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Abstract

This paper will be Chapter 13 in Simulation in the Elsevier series of Handbooks in Operations

Research and Management Science, edited by Shane Henderson and Barry Nelson. Herein we

discuss analysis for the design of simulation experiments. By that we mean, not the traditional

(important) methods to design statistical experiments, but rather techniques that can be used,

before a simulation is conducted, to estimate the computational effort required to obtain

desired statistical precision for contemplated simulation estimators. In doing so, we represent

computational effort by simulation time, and that in turn by either the number of replications

or the run length within a single simulation run. We assume that the quantities of interest will

be estimated by sample means. In great generality, the required length of a single simulation

run can be determined by computing the asymptotic variance and the asymptotic bias of the

sample means. Existing theory supports this step for a sample mean of a function of a Markov

process. We would prefer to do the calculations directly for the intended simulation model, but

that usually is prevented by model complexity. Thus, as a first step, we usually approximate

the original model by a related Markovian model that is easier to analyze. For example,

relatively simple diffusion-process approximations to estimate required simulation run lengths

for queueing models can often be obtained by heavy-traffic stochastic-process limits.



1. Introduction

Simulations are controlled experiments. Before we can run a simulation program and analyze

the output, we need to choose a simulation model and decide what output to collect; i.e.,

we need to design the simulation experiment. Since (stochastic) simulations require statistical

analysis of the output, it is often appropriate to consider the perspective of experimental design,

e.g., as in Cochran and Cox (1992), Montgomery (2000) and Wu and Hamada (2000).

Simulations are also explorations. We usually conduct simulations because we want to learn

more about a complex system we inadequately understand. To head in the right direction,

we should have some well-defined goals and questions when we start, but we should expect

to develop new goals and questions as we go along. When we think about experimental

design, we should observe that the time scale for computer simulation experiments tends to

be much shorter than the time scale for the agricultural and medical experiments that led to

the theory of experimental design. With the steadily increasing power of computers, computer

simulation has become a relatively rapid process. After doing one simulation, we can quickly

revise it and conduct others. Therefore, it is almost always best to think of simulation as an

iterative process: We conduct a simulation experiment, look at the results and find as many

new questions as answers to our original questions. Each simulation experiment suggests

subsequent simulation experiments. Through a succession of these experiments, we gradually

gain the better understanding we originally sought. To a large extent, it is fruitful to approach

simulation in the spirit of exploratory data analysis, e.g., as in Tukey (1977), Velleman and

Hoaglin (1981) and Chapter 1 of NIST/SEMATECH (2003).

Successful simulation studies usually involve an artful mix of both experimental design and

exploration. We would emphasize the spirit of exploration, but we feel that some experimental

design can be a big help. When we plan to hike in the mountains, in addition to knowing what

peak we want to ascend, it is also good to have a rough idea how long it will take to get there:

Should the hike take two hours, two days or two weeks?

That is just the kind of rough information we need for simulations. A major purpose of

simulation experiments, often as a means to other ends, is to estimate unknown quantities

of interest. When we plan to conduct a simulation experiment, in addition to knowing what

quantities we want to estimate, it is also good to have a rough idea how long it will take to

obtain a reliable estimate: Should the experiment take two seconds, two hours or two years?

As in Whitt (1989), in this chapter we discuss techniques that can be used, before a simu-

1



lation is conducted, to estimate the computational effort required to obtain desired statistical

precision for contemplated simulation estimators. Given information about the required com-

putational effort, we can decide what cases to consider and how much computational effort to

devote to each. We can even decide whether to conduct the experiment at all. We can also de-

cide if we need to exploit variance-reduction techniques (or efficiency-improvement techniques),

see Chapters 10-12 and 14-16.

The theoretical analysis we discuss should complement the experience we gain from con-

ducting many simulation experiments. Through experience, we learn about the amount of

computational effort required to obtain desired statistical precision for simulation estimators

in various settings. The analysis and computational experience should reinforce each other,

giving us better judgment. The methods in this chapter are intended to help develop more

reliable expectations about statistical precision. We can use this knowledge, not only to design

better simulation experiments, but also to evaluate simulation output analysis, done by others

or ourselves.

At first glance, the experimental design problem may not seem very difficult. First, we

might think, given the amazing growth in computer power, that the computational effort

rarely needs to be that great, but that is not the case: Many simulation estimation goals

remain out of reach, just like many other computational goals; e.g., see Papadimitriou (1994).

Second, we might think that we can always get a rough idea about how long the runs

should be by doing one pilot run to estimate the required simulation run lengths. However,

there are serious difficulties with that approach. First, such a preliminary experiment requires

that we set up the entire simulation before we decide whether or not to conduct the experiment.

Nevertheless, if such a sampling procedure could be employed consistently with confidence, then

the experimental design problem would indeed not be especially difficult. In typical simulation

experiments, we want to estimate steady-state means for several different input parameters.

Unfortunately, doing a pilot run for one set of parameters may be very misleading, because

the required run length may change dramatically when the input parameters are changed.

To illustrate how misleading one pilot run can be, consider a simulation of a queueing model.

Indeed, we shall use queueing models as the context examples throughout the chapter. Now

consider the simulation of a single-server queue with unlimited waiting space (the G/G/1/∞
model, e.g., see Cohen (1982) or Cooper (1982)), with the objective of estimating the mean

steady-state (or long-run average) number of customers in the system, as a function of basic

model data such as the arrival stochastic process and the service-time distribution. This
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queueing experimental design problem is interesting and important primarily because a uniform

allocation of data over all cases (parameter values) is not nearly appropriate. Experience

indicates that, for given statistical precision, the required amount of data increases dramatically

as the traffic intensity ρ (arrival rate divided by the service rate) increases toward the critical

level for stability and as the arrival-and-service variability (appropriately quantified) increases.

For example, the required simulation run length to obtain 5% relative error (width of confidence

interval divided by the estimated mean) at a high traffic intensity such as 0.95 tends to be 100

times greater than at a lower traffic intensity such as 0.50. (The operative formula underlying

this rough estimate is f(ρ) ≡ (1 − ρ)−2; note that f(0.95)/f(0.50) = 400/4 = 100. If we

consider the more extreme case ρ = 0.995, then the factor is 10, 000. If we used a criterion

of absolute error instead of relative error, then the operative formula becomes even more

impressive: then f(ρ) ≡ (1− ρ)−4.)

In this queueing example, and throughout this paper, we use simulation time as our char-

acterization of computational effort. (For a theoretical discussion of this issue, see Glynn and

Whitt (1992).) Some computational experience or additional experiments on the selected com-

puter are needed to convert simulation time into computational effort. Since there is a degree

of freedom in choosing the measuring units for time, it is important to normalize these time

units. For example, in a queueing model we might measure time in terms of the number of

arrivals that enter the system or we might stipulate that a representative service-time distribu-

tion has mean 1. On the positive side, focusing on required simulation time has the advantage

that it yields characterizations of computational effort that are independent of the specific

computer used to conduct the simulation. It seems best to try to account for that important

factor separately.

