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Abstract

A major challenge for designing and controlling emerging high-speed integrated-services com-
munication networks is to develop methods for analyzing more realistic source traffic models that
are consistent with recent traffic measurements. We consider the familiar on-off source traffic
model, but we allow the on and off times to have long-tailed distributions such as the Pareto
and Weibull distributions. We also consider a more general traffic model in which the required
bandwidth (arrival rate) as a function of time for each source is represented as the sum of two
stochastic processes: (1) a macroscopic (longer-time-scale) level process and (2) a microscopic
(shorter-time-scale) within-level variation process. We let the level process be a finite-state
semi-Markov process (SMP), allowing general (possibly long-tailed) level holding-time distribu-
tions, and we let the within-level variation process be a zero-mean piecewise-stationary process.
However, the fine structure of the within-level variation process turns out not to matter in our
analysis. We make design and control decisions based on the likelihood that aggregate demand
(the input rate from a set of sources) will exceed capacity (the maximum possible output rate),
using a specification of the sources and their source traffic models to predict demand. This
approach to model analysis avoids the customary queueing detail (focus on buffer content and
overflow).

We propose using transient analysis, exploiting asymptotics associated with multiplexing
a large number of sources. A conditional law of large numbers supports approximating the
future aggregate demand conditional on current state information by its conditional mean value,
conditional on the levels and elapsed times in levels of the sources. The conditional aggregate
mean can be expressed compactly in terms of its Laplace transform and efficiently calculated
by numerical transform inversion. We supply further approximations which enable the rapid
calculation of the conditional mean without using numerical transform inversion.

As an application in control, we formulate an integer program in which to evaluate the
outcomes of decision within a given cost structure. As an application in design, we describe a
simple approximate scheme in which a network link can be dimensioned to achieve multiplexing
gain while keeping overdemand sufficiently rare and short.

Keywords: source traffic model, admission control, congestion control, overload control, tran-
sient analysis, deterministic fluid approximation, long-tailed distributions, Laplace transforms,
numerical transform inversion, statistical multiplexing, value of information



1. Introduction

In order to help design and control the emerging high-speed communication networks, we want
source traffic models that can be both realistically fit to data and successfully analyzed. Many recent
traffic measurements have shown that network traffic is quite complex, exhibiting phenomena such
as long-tailed probability distributions and long-range dependence; e.g., see Caceres, Danzig, Jamin
and Mitzel [3], Leland, Taqqu, Willinger, and Wilson [18], Paxson and Floyd [19], Crovella and
Bestavros [6] and Feldmann [11]. In fact, the long-tailed distributions may be the cause of all these
phenomena, because they tend to cause long-range dependence and (asymptotic) self-similarity. For
example, the input and buffer content processes associated with an on-off source exhibit long-range
dependence when the on and off times have long-tailed probability distributions; e.g. see Section 8.
Long-tailed distributions are known to cause self-similarity in models of (asymptotically largely)
aggregated traffic; see Willinger, Taqqu, Sherman and Wilson [22].

In this paper we propose a way to analyze the performance of a network with multiple on-off
sources and more general multi-level sources in which the on-time, off-time, and level-holding-time
distributions are allowed to have long tails. To do so we must go beyond the familiar Markovian
analysis. To achieve the required analyzability with this added model complexity, we propose a
simplified kind of analysis. In particular, we avoid the customary queueing detail (and its focus
on buffer content and overflow) and instead concentrate on the probability that aggregate demand
(the input rate from a collection of sources) exceeds capacity (the maximum possible output rate)
at any time. (This approach also can generate approximations describing loss and delay with finite
capacity; e.g., Section 5 of [10].)

Motivation for considering on-off and multi-level models as source models comes from traces of
frame-sizes generated by certain video encoders; e.g., see Grasse, Frater and Arnold [14]. Shifts
between levels in mean frame size appear to arise from scene changes in the video, with the dis-
tribution of scene durations long-tailed. Indeed, the expectation that scene durations will have
long-tailed distributions in one of the motivations behind the Renegotiated Constant Bit Rate
(RCBR) proposal of Grossglauser, Keshav and Tse [15].

A key to being able to analyze the system with such complex sources represented by our traffic
model is exploiting asymptotics associated with multiplexing a large number of sources. The ever-
increasing network bandwidth implies that more and more sources will be able to be multiplexed.
This gain is generally possible, even in the presence of long-tailed distributions and more general
long-range dependence; e.g. see Duffield [8, 9] for demonstration of the multiplexing gains available
for long-range dependent traffic in shared buffers. As the scale increases, describing the detailed
behavior of all sources becomes prohibitively difficult, but fortunately it becomes easier to describe
the aggregate, because the large numbers produce statistical regularity. As the size increases, the
aggregate demand can be well described by laws of large numbers, central limit theorems and large
deviation principles.

We have in mind two problems: first, we want to do capacity planning and, second, we want



to do real-time connection admission control and congestion control. In both cases, we want to
determine whether any candidate capacity is adequate to meet the aggregate demand associated
with a set of sources. In both cases, we represent the aggregate demand simply as the sum of the
bandwidth requirements of all sources. In forming this sum, we regard the bandwidth processes of
the different sources as probabilistically independent.

