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Dependence in Packet Queues

KERRY W. FENDICK, VIKRAM R. SAKSENA, SENIOR MEMBER, IEEE, AND WARD WHITT

Abstract—Many packet communication networks carry several classes
of traffic, each with its own service characteristics, e.g., packetized voice,
short data messages, bulk data (files), facsimile, acknowledgments, and
other signals. The packet arrival processes from each source are also often
bursty (highly variable), which can contribute to long packet delays. The
burstiness of the total arrival process has been previously characterized in
packet network performance dels by the dependence g successive
interarrival times. Here it is shown that iated depend g
successive service times and between service times and interarrival times
also can be important for packet queues involving variable packet
lengths. These dependence effects are demonstrated analytically by
considering a multiclass single-server queue with batch-Poisson arrival
processes. For this model and more realistic models of packet queues,
insight is gained from heavy-traffic limit theorems. This study indicates
that all three kinds of dependence should be considered in the analysis
and measurement of packet queues involving variables packet lengths.
Indeed, specific measurements are proposed to apply to data from real
systems and simulations. This study also indicates how to predict
expected packet delays under heavy loads either from the proposed
measurements or from model parameters. Finally, this study is important
for understanding the limitations of procedures such as the queueing
network analyzer (QNA) for approximately describing the performance
of queueing networks using the techniques of aggregation and decomp
tion.

I. INTRODUCTION

O properly engineer packet networks, it is necessary to

identify characteristics of the network and its traffic that
significantly affect performance. (The particular performance
measures we consider are the average workload and the
average delay per packet at individual queues in the network.)
Three important characteristics that may be present are: 1)
multiple classes of traffic (i.e., multiple applications: pack-
etized voice, bulk data, signals, etc.), each with its own
service requirements, 2) bursty (highly variable) arrival
processes, and 3) a very large number of sources sharing the
system. These characteristics interact in a complicated way, so
that analyzing the performance of packet networks can be very
difficult. In this paper, we show how the first two characteris-
tics tend to cause performance problems (relatively long
packet delays), even though the third characteristic tends to
mitigate the problems caused by the first two.

We propose a way to analyze packet queues in order to gain
insight into the basic characteristics above. In particular, we
suggest focusing on the dependence among the interarrival
times and service times at the queue. (Dependence among
interarrival times and service times at different queues can be
studied in similar ways, but we only consider a single queue
here. It could be any queue in a network though.) We indicate
how the dependence among the interarrival times and service
times can be quantified and measured. Indeed, a major
purpose of this paper is to identify appropriate statistics to
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compute from interarrival-time and service-time data in order
to describe the dependence and predict system performance.
The particular measurement we propose is a three-dimen-
sional index of dispersion for intervals, defined in (15)
below. It describes the cumulative correlations in the first n
interarrival times alone, the first n service times alone, and the
first n interarrival times and service times together, each as a
function of n. Of course, these correlations are only a partial
characterization of the dependence among the variables, but
we believe a useful partial characterization. These measure-
ments can be applied to any queue; they are not limited to a
particular model. These measurements are different from the
usual traffic measurements because they are specifically
intended to describe the variability in the traffic.

To justify the proposed measurements, we link them to
performance. A basic hypothesis underlying this work is that
the correlations in the interarrival times and service times are a
primary determinant of packet delays. We support this
hypothesis here by proving that the three-dimensional index of
dispersion actually determines the packet delay distribution
under heavy loads. We obtain these results mathematically via
heavy-traffic limit theorems.

We also indicate how the dependence and its effect on
performance can be approximately described analytically in
terms of model parameters. First, we propose a somewhat
idealized multiclass batch-Poisson model in Section III, for
which quantities of interest can be computed explicitly.
Second, we propose central limit theorems and associated
heavy traffic limit theorems that accurately describe both
performance under heavy loads and the relevant long-term
dependence for very general models.

II. DEPENDENCE AMONG INTERARRIVAL TIMES AND SERVICE
TIMES

A. Correlated Service Times at Different Queues

Dependence between interarrival times and service times at
a queue was first identified as an important issue in communi-
cation networks and was first seriously investigated by
Kleinrock [1], see pp. 38 and 49. Kleinrock considered a
queueing network model of a communication network, in
which messages pass through a series of queues on their way
from source to destination. Since the same message visits each
queue on the path, the service times of each message at the
successive queues it visits will typically be positively correl-
ated and may even be identical (identical transmission rates).
Moreover, if the service times at two queues in series are
dependent, then the interarrival times and service times at the
second queue are dependent. Evidently, if the two service
times are both relatively long, then so will be the correspond-
ing interarrival time and service time at the second queue.
When this dependence is present in this form, i.e., when the
interarrival times and service times are strongly positively
correlated, the delays at the second queue tend to be /ess than
if the dependence were not there. Under heavy loads, the
delays at such a queue tend to be dramatically less, i.e.,
Conolly [2] and p. 618 and Part II of Boxma {3].

Kleinrock observed that if there is sufficient mixing of
traffic, then the dependence effect may be small, which
justifies ignoring it altogether (his celebrated independence
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assumption on p. 50 of [1]). However, Kleinrock also noted
that the dependence effect can be strong. Rubin [4] and Calo
[5] studied ways to estimate end-to-end message delays when
very strong dependence among the service times at different
queues is present. Mitchell, Paulson, and Beswick [6] studied
the dependence effect experimentally. Our paper is in this
spirit. Our methods provide a systematic basis for estimating
the effect of this dependence, both analytically and experimen-
tally, even though we were motivated by a different problem.

B. Our Motivating Problem

This research was undertaken when extensive simulations of
X.25 networks revealed packet delays at the transmission
queues for both lines and trunks to be substantially greater
than those predicted by standard GI/G/1 models, which
assume independence among interarrival times and service
times. A simple GI/G/1 approximation used to predict the
expected waiting time is given by

0 (C§+ c?)

1
- 2 1)

where 7 is the mean packet service time, p is the traffic
intensity, ¢2 is the squared coefficient of variation (variance
divided by the square of the mean) of an interarrival time, and
cf is the squared coefficient of variation of a service time [7],
[8]. Moreover, a direct simulation of a GI/G/1 queue using
the estimated interarrival-time and service-time distributions
typically yielded average delays slightly Jess than predicted by
(1). (Indeed, there is an additional correction term in [7], [8] to
reduce (1) somewhat.) Therefore, we tentatively concluded
that the greater expected delays observed must be due to
dependence in the interarrival times and service times, which
is ignored in (1).

From further analysis (simulation experiments and mathe-
matics), we conclude that indeed there is significant depen-
dence in the packet interarrival times and packet service times
of these queues. (Since space is limited and the results in this
paper are very general, we will not describe the X.25 network
and the various detailed models of it. A significant feature for
the analysis here is variable packet lengths.)

Packet networks often serve several classes of traffic (e. g,
packetized voice, short data messages, long data files,
facsimile, acknowledgments and other signals), each with its
own service characteristics (packet lengths and number of
packets per message). In packet queues with several classes of
traffic and variable packet lengths, we contend that one should
expect to have all of the following:

1) successive packet interarrival times correlated,

2) successive packet service times correlated,

3) packet interarrival times and packet service times correl-
ated.

