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We investigate how performance scales in the standard M/M/n queue in the presence of growing congestion-dependent customer
demand. We scale the queue by letting the potential (congestion-free) arrival rate be proportional to the number of servers, i, and letting
increase. We let the actual arrival rate with n servers be of the form A, = f(&,)n, where f is a strictly-decreasing continuous function and
£, is a steady-state congestion measure. We consider several alternative congestion measures, such as the mean waiting time and the prob-
ability of delay. We show, under minor regularity conditions, that for each n there is a unique equilibrium pair (A%, £¥) such that £ is the
steady-state congestion associated with arrival rate A7 and A* = f(£5)n. Moreover, we show that, as n increases, the queue with the equilib-
rium arrival rate Aj; is brought into heavy traffic, but the three different heavy-traffic regimes for multiserver queues identified by Halfin and
Whitt (1981) each can arise depending on the congestion measure used. In considerable generality, there is asymptotic service efficiency:
the server utilization approaches one as n increases. Under the assumption of growing congestion-dependent demand, the service efficiency
can be achieved even if there is significant uncertainty about the potential demand, because the actual arrival rate adjusts to the congestion.
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‘ K 7 e are interested in the way performance scales in a

service system that grows in response to increasing
customer demand. First, we should recognize that there are
several ways that a service system can grow. A service
system could grow as a collection of an increasing number
of separate service facilities of approximately fixed size,
e.g., as with a chain of gas stations. In contrast, here we
consider a single service facility modeled as a multiserver
queue {(homogeneous servers working in parallel) and let
the system grow by increasing either the number of servers
or the individual service rate. The case of an increasing
number of servers is natural for a telephone call (or more
general contact) center or a modem bank maintained at a
given location by an Internet service provider. The case of
an increasing service rate is natural for a computer system
with rapidly increasing processing rate or a communication
service with rapidly increasing bandwidth.

The growth of a service system depends upon many fac-
tors, including the nature of the service being provided, the
price of the service, customer preferences, and competition
from alternative service providers. We will focus on the
influence of congestion (thinking of the price as fixed) and
the structure of the service system as captured by a basic
queueing model. We will not consider customer preferences
or competition directly. We will not consider specific ser-
vices; we seek general principles.

We consider the classical Erlang delay model (i.e., the
M/M/n queue with n servers, unlimited waiting space,
and the first-come first-served service discipline, without
customer abandonment), where the long-run arrival rate is
allowed to be a function of the steady-state congestion.
We are thus thinking of a relatively long time scale. We
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are not thinking of dynamic real-time customer response
to experienced congestion, which would lead to a queue-
ing model with state-dependent arrival rate; e.g., where the
instantaneous arrival rate depends upon the number of cus-
tomers in queue found upon arrival, as in Stidham (1985),
Whitt (1990), Mandelbaum and Pats (1995) and references
therein. Instead, we want to allow the long-run arrival rate
to depend on the average performance over a longer time
period.

We consider the case in which the potential demand for
service is increasing. In response to the increasing poten-
tial demand, the service provider increases the number of
servers, n. (We also consider the case of an increasing indi-
vidual service rate, w, but we give less attention to that
case.) We consider the asymptotic behavior as n — oo,
with the understanding that the potential demand is grow-
ing proportional to n; i.e., we postulate that the actual
arrival rate with n servers has the form A, = f(£,)n, where
[ is a strictly-decreasing continuous function and ¢, is a
steady-state congestion measure depending upon the num-
ber of servers. In this framework, f(0)n is the potential
(congestion-free) demand as a function of n.

Of course, the steady-state congestion, as measured by
£, is itself a function of the arrival rate A,. However, we
show, under regularity conditions, that there exists a unique
equilibrium pair (A%, &) for each n such that simultane-
ously A} = f(&)) and & is the steady-state congestion
measure associated with arrival rate A%, We assume that
the congestion-dependent demand leads to this equilibrium
arrival rate A} being in force.

Then, we show that the growing congestion-dependent
demand brings the queue into heavy traffic as n — oo. This
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phenomenon occurs because of the economy of scale asso-
ciated with a larger facility with more servers; e.g., see
Smith and Whitt (1981) and Whitt (1992). The heavy-traffic
limit with growing congestion-dependent demand is signif-
icant because it shows that heavy-traffic is very natural, in
fact almost inevitable, in this many-server context.

However, as shown by Halfin and Whitt (1981), there
are actually three (and only three) different heavy-traffic
regimes for the M /M /n queue as n — oo. We show that
each of these three heavy-traffic regimes can result, depend-
ing on the particular congestion measure that is used.

The three heavy-traffic regimes can be characterized by
the asymptotic behavior of the delay probability (the prob-
ability of having to wait before beginning service) as the
arrival rate and number of servers both approach infin-
ity. In the standard heavy-traffic regime, usually associ-
ated with a fixed number of servers, the delay probability
approaches 1 and properly scaled versions of the queue-
length and waiting-time processes converge to reflected
Brownian motion (RBM), as we show in Theorem 2.2
below.

But there are two more heavy-traffic regimes: In the
infinite-server heavy-traffic regime, the delay probability
approaches 0. This regime is called heavy traffic too
because the number of customers in the system approaches
infinity along with the arrival rate and the number of
servers, even though the server utilization (the proportion
of time each server is busy) approaches a limit strictly
between 0 and 1.

In the intermediate heavy-traffic regime identified by
Halfin and Whitt (1981), the delay probability approaches
a limit @ with 0 < @ < 1. As indicated by the delay-
probability asymptotics, the intermediate regime is often
the most realistic for multiserver queues. We provide addi-
tional support for the intermediate heavy-traffic regime
here, but our analysis shows that it is not automatic. For fur-
ther discussion about these three heavy-traffic regimes, see
Borst et al. (2003), where these three regimes are called the
efficiency-driven, quality-driven, and rationalized regimes,
respectively.

The standard and intermediate heavy-traffic regimes
imply asymptotic service efficiency: As n — oo the server
utilization approaches 1. The asymptotic service efficiency
for multiserver queues implies that we can satisfy given
exogenous demand efficiently in a multiserver system by
choosing an appropriate number, n, of servers when the
arrival rate is very high, provided that we actually know
what the arrival rate will be when we select the number of
servers.