The performance analysis for capacity planning is coarser, involving a longer time scale, so
that it may be appropriate to do a steady-state analysis. However, when we consider connection
admission control and congestion control, we suggest focusing on a shorter time scale. We are still
concerned with the relatively long time scale of connections, or scene times in video, instead of the
shorter time scales of cells or bursts, but admission control and congestion control are sufficiently
short-term that we propose focusing on the transient behavior of the aggregate demand process.
In fact, even for capacity planning the transient analysis plays an important role. The transient
analysis determines how long it takes to recover from rare congestion events. One application
we have in mind is that of networks carrying rate-adaptive traffic. In this case the bandwidth
process could represent the ideal demand of a source, even though it is able to function when
allocated somewhat less bandwidth. So from the point of view of quality, excursion of aggregate
bandwidth demand above available supply may be acceptable in the short term, but one would
want to dimension the link so that such excursions are sufficiently short-lived. In this or other
contexts, if the recovery time from overload is relatively long, then we may elect to provide extra
capacity (or reduce demand) so that overload becomes less likely. The main contribution of this
paper is to show how the transient analysis for design and control can be done.

Our approach is interesting for on-off and multi-level source models, but with little extra effort
we can treat a wider class. The general model we consider has two components. The bandwidth
demand of each source as a function of time {B(t) : ¢ > 0}, is represented as the sum of two
stochastic processes: (1) a macroscopic (longer-time-scale) level process {L(t) : ¢ > 0} and (2) a

microscopic (shorter-time-scale) within-level variation process {W(t) : t > 0}, i.e.,
Bt)=L(t)+W(t), t>0. (1.1)

We let the macroscopic level process {L(t) : t > 0} be a semi-Markov process (SMP) as in Chapter 10
of Cinlar [5]; i.e., the level process is constant except for jumps, with the jump transitions governed
by a Markov process, while the level holding times (times between jumps) are allowed to have
general distributions depending on the originating level and the next level. Given a transition
from level j to level &, the holding time in level j has cumulative distribution function (cdf) Fj.
Conditional on the sequence of successive levels, the holding times are mutually independent. To
obtain models compatible with traffic measurements cited earlier, we allow the holding-time cdf’s
F;i, to have long tails.

We assume that the within-level variation process {W(t) : ¢ > 0} is a zero-mean piecewise-

stationary process. During each holding-time interval in a level, the within-level variation process



is an independent segment of a zero-mean stationary process, with the distribution of each segment
being allowed to depend on the level. We allow the distribution of the stationary process segment
to depend on the level, because it is natural for the variation about any level to vary from level to
level.

We will require only a limited characterization of the within-level variation process; it turns out
that the fine structure of the within-level variation process plays no role in our analysis. Indeed,
that is one of our main conclusions. In several examples of processes which we envisage modeling by
these methods, there will only be the level process. First, the level process may be some smoothed
functional of a raw bandwidth process. This is the case with algorithms for smoothing stored video
by converting into piecewise constant rate segments in some optimal manner subject to buffering
and delay constraints; see Salehi, Zhang, Kurose and Towsley [20]. With such smoothing, the input
rate will directly be a level process as we have defined it. Alternatively, the level process may
stem from rate reservation over the period between level-shifts, rather than the bandwidth actually
used. This would be the case for RCBR previously mentioned. In this situation we act as if the
reservation level is the actual demand, and thus again have a level process.

The remainder of this paper is devoted to showing how to do transient analysis with the source
traffic model. As in our previous paper [10], we suggest focusing on the future time-dependent mean
conditional on the present state. The present state of each level process consists of the level and age
(elapsed holding time in that level). Because of the anticipated large number of sources, the actual
bandwidth process should be closely approximated by its mean, by the law of large numbers (LLN).
As in [10], the conditional mean can be thought of as a deterministic fluid approximation; e.g., see
Chen and Mandelbaum [4]. Since the within-level variation process has mean zero, the within-
level variation process has no effect upon this conditional mean. Hence, the conditional mean of
the aggregate bandwidth process is just the sum of the conditional means of the component level
processes. Unlike the more elementary M/G/oco model considered in [10], however, the conditional
mean here is not available in closed form.

The outline of the paper is as follows. In Section 2, we show that the Laplace transform of
the mean of the transient conditional aggregate demand can be expressed concisely. This is the
main enabling result for the remainder of the paper. The conditional mean itself can be very
efficiently computed by numerically inverting its Laplace transform. To carry out the inversion,
we use the Fourier-series method in Abate and Whitt [1] (the algorithm Euler exploiting Euler
summation), although alternative methods could be used. The inversion algorithm is remarkably
fast; computation for each time point corresponds simply to a sum of fifty terms. We provide
numerical examples in Examples 3.1, 4.2 and 7.1. Example 7.1 is of special interest, because the
level-holding-time distribution there is Pareto.

In Section 3 we show that in some cases we can avoid the inversion entirely and treat much
larger models. We can avoid the inversion if we can assume that the level holding times are

relatively long compared to the times of interest for control. Then we can apply a single-transition



approximation, which amounts to assuming that the Markov chain is absorbing after one transition.
Then the conditional mean is directly expressible in terms of the level holding-time distributions.
In Section 4 we show the value of having more detailed state information, specifically the current
ages of levels. With long-tailed distributions, a large elapsed holding time means that a large
remaining holding time is very likely; e.g. see Section 8 of [10] for background, and Harchol-
Balter and Downey [16] for an application in another setting. In Section 5 we illustrate the use of
state information for network control. In Section 6 we turn to applications to capacity planning.
The idea is to approximate the probability of an excursion in demand using Chernoff bounds and
other large deviation approximations, then chart its recovery to a target acceptable level using the
results on transience. Interestingly, the time to recover from excursions sufficiently close to the
target level depends on the level durations essentially only through their mean. Correspondingly,
the conditional mean demand relaxes linearly from it excursion, at least approximately so, for
sufficiently small times. If the chance for a larger excursion is negligible (as determined by the
large deviation approximation mentioned) then this simple description may suffice. An example
is given in Section 7. In Section 8 we show how long-range dependence in the level process arises

through long-tailed level-holding-time distributions.