Moreover, the successive interarrival time and the successive
service times are each often positively correlated, while the
interarrival times and services times are often negatively
correlated. These three kinds of dependence (with these signs)
each tend to make delays larger than they would be in the i.i.d
case where there is no dependence. All three together tend to
make delays larger than they would be with bursty arrival
processes alone. In general, however, the correlations can be
either positive or negative in each case. It is significant that the
dependence effect on packet delays here is very different from
the dependence effect on message delays in Section II-A; here
the dependence makes the delays larger instead of smaller.

C. Dependence Among Successive Interarrival Times

The phenomenon of dependence in arrival processes to
queues is beginning to be reasonably well understood [10]-
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[19]. Sriram and Whitt [11] emphasized the importance for
packet queues of the dependence among successive interar-
rival times—and suggested the index of dispersion for
intervals (ID]) as a reasonable way to partially characterize it.
The IDI represents the cumulative correlation among succes-
sive interarrival times [18, pp. 71-72]. In [12], the limiting
value of the IDI is referred to as the asymptotic variability
parameter or asymptotic squared coefficient of variation,
here denoted by c%. It includes the effect of all the
correlations. (See (15) for a definition.) The IDI is a sequence
{ci 1 = k < oo} with ¢} = c2and ¢2 = 2. The full IDI is
obviously more informative than the c2 and c? alone, but ¢?
and c? are useful partial characterizations that often can be
obtained analytically. The full IDI shows how the variability
develops over time (the arrival index).

Significant correlations among successive interarrival times
in packet queues occurs primarily because of the combination
of two factors. First, the superposition of independent arrival
processes, each of which may be a renewal process, is not
itself a renewal process unless all components processes are
simple Poisson or batch Poisson with a common geometric
batch-size distribution; see Section II of [9]. As shown in [10],
[11], the superposition operation tends to convert the variabil-
ity of the individual interarrival times in the component
renewal processes into long-term correlations in the superposi-
tion process, i.e., the interarrival times in the superposition of
a large number of independent renewal processes tend to be
nearly exponentially distributed, and the lag-1 correlation
tends to be small, but the variability reappears in many small
correlations among interarrival times. When there is a very
large number of sources (the third characteristic in Section I),
the superposition arrival process behaves like a Poisson
process, except over very large time intervals, where the
dependence begins to reappear.

Second, the packet arrival process from each source tends to
be bursty because of the packetization of large messages, i.e.,
the packets tend to arrive in bursts or clumps. The burstiness is
often manifested in large correlations among interarrival times
of each source (which are retained in the superposition of such
sources), but it need not be: it may be reasonable to model the
arrival process from each source as a renewal process, such as
an interrupted Poisson process, in which there is no depen-
dence at all. Then, the high variability is reflected by a high
variance of a single interarrival time, which also appears as
long-term correlations in the superposition. Thus, while the
superposition of arbitrary arrival processes tends to result in
some long-term correlations among interarrival times, the
superposition of bursty arrival processes tends to result in
significant long term correlations. This dependence over large
time intervals becomes more relevant to queue performance as
the traffic intensity increases; indeed, we show that all the
correlations affect the heavy-traffic limit as p — 1.

. D. The Service Times Too

The primary purpose of this paper in relation to [10]-[19] is
to point out the importance of both dependence among
successive service times and dependence between interar-
rival times and service times, as well as dependence among
successive interarrival times. We will show that all three kinds
of dependence occur because of the presence of bursty arrivals
and multiple sources with different mean service times (due to
different packet lengths). These two additional forms of
dependence are somewhat surprising, because they occur even
when we assume that the service times from each source are
i.i.d., and that all the service times and arrival processes from
different sources are mutually independent. The dependence
occurs because the mean service times from different sources
are different and because several packets from the same source
tend to be served consecutively (because of the burstiness of
the arrival processes from individual sources).
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III. A MULTICLASS BATCH-POISSON MODEL

To provide insight into these three kinds of dependence, we
first consider a relatively simple analytical model. In particu-
lar, we assume that the arrival processes of k customer classes
are independent batch-Poisson processes. (In the context of
packet networks, a customer class can be thought of as a
virtual circuit carrying a particular kind of traffic, such as
facsimile or bulk data. We are not modeling acknowledgments
or windows. Each batch can be regarded as a message, while
the customers within a batch can be regarded as packets.) As
an approximation, here we assume that all customers (packets)
in the same batch (message) arrive at the same instant. (We
relax this assumption in Section VI.) For class /, batches arrive
according to a Poisson process at rate Ap;; the successive batch
sizes are i.i.d. with mean m; and squared coefficient of
variation ci.; the packet service times are i.i.d. with mean 7;
and squared coefficient of variation cfi. (We assume that p,
+-+++ p, = 1, so that \ is the total arrival rate of batches.
The total arrival rate of packets is thus A = \mjp where mp =
Efle p:m; is the mean batch size.) Service is provided by a
single server with an unlimited waiting room and the FIFO
(first-in, first-out) discipline. The model can be denoted by
(EMBi/G;)/1. We have not specified the batch-size distribu-
tions and the service-time distributions, which can be general.
It turns out that they (beyond the given parameters) do not
affect the expected equilibrium workload (or virtual waiting
time), which is what we primarily focus on here. (The
workload at time ¢ is the total remaining service time of all
packets waiting to be processed at time ¢, including the packet
being served.)

This multiclass batch-Poisson model exhibits all three kinds
of dependence. The overall arrival process is a batch-Poisson
process having a batch-size distribution that is-a mixture of the
component batch-size distributions. A batch-Poisson process
is a renewal process if and only if the batch-size distribution is
geometrically distributed on the positive integers. Thus, the
component batch-Poisson processes may well be renewal
processes, but the superposition process is typically not.

Dependence between successive service times in the super-
position process occurs because the different classes have
different service time distributions: an arriving batch causes
several service times of one type to occur successively, thus
the positive correlation between service times. If large batches
have short (long) service times, then the correlation between
interarrival times and service times could be positive (nega-
tive) because the zero interarrival times of the customers in the
batch get matched with the service times.

At this point a disclaimer is in order. We do not presume
that this batch-Poisson ‘‘message’’ model always realistically
describes packet delays in packet queues. In fact, experience
indicates that this (£M?i/G;)1 model usually does not describe
packet delays well under light-to-moderate loads, because the
packets associated with a message do not actually arrive at one
instant. Instead, packet arrivals are necessarily separated
because of obvious constraints imposed by packet length and
transmission rates. Nevertheless, it is apparent that this
simple model captures important qualitative features of a
real packet queue. In packet queues the arrival processes are
often remarkably bursty and the lengths of the packets for
different classes are often quite different. Although this simple
model does not describe delays well under light-to-moderate
loads, we will prove that it does describe these delays under
heavy loads well and it does describe the total dependence
in the interarrival times and service times well. (Under light-
to-moderate loads this dependence usually does not affect
packet delays so seriously.) To prove that the batch-Poisson
model describes packet delays under heavy loads well, we also
determine the heavy-traffic limits for more complicated
models in which the spacing between packets is included. We
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prove that the heavy-traffic limits for these models and the
batch-Poisson model coincide. The (TM?i/G;)/1 model
thus accurately describes the limiting degradation of perform-
ance as the load increases. With the results here, it is thus
possible to determine whether the dependence effects can
potentially have a significant impact as the load increases in
any particular application.

