a function of the interrupt
probability threshold Pr under CLLTmax and CLTsum

variable profile, because of higher arrival and service rates and smaller band-
widths, in particular, Ap = 16, up = 4 and b = 5 now, instead of Ap =2, up =1
and b = 10 before. By allowing an IR interrupt probability of 0.1, the IR blocking
probability is reduced from more than 0.9 to about 0.6.

This second example is interesting because it demonstrates the large detri-
mental effect booking ahead can have on IR calls. Even though the total offered
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Figure 2. CLT and IPA approximations for s = 40, A; =24, Ap = 16, b; =1, bg =5, ur =1,
up =4, no UL on BA calls

load 34 is less than the capacity 40, the IR blocking probability can reach 0.90.
This shows the importance of being able to impose upper limit on the BA calls,
which has not yet been done here. Figure 3 shows the CLTsum curve when
an upper limit is introduced on the BA calls. This improves both the blocking
and interrupt performance of IR calls. However, the BA blocking probability
increases from 0.03 with no BA upper limit, to 0.12 with the upper limit of 30.
Thus, the choice of the upper limit is a trade-off between IR and BA call per-
formance. For this example with an upper limit of 30 on BA calls, if we let the
IR interrupt probability threshold be zero, the blocking probability for IR calls
is 0.61, whereas from Figure 3, with an IR interrupt probability of 0.01, the IR
blocking probability drops to about 0.5.

We next describe a two-IR-class example. As before, we consider inde-
pendent Poisson arrival processes and exponential service times. We let the IR
and BA arrival rates, mean service times and constant required bandwidths be:
An =30, Arp = 60, Ap = 8, pup! = 1, pupy = 1/2, pp' = 1, bp = bpp = 1 and
bp = 5. The offered load is thus 100. We also let the capacity be 100 and assume
that there is no UL on BA calls. The blocking probability of BA calls is 0.000159.

The IR class-1 and class-2 blocking probabilities and interrupt probabilities
for ten different interrupt probability thresholds are displayed in Figures 4 and
5, while the combined performance is displayed in Figure 6. If there were no
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Figure 3. CLTsum algorithm for s =40, A\; =24, Ap =16, by =1,bg =5, ur =1, up =4, UL
on BA calls is 30

bookahead feature, then the two IR classes would have the same blocking proba-
bilities because they require common (unit) bandwidths and have Poisson arrival
processes. However, because they have different holding-time means, they face
different interruption probabilities, and thus different performance overall. How-
ever, Figures 4 and 5 show that the differences between the two IR classes this
example is not great. Class 1 does have slightly higher interrupt probabilities for
common thresholds, though.

If we had allowed no interrupt probability, then the blocking probabilities
of IR Classes 1 and 2 are 0.44 and 0.42, respectively, and the overall IR blocking
probability is 0.42. Thus, again we see that allowing small interrupt probabilities
greatly enhances the performance of the system. As in the single-IR-class exam-
ples, Figures 4-6 show that the CLTmax and CLTsum algorithms perform very
similarly, indicating that both approximate the interrupt probability sufficiently
well.

4. Different Grades of Service for IR Calls

In this paper we have allowed for multiple IR customer classes with their
own traffic characteristics and their own interrupt probability thresholds. In this
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Figure 4. Plots for IR Class1 with two IR classes: s = 100, A;1 = 30, Ar2 =60, Ag =8, un1 =1,
pr2 =2, ug =1, b5y =brz =1, bp = 5, no UL on BA calls

setting, we may also want to take other measures to provide the IR classes with
appropriate grades of service.

As in Choudhury, Leung and Whitt [4], [5], for this purpose we propose using
upper-limit (UL) and guaranteed-minimum (GM) bounds for the individual IR
classes or subsets of the IR classes. Similar measures could also be taken for
subclasses of BA calls, but we will not discuss that possibility.