We assume that the quantities of interest will be estimated by sample means. (There

are other estimation procedures; e.g. see Chapters 8 and 9.) With sample means, in great

generality the required amount of simulation time can be determined by computing quantities

called the asymptotic variance and the asymptotic bias of the sample means. Thus, we want

to estimate these quantities before conducting the simulation. In general, that is not so easy

to do, but existing theory supports this step for a sample mean of a function of a Markov

process. However, the stochastic processes of interest in simulation models are rarely Markov

processes. Thus, it is usually necessary to first approximate the given stochastic process by a

Markov process in order to apply the techniques in this paper.

It is important to approach this approximation step with the right attitude. Remember
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that we usually only want to obtain a rough estimate of the required simulation run length.

Thus, we may well obtain the desired insight with only a very rough approximation. We do

not want this analysis step to take longer than it takes to conduct the simulation itself. So we

want to obtain the approximation quickly and we want to be able to do the analysis quickly.

Fortunately, it is often possible to meet these goals.

For example, we might be interested in simulating a non-Markovian open network of single-

server queues. We might be interested in the queue-length distributions at the different queues.

To obtain a rough estimate of the required simulation run length, we might first solve the traffic-

rate equations to find the net arrival rate at each queue. That step is valid for non-Markovian

queueing networks as well as Markovian queueing networks; e.g., see Chen and Yao (2001),

Kelly (1979) or Walrand (1988). Given the net arrival rate at each queue, we can calculate

the traffic intensity at each queue by multiplying the arrival rate times the mean service time.

Then we might focus on the bottleneck queue, i.e., the queue with the highest traffic intensity.

We do that because the overall required run length is usually determined by the bottleneck

queue. Then we analyze the bottleneck queue separately (necessarily approximately).

We might approximate the bottleneck queue by the Markovian M/M/1 queue with the

same traffic intensity, and apply the techniques described in this paper to the Markovian

queue-length process in order to estimate the required simulation run length. Alternatively,

to capture the impact of the arrival and service processes beyond their means, we might use

heavy-traffic limit theorems to approximate the queue-length process of the bottleneck queue

by a reflected Brownian motion (RBM); e.g., see Chen and Yao (2001) and Whitt (2002). We

then apply the techniques described in this paper to the limiting RBM, which is also a Markov

process. By the methods described in these last two paragraphs, we can treat quite general

queueing-network models, albeit roughly.

Here is how the rest of the chapter is organized: We start in Section 2 by describing

the standard statistical framework, allowing us to estimate the statistical precision of sample-

mean estimators, both before and after the simulation experiment is conducted. In Section

2 we define the asymptotic variance and the asymptotic bias of a sample mean. We relate

these asymptotic quantities to the ordinary variance and bias of a sample mean. We show the

critical role played by the asymptotic variance in confidence intervals and thus for the required

sample size to obtain desired statistical precision. We first discuss the classical statistical case

of independent and identically distributed (IID) random variables, which arises naturally when

the simulation estimate is based on independent replications. For IID random variables, the
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asymptotic variance coincides with the variance of a single random variable. Finally, we discuss

the problem of initial transients and correlations that arise when we form the sample mean

from a stochastic process observed over time within a single run.

In Section 3, following Whitt (1992), we indicate how to compute the asymptotic variance

and the asymptotic bias of functions of continuous-time Markov chains. We describe a recursive

algorithm for functions of birth-and-death processes. In Section 4 we consider several birth-

and-death process examples, including the M/M/1 and M/M/∞ queueing models. These

examples show that model structure can make a big difference in the computational effort

required for estimation by simulation.

In Section 5 we consider diffusion processes, which are continuous analogues of birth-and-

death processes. We give integral representations of the asymptotic parameters for diffusion

processes, which enable computation by numerical integration. In Section 6 we discuss ap-

plications of stochastic-process limits to the planning process. Following Whitt (1989) and

Srikant and Whitt (1996), we show how heavy-traffic limits yield relatively simple diffusion

approximations for the asymptotic variance and the asymptotic bias of sample-mean estima-

tors for single-server and many-server queues. The time scaling in the heavy-traffic limits plays

a critical role. In Section 7 we consider not collecting data for an initial portion of a simulation

run to reduce the bias. Finally, in Section 8 we discuss directions for further research.

2. The Standard Statistical Framework

2.1. Probability Model of a Simulation

We base our discussion on a probability model of a (stochastic) simulation experiment: In the

model, the simulation experiment generates an initial segment of a stochastic process, which

may be a discrete-time stochastic process {Xn : n ≥ 1} or a continuous-time stochastic process

{X(t) : t ≥ 0}. We form the relevant sample mean

X̄n ≡ n−1
n∑

i=1

Xi or X̄t ≡ t−1

∫ t

0
X(s) ds ,

and use the sample mean to estimate the long-run average,

µ = lim
n→∞ X̄n or µ = lim

t→∞ X̄t ,

which is assumed to exist as a proper limit with probability one (w.p.1). Under very general

regularity conditions, the long-run average coincides with the expected value of the limit-

ing steady-state distribution of the stochastic process. For example, supporting theoretical
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results are available for regenerative processes, Chapter VI of Asmussen (2003); stationary

marked point processes, Section 2.5 of Sigman (1995); and generalized semi-Markov processes

(GSMP’s), Glynn (1989).

These stochastic processes arise in both observations from a single run and from indepen-

dent replications. For example, in observations from a single run, a discrete-time stochastic

process {Xn : n ≥ 1} arises if we consider the waiting times of successive arrivals to a queue.

The random variable Xn might be the waiting time of the nth arrival before beginning service;

then µ is the long-run average waiting time of all arrivals, which usually coincides with the

mean steady-state waiting time. On the other hand, Xn might take the value 1 if the nth

arrival waits less than or equal to x minutes, and take the value 0 otherwise; then µ ≡ µ(x) is

the long-run proportion of customers that wait less than or equal to x minutes, which usually

corresponds to the probability that the steady-state waiting time is less than or equal to x

minutes.

Alternatively, in observations from a single run, a continuous-time stochastic process {X(t) :

t ≥ 0} arises if we consider the queue length over time, beginning at time 0. The random vari-

able X(t) might be the queue length at time t or X(t) might take the value 1 if the queue

length at time t is less than or equal to k, and take the value 0 otherwise.

With independent replications (separate independent runs of the experiment), we obtain

a discrete-time stochastic process {Xn : n ≥ 1}. Then Xn represents a random observation

obtained from the nth run. For example, Xn might be the queue length at time 7 in the

nth replication or Xn might be the average queue length over the time interval [0, 7] in the

nth replication. Then the limit µ represents the long-run average over many independent

replications, which equals the expected value of the random variable in any single run. Such

expected values describe the expected transient (or time-dependent) behavior of the system.