Our main mathematical result for the multiclass batch-
Poisson queueing model concerns the expected steady-state
workload (or virtual waiting time) at an arbitrary time. We
conclude that the expected steady-state workload can be
expressed exactly as

10 (¢4 +c%-2c2
EL = P ( A S 2CAS) (2)
1-p 2

where p is the traffic intensity, 7 is the average service time for
individual packets, and A is the total Poisson arrival rate for
batches, defined by

k
p=)_\7=)\f, = E pim;7; and

k i=1

k
T=‘F/mB=E p,-mm/z pim;,

i=1 i=1
2 and ¢} are the asymptotic squared coefficients of variation
for the interarrival times and service times, respectively, and
cls is a corresponding asymptotic correlation coefficient
between the interarrival times and service times to be defined
in Section V: see (15)-(17) below. In other words, for this
model the asymptotic-method approximation [12], appro-
priately generalized to cover the correlations between interar-
rival times and service times via chs, is exact. Moreover, the
asymptotic parameters 0/24, cé, and c%g typically differ from the
stationary-interval counterparts ¢, ¢2, and c2, so that the
dependence (measured by the quantities ¢4 — ¢2, ¢z — ¢},
and c%; — c2) matters. Furthermore, [c% + c¢2 — 2¢% )2 is
typically large. Indeed, if [c} + ¢} — 2c%1/2 were neartly
one, then a simple M/M/1 approximation would be fine. The
analysis here is vitally important because [¢% + ¢ — 2¢%1/2
is often much greater than one.

It is important that for the multiclass batch-Poisson model
EL can be expressed directly and simply in terms of the
asymptotic variability parameters ¢, ¢, and ¢ and that they
in turn quantify the three kinds of dependence. Moreover, they
can be compared with their stationary-interval counterparts cl,
c2, and ¢ to determine the source of the variability. The six
parameters ¢, ¢, ¢, ¢2, c2, and ¢Z can in turn be expressed
directly in terms of the original model parameters [, p;, 7,
¢k, 7, c%] to determine how model structure affects the
different components of variability; see (17).

To appreciate the relevance of dependence in packet queues,
it helps to see measurements of these variability parameters for
more realistic models. One case of an X.25 link with 25
separate sources yielded simulation estimates of

c2=1.79, ¢2=1.06 and ¢ =0.03
¢4 =17.6, ¢3=35.1 and ci;=—6.7. 3)

(We do not describe this relatively complex model here.) The
M/M/1, stationary-interval and asymptotic approximations
for (1 — p)EL/7p based on (1)-(3) are thus 1.0, 1.4, and
33.1, respectively. The main point is that the measurements
we propose, in particular, the stationary-interval and asymp-
totic variability parameters, suggest a dramatic increase in
delays relative to the M/M/1 model as p increases, which
indeed occurs unless the dependence is controlled as p increases
(i.e., unless cﬁ + c§ - 2:':215 is reduced as p increases, e.g.,
by windows or other flow control mechanisms).

The corresponding analytic results for the multiclass batch-
Poisson mode! without spacing or acknowledgments and a
more realistic model with spacing and acknowledgments
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(Section VI-C) are, respectively,
ci =22.0, c§= 35.0 and cfas= -9.8

%=20.1, c2=39.6 and c% = —8.0. @

The results in (3) and (4) demonstrate that the asymptotic
variability parameters from the multiclass batch-Poisson
model, the more general model with spacing and acknowledg-
ments, and the simulation estimates are all very close. Thus,
the relatively simple multiclass batch-Poisson model is useful
to describe both the asymptotic variability parameters and the
performance under heavy loads. Under light-to-moderate
loads, the actual delays are not nearly as great as (2), but they
are much greater than (1). Even at p = 0.5 (a low traffic
intensity), the observed value of (1 — p)EL/7p was more than
three times greater than predicted by (1).

We derive (2) by proving a heavy-traffic limit theorem, i.e.,
we establish (2) in the limit as p — 1 (as in [19]). Then we use
M/G/1 structure to conclude for the multiclass batch-Poisson
model that (2) is actually valid for all p. Neither step is
especially difficult by itself. The important idea is to combine
the heavy-traffic view with the M/G/1 view to express EL in
terms of the asymptotic variability parameters c2, c%, and
2ch s» and then express these in terms of the basic (EM?%i/G;)/1
parameters.

As noted above the heavy-traffic limit is valid for a much
larger class of models, including quite realistic models of
packet queues, as we indicate in Section VI-C. Thus, (2) is
asymptotically correct as p — 1 for a much larger class of
models, and has strong implications for packet queue perform-
ance under heavy loads. We focus primarily on the more
restrictive multiclass batch-Poisson queue because then for-
mula (2) is valid for all p. This makes the main conclusions
about dependence easy to understand.

IV. THE M/G/1 VIEW

It is well known that the multiclass batch-Poisson queueing
model can be analyzed by aggregating all the classes and
regarding batches as individual customers. This approach
yields a simple M/G/1 queue in which the service-time cdf is
the appropriate mixture of the service time cdf’s for the sum of
the service times in each batch.

The random sum of service times in a batch of class i has
mean m;7; and variance mc2r? + c2m?r%; p. 301 of Feller
[20]. The mean 7 and second moment [¢2 + 1]#2 of the total
service time of an average batch are then the associated
mixtures, i.e.,

7=

M~

pim;7; and

i=1

[

k
@+ 172=Y pilrmic’+r2m¥(ci,+1)].
i=1
The expected steady-state workload in the queue at an
arbitrary time can thus be expressed as

762+ 1
EL=( p )T(CS )
1-p 2

(%)
=(1p—fp)

where r; = 1;/7.

[ &
Y, pilrimict+ 12m (% + 1)]

i=t

k
2 2 DiTim;

i=1

7k
E pirtlmicz+m(c2,+ 1))
i=1

&)

2mB
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The final expression in (5) has the cleanest interpretation
because three effects have been represented as separable and
multiplicative. First, the expected workload is the total amount
of service time to be processed, so that it is a time which
depends on the measuring units. It is thus useful to think of the
dimensionless ratio £L/7. In other words, EL can be written
as 7K where K is dimensionless. Second, for this model the
effect of the arrival rate or traffic intensity is also captured by
the multiplicative factor p/(1 — p). Finally, the remaining
factor is the second term in the final expression of (5). It is
independent of p and 7, i.e., it is independent of the measuring
units for time and the total Poisson arrival rate. We use the
ratio r; = 7;/7 to separate the measuring unit effect captured
by the overall mean service time 7 from the effect of different
classes having different mean service times. In the rest of this
paper we gain additional insight by finding new interpretations
for this final term.

The expected waiting time for the first packet in each batch
for any class is also given by (5) since Poisson arrivals see
time averages [21]. The expected waiting time for an arbitrary
packet of class i, say EW is thus

(m;— Dr; + c2.mT;
2 2

where EL is given in (5); see Section 5.10 of [22] or [23]. The
expected waiting time for an arbitrary packet is thus EW =
2,!;1 g;:EW; where q; = PiM/Ef;l piM;.

From (6) it is clear that the differences between EL, EW,,
and EW are asymptotically negligible as p — 1, i.e., all three
have the same heavy-traffic limit when multiplied by (1 — p).
Thus, in the following analysis we change back and forth
between focusing on EL and EW, depending on what ‘is
convenient. However, as an exact result, (5) applies only to
the expected workload EL.

