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1. Introduction

The purpose of this paper is to extend, and contribute to
a better understanding of, diffusion approximations and heavy-
traffic limits for a single-server queue with time-varying arrival-
rate function that were established by Newell [15-18] and
Mandelbaum and Massey [11]; also see [12,8,13,4]. As in our recent
paper [22] for queues with periodic arrival-rate functions, we
develop these limits in the standard framework for heavy-traffic
limits, as in [6,7,19,21].

In this paper we focus on one special case: the limiting behavior
at and before an isolated critical point, at what is called the
onset of critical loading in [11], where the arrival rate approaches
the critical value from below. Thus, this paper relates to only
Theorem 3.4 in [11]. For that result, we generalize the setting from
M;/M/1to G;/G/1 and give alternative developments, leading to
alternative scaling and alternative interpretations of it.

In particular, we consider a single-server queue with unlimited
waiting room having service times with mean 1, which fixes the
time scale. We consider a sequence of models with an associated
sequence of arrival processes having time-varying arrival-rate
functions. We will establish heavy-traffic limits, which involve
scaling time, so that we are looking at intervals over which many
customers arrive and are served. We assume that there is an
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isolated critical point, which we take to be time 0. In particular,
we assume that the arrival-rate function satisfies

AM0)=1 and XA(t) <1 fort <O. (1)

Moreover, for simplicity, we assume that A is nondecreasing in t
before time 0. (There is no mass of workload from the distant past
contributing to the buildup of congestion at the critical point.) As
observed in [15], the congestion at times t < 0 is less, often much
less, than the steady-state distribution with the instantaneous
traffic intensity p(t) = A(t), because the traffic intensity was
previously at lower values.

The approaches in [15-18,11] are quite different from [6,7,
19,21], even though they can be related. First, Newell [15-18]
makes a direct diffusion process approximation and then ana-
lyzes the Fokker-Planck partial differential equation for the time-
varying cumulative distribution function. The papers [15-17] are
landmark contributions to queueing theory, but they are challeng-
ing to understand, because they both develop the diffusion ap-
proximation and analyze it. It turns out that the diffusion process
is the limiting diffusion in the heavy-traffic limits, with the key
asymptotic properties captured by the parameters of that diffusion
process. In contrast, as in [6,7,19,21], our approach emphasizes
scaling, so it avoids looking directly at the detailed evolution of the
diffusion process, but that remains to be done to calculate explicit
approximations. In [23] we develop a robust queueing approach to
calculate such explicit approximations.

The more modern [11] exploits strong approximations. For
scaling, it starts with an initial arrival-rate function and expands
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time about each fixed point in that arrival function. As a
consequence of that expansion, the relevant long-time behavior
of the arrival-rate function is determined by the local behavior of
the initial function, as exposed by a Taylor-series expansion, which
requires extra regularity assumptions. This approach is helpful for
analyzing highly structural mathematical models, as we illustrate
with a sinusoidal example in Example 4.1.

Here is how this paper is organized. In Section 2 we formulate
our arrival process model. In Section 3 we establish a heavy-traffic
functional central limit theorem (FCLT) for the arrival process. In
Section 4 we show how that arrival process FCLT can be recast in a
setting in which we expand time within a fixed initial arrival-rate
function, as in [11].

Motivated by the desire to develop an approach that is helpful
for applications, in Section 5 we show how the heavy-traffic FCLT
can be expressed in yet a different way using drift scaling, which
is in the spirit of §4.3 of [20]. We think that it is natural to first
fit the drift function and then afterwards choose the appropriate
time and space scaling that goes with that drift function. That
approach directly yields the appropriate space scaling and the
diffusion process approximation, which the FCLT’s imply should
perform well when the drift constant is suitably small. Given a
FCLT for the arrival process, corresponding heavy-traffic FCLT’s
follow for the standard queueing processes using the continuous
mapping approachin [21].In Section 6 we illustrate by establishing
the heavy-traffic FCLT for the workload process. Finally, we briefly
draw conclusions in Section 7.