2. Transient Analysis

Approximation by the conditional mean bandwidth. In this paper, the state information
upon which we condition will be either the current level of each source or the current level and
age (current time) in that level of each source. No state from the within level process is assumed.
Conditional on that state information, we can compute the probability that each source will be in
each possible level at any time in the future, from which we can calculate the conditional mean and
variance of the aggregate required bandwidth by adding.

The Lindeberg-Feller central limit theorem (CLT) for non-identically-distributed summands
can be applied to generate a normal approximation characterized by the conditional mean and
conditional variance; see p. 262 of Feller [13]. For the normal approximation we must check that
the aggregate is not dominated by only a few sources.

Let B(t) denote the (random) aggregate required bandwidth at time ¢, and let /(0) denote the
(known deterministic) state information at time 0. Let (B(¢)|/(0)) be a random variable with the
conditional distribution of B(t) given the information /(0). By the CLT, the normalized random

variable

(BU)II(0) ~ E(BII(0)) o
VVar(B(t)[1(0))

is approximately normally distributed with mean 0 and variance 1 when the number of sources is

suitably large.

Since the conditional mean alone tends to be very descriptive, we use the approximation

(B)|1(0)) = E(B()|1(0)) (2:2)



which could be justified by a (weaker) law of large numbers instead of the CLT. We will show
that the conditional mean in (2.2) can be efficiently computed, so that it can be used for real-time
control. From (2.1), we see that the error in the approximation (2.2) is approximately characterized

by the conditional standard deviation \/Var(B(t)[1(0)). We also will show how to compute this

conditional standard deviation, although the required computation is more difficult. If there are
n sources that have roughly equal rates, then the conditional standard deviation will be O(y/n),
while the conditional mean is O(n).

Given that our approximation is the conditional mean, and given that our state information
does not include the state of the within-level variation process, the within-level variation process
plays no role because it has zero mean. Let 7 index the source. Since the required bandwidths need
not have integer values, we index the level by the integer j, 1 < 7 < J;, and indicate the associated
required bandwidths in the level by b; Hence, instead of (1.1), the required bandwidth for source
1 can be expressed as

Let P ( |z) be the probability that the source-i level process is in level k at time ¢ given that at
time 0 it was in level j and had been so for a period z (i.e., the age or elapsed level holding time
at time 0 is ). If j = (j1,...,Jn) and x = (z1,...,2,) are the vectors of levels and ages of the n
source level processes at time 0, then the state informationis 1(0) = (j,x) = (J1,-- -, Jn} T1y .-+, Tn)

and the conditional aggregate mean is

n J;
E(B(®)|1(0)) = M(t]j,x) Z Z P (t]a:)b, (2.4)

From (2.4), we see that we need to compute the conditional distribution of the level, i.e., the
probabilities P}Q (t|z), for each source 7. In this section we show how to compute these conditional
probabilities. We consider a single source and assume that its required bandwidth process is a
semi-Markov process (SMP). (We now have no within-level variation process.) We now omit the
superscript 7. Let L(t) and B(t) be the level and required bandwidth, respectively, at time ¢ as in
(2.3). The process {L(t) : ¢t > 0} is assumed to be an SMP, while the process {B(t) : ¢ > 0} is
a function of an SMP; i.e., B(t) = br(t), where b; is the required bandwidth in level j. If b; # by
for j # k, then {B(t) : t > 0} itself is an SMP, but if b; = by for some j # k, then in general
{B(t) :t > 0} is not an SMP.

Laplace transform analysis. Let A(f) be the age of the level holding time at time t. We are

interested in calculating
Pi(tlz) = P(L(t) = k|L(0) = 7, A(0) = z) (2.5)

as a function of j, k,z, and ¢t. The state information at time 0 is the pair (j,z). Let P be
the transition matrix of the DTMC governing level transitions and let Fj;(¢) be the holding-

time cdf given that there is a transition from level j to level k. For simplicity, we assume that



Fy (t) = 1— Fjr(t) > 0 for all j,k, and ¢, so that all positive z can be level holding times. Let
P(t|z) be the matrix with elements P;z(t|z) and let P(s|z) be the Laplace transform (LT) of P(t|z),

i.e., the matrix with elements that are the Laplace transforms of Pjj(t|z) with respect to time, i.e.,
st
P(s]) / =5t Py (t]) (2.6)

We will derive an expression for P(s|.r) For this purpose, let GG; be the holding-time cdf in level

7, unconditional on the next level, i.e.,
z)= Zijij(:c) . (2.7)
k

For any cdf GG, let G° be the complementary cdf, i.e. G°(z) =1 — G(z). Also let

Hip(t]) = %((gx) and Gj(te) = 37 Hye(t]a) (2.8)

J k

for G; in (2.7). Then let hjx(s|z) and §;(s|z) be the associated Laplace-Stieltjes transforms (LSTs),
i.e.,

hjk(5|m):/000 e~*'dH(tz) and gj(s|m):/000 =G (t]) . (2.9)

Let h(s|z) be the matrix with elements /i (s|z). Let G(s) be the matrix with elements Q;x(s),

where

Qiclt) = Pubu(®) and diuls) = [~ e7dQie(r) (210)

Let D(s|z) and D(s) be the diagonal matrices with diagonal elements

Djj(sle) = [1 = g;(sl2)]/s,  Dijls) =[1=g;(s)]/s , (2.11)
where §;(s) is the LST of the cdf G in (2.7).

