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COMPARING PROBABILITY MEASURES ON A SET
WITH AN INTRANSITIVE PREFERENCE RELATION*

WARD WHITT}

Recently Fishburn (1978) proposed a definition of stochastic dominance for probability
measures defined on a set with an intransitive preference-or-indifference relation. A signifi-
cant feature of Fishburn's definition is that the stochastic dominance relation inherits the
intransitivity. We propose several alternative definitions of stochastic dominance that are
transitive even though the preference relation on the underlying sample space is not. The
basic idea is to use ordinary first-order stochastic dominance after appropriately transforming
the intransitive relation into a transitive relation. As extreme cases or bounds, strong (weak)
stochastic dominance is defined to be ordinary stochastic dominance for probability measures
defined on the same set after the intransitive relation is replaced by the transitive relation
obtained by regarding any two alternatives that were connected by an intransitive cycle as
noncomparable (equivalent). Fishburn’s definition is shown to be included within these
bounds.

(STOCHASTIC DOMINANCE; INTRANSITIVE PREFERENCES)

1. Infroduction and Summary

The purpose of this paper is to discuss ways to compare actions with uncertain
outcomes when the possible outcomes are ordered by an intransitive preference-or-
indifference relation. Intransitive preference relations commonly arise in group deci-
sion making. For example, if each member of a group ranks three alternatives x, y,
and z, then it is possible for the majority to simultaneously prefer x to y, y to z, and z
to x. For instance, this occurs with three people and the rankings (x, y,2), (»,2,x) and
(z,x, y). In fact, this phenomenon occurs throughout the theory of social choice; see
Fishburn [2]. Intransitive preferences can also arise in the empirical estimation of
individual preferences. In order to discover an individual’s preferences, a consultant
can administer a battery of test questions requiring the individual to make pairwise
comparisons. Unfortunately, this can result in intransitivity. Of course, intransitivity is
only likely to arise with complex outcomes that cannot easily be represented in
monetary terms, e.g., in multiple criteria decision making. When intransitivities do
occur, the “rational” approach is to confront the individual with these “in-
consistencies” in the expressed preferences so that the individual can make adjust-
ments toward transitivity.

However, for comparing probability distributions on this set of possible outcomes,
such adjustments may be either difficult or unnecessary. They may be difficult
because the decision maker may not be accessible or the decision maker may not
adjust easily. They may be unnecessary because it may be possible to make useful
comparisons between probability distributions without actually eliminating the in-
transitivity. For example, suppose that one probability distribution would be preferred
to another for all transitive complete preference-or-indifference relations that could
result from “reasonable” adjustments toward transitivity. Then it seems appropriate to
say the two probability distributions are ordered without making any adjustment.
Similarly, if the two measures are unordered for all transitive complete preference-or-
indifference relations that could result from such adjustments, then it seems appropri-
ate to say the two measures are unordered without making any adjustment.
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This idea leads us to define two notions of stochastic dominance for probability
measures on a set endowed with an intransitive preference-or-indifference relation.
(Definitions will be given in full detail in §3.) First, we say adjusting or changing a
comparison between two alternatives in the underlying set is consistent if transitivity is
inconsistent with the original relation, ie., if the two alternatives with their original
ordering are part of an intransitive cycle. Then, we say strong stochastic dominance
holds if ordinary stochastic dominance holds for all transitive complete preference-or-
indifference relations that could be obtained on the underlying space of possible
outcomes by consistent adjustments; we say weak stochastic dominance holds if
ordinary stochastic dominance holds for at least one transitive complete preference-
or-indifference relation that could be obtained on the underlying space-of possible
outcomes from consistent adjustments. In this paper, we investigate these concepts
further. In particular, we provide complete definitions and additional characteriza-
tions in §3, where we also introduce additional definitions of stochastic dominance
that fall between strong and weak stochastic dominance,

Our method for comparing probability measures on a set ordered by an intransitive
preference relation is motivated by a different definition recently proposed by
Fishburn [3]. Fishburn’s definition, which we discuss in §2, is a fascinating concept,
but its subtlety may make it difficult to understand and apply. Moreover, as we shall
show in §2, Fishburn’s {3] stochastic dominance relation is not transitive. We believe
that in many circumstances it is desirable to have the stochastic dominance relation
be transitive even if the preference relation on the underlying space is intransitive,
This permits a “rational” comparison between probability measures even if there are
“inconsistencies” in the basic preferences.