2.2. Bias, Mean Squared Error and Variance

By assuming that the limits exist, we are assuming that we would obtain the exact answer if we

devoted unlimited computational effort to the simulation experiment. In statistical language,

e.g., see Lehmann and Castella (1998), we are assuming that the estimators X̄n and X̄t are

consistent estimators of the quantity to be estimated, µ. For finite sample size, we can describe

the statistical precision by looking at the bias and the mean squared error. The bias, which

we denote by β̄n in the discrete-time case and β̄t in the continuous-time case, indicates how

much the expected value of the estimator differs from the quantity being estimated, and in
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what direction. For example, in the discrete-time case, the bias of X̄n is

β̄n = E[X̄n]− µ .

The mean-squared error (MSEn or MSEt) is the expected squared error, e.g.,

MSEn = E[|X̄n − µ|2] .

If there is no bias, then the MSE coincides with the variance of X̄n, which we denote by σ̄2
n,

i.e.,

σ̄2
n ≡ Var(X̄n) ≡ E[|X̄n]− E[X̄n]|2]] .

Then we can write

σ̄2
n ≡ Var(X̄n) = n−2

n∑

i=1

n∑

j=1

Cov(Xi, Xj) ,

where Cov(Xi, Xj) is the covariance, i.e.,

Cov(Xi, Xj) ≡ E[XiXj ]− E[Xi]E[Xj ] .

Analogous formulas hold in continuous time. For example, then the variance of the sample

mean X̄t is

σ̄2
t ≡ Var(X̄t) = t−2

∫ t

0

∫ t

0
Cov(X(u), X(v)) du dv .

Unfortunately, these general formulas usually are too complicated to be of much help when

doing preliminary planning. What we will be doing in the rest of this paper is showing how to

develop simple approximations for these quantities.

2.3. The Classical Case: Independent Replications

In statistics, the classical case arises when we have a discrete-time stochastic process {Xn : n ≥
1}, where the random variables Xn are mutually independent and identically distributed (IID)

with mean µ and finite variance σ2, and we use the sample mean X̄n to estimate the mean µ.

Clearly, the classical case arises whenever we use independent replications to do estimation,

which of course is the great appeal of independent replications.

In the classical case, the sample mean X̄n is a consistent estimator of the mean µ by the

law of large numbers (LLN). Then there is no bias and the MSE coincides with the variance

of the sample mean, σ̄2
n, which is a simple function of the variance of a single observation Xn:

σ̄2
n = MSE(X̄n) =

σ2

n
.
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Moreover, by the central limit theorem (CLT), X̄n is asymptotically normally distributed

as the sample size n increases, i.e.,

n1/2[X̄n − µ] ⇒ N(0, σ2) as n →∞ ,

where N(a, b) is a normal random variable with mean a and variance b, and ⇒ denotes con-

vergence in distribution.

We thus use this large-sample theory to justify the approximation

P (X̄n ≤ x) ≈ P (N(µ, σ2/n) ≤ x) = P (N(0, 1) ≤ (x− µ)/
√

σ2/n) .

Based on this normal approximation, a (1 − α)100% confidence interval for µ based on the

sample mean X̄n is

[X̄n − zα/2(σ/
√

n), X̄n + zα/2(σ/
√

n)] ,

where

P (−zα/2 ≤ N(0, 1) ≤ +zα/2) = 1− α .

A common choice is a 95% confidence interval, which corresponds to α = 0.05; then zα/2 =

1.96 ≈ 2.

The statistical precision is typically described by either the absolute width or the relative

width of the confidence interval, denoted by wa(α) and wr(α), respectively, which are

wa(α) =
2zα/2σ√

n
and wr(α) =

2zα/2σ

µ
√

n
.

There are circumstances where each measure is preferred. For specified absolute width or

relative width of the confidence interval, ε, and for specified level of precision α, the required

sample size na(ε, α) or nr(ε, α) is then

na(ε, α) =
4σ2z2

α/2

ε2
or nr(ε, α) =

4σ2z2
α/2

µ2ε2
. (2.1)

From these formulas, we see that na(ε, α) and nr(ε, α) are both inversely proportional to ε2

and directly proportional to σ2 and z2
α/2.

Standard statistical theory describes how observations (data) can be used to estimate the

unknown quantities µ and σ2. We might use a two-stage sampling procedure, exploiting the

first stage to estimate the required sample size. However, here we are concerned with what we

can do without any data at all.

We propose applying additional information about the model to obtain rough preliminary

estimates for these parameters without data. Following the general approach of this paper,
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we suggest trying to estimate µ and σ2 before conducting the simulation by analyzing the

probability distribution of the outcome of a single replication, Xn (using knowledge about the

model). Admittedly, this preliminary estimation is often difficult to do; our approach is usually

more useful in the context of one long run, which is discussed in the next section.

However, more can be done in this context than is often thought. Again, we must remember

that we are only interested in making a rough estimate. Thus, we should be ready to make

back-of-the-envelope calculations.

To illustrate what can be done, suppose that we focus on the the relative-width criterion.

With the relative-width criterion, it suffices to estimate the squared coefficient of variation

(SCV, variance divided by the square of the mean)

c2 ≡ σ2

µ2
,

instead of both µ and σ2. With the relative-width criterion, the required sample size is

nr(ε, α) =
4c2z2

α/2

ε2
.

From the analysis above, we see that we only need to estimate a single parameter, the SCV

c2, in order to carry out this preliminary analysis. In many cases, we can make reasonable

estimates based on “engineering judgment.” For that step, it helps to have experience with

variability as quantified by the SCV. First, note that the SCV measures the level of variability

independent of the mean: The SCV of a random variable is unchanged if we multiply the

random variable by a constant. We are thus focusing on the variability independent of the

mean. Clearly, it is important to realize that the mean itself plays no role with the relative-

width criterion.

Once we learn to focus on the SCV, we quickly gain experience about what to expect.

A common reference case for the SCV is an exponential distribution, which has c2 = 1. A

unit point mass (deterministic distribution) has c2 = 0. Distributions relatively more (less)

variable than exponential have c2 > (<)1. In many instances we actually have a rough idea

about the SCV. We might be able to judge in advance that the SCV is one of: (i) less than 1,

but probably not less than 0.1, (ii) near 1, (iii) bigger than 1, but probably not bigger than

10, or (iv) likely to be large, even bigger than 10. In other words, it is not unreasonable to be

able to estimate the SCV to within an order of magnitude (within a factor of 10). And that

may be good enough for the desired rough estimates we want to make.

In lieu of information about the SCV, to obtain a rough estimate we can just let c2 = 1.