To determine what the arrival rate will be in practice, it is
customary to use forecasting techniques. However, if after
doing the forecasting there remains significant uncertainty
about the arrival rate, then it may be necessary to have extra
servers to hedge against that uncertainty. The need to hedge
against uncertainty about the arrival rate is especially strong
when the service facility in question is the sole service
provider, and there is determination to provide very good

quality of service. Indeed, in many large multiserver service
systems it is the uncertainty about the arrival rate that holds
back efficiency. For example, with large n, such as n > 400,
the target server utilization may be set at about 92% when
the queueing performance measures would directly indicate
98% or more, because of uncertainty about the arrival rate.

A starting point for this paper is the observation that
in many cases the arrival rate may not actually be deter-
mined exogenously. If the arrival rate can be regarded as
being a function of the congestion, as we have postu-
lated here, then our analysis shows that the service system
can be asymptotically efficient as the number of servers
increases even when there is significant uncertainty about
demand, provided that the initial “congestion-free” poten-
tial demand exceeds supply. With growing congestion-
dependent demand, the actual arrival rate can adjust to the
congestion.

The presence of congestion-dependent demand has
important implications for forecasting. When the arrival
rate adapts to congestion in this way, it is obviously not so
critical to accurately forecast the demand. Indeed, it may
not be possible to accurately forecast demand in customary
ways, because it may not be possible to regard demand as
exogeneous.

This paper was initially motivated by work on cus-
tomer contact centers by Armony and Maglaras (2003). For
related work on contact centers, see Whitt (1999), Borst
et al. (2003), Garnett et al. (2002), Gans et al. (2003), Man-
delbaum (2001) and references therein.

More generally, this investigation is intended to con-
tribute to a better understanding of the economics of
queues, multiserver queues, and heavy-traffic theory for
queues. For background on these topics, see Mendelson and
Whang (1990), Hassin and Haviv (1995), Mandelbaum and
Shimkin (2000), Whitt (1992, 2002, 2003) and references
therein.

1. THE MODEL WITH AN INCREASING
NUMBER OF SERVERS

We consider the M /M /n queue, first letting » increase with
a fixed service rate u. Without loss of generality, let the
individual service rate be 1. Let the arrival rate be A, and
the traffic intensity be p,, with the subscript n indicating
the number of servers. Because the service rate has been
set at 1, p, = A, /n. The traffic intensity coincides with the
server utilization.

Let 7, be the steady-state delay probability, w, the mean
steady-state waiting time (before beginning service), 7\ the
probability that the steady-state waiting time exceeds x,
and 7, the mean steady-state response (or sojourn) time—
the mean service time plus the mean waiting time. As a
function of n and the traffic intensity p, the (steady-state)
delay probability is

7, = m,(p) =[(np)"/n!(1-p)]v,(p) (1.1)
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with

n—1

vu(p) = [(np)"/n!(1=p)) + 3 (np)* /k!]™". (1.2)

k=0

In terms of the delay probability, the other congestion mea-
sures can be expressed as

7TII
n(1=p)’
m, =7, (p) = m,exp{—n(l - p)x},
T, =7,(p)=14w,,

w, =w,(p) =

x>0, (E3)

e.g., see Cooper (1982).

To obtain congestion-dependent demand, we regard the
arrival rate as a function of a real-valued steady-state con-
gestion measure. We will consider seven different cases for
the demand function. The first five have the general form

A, =A,(8) = F(E)n, (1.4)

where &, is the steady-state congestion measure with n
servers and f is a strictly-decreasing continuous real-valued
function of a real variable with

f(O)=vy>1 and lim f(x)=0, (1:5)

X1 lim

where & (< oo0) is the upper limit for the congestion
measure &,. Assumption (1.5) ensures that demand would
exceed supply if there were no congestion and that demand
dissipates completely as congestion approaches its upper
limit. It will be elementary that, for each n, there is an
equilibrium arrival rate A* producing an equilibrium level
of congestion & such that A* = A, (£"). We will be inter-
ested in the way the equilibrium performance behaves as
N> 00,

The specific five steady-state congestion measures that
will play the role of £, above are: (1) the mean steady-
state waiting time, w,, (2) the steady-state waiting-time tail
probability, 7 for x > 0, (3) the steady-state delay prob-
ability, m,, (4) the server utilization, p,, and (5) the mean
steady-state response time, 7,.

These one-dimensional summary statistics are plausi-
ble characterizations of the entire steady-state performance.
Because the steady-state waiting-time distribution is expo-
nential with an atom (positive probability) at the origin, it
is fully described by two parameters. Similarly, the steady-
state queue length (not counting customers in service) has
a geometric distribution with a modified mass at the origin,
so it too depends on only two parameters.

As we will see in §2 below, we obtain the standard
heavy-traffic regime instead of the intermediate heavy-
traffic regime when the congestion measure is the mean
waiting time. The remaining two cases are alternative
formulations with the mean waiting time that lead to
the appealing intermediate heavy-traffic regime. However,
these next two formulations may seem somewhat artificial.
Perhaps the best support of the intermediate heavy-traffic
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regime is the use of the delay probability as the congestion
measure, which is discussed in §3.

The sixth case is designed to reflect increasing customer
expectations in the presence of a growing service system.
Specifically, we assume that customers learn to expect a
better quality of service as n increases. In the intermediate
heavy-traffic regime of Halfin and Whitt (1981) the mean
waiting time is of order 1/4/n as n increases. Thus, in the
sixth case, we let

A=A (w,) = fF(Vnw)n. (1.6)

Motivated by Armony and Maglaras (2003), the final
seventh case has the potential demand differing from the
capacity n by order +/n, which is consistent with the inter-
mediate heavy-traffic regime. Specifically, we assume that

/\n = /\/z(wn) = f(wn)(n - 811\/z) (17)
where
B, =55 (1.8)

as n— oo, 0 is a constant, and f is a strictly-decreasing
continuous function with f(0) = 1 and f(w) — 0 as
w — oo.