V. THE GENERAL G/G/1 VIEW

Our object now is to relate (5) and (2). For this purpose, we
focus on individual interarrival times and service times instead
of the batches considered in Section IV. Let the individual
packets be ordered in the usual way according to their arrival
epoch, i.e., ordered lexicographically first according to their
arrival epoch and then second according to their position in
their batch. Let u, be the interarrival time between the
(n — 1)st and nth packets and let v, be the service time of the
nthpacket. Let U, = u; + -+ up,n=1,U; =0, V, = v,
+ -+ vy, n = 1, and ¥y = 0. Of course, the difficulty with
this view is that the independence in the original (EM?3i/G;)/1
model specification typically does not provide independence
among the random variables in the sequence {(u,, v,)}. We
will thus have to resort to heavy-traffic limit theorems to say
something useful about this general G/G/1 view.

We begin by defining the stationary-interval and asymp-
totic variability parameters for an arbitrary sequence of
ordered pairs of nonnegative random variables {(u,, v,): n =
1}. These are the obvious generalizations of the definitions in
[12] for the arrival process alone. We then display the
parameter values for the multiclass batch-Poisson queue. The
connection between (5) and (2) is expressed by (15) and (17)
below (plus the heavy-traffic limit theorems in Section VI).

EW,=EL+ 6)

A. Stationary-Interval Variability Parameters

For the stationary-interval variability parameters, we as-
sume that the sequence {(u#,, v,)} is stationary. Under this
assumption, we define the three stationary-interval variability
parameters as

2_.Var (u,) 2_Var (vn)

Cov (s, vn)
c2= , 2= 2
¢ (Eup)? " °  (Ev,)?

=
*  (Eun)(Ev,)
u v, -
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Note that the correlation between u, and v,, say y(Ué,, v,), is

2
Cov (Un, va) Cos

" (Var () Var @) Vet

For our batch-Poisson arrival process, a stationary inter-
arrival time distribution is the mixture of a mass at zero
with probability (mp — 1)/mp and an exponential cdf having
mean \~! with probability 1/mp. Thus, Eu, = (Amg)~' =
ATk, pm;]™! = X-!, the reciprocal of the total packet
arrival rate. The second moment is the corresponding mixture

E[(un)21=—(m;_”0+< 1 ) 2.2

¥ (Un, vn) ®)

5 mp) N2 mgh?’
so that
Var (u,)
cl=———=2mp—1=1. 9
“ (Eu)r " ®

A general service time v, has a cdf which is the mixture of
the k individual service cdf’s weighted proportionally to the
arrival rate of each class, i.e.,

T_E(Un)z-—:':l and
s &
E bim;
i=1
K
E pimi(cy+ 1)1l
(C§+ 1)72=Lk—_— , (10
E pim;
so that -
k k
7= ;7 and 2= qi(ci+ 1)r2-1=0 1n

i=1 i=1

where q; = pim;/Z f.‘:  pim; is the proportion of the total arrival
rate belonging to class i. (Nonnegativity of cf holds because
=k qr? = [BE, gm)?)

Finally, we consider the covariance between u, and v,
(which is the same as the covariance between u,,, and v,).
Recall that the interarrival time refers to the interval between
the arrival of the (n — 1)st and nth packet. With probability g;
= (p,»mi)/Ef.‘;l pim;, v, is of class i. Conditioned on v, being
of class i, u,, and u,. are each (separately) exponential with
mean A-! with probability 1/m; and zero otherwise. (To
calculate the probability that the (n — 1)st packet is of class 7,
given that the nth packet is of class i, we use the discrete
stationary-excess distribution [23].) Thus,

1177

and

2

2= "
“ (Eun)(Evy)

p,-r,-—l.

1

(14

_Cov (uy, v;) &

B. Asymptotic Variability Parameters

I\{ext we define the asymptotic variability parameters
(which do not require stationarity) as

s v  Var(Up) . Var (Uy)
ci=1lim ¢4 =lim n 5 =lim 5
me A e (EU,)?  n-= n(Eiy)
g vy Var (Vy) . Var (V)
cz=lim &g, =1lim n - = lim o
n—o n—o (EV") n—o n(Eun)
2 lim & —li n Cov (U,, V»)
Cas=, 0 s = T(EUNEV,)
Cov (Uy, Vi)

=lim Ve 2 y (U, Vo)

n—o

=lim
n~ n(Eup)(Evy)
as

where U, and V,, are the partial sums defined in the beginning
of Section V. The generalized three-dimensional IDI is the
sequence {[¢?, ¢2,, €%s,]: 1 = n < oo}. (The bars are used
in the notation to avoid confusion with the asymptotic
variability parameters associated with individual sources; see
(17) below.) The stationary-interval variability parameters in
(7) appear as the case n = 1; the asymptotic variability
parameters in (15) appear in the limit as n = oo.

Paralleling [11], we suggest estimating this IDI in measure-
ments from interarrival-time and service-time data. For
example, it is natural to estimate Var(U,) via Var(U,) =
E(U?) — E(U,)? using direct sample mean estimates for the
moments E (U?) and (EU,). If {(un, vy)} is ergodic as well as
stationary then these sample mean estimates are consistent
(asymptotically correct as the sample size increases). Confi-
dence intervals for these estimators are harder to obtain
because of the dependence. We remark that good estimates
typically required very large sample sizes; e.g., see Section
III-B of [11]. For an additional suggestion about measure-
ments, see Section VII-B.

We now identify ch, c§, and cf,s as the normalization
constants in central limit theorems (CLT’s) for U,, V, and
V, — U,. Let = denote convergence in distribution (weak
convergence [24]) and let N(0, o?) denote a random variable
normally distributed with mean O and variance ¢?. We assume
CLTs hold and identify the asymptotic variability parameters
via the normalizing constants as follows:

n-V2[U,—an] = N(O, %), c4=0d%/a’

n“/Z[V,.—ﬁ”] = N(Oa Ug)s
n—l/l[( Vy— Un)_(B_a)n] i N(Or qus)’ CiSZ(GiS—Oi—Oé)/ZaB.

nUn)= — ) — — 7= ,
“Z\mp /) mN Amp
k
EPiTi
COV (thny Un)= E (tn, v)— (Etty)(Evy) == ——
Amg  Nmg
13)

2 52/R32
cs—as/B

16)

Of course, in the stationary case o = Fu,and 8 = Ev,. In
general, (15) and (16) are not quite equivalent, but they
usually hold together. For example, under an extra uniform
integrability condition [24, p. 32], (16) implies (15); see
Theorem 20.1 of [24]. For practical purposes, (15) and (16)
are equivalent specifications of the asymptotic variability
parameters. The reason for two interpretations is that (16) is
convenient for our heavy-traffic analysis, whereas (15) is
natural for measurements. In fact, the asymptotic-method
approximation for arrival and service processes in general
queues, as well as for the batch-Poisson model in (2), is
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asymptotically correct in heavy traffic. For the arrival and
service processes separately, this was demonstrated by Theo-
rem 1 of [19] and was discussed for the arrival process alone in
[12]. The same result for the arrival and service processes
jointly will be justified in Section VI. (We shall actually work
with stronger functional central limit theorems (FCLT’s),
from which (16) follows as an elementary corollary.)