To proceed, we can also let α = 0.05, so that zα/2 ≈ 2. Then, if we set ε = 10−k, the required
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simulation run length is

nr(10−k, 0.05) = 16× 102k .

Thus, when c2 = 1, 10% relative precision requires about 1600 replications, while 1% relative

precision requires 160, 000 replications. If c2 6= 1, then we would multiply the number of

required replications above by c2. We thus can easily factor in the only unknown, the SCV c2.

We have just reviewed the classical IID case, which is directly relevant when we use inde-

pendent replications. However, in this chapter we concentrate on the more complicated case

in which we consider an initial segment of a stochastic process from a single simulation run. It

is good to have the classical IID case in mind, though, to understand the impact of bias and

dependence upon the required computational effort.

2.4. An Initial Segment from a Single Run

Now suppose that we intend to estimate a long-run average within a single run by the sample

mean from an initial segment of a stochastic process, which could evolve in either discrete

time or continuous time. The situation is now much more complicated, because the random

observations need not be IID. Indeed, they need not be either independent or identically

distributed. Unlike the case of independent replications, we now face the problems of bias and

dependence among the random variables.

Fortunately, there are generalizations of the classical IID framework that enable us to

estimate the bias and the mean squared error as a function of the sample size in terms of only

two fundamental parameters: the asymptotic bias and the asymptotic variance; see Whitt

(1992) and references therein. That theory tells us that, under regularity conditions, both the

bias and the MSE are of order 1/n.

Within a single run, the stochastic processes tend to become stationary as time evolves.

Indeed, now we assume that Xn ⇒ X(∞) as n → ∞ (in the discrete-time case) and X(t) ⇒
X(∞) as t → ∞ (in the continuous-time case). The stochastic processes fail to be stationary

throughout all time primarily because it is necessary (or at least more convenient) to start the

simulation in a special initial state. We thus can reduce the bias by choosing a good initial

state or by deleting (not collecting statistics over) an initial portion of the simulation run.

Choosing an appropriate initial state can be difficult if the stochastic process of interest is not

nearly Markov. For example, even for the relatively simple M/G/s/∞ queueing model, with s

servers and non-exponential service times, it is necessary to specify the remaining service time

of all customers initially in service.
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The asymptotic bias helps us to determine if it is necessary to choose a special initial state

or delete an initial portion of the run. The asymptotic bias also helps us estimate the final

bias, whether or not we choose a special initial state or delete an initial portion of the run.

It also helps us determine what proportion of the full run should be deleted if we follow that

procedure.

Under regularity conditions, there is a parameter β̄ called the asymptotic bias such that

β̄ = lim
n→∞nβ̄n ; (2.2)

see Whitt (1992) and references therein. Given the definition of the bias β̄n, we see that the

asymptotic bias must be

β̄ =
∞∑

i=1

(E[Xi]− µ) ;

the regularity conditions ensure that the sum is absolutely convergent. We thus approximate

the bias of X̄n for any sufficiently large n by

β̄n ≈ β̄

n
.

This approximation reduces the unknowns to be estimated from the function {β̄n : n ≥ 1} to

the single parameter β̄. Corresponding formulas hold in continuous time.

Given that we can ignore the bias, either because it is negligible or because it has been

largely removed by choosing a good initial state or by deleting an initial portion of the run,

we can use the asymptotic variance to estimate the width of confidence intervals and thus the

required run length to yield desired statistical precision. Under regularity conditions, there is

a parameter σ̄2 called the asymptotic variance such that

σ̄2 = lim
n→∞nσ̄2

n , (2.3)

where (under the assumption that {Xn : n ≥ 1} is a stationary process)

σ̄2 = Var(X1) + 2
∞∑

i=1

Cov(X1, X1+i) ,

with σ2 being the variance of Xn and Cov(X1, X1+i) being the lag-i autocovariance. Because

of the dependence, σ̄2 often is much bigger than σ2. We thus approximate σ̄2
n, the variance of

X̄n, for any sufficiently large n by

σ̄2
n ≡ Var(X̄n) ≈ σ̄2

n
.
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Again, this approximation reduces the unknowns to be estimated from the function {σ̄2
n : n ≥

1} to the single parameter σ̄2.

In continuous time, we have the related asymptotic variance formula

σ̄2 = lim
t→∞ tσ̄2

t ,

where (under the assumption that {X(t) : t ≥ 0} is a stationary process)

σ̄2 = 2
∫ ∞

0
Cov(X(0), X(t)) dt .

In continuous or discrete time, a critical assumption here is that the asymptotic vari-

ance σ̄2 is actually finite. The asymptotic variance could be infinite for two reasons: (i)

heavy-tailed distributions and (ii) long-range dependence. In our context, we say that Xn or

X(t) has a heavy-tailed distribution if its variance is infinite. In our context, we say that

there is long-range dependence (without heavy-tailed distributions) if the variance Var(Xn) or

Var(X(t)) is finite, but nevertheless the asymptotic variance is infinite because the autocovari-

ances Cov(Xj , Xj+k) or Cov(X(t), X(t + k)) do not decay quickly enough as k →∞; e.g., see

Beran (1994), Samorodnitsky and Taqqu (1994) and Chapter 4 of Whitt (2002).

Assuming that σ̄2 < ∞, we can apply CLT’s for weakly dependent random variables

(involving other regularity conditions, e.g., see Section 4.4 of Whitt (2002)) to deduce that X̄n

(as well as X̄t) is again asymptotically normally distributed as the sample size n increases, i.e.,

n1/2[X̄n − µ] ⇒ N(0, σ̄2) as n →∞ ,

so that the asymptotic variance σ̄2 plays the role of the ordinary variance σ2 in the classical

IID setting.

We thus again can use the large-sample theory to justify a normal approximation. The

new (1− α)100% confidence interval for µ based on the sample mean X̄n is

[X̄n − zα/2(σ̄/
√

n), X̄n + zα/2(σ̄/
√

n)] ,

which is the same as for independent replications except that the asymptotic variance σ̄2

replaces the ordinary variance σ2.

The formulas for the confidence interval relative width, wr(α), and the required run length,

nr(ε, α), are thus also the same as for independent replications in (2.1) except that the asymp-

totic variance σ̄2 is substituted for the ordinary variance σ2; e.g., the required simulation run

length with a relative-width criterion is

nr(ε, α) =
4σ̄2z2

α/2

µ2ε2
and nr(10−k, 0.05) ≈ σ̄2

µ2
16× (10)2k . (2.4)
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From (2.1) and (2.4), we immediately see that the required run length is approximately σ̄2/σ2

times greater when sampling from one run than with independent sampling (assuming that we

could directly observe independent samples from the steady-state distribution, which of course

is typically not possible).