Moreover, our approach not only produces a transitive stochastic dominance
relation, but it also applies to relations on the underlying sample space which are not
reflexive or complete, see §2. Finally, even in situations where Fishburn’s definition is
appropriate, strong and weak stochastic dominance are of interest because they serve
as computationally tractable bounds for Fishburn’s definition; see Theorem 6.

2. Fishburn’s Definition

We use the notation in Fishburn [3]. In particular, let X be the set of all possible
outcomes; let R be a reflexive and complete (but not necessarily transitive) pre-
ference-or-indifference relation on X, with xRy meaning x is “weakly better” than y;
and let I and P be the associated indifference and strict proference relations induced
by R, i.e., xIy if xRy and yRx, and xPy if xRy and not yRx. The relation R is a subset
of the Cartesian product X2, Reflexive means xRx for all x € X, and complete means
either xRy or yRx or possibly both for all x, y € X. This implies that exactly one of

-xly, xPy or yPx holds for all x, y € X. Let Px = {y € X: yPx}, xP = {y € X:xPy},
Rx={yeX:yRx}, xR={yEX:xRy}, Ix={yE€X:yIx} and xI={y€EX:
xIy}. Note that Ix = xI for all x € X. Let II=II(X) be the set of all simple
probability measures on X, i.e., if p €I, then p(4) = 1 for some finite subset 4 of X.
Let the standard notion of (first-order) stochastic dominance based on R be denoted
by SD(R) and defined by '

PSD(R)q if p(Rx) > q(Rx) forallx € X. 1)
Of course, SD(R) is usually used under the assumption that R is transitive, but it
could be used more generally. However, Fishburn defines the following two stochastic
dominance relations for probability measures p and g in II:

PDy(R)q ifp({x q(xP) <A}) < q({x: p(xP) < A})
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for all A, and

PDy(R)q ifp({x:9(Px)>A}) < q({x : p(Px) > A})
for all A. Fishburn shows that D,(R) and D,(R) agree if the relation R is transitive.
Moreover, in that case they coincide with the usunal definition of stochastic dominance
SD(R) in (1). The definition of stochastic dominance actually proposed by Fishburn
is denoted by D(R) and is defined by

PD(R)q ifpDy(R)q andpDy(R)q.

Fishburn also shows that D(R) satisfies nine basic conditions. However, in some
situations these conditions seem difficult to accept. They imply that D(R)-dominance
for p and q depends only on the relation R restricted to the union of the support of p
and the support of g (where the support of a simple probability measure p is the set of
all points in X to which p assigns strictly positive probability). This condition seems
appropriate if only two measures are to be compared, but it seems questionable if
more measures are to be compared. In particular, it rules out transitivity. To see this,
let p. denote the probability measure which assigns probability one to the set {x}
containing the single point x.

TaeoreM 1. p, D(R)p, in I1 if and only if xRy in X.

ProoF. Combine conditions C2 and C3 in Fishburn [3]. Condition C2 says that
pD(R)q whenever aRb for all pairs (a,b) with a in the support of p and b in the
support of g. Hence, we have established: (i) xRy 1mp11es that pr(R)p Condition
C3 says that gD(R)p is ruled out if-both aRb for all pairs (a,b) with a in the support
of p and b in the support of g and bRa fails to hold for all pairs (b,a) with b in the
support of g and & in the support of p. Hence, we have established: (ii) if xPy, then
7yD(R)p, cannot hold. Combining (i) and (ii), we see that xRy if and only if
pr(R)p)., as claimed.

CoRrOLLARY. D(R) is transitive if and only if R is Vtransitive.

Proor. If R is transitive, D(R) coincides with the ordinary stochastic dominance
in (1), which is transitive. If R is not transitive, then there exists x, y and z in X such
that (1) xPy, yPz, and zPx or (2) xPy, yPz and zIx or (3) xPy, ylz and zIx. In each
case, the same pairwise relations hold for p,, p, and p,, which implies that D(R) is not
transitive.