For an IR class, a UL bound is an upper limit on the total bandwidth
that can be used by calls from that class, while a GM bound is a guaranteed
minimum amount of capacity that is reserved for that class. When there are only
two classes, UL and GM bounds are equivalent, because a UL bound for one class
is equivalent to a GM bound for the other class, but more generally that is not
S0.

We can use common GM and UL bounds for one class to give one class a
high grade of service. Then that class has a guaranteed amount of bandwidths
allocated to it, with zero probability of interruption. Thus, for this one class, the
UL/GM bound is equivalent to strict partitioning. However, we could instead
have a higher UL bound. Then the class could use more than its guaranteed
minimum, with the understanding that calls exceeding the guaranteed minimum
would be subject to interruption. Those calls exceeding the upper limit could be
notified upon arrival about the possibility of interruption.
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Figure 5. Plots for IR Class2 with two IR classes: s = 100, A;1 = 30, Ar2 =60, Ap =8, ur1 =1,
pure =2, up =1, b1 =bra =1, bg =5, no UL on BA calls

The UL and GM bounds can also extended to networks. However, the size of
emerging networks necessitates the use of analytic approximation algorithms to be
able to effectively evaluate the impact of these bounds on blocking probability.
For this purpose, one can use the algorithm presented in [12] to compute the
blocking probability given UL/GM parameters for each link and each call class
in the network.

An alternative to UL and GM bounds is to use trunk reservation for each
class. However, with trunk reservation, there is no computationally-efficient ana-
lytical technique to calculate the blocking probability and simulation is too slow
to be useful. When the bandwidth of each class is small compared to the link
capacity, various analytical approximations are available [11,1,2] to compute the
blocking performance effectively. The numerical results in [12] suggest that the
algorithm in [1] is the most effective of these.

It is not difficult to incorporate the UL and GM bounds or trunk reserva-
tion into the admission control algorithm, because they can be considered before
calculating the interrupt probability. Upon an arrival of a new IR call, we first
identify its class and then see if it can be admitted from the perspective of the
UL and GM bounds or trunk reservation in effect. If it can be admitted from
that perspective, we then compute the interrupt probability and see if it is below
the threshold for that class. If the calculated interrupt probability is below the
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Figure 6. Plots for all [R Calls with two IR classes: s = 100, A;1 = 30, A;2 = 60, Ap = §,
purnn=1,pur2 =2, up =1,by1 =brz =1, bgp =5, no UL on BA calls

threshold, then we admit the call. In the case of UL and GM bounds, we also
need to update and maintain state information upon arrival and departure of IR
calls, which can be done efficiently, as indicated in [5].

5. A Minimum Book-ahead Time

We have assumed that BA calls book relatively far ahead in the time scale
of IR holding times. In this section we consider more carefully what might be an
appropriate minimum book-ahead time.

What we seek is the minimum book-ahead time such that BA arrivals do
not significantly alter and invalidate IR interrupt probability determinations. We
want the interrupt probability for each IR arrival, up to a close approximation,
to depend only on the BA calls that have made reservations up to that time, and
not upon later BA service requests.

What we want, then, is a time such that future IR departures are very likely
to compensate for the new BA arrival. A conservative (upper bound) is the
maximum of the maximum number of prevailing (independent) IR holding times
(when they fill the entire system). This bound can often be well approximated
by extreme value limits. For example, if the capacity is n and IR calls have unit
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bandwidth requirements and exponential distributions with mean p~!, then the
time T), for all n IR calls to clear satisfies

PuT, —logn <z) — exp(—e ) as n— oo, (5.1)

so that uT,,/logn — 1 in probability as n — oo; see p. 19 of Leadbetter, Lindgren
and Rootzén [15]. Hence, we might approximate T, by u~!logn. Note that, for
large n, T, clusters quite closely around the deterministic value p~!logn.