As with independent replications, established simulation methodology and statistical the-

ory tells how to estimate the unknown quantities µ, β̄ and σ̄2 from data; e.g., see Bratley et

al. (1987) and Fishman (2001). Instead, we apply additional information about the model to

obtain rough preliminary estimates for these parameters without data. For σ̄2, the representa-

tion of the asymptotic variance in terms of the autocovariances is usually too complicated to

be of much help, but fortunately there is another approach, which we will describe in Section

3.

3. The Asymptotic Parameters for a Function of a Markov Chain

From the previous section, it should be apparent that we can do the intended preliminary

planning if we can estimate the asymptotic bias and the asymptotic variance. We now start

to describe how we can calculate these important parameters. We first consider functions of

a Markov chain. That illustrates available general results. However, fast back-of-the-envelope

calculations usually depend on diffusion approximations, based on stochastic-process limits,

after doing appropriate scaling, which we discuss later in Sections 5 and 6. Indeed, the scaling

is usually the key part, and that is so simple that back-of-the-envelope calculations are actually

possible.

In this section, drawing on Whitt (1992), which itself is primarily a survey of known

results (including Glynn (1984) and Grassman (1987a,b) among others), we observe that (again

under regularity conditions) we can calculate the asymptotic bias and the asymptotic variance

whenever the stochastic process of interest is a function of a (positive-recurrent irreducible)

Markov chain, i.e., when Xn = f(Yn) for n ≥ 1, where f is a real-valued function and {Yn :

n ≥ 1} is a Markov chain or when X(t) = f(Y (t)) for t ≥ 0, where again f is a real-valued

function and {Y (t) : t ≥ 0} is a Markov chain. As noted before, we usually obtain the required

Markov structure by approximating the given stochastic process by a related one with the

Markov property.

In fact, as in Whitt (1992), we only discuss the case in which the underlying Markov chain

has a finite state space (by which we mean countably finite, i.e., {0, 1, . . . , m}, not [c, d]), but the

theory extends to more general state spaces under regularity conditions. For illustrations, see
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Glynn (1994) and Glynn and Meyn (1996). But the finite-state-space condition is very useful:

Under the finite-state-space condition, we can compute the asymptotic parameters numerically,

without relying on special model structure. However, when we do have special structure, we

can sometimes go further to obtain relatively simple closed-form formulas. We also obtain

relatively simple closed-form formulas when we establish diffusion-process approximations via

stochastic-process limits.

3.1. Continuous-Time Markov Chains

We will discuss the case of a continuous-time Markov chain (CTMC); similar results hold for

discrete-time Markov chains. Suppose that the CTMC {Y (t) : t ≥ 0} is irreducible with

finite state space {0, 1, . . . ,m} (which implies that it is positive recurrent). Our sample-mean

estimator is

X̄t ≡ t−1

∫ t

0
X(s) ds , t ≥ 0 ,

where X(t) = f(Y (t)). (With the discrete state space, we write both f(j) and fj for the value

of f at argument j.)

A finite-state CTMC is characterized by its infinitesimal generator matrix Q ≡ (Qi,j); Qi,j

is understood to be the derivative (from above) of the probability transition function

Pi,j(t) ≡ P (Y (s + t) = j|Y (s) = i)

with respect to time t evaluated at t = 0. However, in applications the model is specified

by defining the infinitesimal generator Q. Then the probability transition function can be

obtained subsequently as the solution of the ordinary differential equations

P ′(t) = P (t)Q = QP (t) ,

which takes the form of the matrix exponential

P (t) = eQt ≡
∞∑

k=0

Qktk

k!
.

Key asymptotic quantities associated with a CTMC are the stationary probability vector π

and the fundamental matrix Z. (By convention, we let vectors be row vectors.) The stationary

probability vector π can be found by solving the system of equations

πQ = 0 with
m∑

i=0

πi = 1 .
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The quantity we want to estimate is the expected value of the function f (represented as a

row vector) with respect to the stationary probability (row) vector π, i.e.,

µ = πfT =
m∑

i=0

πifi ,

where T is the transpose.

We would not need to conduct a simulation to estimate µ if indeed we can calculate it

directly as indicated above. As noted before, in intended applications of this planning approach,

the actual model of interest tends to be more complicated than a CTMC, so that we cannot

calculate the desired quantity µ directly. We introduce a CTMC that is similar to the more

complicated model of interest, and use the CTMC analysis to get rough estimates of both µ

and the required computational effort in order to estimate µ by simulation. We will illustrate

for queueing models later.

To continue, the fundamental matrix Z describes the time-dependent deviations from the

stationary vector, in particular,

Zi,j ≡
∫ ∞

0
[Pi,j(t)− πj ] dt .

Given the stationary probability vector, π, the fundamental matrix Z can be found by first

forming the square matrix Π, all of whose rows are the vector π, and then calculating

Z = (Π−Q)−1 −Π ,

with the inverse always existing; again see Whitt (1992) and references therein. We now

consider how the desired asymptotic parameters can be expressed in terms of the stationary

probability vector π and the fundamental matrix Z, including ways that are especially effective

for computation.

3.2. Poisson’s Equation

For that purpose, it is useful to introduce Poisson’s equation. The stationary probability vector

π and the fundamental matrix Z can be viewed as solutions x to Poisson’s equation

xQ = y ,

for appropriate (row) vectors y. It can be shown that Poisson’s equation has a solution x if

and only if yeT = 0, where e is the row vector of 1′s and eT is its transpose. Then all solutions

are of the form

x = −yZ + (xeT )π .
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For example, π is obtained by solving Poisson’s equation when y is the zero vector (and

normalizing by requiring that xeT = 1). Then elements of Z can be obtained by choosing

other vectors y, requiring that xeT = 0.

In passing, we remark that there also is an alternate column-vector form of Poisson’s

equation, namely,

QxT = yT ,

which has a solution if and only if πyT = 0. Then all solutions are of the form

xT = −ZyT + (πxT )eT .

It is significant that, for a CTMC, the asymptotic bias β̄ defined in (2.2) and the asymptotic

variance σ̄2 defined in (2.3) can be expressed directly in terms of π, Z, the function f and (for

β) the initial probability vector, say ξ, i.e.,

β̄(ξ) = ξZf ≡
m∑

i=0

m∑

j=0

ξiZi,jfj

and

σ̄2 = 2(fπ)Zf ≡ 2
m∑

i=0

m∑

j=0

fiπiZi,jfj .

Moreover, the asymptotic parameters β̄(ξ) and σ̄2 are themselves directly solutions to

Poisson’s equation. In particular,

β̄(ξ) = xfT ,

where x is the unique solution to Poisson’s equation for y = −ξ + π with xeT = 0. Similarly,

σ̄2 = 2xfT ,

where x is the unique solution to Poisson’s equation for yi = −(fi − µ)πi with xeT = 0.