2. The arrival process model

As in [22], we construct the arrival process A by composing a
process assumed to satisfy a FCLT and a deterministic cumulative
arrival-rate function. In particular, we let the stochastic arrival
counting processes defined by

A(t) =N(A(t)), t=0, (2)

where N is a stochastic counting process satisfying a FCLT, i.e.,

Na(t) = n 2[N(nt) — nt] = cBa(t) inD asn — oo, 3)

where = denotes convergence in distribution in the function space
D of right-continuous real-valued functions on the interval [0, 00)
with left limits, as in [21], and B, is a standard (drift 0, variance
1) Brownian motion (BM), while A is a cumulative arrival-rate
function, satisfying A(t) = fot A(s)ds, t > 0, with A being the
arrival-rate function, which is assumed to be integrable over finite
intervals.

The construction in (2) is convenient for constructing non-
Markov nonstationary arrival processes. It was suggested in [14]
and also used in [3,5,22,23]. However, it is important to recognize
that, even though it allows very general stochastic processes
N, including renewal processes and much more (see §4.4
of [21]), this model is highly structured, having all unpredictable
stochastic variability associated with the process N, with its FCLT
behavior captured by the single variability parameter c,, while
all the predictable deterministic variability associated with the
deterministic arrival-rate function A and its associated cumulative
rate function A. More generally, we might contemplate a time-
varying variability parameter. In the present context, if the process
N is a renewal counting process, then c, is the square root of
cg, the squared coefficient of variation (scv, variance divided
by the square of the mean) of an interarrival time. From an
engineering perspective, the tractability produced by reducing the
impact of the stochastic variability to the single parameter c?
may be essential for drawing useful conclusions about system
performance.

Throughout this paper, we assume that the cumulative arrival-
rate function A is deterministic, but it is significant that the
results here can be extended to cover the case in which arrival-
rate function is a stochastic process, which can be important
in applications. For example, service system arrival process data
often indicate overdispersion caused by day-to-day variation, as
discussed in [9].

3. A conventional heavy-traffic FCLT for the arrival process

Given the composition representation of the arrival process in
(2) and the assumed FCLT in (3), we can obtain a conventional FCLT
for the arrival process A defined in (2), which involves scaling time
by n and space by 1/./n, and then letting n — oo, if we write

As(t) = n V?[A,(nt) — nt] and

An(t) = n"?[A,(nt) — nt], >0, (4)
where
t
An(t) = N(Ap(t)) and A,,(t)z/ An(s)ds, t >0, (5)
0

and we make appropriate assumptions about the deterministic
arrival-rate functions A, (t), which requires that A, (t) remain close
to 1 for large time intervals about t = 0. As in [22], it is important
that we scale time and space in the deterministic cumulative
arrival rate functions A, in (4).

We find it convenient to work in reverse time, because
the workload process then can be represented as a simple
supremum of the net input process; see Section 6. The reverse-
time construction is discussed in [23], which develops a time-
varying robust queueing approximation based on the supremum
representation. Hence, we measure time backwards from time 0,
so that A(t) counts the number of arrivals in [—t, 0]. This section
is devoted to establishing a FCLT for the process A. We remark
that a FCLT also holds in forward time or in intervals [tq, t;] with
t; < 0 < t; by the same argument.

As a main example in our reverse-time framework, we focus on
arrival-rate functions that decay in a power away from the critical
point at time O; i.e.,

A(t) =1— Cntp, t>0, (6)

for some real number p > 0. In comparison to [11] and Section 4,
note that p is not restricted to being an integer, butp = landp = 2
are especially interesting.