Another issue is that mixtures are not well behaved. By mixtures, we mean the
probability measures ap + (1 — a)q in II obtained from each p and ¢ in II and each
real number a with 0 < a < 1. It is easy to see that none of the three axioms in the
expected utility theorem for simple measures, pp. 107-110 of Fishburn [1), are valid
for D(R). In particular, suppose p, ¢ and r are three measures in IL. If pD(R)g, it
does not follow that [ap + (1 — a)r]D(R)[ag + (1 — &)r], i.e., the independence axiom
fails. Moreover, if pD(R)q and gD(R)r, it does not follow that either [ap + (1 — a)r]
D(R)q or gD(R) [Bp + (1 — B)r] for any a, B €(0,1), i.e.,, the Archimedean axiom
fails. These properties are easy to check using x, y, and z in X such that xPy, yPz, and
zPx; the desired contradictions hold for p,, p, and p, in IL.

3. Transitive Stochastic Dominance Relations

We believe that in many applications it is desirable to have the dominance relation
on II be transitive even when the underlying preference relation R on X is not. Then
comparisons which most decision makers would consider rational can be made among
the probability measures. A natural way to obtain such transitive relations on II is to
use a standard stochastic dominance relation together with various transitive relations
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on X generated from the given relation R. The idea is to judiciously assume either that
a is related to b when it was not before or that g is not related to b when it was before.
However, when we eliminate related pairs from the relation R, then we may violate
the completeness assumption, i.e, we may no longer require that every pair of
elements be related. This means that we will need to apply notions of stochastic
dominance for simple probability measures defined on a space with a partial order
relation. Fortunately, a substantial theory of stochastic dominance for probability
measures defined on a space with a partial order relation already exists; sec Kamae,
Krengel and O’Brien [4] and references there. In particular, we use the following
partial order relation in II associated with any relation R on X:

pSO(R)q if 2“("1)1’({"1}) > 2“(-"1)7({"1}) )

i.e, if E,(u4) > E (u), for all nondecreasing real-valued functions %, where the summa-
tion is over the supports ofpandg respecuvely It is well known that SO(R) in(2)is
equivalent to SD(R) in (1) when R is transitive and complete, but if R is a partial
order, then SO(R) is strictly stronger than SD(R); see pp. 767-771 of Veinott [5]. It is
significant that set inclusions for the relations R on X are inherited by the relations
SO(R) on II:

THEOREM 2. If R, and R, are two relations on X such that R, C R,, then SO(R,)
C SO(R).

PrOOF. Any real-valued function on X which is nondecreasing with respect to R,
is nondecreasing with respect to R;. Thus the class of test functions in the definition
of SO(R) is larger for R,.

It is significant that for our treatment the relation R need not be either reflexive or
complete, but for simplicity we shall assume R is both.

We begin by defining a relation C on X by saying xCy if either xIy or there is an
inconsistency cycle connecting x and y, i.e., a cycle of binary relations extending from
x to y and returning back to x such that transitivity would contradict xIx. More
formally, an inconsistency cycle connecting x and y is a finite sequence {x,,..., X,}
with x; = x, = x and x, = y for some k, 1 < k < n, such that x;Rx,,, for all i and
x;Px;, ; for some i. It is easy to verify that C is an equivalence relation (reflexive,
symmetric and transitive). As usual, the equivalence relation C induces a partition of
equivalence classes in X. An important property is:

THEOREM 3. Any two distinct C-equivalente classes A, and A, in X are strictly
ordered: with the proper labeling, a,Pa, for all a, € A, and a, € 4,.

Proor. First, if a, € 4, and a, € 4,, then cither a,Pa, or a,Pa, because a,Ca, if
a,la,, which would imply that a; and a, would belong to the same equivalence class.
Suppose a,Pa,. We shall show that there is a contradiction if b, € 4,, b, € 4, and
byRb;. If so, there would be a cycle from b, extending to b, and returning back to b,
contradicting b,15,: use b,Rb, and a,Pa, plus segments connecting b, and a, in A4,
and a, and b, in A4, so that transitivity would imply b;Ra, and a,Rb,. This implies
that b;Ch,, so that b; and b, would belong to the same equivalence class, which is a
contradiction.

There are actually two kinds of C-equivalence classes. We call an equivalence class
A an indifference class if a\la, for all a,,a, € 4; otherwise, we call the eqmvalence
class an mconststency class. 1t is easy to see that every pair of elements in an
inconsistency class is connected by an inconsistency cycle.