In all seven cases above the function f is independent
of n, which seems to be a reasonable assumption. A more
general model would have functions f, depending upon
n. However, for most of the results (the exceptions being
Theorems 5.1 (b) and 7.1), the more general model is
essentially equivalent to the model above if we assume that
[, — f as n— oo, with the convergence being uniform over
bounded intervals, and that f and f, for n > 1 all have the
properties assumed for the single function f above. Hence,
we consider only a single function f.

In the sections below we analyze the seven cases of
congestion-dependent demand specified above. Afterwards,
we briefly consider the case of the M /M /n model with
increasing service rate u (and fixed n) and make conclud-
ing remarks. We place all proofs in the final section. We
omit some proofs, where the arguments are similar to those
displayed for previous results.

2. DEMAND AS A FUNCTION OF THE
MEAN WAITING TIME

In this section, we let the congestion-dependent arrival rate
be as in (1.4) with ¢, = w,, the mean-steady-state wait-
ing time. We start with the mean waiting time, because it
seems to be the most frequently used congestion measure
in queueing analysis.

We first convert the congestion-dependent arrival rate
into an associated congestion-dependent traffic intensity:
Equation (1.4) is obviously equivalent to

Pa(w,) = f(w,). (2.1)

On the other hand, we have the formula for the mean
steady-state waiting time as a function of the traffic inten-
sity p in model n (with n servers) given in (1.3).
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Given the two equations, we seek an equilibrium: we
seek values w* and p’ such that both equations are satis-
fied simultaneously. We then want to describe the asymp-
totic behavior as n — oo. These results are contained in
the following theorem, whose proof draws heavily upon
Proposition 1 of Halfin and Whitt (1981). Let f~' be the
inverse of the strictly-decreasing function f.

THEOREM 2.1. Suppose that (2.1) holds. For each n, there
exist unique numbers p* and w’ such that 0 < p} <1,
0=~ (=u g

w, (p) = Wy, 2.2)
and
P, (w,) = pj,. (2.3)
Moreover, p, | > p} and w;,, < wj for all n. As n — oo,
pn— 1,
Hl=p5) =¥ #,
S (2.4)
m,(p,) = 1,
wy —> (D).

The case of heavy traffic produced by Theorem 2.1 has
the equilibrium traffic intensities p’; approach the limit 1
so rapidly that the heavy-traffic behavior is essentially the
same as for the M /M /n queue with fixed n, which in turn
is the same as for the M /M /1 queue. To state the results,
let Q, () be the queue length (not counting the customers
in service) at time ¢ and let W, , be the waiting time until
beginning service for the kth customer to arrive after time
0 for the nth model with the equilibrium arrival rate deter-
mined by Theorem 2.1. For simplicity, assume that the nth
system starts with n customers present (all in service) at
time 0. (Other initial conditions can easily be treated.) Let
Q, (o) and W, ., be random variables with the steady-state
(limiting and stationary) distributions for these processes.

Let {R(t; m,a?): t = 0} be reflected Brownian motion
(RBM) starting at the origin with drift m and diffusion
coefficient o2, Let R(co0; m, o) be a random variable with
the steady-state (limiting and stationary) distribution of
RBM, which has an exponential distribution with mean
o?/2m. Let = denote convergence in distribution with the
context as indicated. For convergence of stochastic pro-
cesses, we can use the function space D = D([0, o0), R)
with the usual Skorohod J; topology; see Billingsley (1999)
or Whitt (2002). Because the limit process has continuous
sample paths, the mode of convergence on D is equivalent
to uniform convergence over bounded intervals.

THEOREM 2.2. Suppose that (2.1) holds for the M /M /n
queue initially with n customers in the system. For each
n, let the arrival rate be the equilibrium arrival rate A} =
npt, whose existence is established in Theorem 2.1. Let
L =1/f7"(1). Then, as n — oo,

(e Ot t 20) = [Rlt=12E120F 125)

and

{EW, 1 r2m2q: £ 20} = {R(s;—1,2): ¢ >0} (2.6)
in D, and

{n'Q,(0) = R(co;—1,2) @m
and

{W, 0 = R(oc0;—1,2) (2.8)

in R, where R(oo; —1,2) is a mean-1 exponential random
variable.

For background on heavy-traffic limits such as
Theorem 2.2, see Chapters 5, 9, and 10 in Whitt (2002).
Note that (2.8) (with appropriate uniform integrability (p.
31 of Billingsley, 1999), which can be established here)
implies that 7* — 1 and w} — f~'(1), as concluded in
(2.4). In turn, because the distribution of W, , is exponen-
tial plus an atom at the origin, the limits for ,(p*) and
w,(p?) in (2.4) directly imply the limit in (2.8).

REMARK 2.1. The Waiting-Time Tail Probability. By the
same reasoning, essentially the same heavy-traffic regime
is obtained if the congestion measure is the steady-state
waiting-time tail probability 7 for x > 0. If £, = 7}, the
demand function f in (1.4) maps the interval [0, 1] onto the
interval [0, y]. We obtain analogs of Theorems 2.1 and 2.2,
again with p%,, > p* for all n and p; — 1 and m,(p;) — 1

as n — oo, but now with 7%, < ;" for all n and

mt = £,
n(1—pt) = —(1/x)log /' (1), (2.9)
w,(p}) = —x/log f~' (1),

REMARK 2.2. Robustness of Condition (1.4). It is natural to
ask what happens if the original condition (1.4) is modified
slightly. It is easy to see that the results in this section still
hold if (1.4) is replaced by

A (w,) = f(w,)n+o(n),

where o(n)/n— 0 as n — oo.

(2.10)

3. DEMAND AS A FUNCTION OF THE
DELAY PROBABILITY

From the analysis in Halfin and Whitt (1981) and Whitt
(1992), we can conclude that a good congestion measure
for multiserver queues, that tends to have stable interpre-
tation for all n, is the delay probability 7r,. In the inter-
mediate heavy-traffic regime, m, - « with 0 < a < 1 as
n — oo. In contrast, w, — 0 as n — oo in the intermediate
heavy-traffic regime. That is why we obtained the standard
heavy-traffic regime in §2 when we let the congestion mea-
sure driving the congestion-dependent demand be the mean
waiting time.
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Thus, in this section we let the congestion-dependent
arrival rate be as in (1.4) with ¢, = m,, the steady-state
delay probability. As in the previous section, we work with
the traffic intensity instead of the arrival rate. Thus, instead
of (2.1), here we have

pn(m,) = f(m,). (3.1)

On the other hand, the steady-state delay probability with
n servers is a function of the traffic intensity, 7,(p,) as
given in (1.1).