We emphasize that we are concerned with large time, i.e., time
scaled by n as n — 00, so that we need to consider the scaled

version
An(nt) =1 —cy(nt)?, t >0, (7

where we allown — co.Note thatp = 0in(6)and (7) corresponds
to a constant arrival rate of 1 — c¢,, which produces a constant
negative drift of 1 — c,. The following result covers this stationary
model as a special case.

Theorem 3.1 (Conventional FCLT for the Arrival Process). If, in
addition to the FCLT for N, in (3),

Ay — A inD, (8)
for }ln defined in (4) and (5), then

An:>caBa+;l indasn — oo. (9)
Under assumption (6), the limit in (8) holds if and only if

can®tV2 ¢ asn— o0, 0 < ¢ < 00, (10)
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in which case

R —ctPt!

A(t) = 1 t > 0. (11)
p

Proof. To obtain (9), we apply the standard argument for
preservation of convergence with composition and centering, as in
§13.3 of [21]. In particular, we write

An = n72[N(Ay(nb)) — nt]
= n"2[N(An(nt)) — Ap(nt)] + n~?[An(nt) — nt]
= B, + A.

To establish the limit of the first term in the second line, we use the
limit A, = ein D, where A, (t) = n"'A,(nt) ande(t) = t,t > 0,
which is a consequence of (4) and (8). We can then apply Theorem
11.4.5 of [21] to obtain the joint convergence (12\,1, Ag, ?\n) =
(A, e, A) in D3. Then we can apply §13.3 of [21].

Turning to (10), we integrate (6) to get

Cntp+l
Ap(t) =t — , t>0,
p+1
which implies that
—cyn@p+D/2¢p+1

An(t) = t >0,

p+1
from which (10) and (11) follow directly. ®

Observe that, in contrast to [15-17], we obtain the insightful
scaling constants without directly working with Brownian motion
or the limiting diffusion process. (Here we obtain the required
constants ¢, in (6) and (7) for given n; we show how we canreverse
this step in Section 5.) We exploit the scaling in the FCLT for N in (3).
That logic provides a basis for generalizations, as we now indicate.
This shows that there are many more possibilities than suggested
by previous work.

Remark 3.1 (Alternative Scaling and Limit Processes). Analogs of
Theorem 3.1 follow immediately if we replace condition (3)
with alternative limit processes and scaling. For example, if
the interarrival times are i.i.d. with a heavy-tailed distribution,
having finite mean but an infinite variance, then under regularity
conditions, the limit process would be a stable process and the
spatial scaling for N,, in (3) would be by n="* for 1 < « < 2, as
in §6.3 and §4.5 of [21]. Because of the discontinuities in the limit
process, the mode of convergence should involve the M; topology,
as in Theorem 6.3.1 of [21]. The spatial scaling in An would need
to be changed to n~!/* to match the spatial scaling of Nn in (3),
which in turn changes (10) in the presence of (6) and (7). Similar
modifications cover strong dependence in the arrival process, as in
§4.6 and §4.7 of [21].

Remark 3.2 (Simple and Complex Models). The power arrival-rate
functions in (6) are appealing for their simplicity, but Theorem 3.1
applies much more generally. For the second half of Theorem 3.1
to yield useful approximations, we require that the arrival-rate
function approximately satisfy (6) for large t. To see that the
assumed convergence in (8) can hold much more generally, we give
one example: suppose that, instead of (6),

)\.n(t) =1- C1‘ntp1 — Czyntpz, t > 0.
Then the limit in (8) holds if and only if

chnn(z”f“)/z — ¢ asn— 00, 0 <c<oo, forj=1, 2,

in which case
C1tp1+l C2tp2+l

—) t>0
p+1 pp+1

At) = —

Clearly, such complications in the limit function A make the limit
process A harder to work with.