Theorem 2.1 The transient probabilities for a single SMP source have the matriz of Laplace trans-

forms

P(s|z) = D(s|z) + h(s|z) P(s]0) , (2.12)

where

P(s10) = (I — 4(s)) D (). (2.13)
Proof. In the time domain, condition on the first transition. For j # k,
Ptle) = 3 [ dtule) Pt i)
so that

=" hi(slz) P (s]0),

{



while

Pyi(t) = G5(e) + 3 [ ditatule) P = )
l

so that (s]a)
- 1—g;(s|x -
Pyj(sle) = —=5==4 3 _hi(s|2) P (s]0).
l
Hence, (2.12) holds. However, P(t|0) satisfies a Markov renewal equation, as in Section 10.3 of

Cinlar [5], i.e., for j # k,
t 00
Pult0) = 3 [ dQu(wPa(t = ul0), and P;010) = G50+ 3 [ dQu(w) Pt = ulo)
[ l

so that
P(t|0) = D(t) + Q(t) x P(t|0)

where * denotes convolution, and (2.13) holds.

To compute the LT P(s]|0), we only need the LSTs f;x(s) and §;(s) associated with the basic
holding-time cdf’s Fj; and G;. However, to compute P(s|z), we also need to compute D(s|z)
and h(s|z), which require computing the LSTs of the conditional cdf’s H;y(t|z) and G;(t|z) in
(2.8). The LSTs of these conditional cdf’s are often easy to obtain because some cdf’s inherit their
structure upon conditioning. For example, this is true for phase-type, hyperexponential and Pareto
distributions. Moreover, other cdf’s can be approximated by hyperexponential or phase-type cdf’s;
see Asmussen, Nerman and Olsson [2] and Feldmann and Whitt [12]. If the number of levels is
not too large, then it will not be difficult to compute the required matrix inverse (I — ¢(s))™!
for all required s. Note that, because of the probability structure, the inverse is well defined for
all complex s with Re(s) > 0. To illustrate with an important simple example, we next give the
explicit formula for an on-off source.

Example 2.1. Suppose that we have an on-off source, i.e., so that there are two states with
transition probabilities P13 = P2; = 1 and holding time cdf’s G; and G3. From (2.8) or by direct

calculation,

PMmz(ﬁﬁm%“m)ZU—«w*m@

Py (s]0)  Pyy(s]0)
| ( e m@W—m@») (214)
s(1—=g1(s)g2(s)) \ 92(s)(1 — g1(s)) 1 —ga(s) '

Suppose that the levels are labeled so that the initial level is 1. Note that all transitions from level

1 are to level 2. Hence when considering the matrix A(s|z) in (2.9) it suffices to consider only the
element hq(s|z). Since

_ Gilt+2)

Hizllle) = Gi(te) = “ger 52 . then ha(sla) = n(sle) = [T et (te) . (215)



Since Pyi(t|z) =1 — Pia(t|z), it suffices to calculate only Pyo(t|z). Hence, in this context

1 (612)(1 = 3a(s)
Plel®) = 0 5 0aate)) (210

We now determine the mean, second moment, and variance of the bandwidth process of a

general multi-level source as a function of time. It is elementary that

mi(tlz) = E(B(t)|L(0)=j,A(0)=2) = Pyl(t|z)by (2.17)
k
sitle) = E(B@)?|L(0) = j, A(0) = x) = > _ Pix(t|x)b} (2.18)
k
vi(tlr) = Var(B(t)|L(0) = j, A(0) = 2) = s;(t|z) — m;(t|=)" . (2.19)

We can calculate m;(t|z) and s;(¢|z) by a single inversion of their Laplace transforms, using
m;(s|z) E/ e *'m;(t|z) ZP]k and §;(s|z) = ZP]k s|z)b} (2.20)
0

To properly account for the within-level variation process when it is present, we should add its
variance in level j, say w;(¢, z), to v;(t,z), but we need make no change to the mean M;(¢,z). We
anticipate that W;(¢, z) will tend to be much less than v;(t, z) so that w;(¢, z) can be omitted; but
it could be included.

Finally, we consider the aggregate bandwidth associated with n sources. Again let a superscript

¢ index the sources. The conditional aggregate mean and variance are

M(tlj,x) = E(B(t)|1(0)) = Zm;t (t]z:) (2.21)
i=1
and .
V(tlj,x) = Var(B E (t]zs) ;1 GEDIE (2.22)
where j = (j1,...,7n) is the vector of levels and x = (z1,...,2,) is the vector of elapsed holding

times for the n sources with the single-source means and variances as in (2.17) and (2.19).
It is significant that we can calculate the conditional aggregate mean at any time ¢ by performing

a single inversion. We summarize this elementary but important consequence as a theorem.

Theorem 2.2 The Laplace transform of the n-source conditional mean aggregate required band-

width as a function of time is

[e's) n J;
M(slj,x)z/0 e M (t]j, x) Z Z ) (slz:)by, | (2.23)

(®)

where the single-source transform P %, (slz:) is given in Theorem 2.1.



Unlike for the aggregate mean, for the aggregate variance we evidently need to perform n
separate inversions to calculate v} (t|z;) for each i and then add to calculate V(t|j,x) in (2.22).
(We assume that the within-level variances w} . (t|z;), if included, are specified directly). Hence, we
suggest calculating only the conditional mean on line for control, and occasionally calculating the

conditional variance off line to evaluate the accuracy of the conditional mean.

3. The One-Transition and Two-Transition Approximations

The most complicated part of the conditional aggregate mean transform M (s|j,x) in (2.23) is the
matrix inverse (I — ¢(s))™" in the transform of the single-source transition probability in (2.13).
Since the matrix inverse calculation can be a computational burden when the number of levels
is large, it is natural to seek approximations which avoid this matrix inverse. We describe such
approximations in this section.