In Section VI-B, we determine asymptotic variability
parameters for the multiclass batch-Poisson queue. The
following expressions are deduced from Theorem 2. Let ¢,
represent the asymptotic variability parameter of the arrival
process of class i, which turns out to be m;[c2, + 1] for the
batch-Poisson queue. Then

k k
Cﬁ=2 qimi(ci,+ 1)=2 qi

i=1 i=1

c%,=mg(ci+1)=1
L

cl= é qilrici+(ri—1)’my(ck+1)]

qilrici+(ri—1)%¢%,]=0

st

I
‘M*

K k
= 2 g1~ r)mi(c,+1)= 2 q(l-r)cy,. (17
i=1

i=1

From (17), we clearly see the importance of ¢ and ¢% sas well
as cZ. In Section VI-C, we generalize these expressions to
more realistic models of packet queues, e.g., for models in
which packets from the same batch do not arrive at the same
instant. We show that (17) remains valid for such queues if the
expression for ¢, is appropriately modified. Further insight is
provided by examples in Section VII.

VI. HEAVY-TRAFFIC LIMIT THEOREMS

‘We now prove heavy-traffic limit theorems yielding asymp-
totic expressions for the expected equilibrium workload and
the expected equilibrium waiting time of an arbitrary packet in
the multiclass batch-Poisson queue and more general models.
For the multiclass batch-Poisson mode, we obtain these limits
by letting the total Poisson arrival rate A increase so that p —
1, while holding the other parameters fixed. From (5) and (6),
we see that the expected workload EL and the expected
waiting time of an arbitrary packet in class i, EW;, coincide in
the limit as A increases so that p — 1, i.e., the extra terms in
EW; in (6) are asymptotically negligible as p — 1 after
multiplying by (1 — p). Thus, the heavy-traffic limiting
behavior of EL, EW;, and EW = X7_,| q;EW;are all identical.
What we want to show, then, is that (l — p)EL — 7[c + 2
— 2¢2%,1/2 as p — 1 via changing the arrival rate. By (5) we
know t.hat EL = Rp/(1 — p) for all p where K is independent
of p. This limit together with (5) thus will establish (2) for the
workload, i.e., necessarily K = rfc% + ¢Z — 2c%1/2.

A. The General G/G/1 Model in Heavy Traffic

We first establish a general sufficient condition for a heavy-
traffic limit theorem for the waiting times in a general G/G/1
model with interarrival-time and service-time sequence {(u,,
vn)}. (No independence or common distribution assumptions
will be in force here.) Paralleling Theorem 1 of [19], the
condition is in terms of a functional central limit theorem
(FCLT). See [24]-[26] for additional background.

The sequence of successive waiting times { W,: n = 0} can
be defined in terms of the basic sequence {(u,, v,): n = 1},
assuming the initial workload (at the arrival epoch of the first
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packet) is W, = 0, by

Whyi=max { Wy+v,— iy, 0}
=D,—min {D;: 0<j<n}, nz1 (18)
whered, = v, — Upy 1, Dp=d; + -+ + dp,n = 1, and Dy

= 0.

We remark that if the sequence {(4., v,)} is stationary
(without assuming any independence ) withp < 1 and W, =
0 (or another technical condition is imposed), then W,
converges in distribution to a proper limiting random variable
W as n = oo; [27] or Chapter 1 of [28].

For the FCLT, we consider a sequence of queueing systems
indexed by the superscript n. The nth queueing system is
characterized by the sequence {[u}, v7]: j = 1}. We will
establishing convergence as n — ‘o. Let (U,, V,) be the
random element of the product function space D X D where
D is the function space D[0, o), defined by

[0.(1), Va(]=(n~12[ UL, — aunt],

_I/Z[V[m-]_ﬁnnt])’ 120 (19)

U"—u;+-~ +“J+1’ VJ’.‘—v’1'+ +vand[x]1sthe
greatest integer less than or equal to x. When (U"U )in =1}
is stationary, o, = Eujand 8, = Evj. Let D, and W, be the

random elements mduced by the differences and the waiting
times in (18), defined by

15,,(t)=n-'/2D;'m] and W,,(t):n—VZW;'m], t=0. (20)

Let f:D — D be the function corresponding to the impenetra-
ble barrier of the origin, i.e., f(x}(¢) = x(¢) — inf{x(s):0 < s
< t},t = 0.Lete(t) = ¢, ¢t = 0, and let B(¢) be standard
Brownian motion (BM) with zero drift and unit variance.

The following result is a variant of results in [19]; see
Sections 3.4 and 4.3 of [26).

Theorem I: a) If [U,, V,] = (0, V) in D x D where (U,
V) has continuous paths w.p.1 and n'? [, — B.] = a,
—o<a<omasn—>o,thenD, =D =V —-U-— aein
D;

b) If B, = D in D, then W, = W = f(D) in D;

¢) If, in addition to a) above, o > 0 and the limit U, V)is
two-dimensional Browman motlon w1th covariance matrix
having elements o2, 02,, and 0%, = o2, then W = f(¥ — U
— ae) is regulated or reflecting Brownian motion (RBM) with
drift — o, which has an exponential equilibrium distribution
with mean

EW ()= (0%, +0%,-206%,) 20

Proof: Parts a) and b) are consequences of the continuous
mapping theorem; Theorem 5.1 of [24]. Note that W, ﬂl?,,
- U, — E,] where E,(t) = n~'* [a, — B,lnt].
assumption and Theorem 4.4 of [24], [V,, U,, E,] = [V,
«e]. Then apply addition, subtraction and the barrier functlon
f, [25, Sections 4 and 6]. For part c), first it is elementary that
Vv-0U0- ae isa BM with drift coefficient — a and diffusion
coefficient a“ + 022 — 20 . Thus, f(V — — «ae) is RBM
with these parameters. If RBM has negative dnft, then it has
an exponential equilibrium distribution. |

Remark: Note that it is theoretically possible to have a
heavy-traffic limit in Theorem 1 under b) without a).

B. The Heavy-Traffic Limit for the Multiclass Batch-
Poisson Queue

Our object now is to show that the conditions of Theorem 1
are indeed satisfied for our multiclass batch-Poisson queue and
that the mean of the equilibrium distribution satisfies EW(c0)
= 7lc} + ¢ — 2¢%]1/2, as needed to justify (2). (Recall that
the workload process has the same heavy-traffic limit as the
waiting times.)
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For simplicity, we construct our sequence of queueing
systems by changing the Poisson rate \ alone, leaving p;, 7
and the other variables unchanged. (The limits would also hold
under other schemes.) We thus let A depend on 7. Then we let
1 — p,=n""2sothat1 — N\;7mp = n~2and \, = (mpr)~}
(1 — n="?). Thus, the translation constants in (19) are 8, = 7
and o, = \ump)™! = /(1 — n~V?) foralln = 1.