We propose to obtain transitive order relations on II by altering the relatlon R on
X, but in such a way that we change aRb only if a and b belong to a common
inconsistency class. The first new relation on X is the mcomplete order R, obtamed by
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making any two distinct elements in the same inconsistency class noncomparable, i.c.,
aR.b holds if and only If aRb holds and a and b do not belong to a common
inconsistency class. (Thus, aR,b does not hold whenever g and b belong to a common
inconsistency class.) The second new relation on X is the complete order R, obtained
by making any two elements in the same inconsistency class indifferent, i.e., aR.b
holds if and only if aRb holds or a and b belong to a common inconsistency class. It
follows immediately from the definitions that R, C R C R,. It is easy to see that R, is
the transitive completion of R, i.e., R, is the smallest transitive relation containing R:

THEOREM 4. Suppose R C R’ C X2 and R’ is transitive, then R, C R'.

ProoF. For any two elements 4 and b in a common C-equivalence class, there
exists a finite sequence {x,,...,x,) with x,=a, x,= b and x,Rx,,, for all i,
1< i< n—1.Since R C R’, the same is true for R’. Since R’ is transitive aR’b. Since
aR’b holds for all 4 and b in a common C-equivalence class, R, C R’.

We regard SO(R,) and SO(R,) as two extreme cases or bounds for stochastic
dominance in II(X, R). This is justified by

THEOREM 5. (a) SO(R,) C SO(R)= SO(R,).
(b) If R’ is any relation satisfying R, C R’ C R,, then SO(R,) C SO(R") C SO(R).

Proor. (a) Since R, C R C R, SO(R,) C SO(R) C SO(R,) by virtue of Theorém
2. To see that SO(R) = SO(R,), note that to be nondecreasing a real-valued function
on (X,R) must be constant on each C-equivalence class. Hence, the set of all
nondecreasing real-valued functions on (X, R) coincides with the set of all nonde-
creasing real-valued functions on (X, R.).

(b) Apply Theorem 2 again.

Theorem 5(b) provides the connection to the other characterization of stochastic
dominance bounds discussed in the introduction. In this other characterization, we
consider all possible adjustments that can be made to the original relation R, allowing
only consistent changes, i.e., changes for pairs in a common inconsistency class, in
order to produce a complete transitive preference-or-indifference relation R,. We say
strong (weak) stochastic dominance holds if SO(R,)-dominance holds for each (at
least one) complete transitive relation R, obtained through such an adjustment.
Theorem 5(b) implies the following

COROLLARY. SO(R,) is strong stochastic dominance and SO(R,) is weak stochastic
dominance.

We thus regard SO(R,) and SO(R,) as natural bounds for any reasonable defini-
tion of stochastic dominance in II(X, R). By this we mean that if pSO(R,)q, then we
should have pS(R)q for any other reasonable stochastic dominance relation S(R).
Similarly, if pSO(R.)q fails, then pS(R)q should fail for any other reasonable
definition S(R). Hence, we would hope that Fishburn’s [3} orderings D,(R), D,(R)
and D(R) should be contained within our bounds, and this is indeed the case.

THEOREM 6. SO(R,) C D(R) C D(R) C SO(R,) for j=1,2.

ProoF. We first show that SO(R,) C D,(R). For this purpose, suppose pSO(R,)g.
Then p(xP) < g(xP) for all x € X because the function ¥ which is the indicator
function of X — xP, i.e., which is 0 on xP and 1 on X — xP, is nondecreasing on
(X, R,). The definition of SO(R,) thus implies

1= p(xP) = p(X = xP) = S u(x)p(())

> Su(x)q((x)) = 9(X ~ xP) =1~ g(xP).
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As a consequence, {x:q(xP) <A} C {x:p(xP)<A} for all A, 0 <A< 1. Hence,
p({x:q(xP)< AP < p({x: p(xP)<A}) for all A, 0<KA< 1. Now note that the
function which is the indicator function of the set {x: p(xP) > A} is also nondecreas—
ing on (X, R,). Hence,

1—p({x: p(xP) <A}) =p({x: p(xP) >1A})
> q({x: p(xP)>A})=1-gq({x: p(xP) <A}),

so that p({x:q(xP) < A}) < g({x: p(xP) < A}) for all A, 0 < A < 1, which completes
this part of the proof. By similar reasoning, SO(R,) C D,(R).