~1 is a compact representation for the series > °°  ¢(s)”. For

The matrix inverse (I — ¢(s))
P(t|z), it captures the possibility of any number of transitions up to time t. However, if the levels
are relatively long in the time scale relevant for control, then the mean for times ¢ of interest will
only be significantly affected by a very few transitions. Indeed, often only a single transition need
be considered.

The single-transition approximation is obtained by making the Markov chain absorbing after

one transition. Hence, the single-transition approximation is simply
Pip(tlz) = Hjx(tle) , j#k, and  Pj(tle) = Gi(tlz) + Hj; (t|z) (3.1)

for H;x(t|z) in (2.8) and G;(t|z) in (2.8). From (3.1) we see that no inversion is needed.
Alternatively, we can develop a two-transition approximation. (Extensions to higher numbers

are straightforward.) Modifying the proof of Theorem 2.1 in a straightforward manner, we obtain

Pir(t]e) /GC w)dH jy (ul2) +Z/ PucFin(t — u)dH jo(ulz) (3.2)

for j # k and
t
Pyj(tle) = G5(tlo) + 3 [ Pyt = w)dHye(ulo) (3.3
£

Expressed in the form of transforms, (3.2) and (3.3) become

Pie(sia) = hye(sla) T2 5 o ol o 2 (3.4
£
for j # k and
Pyj(sfr) = L7 9C1) Sty Py P2 ful) (35)

Numerical inversion can easily be applied with (3.4) and (3.5). However, since the time-domain

formulas (3.2) and (3.3) involve single convolution integrals, numerical computation of (3.2) and

10



(3.3) in the time domain is also a feasible alternative. Moreover, if the underlying distributions have
special structure, then the integrals in (3.2) and (3.3) can be calculated analytically. For example,

analytical integration can easily be done when all holding-time distributions are hyperexponential.

Example 3.1. To illustrate how the two approximations compare to the exact conditional
mean, we give a numerical example. We consider a single source with four levels. The transitions

move cyclically through the levels: Pjg = Py3 = P34 = P41 = 1. The level holding-time ccdf’s are:
Gi(t) = 0.5¢7 10" 40,5701 G5(t) = e V1t
G5t) = 09e7 2 +0.1e7 %" | G{(t)=e "Mt >0.

The level bandwidths are by = b3 = 100 and by = by = 0. Suppose that we start in level 1 with
an age of 8. From the form of G{(t), we see that the conditional level-1 holding-time ccdf G (t|z)

—0-17 " Hence the first two mean level holding times are approximately 10.

is then approximately e
Hence we might consider the one-transition and two-transition approximations in the interval [0, 10].
The two approximations are compared to the exact value of the conditional mean in Figure 1. (All
are computed by numerical transform inversion.) The approximations are very good up to t = 1
or 2, but they start to degrade by ¢ = 10. The two-transition approximation performs not so well
for larger ¢t because the actual holding time in level 3 is likely to be quite short. More generally,
our experience is that the one-transition and two-transition approximations tend to perform quite
satisfactorily if the mean level holding times in the first few levels are substantially larger than the

times ¢ of interest. In this example the approximations are quite good in the interval [0, 1].

4. The Value of Information

We can use the source model to investigate the value of information. We can consider how prediction
is improved when we condition on, first, only the level and, second, on both level and age. The

reference case is the steady-state mean
M = ZmZ and m' =37 bip; (4.1)
i=1

where pt is the steady-state probability, i.e.
here p’ is the steady-state probability, i.e.,

pi= G (4.2

2 mem(Gh)
with 7 the steady-state vector of the Markov chain P* (7' = 7' P') and m(G"%) the mean of G for
G in (2.7), for all sources 7. With the steady-state mean, there is no conditioning. Section 2 gives
the formula for conditioning on both level and age. Now we give the formulas conditioning only

on the level; i.e., we condition on the level, assuming that we are in steady-state. We omit the %

superscript. Then the age in level j has the stationary-excess cdf

Gy t) = ﬁ/gt Ge(u)du, >0 (4.3)

11



100 |

exact <
90 - one-transition +
two-transition O

80 - .

70 -
mean conditional

demand
60 -

50 - .

40 -

30 | | | |
time

Figure 1: A comparison of the one-transition and two-transition approximations with the exact
conditional mean aggregate demand in Example 3.1.

Let P;;(t) be the probability of being in level k at time ¢ conditional on being in level j in steady
state at time 0. Let Pj.(s) be its Laplace transform. Let m;(t) be the conditional steady-state

mean given level j at time 0 and let 172;(s) be its Laplace transform: Clearly
J ~
mj(t) =Y Pis(t)bx  and  iij(s) = oy Pir(s)by - (4.4)
k=1

Hence, it suffices to calculate Pjz(s).

Theorem 4.1 Assume that the level-holding-time cdf depends only on the originating level, i.e.,
Fii(t) = G;(t). The steady-state transition probabilities conditional on the level for a single SMP

source have the matriz of Laplace transforms
P(s) = Do(s) + () P(s]) (4.5
where P(s|0) is the matriz in (2.13), j.(s) is the matriz with elements

(1—-g,(s)) (4.6)

Gejk(8) = Pjrgje(s) = Pjx oGy

D.(s) is the diagonal matriz with diagonal elements

Dejj(s) = = !?Sje(s) _ Sm(G;Q)n;(éjg 9i(s)

, (4.7)
§;(s) is the level-j holding-time LST and §;.(s) is the LST of its stationary-excess cdf in (4.3).

12
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Figure 2: The conditional mean aggregate demand as a function of the age of the holding time in
level 1 for Example 4.2.