Theorem 2: For the sequence of multiclass batch-Poisson
queues above, n''? (a,, 8,) = n'? (oty, — 7) = 7 and {0,,
P,] = [U, V]as n = o where (U, V) is two-dimensional
Brownian motion without drift having covariance elements

73 X
U%l :? 2 p,-m,-(cfn.-&— 1)= TZCi1

i=1

k
r2ci+ E pim2(c?,+1)(ri— T)2> =712c%

i=1

1t [ &
6%2=0§I=? <E p;m?(cf,ﬁ 1)(T—T,')> =TZC/24S 1)

i=1

for ¢2, c2, and c2gin (17), so that ¥ — U is BM with variance
coefficient

7\ X
0} +05—200,= <7?> S lpimirick+pim?(cy+ D77
i=1

=72(c} +ci-2cky). 22)

Since the proof of Theorem 2 is relatively long and detailed,
it appears in Appendix A. Here we discuss its consequences.
First, the variability parameters in (21) and (22) differ from
those in (17) by the factor 72, as they should by (16).
Combining Theorems 1 and 2, we obtain the following heavy-
traffic limit for the waiting times in the mutliclass batch-
Poisson queue.

Corollary 1: For the sequence of multiclass batch-Poisson
queues above W, = W where W is RBM with drift —7,
variance coefficient 72 [¢3 + ¢ — 2¢4 ]and E W(eo) = 1[c?
+ 2 — 2c%5)2.

In Theorems 1 and 2, we have not directly shown that the
sequence of normalized equilibrium waiting times {n-'2
wiin = 1} = {(1 — p)W2:n = 1} or the associated
sequence of expectations converge and, given that they do,
that the limit coincides with the expected equilibrium value of
RBM, EW (). However, these important steps are covered
by previous heavy-traffic limit theorems in the M/G/1 setting
of Section IV. From previous heavy-traffic limit theorems in
the M/G/1 setting [29], [30], [19], we know that these limits
exist and coincide.

Corollary 2: For the sequence of multiclass batch-Poisson
queues above,

(A=-p) W2 = W(oo) in R as n—oo
and

lgﬂ (1-p)EW? =EW (00)= 'r((:f4 +c§—20/24$)/2.

The heavy-traffic limits so far have been for the waiting
times. Corresponding results hold for the workload. Let L"(¢)
be the workload at time ¢ in the nth queueing system and let
L, (t) be the associated random element of D, defined by L.
= n‘”sz'm], t = 0.

Theorem 3: For the sequence of multi-class batch-Poisson
queues above, L, = W, (1 — p,)L"() = W(c)and (1 —
on) EL"(c0) — EW/(c0) for W in Corollary 1.

Theorem 3 is an easy consequence of Theorem 2, but we
also prove it directly together with Theorem 2 in Appendix A.
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C. Heavy-Traffic Limits for More General Multiclass
Queues

Theorem 1 in Section VI-A was established for very general
G/G/1 models, whereas Theorem 2 and its corollaries in
Section VI-B were established only for the special case of the
multiclass batch-Poisson queue. In fact, Theorem 2 is easily
extended to a much larger class of models. For these more
general models, 2) is valid asymptotically as p — 1 but not for
each p.

1) Batch Renewal Processes: A natural generalization is to
allow the arrival process of batches for class i to be a renewal
process with variability parameter c? instead of a Poisson
process (with variability parameter ¢k = 1). A further
generalization is just to assume that each of these arrival
processes of batches satisfies a FCLT. In particular, let §’ (3]
denote the arrival process of batches for class / and let Bi be
the associated random element of D, defined by

Bi(1)=n~'2[Bi(nt)- \,p;int], 1=0. (23)

Note that B! is similar to Al in (A-1) of Appendix A; the
translation term in (A-1) has an extra m;, because A’(t) is
counting packets instead of batches. If Bi = B’ where B' is
BM with zero drift and variance coefficient 7-! p,cZ, then A’
= Aiwhere A’ is BM with zero drift and variance coefficient
71 pim?¥[c?, + c%], by the same argument used to treat the
batch-Poisson process (Section 6 of [25]). In other words,
with this generalization, Theorem 2 remains valid with the
simple modification that [c2, + c2] replaces [c2, + 1] in o,
0%, and 0%, in (21). As stated above, then (2) is valid for this
model asymptotically as p — 1, with ¢, = m; [c2, + %]
replacing ¢4, = m; [c3, + 1] in ¢, c%, and c2sin (7).

2) Spacing Between Packets: For more realistic packet
queue models, it is also significant that Theorem 2 remains
valid if all the packets in a batch do not arrive together at one
instant. As a first elementary case, suppose that packets from
class i batches with parameters m; and ¢Z, occur somewhere in
the interval between successive arrivals of a basic batch arrival
process B’(?) as above where Bi(t) satisfies the FCLT above.
Then the FCLT for Ai(¢) is just as above with [c2, + c%]
replacing [cZ, + 1]. In other words, the precise location of the
arrivals within the interval does not affect the heavy-traffic
limit.

However, both the original model and the generalization
above implicitly assume that each batch size is independent of
the lengths of the interval between batch arrivals. This clearly
is not realistic for packet queues, where longer messages
(larger batch sizes) usually entail longer intervals between
message (batch) arrivals. It is not difficult to create models
which represent this feature. In particular, let {(B!, Liyn =
1} be the sequence of pairs of successive batch sizes and
interval lengths between batch arrivals for class i. Assume that
successive pairs in this sequence are i.i.d., but allow Bﬁl and
L to be dependent for each n. As above, let m; and ¢, be the
two parameters for B! and let (A\p;)~! and c2 be the two
parameters for LL . Let v,,; be the correlation between B:', and
Li. Again Section V of [25] can be applied to establish the
necessary FCLT for A/ cf. Appendix A. Now Theorem 2 and
(17) are valid with

2, =mi(ck+ 2= 2YbriChiCri) 24

replacing ¢, = mlc, + 1], i.e., with €% — 2VbriChiCri
replacing 1.

Of particular interest for packet queues is a more detailed
model in which each batch interval L for class i is divided into
two independent components, an idle period I and a busy
period, where the busy period is the sum of B'i.i.d. spaces T},
so that the total interval length can be expressed as

BI
Li=I'+3, T}

j=1

25
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where {77/ = 1} is i.i.d for each i. (Note that the arrival rate
of batches of class / must satisfy Ap;, = 1/ (m,—ET’; + E I') with
the associated arrival rate of packets being Ag; = Apim;.) In
this more detailed model, let 8; be the proportion of busy time,
i.e., B; = (EB')(ET')/EL'. Let c,, c%;, and c% be the squared
coefficients of variation of B, T%, and I', respectively, for the
ith class. It is easy to see that in this case (24) becomes

chi=mi(1=B;)*(c}+c2)+B2cL. (26)

The batch arrival case occurs in the limit as 8; — 0. Then cfi -~
2

"Formula (26) clearly depicts the effect of a batch assump-
tion (no spacing) on the asymptotic variability parameters. As
an illustration, for the X.25 model yielding the data in (3) and
(4), B; assumed values 0.01173 and 0.0484 for the two kinds of
sources considered and, in both cases, cZ, = 0. Then (26)
changes little when we simply set 8; = 0.

VII. EXAMPLES

In this section, we briefly examine two special cases of the
multiclass batch-Poisson model. For this model, (2) and (17)
are valid for all p.

A. Common Service Times

We first consider the special case in which all the individual
service times have the same means and variances, so that 7; =
7and c2 = c2for all i- (Consequently, c2 = cZin this case.) In
this case,

f=1mp and (¢2+1)72= P2 lmpc?+ (c4+ Dmi],
so that from (5)
0 (cl+ch) 27
-, 2 27
As a basic consistency check, note that when all batch sizes are
size one, thenmp = 1, ¢ = 0, ¢ = 1and (27) reduces to the
familiar Pollaczek-Khintchine formula, p- 189 of [22].