3.3. Birth-and-Death Processes

Birth-and-death (BD) processes are special cases of CTMC’s in which Qi,j = 0 when |i−j| > 1;

then we often use the notation Qi,i+1 ≡ λi and Qi,i−1 ≡ µi, and refer to λi as the birth rates

and µi as the death rates. For BD processes and skip-free CTMC’s (which in one direction

can go at most one step), Poisson’s equation can be efficiently solved recursively.

To describe the rescursive algorithm for BD processes, we start by observing that for a BD

process Poisson’s equation xQ = y is equivalent to the system of equations

xj−1λj−1 − xj(λj + µj) + xj+1µj+1 = yj , j ≥ 0 ,
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where x−1 = xm+1 = 0. Upon adding the first j + 1 equations, we obtain the desired recursive

algorithm,

xj+1 = (λjxj + sj)/µj+1 ,

where

sj =
j∑

i=0

yi .

Hence, Poisson’s equation for BD processes can indeed be solved recursively.

For BD processes and their continuous-time relatives - diffusion processes - the asymptotic

parameters can be expressed directly as sums and integrals, respectively. For BD processes,

β̄(ξ) =
m−1∑

j=0

1
λjπj

j∑

i=0

(fi − µ)πi

j∑

k=0

(ξk − πk)

and

σ̄2 = 2
m−1∑

j=0

1
λjπj

[
j∑

i=0

(fi − µ)πi]2 ,

where, as for CTMC’s, π is the steady-state probability vector, while µ is the expected value of f

with respect to π. However, for BD processes, it is usually easier to use the recursive algorithm

for computation. Indeed, the recursive algorithm for the asymptotic bias and the asymptotic

variance parallels the well known recursive algorithm for the steady-state probability vector π.

4. Birth-and-Death Examples

In this section we consider examples of BD processes, primarily of queueing models. These

examples show that the model structure can make a big difference in the computational effort

required for estimation by simulation.

Example 4.1. The M/M/1 queue.

Consider the queue-length (number in system, including the customer in service, if any)

process {Q(t) : t ≥ 0} in the M/M/1 queue with unlimited waiting space. This model

has a Poisson arrival process with constant rate and IID service times with an exponential

distribution. The state space here is infinite, but the theory for the asymptotic parameters

extends to this example. The queue-length process is a BD process with constant arrival (birth)

rate and constant service (death) rate.

Let the service rate be 1 and let the arrival rate and traffic intensity be ρ. Fixing the

service rate gives meaning to time in the simulation run length. Let f(i) = i for all i, so that
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we are estimating the steady-state mean. The steady-state mean and variance are

µ =
ρ

1− ρ
and σ2 =

ρ

(1− ρ)2
;

e.g., see Cohen (1982).

To estimate the required simulation run length from a single long run, we use the asymptotic

bias and the asymptotic variance. Let the system start out empty, so that the initial state is

0. As an argument of β̄(ξ), let 0 also denote the initial probability vector ξ that puts mass 1

on the state 0. Then

β̄(0) =
ρ

(1− ρ)3
and σ̄2 =

2ρ(1 + ρ)
(1− ρ)4

.

These formulas can be derived from the general BD formulas or directly; see Abate and Whitt

(1987b, 1988 a,b).

Ignoring the initial transient (assuming that the queue-length process we observe is a sta-

tionary process), the required run length with a relative-width criterion, specified in general

in (2.4), here is

tr(ε, α) =
8(1 + ρ)z2

α/2

ρ(1− ρ)2ε2
and tr(10−k, 0.05) ≈ 32(1 + ρ)(10)2k

ρ(1− ρ)2
.

For 10% statistical precision (ε = 0.1) with 95% confidence intervals (α = 0.05), when

the traffic intensity is ρ = 0.9, the required run length is about 675, 000 (mean service times,

which corresponds to an expected number of arrivals equal to 0.9× 675, 000 = 608, 000); when

the traffic intensity is ρ = 0.99, the required run length is 64, 300, 000 (mean service times,

which corresponds to an expected number of arrivals equal to 0.9×64, 300, 000 = 57, 900, 000).

To summarize, for high traffic intensities, the required run length is of order 106 or more

mean service times. We can anticipate great computational difficulty as the traffic intensity ρ

increases toward the critical value for stability.

Compared to independent sampling of the steady-state queue length (which is typically not

directly an option), the required run length is greater by a factor of

σ̄2

σ2
=

2(1 + ρ)
ρ(1− ρ)2

,

which equals 422 when ρ = 0.9 and 40, 200 when ρ = 0.99. Clearly, the dependence can make

a great difference.

Now let us consider the bias. The relative bias is

β̄t(0)
µ

≈ β̄(0)
tµ

=
1

(1− ρ)2t
,
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so that, for ρ = 0.9 the relative bias starting empty is about 100/t, where t is the run length.

For a run length of 675, 000, the relative bias is 1.5×10−4 or 0.015%, which is indeed negligible

compared to the specified 10% relative width of the confidence interval. Hence the bias is in

the noise; it can be ignored for high traffic intensities. The situation is even more extreme for

higher traffic intensities such as ρ = 0.99.

Example 4.2. A small example with large asymptotic parameters.

It is interesting to see that the asymptotic bias β̄(ξ) and the asymptotic variance σ̄2 can

be arbitrarily large in a very small BD model with bounded rates. Suppose that m = 2, so

that the BD process has only 3 states: 0, 1 and 2. Consider the symmetric model in which

λ0 = µ2 = x and λ1 = µ1 = 1, where 0 < x ≤ 1. Then the stationary distribution is

π0 = π2 =
1

2 + x
and π1 =

x

2 + x
.

Let fi = i for all i, so that we are estimating the mean µ. Then the mean is µ = 1 and the

asymptotic variance is

σ̄2 =
4

x(2 + x)
≈ 2

x
for small x .

This model has a high asymptotic variance σ̄2 for small x because the model is bistable, tending

to remain in the states 0 and 2 a long time before leaving. To see this, note that the mean

first passage time from state 0 or state 2 to state 1 is 1/x.

Note that the large asymptotic variance σ̄2 cannot be detected from the variance of the

steady-state distribution, σ2. As x ↓ 0, σ2, the variance of π, increases to 1. Thus, the ratio

σ̄2/σ2 is of order O(1/x). The steady-state distribution has moderate variance, but the process

has quite strong dependence (but not so strong that the asymptotic variance becomes infinite).

The asymptotic bias starting in state 0 (or state 2) is also large for small x. The asymptotic

bias starting in state 0 is

β̄(0) =
−(x + 1)2

x(x + 2)2
≈ −1

4x
for small x .

As a function of the key model parameter x, the bias is much more important here than it

was for the previous M/M/1 queue example. Here, both the asymptotic bias and the asymptotic

variance are of order O(1/x), so that as a function of x, for very small x, the width of the

confidence interval is O(1/
√

x), while the bias is of order O(1/x). Thus the bias tends to be

much more important in this example. In particular, the run length required to make the bias

suitably small is of the same order as the run length required to make the width of a confidence
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interval suitably small. For this example, using simulation to estimate the mean µ when the

parameter x is very small would be difficult at best.