Proof. Modify the proof of Theorem 2.1, inserting P;G.(t) for Hj(t|z) and G5 (t) for G(t]z).
Example 4.1. Consider the on-off source in Example 2.1. Paralleling (2.16), it suffices to calculate
only Pjq(t). Its Laplace transform is

: G1c(s) (1 = §2(s))
Pia(s) = - — . 4.8
L) = = 0 0) e
Example 4.2. To show the value of knowing the age, consider an on-off source with holding-time

cedf’s

Gi(t) = 0.01e " 1 0.1e7 "M + 89¢™", Gi(t)=e', t>0. (4.9)

Let the bandwidths be by = 100 and b, = 0. Since m(G4) = 2.89 and m(G3) = 1.00, the steady-

state mean is 100 (G )
mi{tn
FEB = =74.29 .
(o) m(Gr) + m(Ga)

Let the initial level be 1. Since (; has an exponential component with mean 100, we anticipate

the time to reach steady state to be between 100 and 1000. In Figure 2 we plot the conditional
mean my(t|z) for z = 0.5, 5.0 and 50.0, computed by numerical transform inversion. Figure 2

shows that the age plays a very important role.

5. Network Control

The source model makes it possible to investigate several different kinds of controls. As in

Sections 4 and 9 of [10], we can consider rejecting new sources or removing existing sources. We

13



can also consider changing the levels of existing sources. For example, on-off sources in the on state
might be turned off. We also can consider rate controls corresponding to changing the bandwidths
assigned to the levels. With each of these controls, we can calculate the resulting conditional mean
aggregate bandwidth to evaluate the performance of the control.

To illustrate, suppose that we wish to consider which of n candidate sources to serve over the
time interval [0, T]. Suppose that source i earns a fixed revenue R; plus a revenue rate r; per unit
of bandwidth per time. Also suppose that we want to keep the demand below a capacity ¢ at all
times. Then we can solve the following integer program. Let y; be the decision variable, with y; = 1

if source ¢ is served and y; = 0 if not. The integer program can be formulated as:

T
manyz (R; _}_n/ m;, (t|z;)dt) (5.1)

=1

subject to

Zyz Jtelz) <ce, 0<ELSK, (5.2)

for a set of time points 0 =ty < t; < ... < tx =7T. In (5.1) and (5.2) the level j; and age z; of

source ¢ are included because these are presumed to be known.

6. Recovery from Congestion in Steady State

For capacity planning, it is useful to consider the time required to recover from a high-congestion
event, as well as the likelihood of the high-congestion event. The likelihood of a high-congestion
event in steady state can be estimated using a large deviation principle (LDP) approximation. The
well-known Chernoff bound (e.g. see [7]) gives an upper bound to the stationary tail probabilities

of the aggregate level process, even for finitely many sources. By Chebychev’s inequality, for all
0 >0,

P[L(t) > $] < —6IE[ 6L(¢ —6J5HE OLi(t)] — —HrHszeﬁb; (61)

where b; is the required bandwidth and pé is the steady-state probability of level 7 in source 7, as
n (4.2). Thus,

>0

P[L(t) > 2] < e ') where I(z)=sup (030 - Zlog szeﬁb;) . (6.2)

It can be shown [7] that such bounds are asymptotically tight (have a large deviation limit) as the
number of sources increases provided the spectrum of behavior of individual sources is sufficiently

regular, yielding the exponential approximation

P(L(t) > z) ~ e~ 1@ (6.3)

Finding the rate function I will in general require numerical solution of the variational expression

(6.2). It can be shown that the RHS of (6.2) is a concave function of §, and under mild conditions

14



it is differentiable also. Hence the supremum is achieved at the unique solution # to the Euler-

5, bipie™
x:Z( S ) (6.4)
7 Zj/pj,e J

Generally, it is not difficult to numerically determine the supremum in (6.2) by location of the

solution to (6.4).

Lagrange equation

Example 6.1 In special cases the variational problem can be solved explicitly. This is possible in
the case of n homogeneous two-level sources. Here we have b; =b; with j € {1,2},0 < by < by and

p1 + p2 = 1. For this case,

I(z) = mnsup (033 — log(pre™ —I—pge%?)) (6.5)
>0
T
- <b ~log y(z) — log (pry(2)"/ =) + pay(a)*/ “’2‘6”)) (6.6)
2= b

with y(z) = p1(z — b1)/(p2(by — z)) for by < z < by and I(z) = +oo elsewhere.

We now show how to estimate the time to recover from the high-congestion event, where the
high-congestion event is a large initial bandwidth z. We understand recovery to occur when the
aggregate bandwidth is again less than or equal to the capacity c¢. In applications, we suggest
examining the function of aggregate bandwidth giving both the probability of reaching that level
and the recovery time from that level to assess whether or not capacity is adequate to meet demand.

We assume that recovery occurs when the aggregate bandwidth drops below a level ¢, where
z > ¢ > m, with z being the initial level and m being the steady-state mean. Given that we know
the current level of each level process, we know that the remaining holding time (and also the age)
is distributed according to the level-holding-time stationary-excess distribution in (4.3). We use
the LDP to approximate the conditional distribution of the level process for each source (in steady
state). The idea is to perform the appropriate change of measure (tilting) corresponding to the
rare event.

Given that P(Y.", B' > z) =~ ¢~ !(®) for I(z) in (6.2), the LDP approximation is

b 6*
P(Bi:b;li:Bi zx)%ﬁé-ELW :

=1 Ek 1P

where #* yields the supremum in (6.2). Put another way, comparing (6.7) with (6.4) we see that #*

(6.7)

is chosen to make the expectation of ), B; equal to 2 under the distribution p. In the homogeneous
case, equality in (6.7) in the limit as the number of sources increases is due to the conditional limit
theorem of Van Campenhout and Cover [21]. The limit can be extended to cover suitably regular
heterogeneity in the b;, e.g., finitely many types of source.