The previous estimate may be needlessly conservative, however, because it
may not be necessary to clear all IR calls. Instead it suffices to clear only enough
to compensate for future BA service starts. Suppose that BA calls have an upper
limit of capacity L in a total capacity C'. At some instant, the system might
be filled entirely with IR calls. Immediately afterwards, we may have one or
more BA service requests that simultaneously make BA reservations taking the
reserved BA bandwidth up to its upper limits L after a minimum book-ahead
time T'. In this worst case scenario, we need sufficient IR calls to depart to lower
the IR bandwidth being used from C to C' — L by time 7.

With that in mind, it is natural to let the minimum book-ahead time be
the time required for the bandwidth used by the initial IR calls (not counting
new arrivals) to decrease from C' to C' — L. Following Duffield and Whitt [7],
we suggest approximating that random recovery time by the deterministic time
for the IR mean bandwidth to decrease from C to C' — L. More generally, we
can use a CLT approximation as in Section 2. For example, then we can define
T to be the time such that the probability of recovery is greater than 1 — € for
suitable small ¢. These approximations are convenient, because we are already
performing such computations for our interrupt probability calculations. Duffield
and Whitt [7] show that the recovery time for the mean is asymptotically correct
as an approximation for the random recovery time in large systems. That analysis
also shows that the recovery time is asymptotically deterministic as the number
of calls increases.

A major point of [7] is that, if the IR holding-time distribution is non-
exponential and ages are used, then the recovery time can be significantly altered
by conditioning when there is an exceptional initial age distribution. In partic-
ular, very slow recovery can occur in such circumstances with long-tail distribu-
tions. We suggest caution in that case.

In this section we have indicated how the minimum book-ahead time can be
analyzed. We have also predicted that the required book-ahead time, should be
nearly deterministic in large systems, which relates to (helps explain) the notion
of “critical bookahead time” in Section 4 of Wischik and Greenberg [18].
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6. Optimality

In this section we point out that, even though the proposed admission control
algorithm should be effective, it should not be considered optimal. To discuss
optimality, we assign costs and rewards, as in Section 3 of [13], and obtain a
Markov decision problem (MDP).

The reason the admission control algorithm is not optimal is because it fails
to consider differences in the BA call profile (which must be in the MDP state)
and the impact of the current IR call being considered for admission upon future
IR calls.

To construct a specific counterexample to optimality, let the system capacity
be 2 and consider two different BA call profiles. The first candidate BA call
profile is 0 up until time 77 and then at a constant level 1 thereafter. The second
candidate BA call profile is also 0 up until time 77, but is at the same level 1
only during a short interval [T7,T7 + €), and is thereafter 0.

Let IR calls arrive according to a Poisson process at rate 1 and let IR holding
times be i.i.d. exponential random variables. Suppose that an IR call arrives at
time 0 and that there is already one IR call in service. Then 7T is the only
potential interruption time.

Suppose that T is chosen so that the optimal policy with the first BA call
profile is indifferent between admitting or rejecting the new IR call. Then the
optimal policy should strictly favor admission, and not be indifferent, for the
second BA call profile, because future IR calls are less likely to be blocked if the
current arrival is admitted.

7. CLT vs LD

In this section we consider a simple numerical example to provide insight
into the performance of CLT and LD approximations for the interrupt probability
calculations (and more generally). It is well known that the LD principles are
intended for smaller tail probabilities. Consider a partial sum S, of n i.i.d.
random variables each with mean m and variance 0?. The CLT is intended to
describe the likelihood of values differing from the mean nm by the order of
the standard deviation vV'no?, while the LD principle describes the likelihood of
values differing from the mean nm by the order n, where n is suitable large.

Since the random quantity under consideration in Section 2 is the sum of
independent {0, b}-valued random variables, where b may vary, it seems reason-
able to consider the special case of a sum of i.i.d. {0, b}-valued random variables,
with one fixed b, which is equivalent (except for a scale parameter) to considering
the binomial probability distribution.