This model is clearly pathological: For very small x, a relatively long simulation run of this

model starting in state 0 could yield a sample path that is identically zero. We might never

experience even a single transition! This example demonstrates that it can be very helpful to

know something about model structure when conducting a simulation.

Example 4.3. The M/M/∞ queue.

A queueing system with many servers tends to behave quite differently from a single-server

queue. A queueing system with many servers can often be well approximated by an infinite-

server queue. Thus we consider the number of busy servers at time t, also denoted by Q(t),

in an M/M/∞ queue. As before, let the mean individual service time be 1, but now let the

arrival rate be λ (since the previous notion of traffic intensity is no longer appropriate). Now

the arrival rate λ can be arbitrarily large.

The first thing to notice is that as λ increases, the required computational effort for given

simulation run length in the simulation increases, simply because the expected number of ar-

rivals in the interval [0, t] is λt. Thus, with many servers, we need to do a further adjustment

to properly account for computational effort. To describe the computational effort, it is appro-

priate to multiply the time by λ. Thus, for the M/M/∞ model with mean individual service

rate 1, we let cr = λtr represent the required computational effort associated with the required

run length tr.

It is well known that the steady-state number of busy servers in the M/M/∞ model, say

Q(∞), has a Poisson distribution with mean λ; e.g., see Cooper (1982). Thus, the mean and

variance of the steady-state distribution are

µ ≡ E[Q(∞)] = λ and σ2 ≡ Var[Q(∞)] = λ .

The asymptotic parameters also are relatively simple. As for the M/M/1 queue, we assume

that we start with an empty system. Then the asymptotic bias and asymptotic variance are

β̄(0) = λ and σ̄2 = 2λ .

From the perspective of the asymptotic variance and relative error, we see that

σ̄2

µ2
=

2λ

λ2
=

2
λ

,
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so that simulation efficiency increases as λ increases. However, the required computational

effort to achieve relative (1− α)% confidence interval width of ε is

cr(ε, α) ≡ λtr(ε, α) =
8z2

α

ε2
,

which is independent of λ. Thus, from the perspective of the asymptotic variance, the required

computational effort does not increase with the arrival rate, which is very different from the

single-server queue.

Unfortunately, the situation is not so good for the relative bias. First, the key ratio is

β̄(0)
µ

=
λ

λ
= 1 .

Thus the required run length to make the bias less than ε is 1/ε, and the required computational

effort is λ/ε, which is increasing in λ. Unlike for the M/M/1 queue, as the arrival rate λ

increases, the bias (starting empty) eventually becomes the dominant factor in the required

computational effort.

For this M/M/∞ model, it is natural to pay more attention to bias than we would with

a single-server queue. A simple approach is to choose a different initial condition. The bias

is substantially reduced if we start with a fixed number of busy servers not too different from

the steady-state mean, λ. Indeed, if we start with exactly λ busy servers (assuming that λ

is an integer), then the bias is asymptotically negligible as λ increases. Note, however, that

this special initial condition does not directly put the system into steady state, because the

steady-state distribution is Poisson, not deterministic.

If, instead, we were working with the M/G/∞ model, then in addition we would need

to specify the remaining service times of all the λ customers initially in service at time 0.

Fortunately, for the M/G/∞ model, there is a natural way to do this: The steady-state

distribution of the number of busy servers is again Poisson with mean λ, just as for the

M/M/∞ model. In addition, in steady-state, conditional upon the number of busy servers, the

remaining service times of those customers in service are distributed as IID random variables

with the stationary-excess (or equilibrium residual-life) cumulative distribution function (cdf)

Ge associated with the service-time cdf G, i.e.,

Ge(t) ≡ m−1

∫ t

0
[1−G(u)] du , (4.1)

where m is the mean of G (here m = 1); e.g., see Takács (1962).

It is natural to apply this insight to more general many-server queueing models. Even in

more general G/G/s models, it is natural to initialize the simulation by putting s customers in

21



the system at time 0 and letting their remaining service times be distributed as s IID random

variables with cdf Ge. For large s, that should be much better than starting the system empty.

For many-server queues, we may be interested in different congestion measures. By Lit-

tle’s law (L = λW ), we know that the expected steady-state number of busy servers in the

G/G/s/∞ model is exactly λ (provided that λ < s). Thus, in simulation experiments, we

usually are more interested in estimating quantities such as E[(Q(∞) − s)+], where (x)+ ≡
max{0, x}, or P (Q(∞) > s + k). Note that we can calculate the asymptotic bias and the

asymptotic variance for these quantities in the M/M/s model by applying the BD recursion

with appropriate functions f . With large s, it often helps to start the recursion at s and move

away in both directions. The initial value at s can be taken to be 1; afterwards the correct

value is obtained by choosing the appropriate normalizing constant.

5. Diffusion Processes

Diffusion processes are continuous analogues of BD processes; e.g., see Karlin and Taylor (1981)

and Browne and Whitt (1995). In this chapter we discuss diffusion processes because we are

interested in them as approximations of other processes that we might naturally simulate

using discrete-event simulation. We want to use the diffusion processes to approximate the

asymptotic bias and the asymptotic variance of sample means in the original process.

Diffusion processes tend to be complicated to simulate directly because they have con-

tinuous, continuously fluctuating, sample paths. Nevertheless, there also is great interest in

simulating diffusion processes and stochastic differential equations, e.g., for finance applica-

tions, and special techniques have been developed; see Kloeden, Platen and Schurz (1994) and

Kloeden and Platen (1995). Hence the analysis in this section may have broader application.

For diffusion processes, there are integral representations of the asymptotic parameters,

paralleling the sums exhibited for BD processes. Corresponding to the finite-state-space as-

sumption for the BD processes, assume that the state space of the diffusion is the finite in-

terval [s1, s2] and let the diffusion be reflecting at the boundary points s1 and s2, but under

regularity conditions the integral representations will be valid over unbounded intervals. Let

{Y (t) : t ≥ 0} be the diffusion process and let X(t) = f(Y (t)) for a real-valued function f . The

diffusion process is characterized by its drift function µ(x) and its diffusion function σ2(x).

Let π be the stationary probability density. The stationary probability density can be

represented as

π(y) =
m(y)
M(s2)

, s1 ≤ y ≤ s2 ,
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where

m(y) ≡ 2
σ2(y)s(y)

is the speed density,

s(y) ≡ e
− R y

s1
[2µ(x)/σ2(x)] dx

is the scale density and

M(y) =
∫ y

s1

m(x) dx, s1 ≤ y ≤ s2 ,

provided that the integrals are finite.