We now show that D\(R) C SO(R,). Suppose pSO(R )q fails to hold. This means
that p(4) > q(4) where A is the union of all the elements in the k lowest C-
equivalence classes for some k (recall Theorem 3). We shall show that p({x:q(xP)
<A < g({x: p(xP) < A)) fails for A=a with g(4) < a < p(4). Since g(4)< a
< p(4),

{x:p(xP)<a}cAC{x:q9(xP)< a},
so that
g({x: P(xP) < a}) < g(4) <p(4) < p({x :q(xP) < a}).

Again, similar reasoning shows that D,(R) C SO(R,).

The bounds SO(R,) and SO(R,) prov1de support for using Fishburn’s D(R) instead
of ordinary stochastic order SD(R) in (1) because, while SD(R)-is clearly transitive
and easier to determine, the set inclusion SD(R) C SO(R,) can fail, as the following
example illustrates,

ExampLE 1. To see that we need not have SD(R) C SO(R,), let X ={1,2,...,6)
and P = {(1,2), (1,3), (1,6), 2,3), (2,4), (2,6), (3,5), (3,6), 4,1), (4,6), G, 1), (5,6)}.
Note that there are two C-equivalence classes {1, ..., 5} and {6}. Let p and q be two
probability measures defined by

2N =p({4})=1/4, p({6})=1/2,
(1N =q((5)=1/8, 4({3}))=1/3 and ¢({6})=5/12.
Since p({6}) > g({6}), we cannot have pSO(R,)q. However, it is easy to verify that
P(Rx) 3 q(Rx) for all x, so that pSD(R)q.
Stochastic order pSD(R)q has been defined in (1), but it also could have been

defined as
p(xR) < g(xR), forallx € X. ®3)

As illustrated by the previous example, (1) neither implies nor is implied by (3). It is
also easy to see, reasoning as in Theorem 6, that pSO(R,)q implies both (1) and (3).
However, we have not yet determined if (1) and (3) together imply pSO(R_)q.
Finally, we mention some additional transitive order relations on X that fall
between R, and R. In particular, we say aR,b if Ra C Rb, aRb if aR 2 bR, and aRb

if aR,b and aR,b: Clearly R,, R, and R are all transitive.
TueoreM 7. R,CRCR,CRand RCR,CR.

Proor. Since a € Ra, a € Rb if Ra'C Rb, which implies that aR* if aR,b. Simi-
larly, aRb if aRb, If aR b, then aPb and a and b belong to different C—equwalence
classes. Hence, aRb by Theorem 3.

COROLLARY. SO(R,) C SO(R) C SO(R,) C SO(R).
It is easy to see by example that the inclusions R, C R c R,, c R can all be stnct,
while R, and R, need not be related by set mcluswn
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Another ordering R* intermediate between R, and R is obtained by saying aR*b
for a and b in different C-equivalence classes if and only if aRB and by saying al*b
for a and b in a common C-equivalence class A if alb and, for every other element ¢
in 4, we have alc and blc. Otherwise, we say neither aR*b nor bR*a holds. In this
way, we proceed as in the construction of R, from R except that we do not remove all
relations in an inconsistency class; we only remove those which are part of an
inconsistency cycle of length three.

THEOREM 8. I* is transitive and R, C R* C R.

Proor. We consider only the second inclusion. Suppose aR*b. If (a,b) & R,, then
there exists ¢ such that cRa but not cRb. Since aRb, this implies that a4 and b are part
of an inconsistency cycle of length three, so that aR*b fails, which is a contradiction.
Hence, R* C R,. Similarly, R* C R;, so R* C R.

The following example shows that all the set inclusions in Theorem 8 can be strict,

ExAMPLE 2. Let X = {a,b,c,d) and suppose aPb, alc, ald, blc, bld, and cld. 1t is
easy to see that

R, = {(a,a), (b,b), (¢;¢), (4.d)},

R* = {(a,a), (b,b), (c¢), (4,d), (c,d), (d,¢))
and

R=R*U {(a,b), (a,¢), (a,d), (c,b), (d,b)}.!

I am grateful to my colleague Shiomo Halfin for suggesting the promising relation Rand making other
helpful comments.
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