To state the analog of Theorem 2.1, let @ = «(B) be
the (strictly-decreasing continuous) function from (2.3) of
Halfin and Whitt (1981) describing the nondegenerate limit
for the delay probability in the intermediate heavy-traffic
regime,

a(B) = [1+2mBP(B) exp(B/2]™", 3.2)

where ® is the standard normal cdf, ie., ®(x) =
P(N(0,1) < x). Halfin and Whitt (1981) show that
Vn(1—p,) = B with 0 < B < oo if and only if 7,(p,) = a
as n — oo with 0 < @ < 1 for & in (3.2).

THEOREM 3.1. Suppose that (3.1) holds. For each n, there
exist unique numbers p; and r; such that 0 < p* < 1,
0<mi<l,

7. (p,) = 7, (3:3)

and

Pu(T,) = Py (34)

Moreover, p; ., > p; and ., < ) for all n. As n — o,
pr =1,

Vn(l=p)) = B=a"'(f7'(1),
m = [T (1) = a(B),
Vnw, — a(B)/B.

Because this case produces the intermediate many-server
heavy-traffic regime considered by Halfin and Whitt (1981),
we can apply that paper to obtain all desired associ-
ated heavy-traffic limits. The congestion-dependent demand
serves to determine the one asymptotic parameter 8 from
the functions f and @ via B8 =a~'(f~'(1)) in (3.5).

(3.5)

REMARK 3.1. Robustness of Condition (1.4). Just as in
Remark 2.2, it is natural to ask what happens if the original
condition (1.4) is modified slightly. Because (1 — p?)./n
converges to a nondegenerate limit in this section, instead
of (1 —p¥)n, the condition here is different. It is easy to see
that the results in this section still hold if (1.4) is replaced

by
A (m,) = f(m)n+o(J/n), (3.6)

where o(n)/n — 0 as n — oo.
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4. DEMAND AS A FUNCTION OF THE
UTILIZATION

We now want to show that the infinite-server heavy-traffic
regime can also arise from growing congestion-dependent
demand. To do so, in this section we let the congestion-
dependent arrival rate be as in (1.4) with £, = p,, the server
utilization. We regard this case as the least interesting and
least realistic case, because server utilization is typically
not a congestion measure experienced by customers. This
case might arise naturally, however, if the arrival rate is
actually controlled by the service provider. In any event,
the case is interesting to see the range of possibilities.

When we convert the congestion-dependent arrival rate
into the congestion-dependent traffic intensity, we obtain
the equation

pa(p) = f(p). 4.1

Thus, we have the following elementary result.

THEOREM 4.1. Suppose that (4.1) holds. There exists a
unique number p* with 0 < p* < 1 such that

f(p*)=p" (4.2)
For all n,
pa(p") =p". (4.3)
As n— oo,

* 0,
Tu(Py) | “4)
wll(p;kl) ¢ O'

This third case is the infinite-server heavy-traffic regime
in which the arrival rate is kept directly proportional to
the number of servers, n, as n increases. This heavy-traffic
regime was first considered by Iglehart (1965); see also
Glynn and Whitt (1991) and Chapter 10 of Whitt (2002).

5. DEMAND AS A FUNCTION OF THE
MEAN RESPONSE TIME

In this section, we let the congestion-dependent arrival rate
be as in (1.4) with §, = 7,, the mean steady-state response
time. This case has rather strange behavior, because the
mean response time is the sum of the mean waiting time
and the mean service time. We have noted that the mean
waiting time is asymptotically negligible in the intermedi-
ate heavy-traffic regime, but the mean service time remains
fixed at 1. Thus, 7, is bounded below by 1 and converges
to 1 in the intermediate heavy-traffic regime.

When we convert the congestion-dependent arrival rate
into the congestion-dependent traffic intensity, we obtain
the equation

Pa(7,) = f(7,). (5.1)

The second equation involving 7,(p) is given in (1.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



536/ WHITT

Because 7,(p) > 1 for all n and p, the performance
depends critically on f(1). It turns out that we obtain all
three previous cases depending on whether f(1) is less
than, equal to, or greater than 1. To treat the case in which
f(1) =1, we assume that f has a continuous derivative
/(1) in the neighborhood of 1. To state the result, let g be
the (strictly decreasing) function

g(B) = a(B)/p* (5.2)
for « in (3.2).

THEOREM 5.1. Suppose that (5.1) holds. For each n, there
exist unique numbers p' and T; such that 0 < p <1,
Rl ) S S,

Ta(P3) = o> (5.3)
and
pll(T:) :p: (54)

* * * g G
Moreover, py,, > p; and Ty, < T, for all n. There are
three cases to describe the behavior as n — oo:

() If f(1) > 1, then
=T
==
mu(pn) = 1, ($.5)
=)=k
n(1-p3) = 1/(f71 (1) =1).

(b) If f(1) =1 and f has a continuous derivative in the
neighborhood of 1, then

Pzl
Yl L= Pe g = W
el (5.6)
w,(p,) = 0,

m,(p,) = «(B),

Jor g in (5.2).
(o) If f(1) < 1, then
2y, == L5
T =1,
m,(p}) = 0. o

w,(p}) = 0.

6. DEMAND AS A FUNCTION OF THE
SCALED WAITING TIME

We now start to consider the final two cases, with the aim
of achieving the intermediate heavy-traffic regime when the
congestion measure is the mean waiting time. In particular,

thinking of customers expecting a better quality of service
as n increases, we now assume that (1.6) holds.

For a = a(B) in definition (3.2), let h = h(B) be the
(strictly decreasing) function

h(B) = a(B)/B- (6.1)

THEOREM 6.1. Suppose that (1.6) holds. For each n, there
exist unique numbers p’ and w} such that 0 < p; <1, 0 <

) <wk <6

w,(p,) = w,, (6.2)
and
p.(w}) = f(V/nw}) = p},. (6.3)

Moreover, as n — oo,
By =% s
Jil=p)=> BB )
m,(py) = a(B),
Vnwy — f71(1) = a(B)/B,

where h and « are the functions in (6.1) and (3.2).