We thus approximate the conditional bandwidth process by

B(B(®)|B(O) Zzp]/ HOIBH0) = y)dG(y)

=1 7=1

(B(#)|B(0) =

Q
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J; J;

i P > biPik(t) (6.8)

=1 j=1 k=1

o

for ]’)é in (4.3) which has Laplace transform

n J;
>

i=1j7=1

%s

J DN
Z by, P ( (6.9)

The Laplace transform Pj(s) in (6.9) was derived in Theorem 4.1. We can numerically invert it to
calculate the conditional mean as a function of time. We then can determine when F(B(t)|B(0) =
z) first falls below ¢. In general, this conditional mean need not be a decreasing function, so that
care is needed in the definition, but we expect it to be decreasing for suitably small ¢ because the

initial point B(0) is unusually high.

7. A Linear Approximation

Assuming that the relevant time is not too large, we might approximate the conditional mean

bandwidth using a Taylor-series approximation

E(B(t)|B(0) = 2) = 2 + tr(z) , (7.1)

n J; J;

r(z) = E(B(0)|B(0)=1)= ZZ Z (0)=>_> 75 > Piel(by = bj)/m(G)) (7.2)
=1 j=1 k=1 i=1j7=1 k=1
which has the advantage that no numerical inversion is required.
Suppose the service capacity is ¢ > F(B(0)) and we condition on B(0) > ¢. If r(B(0)) < 0, we

can use (7.1) to approximate the first time to return to ¢, the recovery time, by

T=(z—-c)/r(z). (7.3)

Suppose in addition that B is reversible; this will happen if the matrix P is reversible. Then since
both the residual lifetime and the current age have distribution F., £(B(—t) | B(0)) = E(B(t) |
B(0)). Consequently B(0) = z is a local maximum, at t = 0, of E(B(t) | B(0)).

Now suppose that there are n independent sources. Then as in [10], it follows by use of an
appropriate functional law of large numbers that, as n — oo under regularity conditions, the
stochastic paths of the B process converge to this mean path. Thus we can identify, asymptotically
as n — 0o, t = 0 as a hitting time for the level z. Thus, we can use (6.3) to approximate the
probability of this hitting time and 7 in (7.3) to approximate the associated recovery time.
Example 7.1. Consider homogeneous two-level sources, i.e., j € {1,2},0 < by < by, p1+p2 =1

with mean lifetimes mqy,mg, and Pjy = Py = 1 — P = 1 — Py = 0. With n sources and
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# sources | initial | steady-state recovery time 7

initially in total probability inversion

each level | demand of x linear | exponential | Pareto
nq N9 x e 1) approx. duration duration
25 25 150 7.5 %x 10~* 0 0 0

22 28 162 1.9 x 1075 0.15 0.16 0.19
19 31 174 2.4 x 1077 0.24 0.29 0.41
16 34 186 1.4x 1079 0.31 0.41 0.64
13 37 198 3.5 x 10712 0.37 0.50 0.91

Table 1: Homogeneous two-level sources. Approximate hitting probabilities of aggregate demand z,
together with recovery time 7 of mean from z, by linear approximation, and exact for (i) exponential
duration, and (ii) Pareto duration of higher level; see Example 7.1.

B(0) = = we can calculate the p; in (6.7) directly from the relation z = n(p1by + p2b2) for z €
{nbl, (n — 1)b1 + bg, ey b1 + (n — 1)[)2, nbg} Then

r(z) = npi(bgy — b1)/my + pa(by — ba)/mg = (nby — x)/my — (z — nby)/my . (7.4)

As a concrete example, we let by = 1, by = 5, m; = 3, mg = 1, giving a mean bandwidth per source
of (m1by + mzbs)/(my + mg) = 2. We also let n = 50 and ¢ = 150. The parameters of the example
were chosen as a caricature of video traffic on an OC3 link: take b;, z, ¢ in Mb/sec, m; in seconds.

We present in Table 1 some values of ny, ng, the number of sources in each level for a given z, the

approximate probability e=(%)

of demand exceeding z (using I from (6.5)), and 7. For comparison
we give also the exact recovery time for the mean, calculated by using numerical transform inversion
methods [1], for particular models of level durations with the same means: (i) both level durations
exponentially distributed; (ii) lower level exponential, upper level duration Pareto with exponent
1.5, and hence cedf G¢(z) = (1 4 22)~%/% in order to give mean my = 1. The Pareto density
g(z) = a(142)~0+9) has Laplace transform ae®s*T'(—a, s), where T'(a, z) is the incomplete gamma
function

['(a, 2) :/ t* e tdt . (7.5)

Hence, the required transform values for the Pareto distribution are readily computable.

In Figure 3 we display the evolution of the conditioned mean in the linear approximation, and for
the two distributions above with the same mean. As should be expected, the linear approximation
is more accurate when the initial level z is closer to the capacity c¢. The linear approximation also
behaves worse for the Pareto high-level durations than for the exponential high-level durations.
The linear approximation tends to consistently provide a lower bound on the true recovery time
for the mean. Even though the linear-approximation estimate of the recovery time diverges from
the true mean computed by numerical inversion as the hitting level x increases, the probability of

such high z can be very small. Even the largest errors in predicted recovery times in Table 1 are
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Figure 3: Recovery curves for two-level sources: linear approximation and numerical transform
inversion with exponential and Pareto durations in the higher level; see Example 7.1.

within one order of magnitude, and so might be regarded as suitable approximations. ;From our
experiments, we conclude that the linear approximation is a convenient rough approximation, but
that the numerical inversion yields greater accuracy.