4. Expanding time within a smooth function

Motivated by [11], we now consider an alternative approach to
the arrival-rate function, where we expand time in a fixed smooth
function. By smooth, we mean that it is infinitely differentiable,
so that we can construct Taylor series approximations. (That
excludes non-integer p in (6).) In particular, given a smooth arrival-
rate function A satisfying (1), and maintaining our reverse-time
perspective, we assume that

An(t) = A(t/bn), t =0, (12)

where b, — oo asn — 00, so that we can expand in a Taylor

series approximation

A0 (0)(t/by)"
k!

for some integer k > 1, where —oo < A% (0) < 0 by (1) and the
reverse-time view. We keep the scaling constant b, in (12) general
so that we can adjust to fit in the framework of Theorem 3.1.

() =1+ +0((1/by)*) asn — oo (13)

Theorem 4.1 (Expanding Time within a Fixed Arrival-Rate Func-
tion). If, in addition to the FCLT for Ny, in (3), (12) and (13) hold for
an initial smooth function A and a nonnegative integer k, then

A0 (O)tk'H
bk (k + 1)!
so that (8)-(11) hold for p = k if and only if

An(t) =t + +0((1/b)*) asn — oo, (14)

by /n@FV2k s p 0 < b < 00, (15)

in which case A is as in (11) with c = 1/bX.
Proof. From (14) and (4),
2B (0 (nt)k+1-01/2)
bk(k + 1)!
where o((n/b)*) iso(n"?) by (15). m

We think that this approach is appealing for mathematical
simplicity and elegance, but it seems not so well suited for
developing a suitable approximation to match data. This approach
is appealing to treat structured mathematical models, as we
illustrate with the next example.

An(t) = + o((n/bn)"),

Example 4.1 (Sinusoidal Arrival-Rate Function). Given the liter-
ature on queues with time-varying arrival-rate functions, e.g.,
[1,10,22], it is natural to focus on the sinusoidal case. To expand
the time around the peak, we consider the cosine function over a
half cycle, which is an even function, and thus invariant under time
reversal. In particular, let

A(t) = p cos(t),

which makes X (t) decreasing away from its peak of 8 at time 0. Let
A(t) = 0 before —m in forward time.

Hence, recalling that cos(t) = 1 — t2/2 4 o(t) ast — 0, from
(12)and (13), we obtain

B(t/bn)?
4

- <t<u, (16)

() =1— +0(1/by)? asn— oo (17)
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for —m < t < 7. Hence, (8)-(11) hold for p = 2; i.e., c,n®? — ¢

and A(t) = —ct3/3,t > 0. Thus the spatial scaling is by O(n~'/%),
which is consistent with [17,11].

5. Drift scaling

It is often insightful for applications of heavy-traffic limits to
scale by the drift. For the stationary model, we can express the
scaled queue length as

Qs(t) = 8Q (7%,

e.g., see §4.3 of [20]. In our setting, we have mean service time
1 and thus a time-varying drift 1 — A(t), t > 0. If we consider
structured arrival-rate functions, then we can represent the drift
using a constant. Thus, paralleling (6), we can write the drift as a
power function of t determined by a constant § > 0 via

t>0, foréd=1—p, (18)

tp+1
As(t) =1 —6tP,

=t — >

so that As(t) =t Pl t>0. (19)

For applications, we think that it is natural to start by fitting the
two parameters § and p in the function in (19) and then consider
the diffusion approximation determined by those parameters. The
heavy-traffic limit theorems indicate that the quality of the direct
approximation should improve as § decreases.

To state the appropriate FCLT as § | O for fixed p, we use the
associated §-scaled processes.

As(t) = 8PP A (872D ) — §72/CPHD1] and (20)
As(t) = 8/ @HD[A (572 @D ) _ 572/ @D
fOl'A5 (t) = N(A5 (t)),

andt > 0.