(6.4)

7. CLOSELY MATCHING POTENTIAL DEMAND

We also can obtain the intermediate Halfin-Whitt heavy-
traffic regime when the congestion measure is the mean
steady-state waiting time if we assume that the potential
demand for model n differs from n by order /n for all
n sufficiently large. This parallels the assumption made by
Armony and Maglaras (2003) for their two-class model.
However, it may be less realistic to assume that potential
demand matches capacity so closely.

Specifically, instead of (1.4) with &, = w,, we now

assume that (1.7) and (1.8) hold. Then, instead of (2.1), we
obtain

pu(w,) = f(w,)(1=8,//n) (7.1)

for the same f and §,,.

Closely paralleling Theorem 5.1 (b), we obtain an
asymptotic result under a smoothness assumption by
exploiting a Taylor series expansion of f about 0.

THEOREM 7.1. Suppose that (7.1) and (1.8) hold. For each
n, there exist unique numbers p’ and w such that 0 < p}, <
min {1, 1-35,//n}, 0 < w! < oo,

w,(py) = w,, (7.2)
and
puu) = p;. (73)
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If, in addition, f has a continuous derivative in the neigh-
borhood of 0, then

Puc L,
Vn(1-p;) — B,
m,(p,) = a(B),
Vnw; — a(B*)/B",

as n — oo, where « is as in (3.2) and B* is the unique
(necessarily positive) solution to the equation

B —6=—f"(0)x(B")/B" (7.5)

(7.4)

8. INCREASING SERVICE RATE

In this section, we suppose that the capacity of the M /M /n
queue increases by increasing the service rate instead of by
increasing the number of servers. This case seems natural
for computers with rapidly growing processing rates and
communication networks with rapidly growing bandwidth,
but it does not seem to lead to interesting results, because
there is essentially only one heavy-traffic regime when 7 is
held fixed.

Henceforth, let the service rate be w. The traffic inten-
sity becomes p = A/nu. We now think of the arrival rate
growing with w. Paralleling (1.4), we can let

A=A, (w,) = fw,)nu, (8.1)

where f is as before with (1.5) holding. When we express
the relation in terms of the traffic intensity, we obtain

pu=pu(w,) = f(w,). (8.2)
The following result is elementary.

THEOREM 8.1. Consider the M /M /n queue with individual
service rate . Suppose that (8.2) holds. Then, for all u >
0, there exist unique numbers w;, and p, with 0 < p; <1
and f~'(1) < w}, < oo such that w} = w,(p,) and p;, =
f(wy). Moreover, p;, is strictly increasing in ., while wy
is strictly decreasing in u with

p, = 1,

W = £, (8.3)
Talpy) => L
.(p5) — £ (1),
as g — oo,

Theorem 8.1 implies that increasing the service rate with
(8.1) puts us in the standard heavy-traffic regime. There is
a theorem analogous to Theorem 2.2 here, which is even
easier to prove because n is kept fixed; see §10.2 of Whitt
(2002).

With a fixed number of servers, it is natural to evaluate
the waiting time relative to the service time. Thus, as an
alternative to (8.1), we propose the demand function

A= Mwy, p) = f(pw,)nu, (8.4)
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where f has the same structure as before and w is again the
mean steady-state waiting time. Note that if w is increased
solely by changing the time units, then w,, should remain
unchanged and A should increase directly proportional to u,
just as in (8.4). That observation provides additional moti-
vation for (8.4). We will consider alternative expressions
for the demand function in the next section.

In terms of the traffic intensity p, (8.4) can be expressed

equivalently as

p=p(w,, 1) = f (). (8.5)
On the other hand, w, can be expressed as

m,(Pu)

= (8.6)

w, =w(p, u) =

For simplicity, let x = wu. From (8.5) and (8.6), we obtain
the two equations

p(x) = f(x) (8.7)
and

7, (p)
x(p) = nl—p)’ (8.8)

with w suppressed in the notation. The following theorem
is immediate.

THEOREM 8.2. Consider the M /M /n queue with individual
service rate . Suppose that (8.4) holds. Then, for all p >
0, there exist unique numbers x* and p*, independent of .,
with 0 < p* < 1 and 0 < x* < oo such that

f(x) = p",

x(p*) = x",
w, =w(p", p) = X"/,
To=1(p" ) = (1+x7) /1.

(8.9)

With this formulation, the traffic intensity and the prob-
ability of delay remain fixed for all u, so that the system
does not enter heavy traffic, and the mean waiting time and
mean response time are asymptotically negligible. This case
is equivalent to simply changing the time units, because
the arrival rate increases directly proportional to the service
rate.

9. CHANGING EXPECTATIONS WITH
INCREASING SERVICE RATE

If the service rate does increase substantially, it is evident
that customer expectations about their quality of service
might not change correspondingly. Customer expectations
for quality of service might grow more slowly or more
quickly. To illustrate these possibilities, we now assume
that, instead of (8.4), the arrival rate is given by

A= A(w, p) = f(wp’)np (9.1)
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for 0 < & < oo with & # 1. As before, we have (8.6).
Now let x = wu?. From (9.1) and (8.6), we obtain the
two equations

o)l 92)
and

&5—1
) s == &ﬁ 93)

The following result shows that the performance scales
very differently from the scaling in Theorem 8.2 when

§#1.

THEOREM 9.1. Consider the M /M /n queue with individual
service rate w. Suppose that (9.1) holds. Then, for all u >
0, there exist unique numbers p*(u), x*(w), and w*(w)
with 0 < p*(w) <1, 0 < x*(u) < o0, and 0 < w*(w) < oo
such that

p(x*, u) = p*(n),
x(p*, p) = x*(w), 04)
w(p*, p) = w*(p) = w™x*(u).