In this special case, it is not difficult to relate 27 to (2). In
particular, in this case (27) coincides with (2) where ci = [c%
+ 1lmp, ¢ = c2and c%; = 0. As a consequence, we see that
in order for all three dependence effects to occur it is necessary
for the service characteristics of the different classes to be
different. In this case, dependence only appears in the arrival
process.

EL= where ¢ =mp(c3+1).

B. Deterministic Batches and Service Times

An interesting case occurs when there is no variability in the
batches and service times for each class, i.e., ¢} = c% = Ofor
all i. (Having ¢ = 0 corresponding to deterministic service
times is often realistic for packet queues, but typically cgl >
0.) Then the formulas simplify to

k k k
A= ami, ci=3 ami(1-r)?, 2= g1 —r)m

i=1

i=

i=1

and

k
(& +ci-2¢2 )= S aimir?.

i=1

(28)

To show some extreme dependence effects, we now
consider limits for (28) when there are only two classes. Let
my = 1. Let p; — 0 and m; — oo so that g;m, = pimi/ (pymy
+ 1 — p)) - x. Then

cd=qm+(1-q)-x+1
c§=qlm1(l—r1)2+(1'—q|)(l—r2)2—>x(l—r1)2+(l —n)?
s=qm(l-r)+Q g1 =n)=x(1—r)+1-r)

(c% +ci-2c%)) =qmri+(1 —ql)r§—>xr§+r§. 29)
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Note that we still have not specified 7, and 7, oOr,
equivalently, r; and r,. Choose 7, and 7,, so that rn—>0,and r,
— 1. Then

ci7Xx+1, ci=x, 4= x and (4 +c3—2c2)—1. (30)

With this limiting scheme, the queue thus behaves like an
M/D/1 queue even though cf,, cg, and c? s can be arbitrarily
large. A numerical example is m, = 1000, 7, = 0.001, p, =
0.0001, m, = 1, and 7, = 1000. Then r = 909, ¢l = 91.8,
¢ = 90.9, ci; = 90.8, [c% + ¢ — 2¢%(] = 1.1. The first
class seriously affects the asymptotic variability parameters,
but does not seriously affect the queue. The three separate
components ¢, c2, and ¢ can be very large, without the
combined asymptotic variability parameter ¢ + ¢ — 2c2
being large.

For the general G/G/1 queue as well as for the batch-
Poisson special case, we can avoid difficulties in combining
estimates for ¢, %, and ¢ by measuring the sequence {d,}
= {vs — Uy}, 1.e., the sequence of differences between
service times and interarrival times, instead of {(,+, v,)},
which was defined at the beginning of Section V. This
approach is suggested by the fact that the sequence of waiting
times {W,} defined in (18) depends on the basic sequence
{(un, v,)} only through the sequence of partial sums of the
differences {D,}. In particular, we propose estimating the
variance-time curve {o}:k = 1} associated with the partial
sums D, of (18), defined by

ol=k~! Var (D), k=1. 31)

Paralleling the IDI’s in (15) and [18], uf is the stationary-
interval variance and ¢% = limy., k~! Var(D,) is the
asymptotic variance. The kth term a}t includes the covariances
among the first £ differences.

For describing the workload in our batch-Poisson setting, it
is convenient to measure d;, = [lvi/Evi] — [ttgy\/Eryiq]]
instead of d; and estimate

62=k~! Var (Dy), k=1 (32)
where D, = d, + -+ + di, k = 1. Note that
af=(Eu1)2c§+(Eul)zc§—2(Eu1)(Evl)c§s,
aﬁ:(Eul)zcﬁ+(Ev1)zc§—2(Eu1)(Ev1)cis (33)
while
6%=c:+c§—20§5
GL=ci+ci-2c%; 34

see (7) and (15). Hence, an estimate for (32) with large &k
directly yields an estimate for the variability parameter [cf1 +
€ + 2c%)/2 in (2), whereas (31) does not. The distinction
between o2 and 62 disappears as p — 1, because then Eu; —
Ev; — 0, so that FEu; can be factored out. However, 62
directly yields the key composite parameter for the workload
for all p in the batch-Poisson special case. On the other hand,
o2 is apparently more appropriate for waiting times, in general
G/G/1 models as well as in the batch-Poisson special case.
VIII. CONCLUSIONS

In order to understand complex queueing systems and
develop useful approximations for performance measures, it is
helpful to consider special limiting cases such as heavy traffic
(o — 1) for which the behavior can be analyzed exactly. In this
paper we have consider two limiting cases of relevance to
packet queues. First, we considered the multiclass batch-
Poisson model, which differs from a realistic model of a
packet queue primarily because the burstiness is exaggerated
by assuming that all the packets associated with each message
arrive at the transmission queue at one instant. This special
multiclass batch-Poisson model has appeal because we can
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analyze it quite completely. Moreover, the analysis clearly
reveals the important dependence effects. The analysis obvi-
ously has relevance for packet queues when the actual epochs
of packets associated with each message are not too spread
out.

Second, in Section VI-C, we considered more appropriate
models for packet queues which include the spacing between
the packets of a message. From heavy traffic analysis, we see
that the serious effect of burstiness in multiclass batch-Poisson
models will also occur in these models of packet queues under
heavy loads. In particular, as is illustrated by the data in (3)
and (4), the heavy-traffic limits for more appropriate packet
queue models (without flow control mechanisms) and corres-
ponding multiclass batch-Poisson models often do not differ
greatly. [This is not difficult to understand because any fixed
interarrival times for packets associated with the same
message become smaller relative to the relevant time scale for
the queue as the traffic intensity o approaches its upper limit
for stability (o = 1)]. Moreover, in all these models there is a
dramatic increase in packet delays relative to the M/M/1
model as p increases. For the example in (3) and (4), ignoring
the burstiness (acting as if ¢4 + ¢% — 2c%; = 1) leads to an
error by a factor of 30. The results here have important
implications for measurements of real or simulated packet
queues.

In (15), (31), and (32), we have suggested useful quantities
to estimate from interarrival-time and service-time data in
order to gain insight into variability. For example, we can gain
important insight into the way flow control mechanisms alter
variability by seeing how the variability parameters change
with p. We can compare the variability of different arrival
processes in a network (e.g., at different queues) and see how
system structure alters the variability. Thus, the analysis here
provides a useful perspective for understanding packet queues
and other complex queueing systems. (Also see [39].)

As observed in [11]-[16], heavy-traffic approximations can
be quite inaccurate under light-to-moderate loads. The value
of direct applications of heavy-traffic approximations such as
[19], [26], [29]-[32] therefore has limitations. Heavy-traffic
approximations and related special cases can nevertheless play
an important role in approximating performance measures by
serving as part of a more complicated and comprehensive
heuristic. This is the approach underlying [8], [11]-[15], [33],
[34] and forthcoming papers by M. Reiman and B. Simon.
These heuristics typically interpolate between formulas that
are good in light and heavy traffic.