Simple criteria for link dimensioning. A key point is the two-dimensional characterization of
rare congestion events in terms of likelihood and recovery time. To further show how this perspective
can be exploited, we plot in Figure 4, for various offered loads, the approximate probability e=/(z(7))
of a demand at least z(7) as a function of 7, where 7 = (¢ — z(7))/r(z(7)); i.e., (1) is the demand
from which the recovery time to the level ¢ is 7, using the linear approximation. Figure 4 shows that
the two criteria together impose more constraints on what sets of sources are acceptable. Expressed
differently, for the same probability of occurrence, rare congestion events can have very different

recovery times.

8. Covariance Structure
Useful characterizations of the aggregate and single-source bandwidth processes are their
(auto)covariance functions. The covariance function may help in evaluating the fitting. We now
show that we can effectively compute the covariance function for our traffic source model.

Let {B(t) : t > 0} and {Bi(t) : t > 0} be stationary versions of the aggregate and source-
¢ bandwidth processes, respectively. Assuming that the single-source bandwidth processes are

mutually independent, the covariance function of the aggregate bandwidth process is the sum of

18



0 T T

n=64; load=0.85 —
n=60; load=0.80 - - - -
n=>55; load=0.73 —
=50; load=0.67 - - - -
n=45; load=0.60 — _|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

duration 7, seconds

Figure 4: Design criteria: estimated probability of overdemand of at least duration 7, for various
offered loads; see Section 7.

the single-source covariance functions, i.e.,

R(t) = Cov(B( ZCOV (B'(0), B'(t)) . (8.1)

Hence, it suffices to focus on a single source, and we do, henceforth dropping the superscript .

In general,
R(t) = S(t) — m?, (8.2)

where the steady-state mean m is as in (4.1) and (4.2) and

S(t) = EB(0)B(t) = /0 deb]p]gJe Zbkpjk (t]2) (8.3)
+Z p;GS, () Cov(W;(0), W;(1)) (8.4)

where g;.(z) = G5(z)/m(G;) is the density of Gje, and the second term captures the effect of
the within-level variation process. In (8.3) b; is the bandwidth in level j, p; is the steady-state
probability of level j, g;c(z) = G5(2)/m(G;) with G; the level-j holding-time cdf and m(G)) its
mean, and Pj;(t|z) is the transition probability, whose matrix of Laplace transforms is given in

Theorem 3.1 of [10]. We can thus calculate S(¢) by numerically inverting its Laplace transform

0 J 00 J A
S(S) = /0 —stS Z:: g / Gj(m)kz::lbkpjk(slx)dx
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To treat the second term in (8.5), we can assume an approximate functional form for the covariance

of the within-level variation process W (t). For example, if
Cov(W;(0), W;(t)) mofe™™" | t>0, (8.6)

then

J o0
S p / = GE, (H)Cov(W;(0), W(t))dt

/ s—}—m)th, ( )d

2 (1—g;(s+m;))
] (s +m;)m(G))

(8.7)

Thus, with approximation (8.6), we have a closed-form expression for the second term of the
transform S(s) in (8.5). For each required s in S(s), we need to perform one numerical integration
in the first term of (8.5), after calculating the integrand as a function of z.

A major role is played by the asymptotic variance [;° R(t)dt. For example, the heavy-traffic
approximation for the workload process in a queue with arrival process fg B(u)du, t > 0, depends
on the process {B(t) : ¢ > 0} only through its rate £ B(0) and its asymptotic variance; see Iglehart
and Whitt [17]. The input process is said to exhibit long-range dependence when this integral is
infinite. The source traffic model shows that long-range dependence stems from level holding-time

distributions with infinite variance.

Theorem 8.1 If a level holding-time cdf Gi; has infinite variance, then the source bandwidth process

exhibits long-range dependence, i.e.,

/OOOR(t)dt:oo.

Proof. In (8.4) we have the component

| s@Pyta)ds

which in turn has the component

| gnt@)Gsttia) = G5.00)

but
/0 G2, (t)dt = oo
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if G; has infinite variance. (As can be seen using integration by parts, the integral is the mean
of G see p. 150 of Feller [13]. In general, G, has k™" moment my11(G;)/(k+ 1)myi(G;), where
my(G;) is the £ moment of G;.)

Note that if approximation (8.6) holds, then the level process contributes to long-range depen-

dence, but the within-level variation process does not, because

J o0
S p /0 G2, () Cov(W;(0), Wa(t))dt

J N
o (1= g;(n;))
Ry pioi———r <00 .
]Z::l L m(GY)

9. Conclusions

We have shown how transient analysis for network control (Section 5) and design (Sections 6
& 7) can be carried out for multi-level sources with general, possibly long-tailed, level-holding-
time distributions. In Section 2 we analyzed the transient behavior of a general source traffic
model composed of a semi-Markov level process and a zero-mean piecewise-stationary within-level
variation process. We approximated the conditional aggregate demand from many sources given
system state information by the conditional aggregate mean given level values and ages. The
within-level variation process plays no role in this approximation. We showed that the conditional
mean can be effectively computed using numerical transform inversion (Section 2) and developed
several approximations to it (Sections 3 & 7). We showed how the model can be exploited to study
the value of information (Section 4). We applied our techniques to examples in network control
(Section 5) and design (Section 7).

Even though our approach is to focus on offered load, unaltered by loss and delay associated
with finite capacity, we can apply the conditional mean approximation in Section 2 to develop
an approximation to describe loss and delay from a finite-capacity system, just as described in
Section 5 of [10] for the M/G /oo arrival process.
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