There are two cases to describe the behavior as pu — oo.
(a) If 6 < 1, then

)= 1,
x*(w) = £,

9.5
w*(w) = 0, 5

pw* () — oo.
(b) If 6 > 1, then

p*(p) = 0,

x*(u) = oo,
9.6
w*(u) = 0, -

pw*(w) — 0.

Note that there is asymptotic service efficiency (here
meaning that p*(u) — 1) if 0 < 6 < 1, but not otherwise.

10. CONCLUDING REMARKS

The analysis in §§2—7 supports the established notion of
service efficiency of multiserver queueing systems as the
number of servers increases, as discussed in Whitt (1992),
with the exception of §4 and Theorem 5.1 (c), but these
exceptions are understandable. The server utilization used
as the congestion measure in §4 does not usually repre-
sent congestion as experienced by the arriving customers.
The condition in Theorem 5.1 (c) artificially constrains the
traffic intensity, keeping it bounded away from 1.

More importantly, the analysis here extends the notion
of service efficiency of multiserver queues to the com-
monly arising situation in which there is significant uncer-
tainty about the arrival rate. Even in the presence of such

uncertainty, asymptotic service efficiency persists, provided
that there is appropriate congestion-dependent demand,
as postulated here. With appropriate congestion-dependent
demand, it is not necessary to hedge against the uncertain
demand by adding many extra servers.

Our results in this paper have been restricted to the
M /M /n queue. From Halfin and Whitt (1981), it is clear
that the results extend to GI/M/n queues. Even though
only part of Proposition 1 for the M /M /n queue in Halfin
and Whitt (the implication in only one direction) is estab-
lished for GI/M /n queues in Theorem 4 there, it is not
difficult to obtain the full analog of Proposition 1. Also see
Whitt (2003).

It is evident that the results here also extend to more gen-
eral GI/PH /n queues with phase-type service-time distri-
butions, due to results established by Puhalskii and Reiman
(2000), but there remain some technical details to pro-
vide a complete demonstration. The conjectured result is:
J/n(l—p*) — B as n— oo for some B with 0 < 8 < o0
if and only if m,(p*) - « as n — oo for some a with
0 < @ < co. A remaining challenge when the PH service-
time distribution is not M is to determine the functional
form of a(f).

Heuristic approximations for the delay probability 7, in
GI/G/n queues are proposed and investigated in Whitt
(2003). By letting B = /n(1—p,), those heuristic approx-
imations for the delay probability can be regarded as
approximations for a(f). The steady-state distribution of
the limiting diffusion process in Puhalskii and Reiman
(2000) evidently produces the exact value for GI/PH /n
systems, though.

11. PROOFS

ProOF OF THEOREM 2.1. As a consequence of the assump-
tions, the composite function p,(w,(p)) = f(w,(p)) is
a nonincreasing continuous function mapping the closed
interval [0, ] into itself, assuming the values y and O at the
left and right endpoints. Moreover, this function assumes
the value O throughout the interval [1, y] and it is strictly
decreasing on the interval [0, 1]. Thus, there exists a unique
Pk with 0 < p% < 1 satisfying

f(w,(p)) = p;-

Similarly, the composite function w,(f(w)) is a non-
increasing function mapping the extended interval [0, co] =
[0, 00) U{oo} into itself. It assumes the value co on the inter-
val [0, £71(1)]; it is strictly decreasing and continuous on
the interval (f~!(1), co) with right limit co at the left end-
point and limit O at co. Thus, there exists a unique number
w* with 0 < f~'(1) < w* < oo such that

w,(f (wy)) = w,.

Finally, it is easy to see that Equations (2.2) and (2.3) hold.
To see that, suppose that they fail and deduce a contradic-
tion. For example, if w,(p*) < w*, then

P =S (w,(p})) > f(w})

(11.1)

(11.2)

(11.3)
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and

w,(py) > w, (f (W) = wy, (11.4)

which is a contradiction.

We now want to show that p;; | > p; and w;,, < wy for
all n. We exploit the properties that the composite function
f(w,(p)) is strictly increasing in n on the interval (0, 1),
while the composite function w,(f(w)) is strictly decreas-
ing in n on the interval (f~!(1), c0). For each p, 0 < p < 1,
wn+1(p) = wn(p)' HCHCC, er—l(f(w)) < wn(f(w)) for all
w on the interval (f~!(1), 00). Because w, (f(w)) < w for
all w > wy, we deduce that w,,; (f(w)) < w for all w > w*.
Hence, w},, < w; as claimed. That in turn implies that

Pr1 = F(Why1) > fF(w;) =p}.

Now, we turn to the limits in (2.4). Clearly, the first limit
is implied by the second, so we focus on the second. Given
that {n(1—p*): n > 1} is a sequence of positive numbers,
there must exist a subsequence {n, (1 —p} ): k > 1}, which
approaches one of 0, 400, or { for some ¢ with 0 < { < o0.
At this point we invoke Proposition 1 of Halfin and Whitt
(1981), which applies to subsequences as well as the full
sequence. First, suppose that n, (1 — p;k) — 0 as k — oo,
which implies that p;, — 1 and \/n, (1—p; ) — 0 as k —
oo. Then, Proposition 1 of Halfin and Whitt implies that
w, — oo, which in turn implies that p; = p,,k(w:k) — 0,
which is impossible.

Next, suppose that n, (1 —p;, ) — oo as k — oo. By (1.3),
that implies that w, (p;, ) — 0, which in turn implies that
Pr, = Pu, (W, (P )) = ¥ > 1, which is impossible.

Suppose that n, (1 —p;, ) = { for 0 < { < co. By Proposi-
tion 1 of Halfin and Whitt, that forces the limit , (p;, ) —
1 and w; =w, (p; ) — 1/{. However, because p; — 1,
we must have w; = w, (p; ) — f~'(1). Hence, we must
have ¢ = 1/f7!(1). Because all convergent subsequences
must have the same limits, the entire sequences must them-
selves converge to the indicated limits in (2.4). O

Proor oF THEOREM 2.2. First, focus on the queue-length
process. There are two parts to the argument. One part is
to show that, asymptotically, the state in which the queue
is empty but all servers are busy can be treated as a lower
reflecting barrier. The second part is to establish the limits
for the queue-length process with this added lower barrier.
We do this second part first.