The results in this paper are also important because they
reveal limitations in procedures for approximating queueing
networks based on aggregation and decomposition. For
example, the queueing network analyzer (QNA) [8] aggre-
gates all customer classes and decomposes the network,
treating the separate queues as mutually independent and the
service times at each queue as independent of the arrival
processes there. The procedure in [8] was designed to capture
the effect of bursty arrival processes, but the version in [8]
does not treat the other two kinds of dependence involving the
service times. The analysis here show that the resulting error
can be substantial. The limitations of algorithms based on
aggregation has also recently ben observed by Bitran and
Tirupati [35] in connection with multiclass networks having
deterministic routing, which arise in manufacturing. They also
propose an algorithmic improvement to address the problem in
that context.

APPENDIX A
PROOF OF THEOREMS 2 AND 3

The proof of Theorems 2 and 3 is a relatively straightfor-
ward application of [25]. (In fact, these results serve as an
excellent motivation for [25].) Let A(¢) be the batch-Poisson
arrival process for class i and let A/ and A/ be associated
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random elements of D when the Poisson arrival rate is 77 '(1 —
n~172), as it has been assumed to be in the nth system, defined
by

Ai()=n"12[A!(nt) =71 =n" ) pimnt], =0

AL =n""Al(nt)—7"'pimnt], t=0.  (A-1)

Since the batch-Poisson process can be viewed as a random
sum, we can apply Section V of [25] to conclude that 4] = A’
where A’ is BM with zero drift and variance 7~ ! _pim 2(C 5+ D
Since A’ (t) - Ai@) = 7! pmyt, A' = A’ = A- — ;e
where o; = 7~ p,m, (This step generahzes as indicated in
Section VI-C.)

Let V! be the nth partial sum of the service times of class i

and let 17’,, be the associated random element of D defined by

Vi(y=n-V2[Vi —7nt], t=0. (A-2)

nt]
Since the service times for each class are i.i.d., we can apply
Donsker’s theorem [24] to obtain 17; = P! where V' is BM
with zero drift and variance 7%c2.

Let Si(t) = A'(,) represent the total input of work of class /
in time £, and let S' be the associated random element of D
when the Poisson arrival rate is #(1 — n~V2), defined by

Si(y=n-12[Vi, (A-3)

Hnr)

By Section V of [25] again,

—T,'T p,«m,«nt], t=0.

g:r = §i= Vi o 'f"lp,-mie+‘r,-/ii
= Vi o 7"‘A1p,'m,'e+7','/ii—‘f71pim,’ﬁe

where © is the composition map, i.e., (x ¢ y)(¢) = x(y(¢)), ¢
= 0, so that §' is BM with drift coefficient — pym;7;/7 and
variance coefficient [pm;ric? + pmX(cl, + 1)71/7. Next let
S@) = S'@) + - + Sk (t) and

S.()y=n""2[S(nt)—nt], t=0. (A-4)

Since the processes Si(t) are independent, we have [S R
§k1 = [§), ---, §¥]inD¥and S, = § = §! + -~+s‘*.
The limit process § is BM with drift coefficient —1 and
variance coefficient =¥ | [pym;ric + pymi(c}, + Dril/7.

Let N(¢) = S(&) — t t = O represent the net input process
to the queue, and let N, = n~2N"(nt) for the nth system,
when the Poisson arrival rate is 7(1 — n~"2). Obviously, N,

= §, so that N, = S too. Let L(¢) represent the workload at
time ¢ and let L, = n~'2L"(nr). Since L (1) = f(N)(#) and f
is a continuous map. Theorem 6.4 of [25], L, = W = )
where f(S) is RBM with drift coefficient — 1 and variance
coefficient =¥_,| [pmiicy + pm¥ci + Dril/7, and expo-
nential llmltmg distribution havmg mean E W(o) as in
Corollary 1. At this point we have completed a direct proof of
Theorem 3.

The sequence {U,} of all successive arrlval times is the
inverse process associated with A (r) = A'(t) + -+ + A¥(@);
Scctlon 7 of [25], [36] and Section 3 of [37]. Let A A'
+o-+ A A, = AL +---+ Ak and let U, be the random
funcnon

U,(ty=n"12[U

n,—Tnt], 120, (A-5)

differing from U, in (19) only by the translation term. Since

A ()=n""[Ant)—1"'nt], =0,

and A, = A = A" +---+ A*, we can apply Section 7 of
[25] especially the Corollary to Lemma 7.6, to obtain U,, =
= —gdAcreand U, = U = —rActe + 7e. Hence, UIS
BM with drift coefficient + 7 and variance component ¢?, as
displayed in (21).
The sequence of service times {V,} ordered the same way

(A-6)
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as {U,} can be obtained by observing that S(t) = V4, so
that we can obtain V), by undoing (inverting) the composition
map; p. 76 of [25] and [38]. Let

Vu(t)=n-'2[V1 —1nt], t=0,
VE()=8,(t)— 1A, (t)=n=2[S"(nt) — 1A (n?)]
=n""2[Vapy~1An)] = Vo($a(1)), 120

where &,(t) = Tn-'A(nt), t = 0.

_To establish V* = V* and the final joint convergence [U,,
V.1 = (U, V), we need to do all the limits jointly from the
beginning. We start with

ZAn=(A‘,l,’ DR A‘:; ‘7:,’ Tt Vﬁ)
= Z=(A‘1, ...,A‘k’ f)l’ N ;71:) in D2

which is valid because all the marginal processes are indepen-
dent. Then we apply the previous arguments to obtain

Y.=(Z,, 8!, -, $%, 8,, 4,, U,)
= ¥Y=(Z,8!, ---, 84 8, A, U) in D3*+3. (A-8)

We now treat the inverse of composition. First by Theorems
4.4 and 5.1 of [24],

(Yn! V:‘y &n) = (Ya g_TA" e) in D3k+50 (A'g)

(A-7)

Then
(an V,Ta én’ r)n) = (?, S—TA, e, I}) in D3k+6.
(A-10)
by virtue of Theorem 3.3 of [25] where ¥ = § — 74, i.e.,
k

k
I7=E Vio #-1p,me o e+, 1Al o re—re+ U

i=1

]
M~

k
Vi 0p,~m,~ﬁ"e+2 7.4; © Te— e
i=1

[0
—

k
-7y Aleretre

i=1

(A-11)

‘ K
Pio p,~m,-1f"e+2 (ri—71)A o 7e.

i=1

M-

]

i

Since ¥’ and A' are BM’s, V is BM with O drift and variance
coefficient 07, as shown in (21). (Recall that a(Bobe) has the
same distribution as ab!/2B and has variance a2b.) (We remark
that it is also not difficult to apply Theorem 3.4 of [25] to treat
the inverse of composition. It is easy to show that { ¥, } is tight
as required in condition (i) there, because obviously wp,(0) <
I, wip (8) where wy(8) is the modulus of continuity for C-
tightness on p. 54 of [24]).

Finally, we obtain the desired [U,, V,] = [U, V] by taking
the (continuous) projection. This yields '

k
(0, I7)=<—7' 2 Aio retre,

i=1

[Vio pmiri—le+(r,—7)A; © 1e]> (A-12)

TR

1
and

L3 -
v-0= (2 [Vio pimiri—le+7A; 0 Te]—‘re> (A-13)
i=1
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which is BM with drift — 7 and variance
2 2 s
on+05,—205,=@/7) Y [pimir2c? +pimiri(ci + 1))
i=1

(A-14)
Hence, 0%, is as in (21). .|
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