Hence we compare the CLT and LD approximations for the tail probabilities
of a binomial distribution. Let S,, = X7 + -+ -+ X,, where X; are i.i.d. Bernoulli
random variables with P(X; = 1) = p; i.e., S,, has a binomial distribution with
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parameters n and p. We are interested in calculating the tail probability P(S,, >
|z]), where z > ES,, = np and |z] is the largest integer less than or equal to z.
The exact tail probability is

PS> o)) = Y (Z)pm —p)h (7.1)

k=[z]
The standard CLT approximation is

N r—FES,\ . T —np
P(S, > 2) ~ P <N(0, 1> 7m) _ (7\/@) L2

The CLT approximation for the binomial distribution is discussed in detail in
Section VII of Feller [9]. As in (3.16) on p. 185 there, one could use a refined
approximation to account for the discreteness, but we do not.

As on p. 22 of Shwartz and Weiss [17], the LD approximation is

P(S, > ) m e/ (7.3)

where the rate function I is

I(m):xlog%—l—(m—l)log(l_p) . (7.4)

1—=z

For z such that P(S, = z) # 0, the LD approximation can be refined using
the Bahadur-Rao theorem as

P(S, > z) ~ ! e~n/n) (7.5)

V27rnp(1 — p)(1 — e =)

1 _ ,
0, = log <7( p).r) ;
(n—a)p
e.g., see [3, page 121].

For our numerical calculations, we let z exceed the mean by a specified
number, «, of standard deviations for various values of a. We then compute
o/, the number of standard deviations by which |[z] exceeds the mean. Thus,
we let 02 = p(1 — p) and = = np + a/Vno?, which leaves the parameter triple
(n,p,a). In Tables 2 and 3 we display numerical results for (n,p) = (100,0.4)
and (100, 0.2) for a range of « values. In addition to the exact values, we display
the ratios approx./exact for the three candidate approximations. As expected,
the CLT is much more accurate for larger tail probabilities, e.g., of order 1072.

where
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Appendix

Suppose that there are K classes of customers, with independent exponen-
tially distributed service times. Let the number of customers of class k£ at time 0
be ngn, where n is the parameter we will let grow. A class k£ customer requests
by units of bandwidth. Let the peaks occur at times T7,7T5,...,Tr, and let nx;
be the available bandwidth at peak [. We are interested in the exact interrupt
probability given by

pr(n) = P(Ny > nzy or N3 > nzg or ... or Np, > nzxp),

where Nj is the required capacity at T;. We have the following large deviations
result:

Theorem 7.1. In the K-class model specified above,

lim —logpj( )= —mlinll(mz),

n—oo 7

where
K

Ii(z) = sup{sz — Z ny log M (sbg) },
s>0 k=1

M(s) = E(e*™),

X is a Bernoulli random variable with parameter pg;, and pg; is the probability
that a customer of class k£ has not departed the system at time 7). For the
special case K = 1, [}(z) is the rate function of a Bernoulli random variable with
parameter py, i.e.,

11—z

I =zlo ——}— 1—2z)lo .
(z) gpu ( ) g I —pu

Proof. Let I* = arg max; [;(z;). It is obvious that
pr(n) > P(Np > napx).

Chernoft’s theorem directly gives us

lim —logp[( ) > —Iis(zp+).

n—oo

Consider the upper bound

nIl l‘l

-
IIMh
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where the first inequality is the sum bound and the second one is the Chernoff
bound. It readily follows that

L
L log pr(n) < —Ii«(2+) + 1 log(1 + Z e_n(ll(xl)_ll*(xl*))).
" K I=1,141*

Taking the limit as n — oo gives us the desired result. o

A more general version of the above result has been proved by Duffield us-
ing sample-path large-deviations techniques (personal communication). Duffield
allows for non-exponential holding times and uses the ages of the various calls in
progress to compute the interrupt probability.