With the inserted lower barrier, we can relate the equi-
librium queue-length process to the queue-length process
in the M/M /1 queue. Specifically, with the lower barrier
in place, the process {Q,(¢/n): t > 0} is distributed as the
queue-length process of an M /M /1 queue with service rate
1 and arrival rate p*. Thus, we obtain the limit

= — i) W) 5220}
= {R(t;—1,2): t > 0}. (11.5)

We obtain the limit in (2.5) by multiplying and divid-
ing by n in two places in (11.5) and using the fact that
n(l—p*) — {=1/f""(1) by the second limit in (2.4).
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Similarly, assuming the lower barrier, the process
{nW, : t 2 0} behaves like the process {W,: ¢ > 0} in
the M/M /1 queue with service rate 1 and arrival rate p.
Hence, we have the limit

(=P W e 2210}
= {R(t;—1,2): t >0} (11.6)

in D as n — oo. Because n(l —p}) — { as n — oo, the
limit in (11.6) implies the limit in (2.6).

It remains to complete the first part of the argument, i.e.,
to show that the given processes are asymptotically equiv-
alent to the processes with the inserted lower barrier, with
the indicated scaling. We can show that by bounding the
given processes above and below by processes that con-
verge to the same limit after scaling; e.g., see Corollary
12.11.6 in Whitt (2002). The M, topology there is equiva-
lent to the standard J, topology because the limit process
almost surely has continuous sample paths.

Let N, = {N,(t): t > 0} be the given birth-and-death
process representing the number of customers in the sys-
tem in model n with traffic intensity p*. Then, the upper-
bound process N, is the process N, modified by inserting
a reflecting lower barrier at n. For each €, a lower-bound
process Ny is constructed from N, by increasing the ser-
vice rate in certain states, while leaving the arrival rate
unchanged. Specifically, for states k with k > n, the service
remains fixed at n; for states k with n(1 —€) <k < n, let
the lower-bound service rate be n instead of k; for states
k with 0 < k < n(1 —€), let the lower-bound service rate
be n(1 —¢) instead of k. We thus have lower-bound birth-
and-death processes for each € and n. We can order these
birth-and-death processes by a strong stochastic ordering,
yielding

N, ™ ey N (11.7)

for all n, €, €, with €, > €,, where <,, means that there
exists versions of the two stochastic processes defined on
the same underlying probability space such that the sam-
ple paths are ordered with probability one; e.g., see Whitt
(1981). Indeed, the processes can be constructed for each
n so that the sample paths are ordered for all the processes
(for all €) by constructing the transitions from thinned ver-
sions of common Poisson processes.

The process we considered above in (11.5) is the queue-
length process associated with the upper-bound process
N}, ie.,

(1) =N, (1)—n, t>0. (11.8)
The given queue-length process is
O ) =) ~nl 3 . 720, (11.9)

where [x]* = max {x, 0}. The associated lower-bound pro-
cesses are

QL @)y=N, (@) =n 120 (11.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



540 7/ WHITT

As a consequence of (11.7), we have

0 <o 00 <40 00 < € (11.11)
for all n, €,, €, with €, > €,. We will show that, after scal-
ing, Q%€ has the same limit as Q"—first n — oo and then
e — 0.

Note that {Q"¢(t/n): t > 0} is a birth-and-death process
on the integers k with k > —n. For k > —ne, the birth rate
is p¥ and the death rate is 1; for 0 < k < —ne, the birth
rate is p; and the death rate is 1 —e. We will show that this
structure implies that

{(1=p) 0y ((1=p;)*t/n): t >0}

=" (Rp(t; —1,2): £ 20}, (11.12)
where R, is RBM with reflecting barrier at —e starting at
0 and ¢ =lim,_, . n(1—p?*).

We obtain (11.12) because {(1 — p*)QLe((1 —
p)~'t/n): t > 0} is asymptotically equivalent to
{((1=p)Ohe*((1—p*)~'t/n): t >0}, where QL€* is the
process Q'€ modified by adding a reflecting lower barrier
at —ne. To see why that is so, observe that Q"<* can be
obtained from Q'€ by deleting all the excursions below the
level —ne, i.e., portions of the sample path going below
—ne until the process again goes above the level —ne. The
negative values of these segments correspond to the much-
studied busy periods in the M /M /1 queue with traffic
intensity bounded above by 1 — €. In the presence of the
heavy-traffic scaling, the cumulative effect of these excur-
sions over time and the maximum extent over space (over
bounded time intervals) are asymptotically negligible.

To show that the maximum extent over space is asymp-
totically negligible under heavy-traffic scaling, let the
lower-bound process Q"¢ be bounded above by the process
Qheu, which is defined to be Q%€ modified by adding an
upper reflecting barrier at —ne. Then, Z, = —Q,¢" — ne
behaves like the queue-length process in an M /M /1 queue
with traffic intensity p’ (1 — €). Hence,

{A=pNZ,((1=p})*t/n): t 20}

= {0(1): t =0} (11.13)
in D, where 0(¢) =0 for all ¢ > 0, reasoning as in §5.3.2
of Whitt (2002). As a consequence,

inf {(1—p)OL((1—p)%t/n) = —Le

0T

(11.14)

for any 7 > 0 and € > 0, where { =lim,_, , n(1 — p?*).

To show that the cumulative extent of the excursions
over time in the process {Q%€(¢/n): t > 0} is asymptoti-
cally negligible under heavy-traffic scaling, note that (by
virtue of M /M /1 busy-period properties) the length of an
excursion below —ne is stochastically bounded above by a
random variable with mean (1 —¢€)~! for all n, while the
interval between excursions is a random variable with mean
(1—p*)~', which explodes as n — oo.

As a consequence of these stochastic bounds, the dis-
tance between the scaled versions of the two processes Q%€
and Qh¢* converges in distribution to 0. The demonstra-
tion is easily done by applying the triangle inequality after
comparing these two processes to the scaled version of the
process that remains constant at the lower barrier during
each excursion.

Because

(=P} Qs ((1=p})Pt/n): 1 > 0)

= {Rye(t; —1,2): t 2 0}, (11.15)
where R, is RBM with reflecting barrier at —e starting
at 0, by the argument used to treat Q, we can apply
the convergence-together theorem, e.g., Theorem 11.4.7 of
Whitt (2002), to obtain (11.12).