Theorem 5.1 (FCLT for the Arrival Process with Drift Scaling). If, in
addition to the FCLT for N, in (3), As —> AinD asé — 0 for A
defined in (19) and (20), then

,2\5:>CGBG+}1 inDasé — 0, (21)

where /2\5 is defined in (20). Under assumption (19), 215 =A forall §,
where

Proof. The first assertion in (21) is just (8) in Theorem 3.1 with
n — oo replaced by §%/@+1) 5 o0 as § — 0. The last assertion
follows by direct calculation. M

6. Heavy-traffic limits for the workload process

We can obtain associated heavy-traffic limits for queueing
processes of interest in the G;/GI/1 model by applying one of
these established arrival process FCLT's with established results
in [6,7,19,21]. We illustrate by applying Theorem 3.1 to the
workload process, representing the remaining work in service time
in the system at time t. The simple approach for the workload
follows [ 19], which is possible because it is simple for single-server
queues, unlike for the multi-server queues considered in [6,7].

We assume that the sequence of service times {V}}, also indexed
in reverse time, is independent of the arrival process and satisfies
a FCLT; in particular,

A

Sh = ¢B; indDasn— oo, (22)

where B; is a (standard) BM independent of the BM B, in
Theorem 3.1 and

Lnt)
S=n"Yy V-1, t=0,

k=1

where | x] is the greatest integer less than or equal to x.

The workload at time —t; starting empty at time —t;, where
—00 < —tp < —t; < 0in forward time, can be represented in the
reverse-time framework as

sup {X(s) — X(t1)},

{t1<s<t}

Wi, (t2) = ¥, (X)(t2) =

0<t; <ty <00, (23)

where X(s) = Y(s) — s is the reverse-time net-input process over
the interval [0, s] or, equivalently, the forward-time net input over
[—s, 0], with Y being the random sum

A(s)

Y(s) = ka, s> 0.
k=1

Now construct the scaled processes
Ya(s) = n~ (Y, (ns) - nis],
)A(n(s) = n_l/ZXn(ns),
Wi, n(s) = n"2W,, a(ns), s> 0.

s> 0,

s> 0,

d e . .

Let = denote equal in distribution, applied here for stochastic
processes, and let N(m, o) denote a normal or Gaussian random
variable with mean m and variance 2.

Theorem 6.1 (Heavy-traffic FCLT for the Workload Process). If the
conditions of Theorem 3.1 hold in addition to the assumptions in this
section above, then

(Bu, S Yoy Ry Wey ) = (A,5,Y, X, Wey)

inD°asn — oo, (24)
where
A, S, Y, X, Wy)) = (caBa + A, ;B, A+ 5.V, W, (X)), (25)

for W, defined in (23) above, with B, and B being two independent
BM’s. As a consequence, X is the Gaussian process

g4

X =B+ A, (26)
where c2 = ¢2 + c2 and B is BM, so that X (¢) 4 N(A(t), (2 +c2)t)
forallt with0 <t < t;.

Proof. First, by Theorem 11.4.4 of [21], under the conditions of
Theorem 3.1 and the assumptions above,

(An, Sn) = (CaBa + A, ¢Bs) in D? asn — oo, (27)

where A is given in Theorem 3.1, while B, and Bs are two
independent standard Brownian motion processes, as stated for
the first two terms in (24). Convergence of the third and fourth
terms in (24) follow from preservation of convergence under
composition and centering, just as in the proof of Theorem 3.1.
Finally, convergence of the scaled workload process follows from
the continuous mapping theorem for the supremum over bounded
intervals. The usual reflection map is replaced by an ordinary
supremum in reverse time. M
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We suggest applying Theorem 6.1 to approximate the workload
W, (nty) at any time nt; < O, starting empty in the infinite
past with arrival-rate functions satisfying (1) and the assumptions
above, by

Wa(nty) ~ v/n lim (W, ()

= V1 sup {GB(s — t1) + A(s) — A(tr)).
{s=t1}
Because of condition (1) and the conditions in Theorem 6.1, we
anticipate that the supremum above will be attained, and at
relatively small s. The approximation is relatively direct at the
critical point when t; = nt; = 0.