Next, because R, is distributed as R — € started at 0, we

have the ordering

R—e<,R. <,R (11.16)
for all €, from which we can deduce that
R, = R inD (11.17)

as € — 0. Hence, we obtain (11.5) and thus (2.5).

Next, note that the workload (or virtual waiting-time)
process is easily seen to be the first passage time to empti-
ness in the process Q,, ignoring future arrivals. Thus, the
bounding and sandwiching argument extends directly to the
workload process. The two bounding processes correspond
to the workload processes in the M /M /1 queue, so that
they can be treated directly. The waiting-time process can
then be treated as a random time change of the workload
process, invoking the continuous mapping theorem with the
composition map; e.g., see §13.2 of Whitt (2002).

Finally, it remains to establish limits for the steady-state
distributions. Because the steady-state queue-length distri-
bution is geometric except for a modified mass at the origin
and the steady-state waiting time is exponential except for
a modified mass at the origin, the limits can be obtained
from the limits for 7, (p%) and w,(p%). We use the Poisson-
Arrivals-See-Time-Averages (PASTA) property to deduce
that the probability distribution upon arrival is the same as
at an arbitrary time; we use Little’s law (L = AW) to relate
w, (p*) to the mean queue length; and we use well-known
conditions for the convergence of scaled geometric distri-
butions to the exponential distribution; see p. 1 of Feller
(1971). O

PrOOF OF THEOREM 3.1. The proof closely parallels the
proof of Theorem 2.1. Having obtained the unique p} and
ar*, we observe that the sequence {/n(1—p*): n > 1} must
have a subsequence converging to one of 0, oo, or 8 for
0 < B < oo. Again applying Halfin and Whitt (1981), we
find that the limits 0 and co are not possible, because they
lead to contradictions. Thus, there must be a subsequence
with a finite positive limit. As a consequence, p} — 1
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through this subsequence. Thus, we must have the corre-
sponding subsequence of {7*: n > 1} converge to f~'(1).
Because all subsequences must have this same limit, the
entire sequence must converge, and all full sequences must
converge. In this case, we obtain directly the many-server
heavy-traffic regime considered by Halfin and Whitt. [

PrOOF OF THEOREM 5.1 (b). Note that p* = f(1+w,(p%)),
so that, performing a Taylor series expansion of f about 1,
we obtain

where §, — 1 as n — oo. Hence, we obtain
n(l—-p:)zz—f/((?”)wn(p:). (1119)

We now apply Proposition 1 of Halfin and Whitt (1981) to
subsequences. If the left side of (11.19) has a subsequence
converging to 0, then the corresponding subsequence of
the right side must converge to —f’(1) # 0, which is a
contradiction. If the left side has a subsequence converging
to infinity, then the corresponding subsequence of the right
side must converge to 0, which is a contradiction. Suppose
that the left side has a subsequence {n,(1 —p:k)z} with
n(1—pj; )* — B* as k — oo. Then,

<G e (e )= < (L) a8 (11.20)
so that we must have
B=g"'(-=f'(1)) (11.21)

for g in (5.2). Because all convergent subsequences must
have the same limit, the full sequences converge to the
indicated limits. [J

PrOOF OF THEOREM 6.1. Paralleling the proof of Theorem
2.1, start by observing that the sequence {/nw!: n > 1}
must have a subsequence converging to one of 0, oo, or 1
for 0 < m < oo. The first two cases lead to counterexamples,
because then the corresponding subsequence of {p*: n > 1}
must converge to f(0) =y > 1 and f(c0) = 0. The first
case is clearly impossible because p’ < 1 for all n. The
second case implies that the corresponding subsequence of
{/nw?: n > 1} must converge to 0, which is a contradiction
with the infinite limit in this case.

Given that we are in the third case, we must be in
the intermediate Halfin-Whitt (1981) heavy-traffic regime,
which has the subsequence of {p*:n > 1} converge to
1. Thus, the limit of the subsequence {/nw!:n > 1}
must be f~!(1). Because all convergent subsequences of
{/nwr:n =1} and {p*:n > 1} must have these same
two limits, the entire sequences converge to these limits.
From Proposition 1 of Halfin and Whitt, we deduce that the
sequence {4/n(1—p?):n > 1} must converge to some 3
satisfying 0 < B < co. We then deduce that 8= h~'(f~!(1))
for A in (6.1). O
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Proor oF THEOREM 7.1. The first parts are the same as in
Theorem 2.1, so we only treat the asymptotics. First note
that we must have p* — 1 and w! — 0 as n — oo. To
see why, suppose that p, — p <1 for some subsequence.
Then, w, — 0 by (1.3), so that (7.1) implies that p =1,
which is a contradiction. Given that p* — 1, (7.1) implies
that we must also have w! — 0, because f(0) =1 and
f(w) <1 for all w > 0.

Given that p; — 1 and w; — 0 as n — oo, we focus on
the possible limits for subsequences {/n, (1 —p; )} of the
sequence {4/n(1 — p*)}. Use (7.1), Taylor’s theorem, and
the smoothness condition to write

ﬁ(l _p:) = 811 _f,(gn)\/’;w:

for some ¢, with 0 < ¢, < w! for all n suffi-
ciently large. Reasoning as before, we see that con-
vergence of subsequences of the sequence { /n(1—p¥)}
to 0 or oo lead to a contradiction. First, suppose
that /7 (1—p; ) —> 0. Then, by (L.3), /W, —> o0,
which implies that /ni(1 — p, ) — oo, which is a
contradiction. Next, suppose that /n,(1 —p; ) — oo
with p; — 1. Then, /mw, — 0, which implies that
V(1 =p; ) — 8 by (11.22), which again is a contradic-
tion. On the other hand, convergence to a positive finite
limit B* leads to the associated limits in (7.4). Because all
convergent subsequences must have the same limit, there
is convergence of the full sequences. The relation (11.22)
leads to (7.5). There is a unique solution to (7.5) because
the right side of (7.5) is decreasing as a function of B*,
going from 4+oc0 to 0. [

(11.22)
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