Remark 6.1 (Limit Interchange and Initial Conditions). The approxi-
mation above is not directly justified by a limit, because it involves
an interchange of limits. We want to first let t; — oo and then let
n — oo, but we develop our approximation by changing the order
of these two limits. That parallels what is done to approximate the
steady-state distribution with a stationary model, which has been
rigorously addressed in some cases, e.g., see [2].

We emphasize that Theorems 3.1-6.1 are closely related to
Theorem 3.4 of [11]. The formulation of Theorem 3.4 in [11]
also has a problem with the initial conditions. In particular, the
formulation of Theorem 3.4 in [ 11] is tantamount to starting empty
at some finite time in the past.

Remark 6.2 (Before and After the Critical Time). All the FCLT's
can be extended to time intervals [ti,t;] witht; < 0 <
under essentially the same conditions. That will leave the scaling
unchanged. This extension can help to analyze the impact after
time 0. However, the required notation gets more complicated;
e.g., see Theorem 3.4 in [11].

7. Conclusions

We have established heavy-traffic limits for the arrival and
workload processes in the G;/GI/1 queue with a time-varying
arrival-rate function. We have focused on the limiting behavior
at and before a critical point, where the arrival-rate function
approaches its critical value from below, which has been called the
onset of critical loading in [11]. Our results extend and complement
previous results in [15-18,8,13,11,4,22].

In Section 3 we established a heavy-traffic FCLT for the arrival
process in the standard heavy-traffic framework in [21], which
follows [6,7]. Given the usual time scaling by n and space scaling
by 1/4/n, this requires conditions on the associated sequence
of arrival-rate functions. For arrival-rate functions of the form
An(t) = 1—c,tP, viewed in reverse time back from the critical point
at time 0, the FCLT requires the scaling c,n®*9/2 — casn — oo,
0 < ¢ < 00,in (10) and leads to the deterministic component
A(t) = —ctP*1/(p+1) in the diffusion process limit. Note that the
exponent of t in A(t) is necessarily one higher than the exponent of
t in A, (t), which occurs naturally because the cumulative arrival-
rate function is the integral of the arrival-rate function.

The most interesting cases in that limit theorem are the linear
and quadratic cases, which arise for p = 1and p = 2. These lead to
spatial scaling by n='/3 and n~'/>. These correspond, respectively,
to the transition through saturation in [ 15] and the mild rush hour
in [17]. While these two cases yield important insights, there are
many other possibilities, as illustrated in Remarks 3.1 and 3.2. An
important conclusion of this paper is that we should not assume
that the spatial scaling in heavy-traffic limits for queues with time-
varying arrival rates should be restricted to n='/3 and n=1/°.

In Section 4 we showed how that arrival process FCLT can be
recast in a setting in which we expand time within a fixed initial

arrival-rate function, as in [ 11]. That framework uses a Taylor series
expansion, which restricts the possible cases. To obtain limits
of the same form as in Section 3, we impose conditions on the
time scaling of the arrival-rate functions. This case arises naturally
when we consider highly structured mathematical models like the
sinusoidal arrival rate function in Example 4.1.

Motivated by the desire to develop an approach that is useful
for applications, in Section 5 we show how the heavy-traffic FCLT
can be expressed in yet a different way using drift scaling. The
idea is that we would fit the model by first observing the essential
large-time-scale form of the drift. In particular, given that we
directly observe (estimate) that the arrival-rate function has the
formAs(t) = 1-48tP,t > 0,asin(19), we develop appropriate time
and space scaling in terms of the parameter § in order to obtain
a heavy-traffic limit. The required time scaling is by §—2/@Pk+D,
while the associated space scaling is by §/@Pk+D As before, the
limit process Aisa power with one higher exponent than 1—Xs(t).

Associated heavy-traffic FCLT’s for the usual queueing processes
follow quickly given the limits for the arrival process, as in [21]. In
Section 6 we illustrate by establishing the heavy-traffic FCLT for
the workload process.
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