Let p(t, x, y) be the transition kernel. Then, paralleling the fundamental matrix of a CTMC,

we can define the fundamental function of a diffusion process, Z ≡ Z(x, y), by

Z(x, y) ≡
∫ ∞

0
[p(t, x, y)− π(y)] dt .

As before, let µ be the average of f with respect to the stationary probability density π, i.e.,

µ =
∫ s2

s1

π(x)f(x) dx .

Then the integral representations for the asymptotic bias β̄(ξ) starting with initial proba-

bility density ξ and the asymptotic variance σ̄2 are

β̄(ξ) = 2
∫ s2

s1

1
σ2(y)π(y)

[∫ y

s1

(f(x)− µ)π(x) dx

∫ y

s1

(ξ(z)− π(z)) dz

]
dy

and

σ̄2 = 4
∫ s2

s1

1
σ2(y)π(y)

[∫ y

s1

(f(x)− µ)π(x) dx

]2

dy .

We now discuss two examples of diffusion processes, which are especially important because

they arise as limit processes for queueing models, as we explain in Section 6.

Example 5.1. RBM

Suppose that the diffusion process is reflected Brownian motion (RBM) on the interval

[0,∞) with drift function µ(x) = a and diffusion function σ2(x) = b, where a < 0 < b, which

we refer to by RBM(a, b); see Harrison (1985), Whitt (2002) and references therein for more

background. RBM is the continuous analog of the queue-length process for the M/M/1 queue

(as we will explain in the next section). It is a relatively simple stochastic process with only

the two parameters a and b.

In fact, we can analyze the RBM(a, b) processes by considering only the special case in

which a = −1 and b = 1, which we call canonical RBM because there are no free parameters.
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We can analyze RBM(a, b) in terms of RBM(-1,1) because we can relate the two RBM’s by

appropriately scaling time and space. For that purpose, let {R(t; a, b, X) : t ≥ 0} denote

RBM(a, b) with initial distribution according to the random variable X. The key relation

between the general RBM and canonical RBM is

{R(t; a, b, X) : t ≥ 0} d= {c−1R(d−1t;−1, 1, cX) : t ≥ 0}

or, equivalently,

{R(t;−1, 1, X) : t ≥ 0} d= {cR(dt; a, b,X/c) : t ≥ 0} ,

where

c =
|a|
b

, d =
b

a2
, a =

−1
cd

and b =
1

c2d
,

where d= means equal in distribution (here as stochastic processes).

Hence it suffices to focus on canonical RBM. It has stationary density π(x) = 2e−2x, x ≥ 0.

If we initialize RBM with its stationary distribution, then we obtain a stationary process. Let

R∗ ≡ {R∗(t; a, b) : t ≥ 0} denote stationary RBM, initialized by the stationary distribution.

If f(x) = x for canonical RBM, then we would be estimating the steady-state mean µ = 1/2.

In this case, the asymptotic bias is β̄ = 1/4 (Theorem 1.3 of Abate and Whitt (1987a)) and

the asymptotic variance (for R∗) is σ̄2 = 1/2 (Abate and Whitt (1988b)).

To describe the general RBM with parameters a and b, we apply the scaling relations in

Subsection 6.1. As a consequence of those scaling properties, the mean and variance of the

steady-state distribution of RBM(a, b) are

µa,b =
b

2|a| and σ2
a,b = µ2

a,b =
b2

4a2
,

and the asymptotic parameters are

β̄a,b =
b2

4|a|3 and σ̄2
a,b =

b3

2a4
.

For the relative-width criterion, the key ratios are

β̄a,b

µa,b
=

b

2a2
and

σ̄2
a,b

µ2
a,b

=
2b

a2
.

Thus we see that the relative asymptotic bias is about the same as the relative asymptotic

variance. Since the bias of the sample mean X̄t is of order O(1/t), while the square root of the

variance of the sample mean X̄t is of order O(1/
√

t), the bias tends to be negligible for large

t.
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Example 5.2. OU

Suppose that the diffusion process is the Ornstein-Uhlenbeck (OU) diffusion process on

the interval (−∞,∞) with drift function µ(x) = ax and diffusion function σ2(x) = b, where

a < 0 < b, which we refer to as OU(a, b). It is the continuous analog of the queue-length

process in the M/M/∞ queue when we center appropriately.

We also can analyze the OU(a, b) processes by considering only the special case in which

a = −1 and b = 1, which we call canonical OU. We can analyze OU(a, b) in terms of OU(-1,1)

because we can relate the two OU’s by appropriately scaling time and space, just as we did

for RBM. For that purpose, let {Z(t; a, b, X) : t ≥ 0} denote OU(a, b) with initial distribution

according to the random variable X. The key relation between the general OU(a, b) and

canonical OU(-1,1) is

{Z(t; a, b, X) : t ≥ 0} d= {c−1Z(d−1t;−1, 1, cX) : t ≥ 0}

or, equivalently,

{Z(t;−1, 1, X) : t ≥ 0} d= {cZ(dt; a, b,X/c) : t ≥ 0} ,

where

c =
|a|
b

, d =
b

a2
, a =

−1
cd

and b =
1

c2d
.

Then the stationary density of canonical OU is normal with mean 0 and variance 1/2. The

mean of canonical OU starting at x is

E[Z(t;−1, 1, x)] = xe−t, t ≥ 0 .

Paralleling our treatment of RBM, let Z∗ ≡ {Z∗(t; a, b) : t ≥ 0} be stationary OU, obtained

by initializing the OU(a,b) with the stationary normal distribution. For stationary canonical

OU, the autocovariance function is

Cov(Z∗(0), Z∗(t)) =
1
2
e−t, t ≥ 0 .

Hence, the asymptotic parameters for canonical OU are

β̄(ξ) = ξ and σ̄2 =
1
2

.

Just as with RBM, we can apply Section 6.1 to determine the effect of scaling. The mean

and variance of the steady-state distribution of OU(a,b) are

µa,b = 0 and σ2
a,b =

b

2|a| ,
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and the asymptotic parameters are

β̄a,b,x = x
b2

|a|3 and σ̄2
a,b =

b3

2a4
.

The relative-width criterion makes less sense here because the random variables are not non-

negative.

6. Stochastic-Process Limits

In this section we discuss stochastic-process limits that make the RBM and OU diffusion

processes serve as useful approximations for queueing models. We start by discussing the

impact of scaling space and time. The scaling is often the key part.

6.1. Scaling of Time and Space

To obtain relatively simple approximate stochastic processes, we often consider stochastic-

process limits, as in Whitt (2002). (We elaborate below.) To establish appropriate stochastic-

process limits, we usually consider not just one stochastic process but a family of stochastic

processes constructed by scaling time and space. It is thus important to know how the asymp-

totic parameters change under such scaling.

Suppose that we have a stochastic process Z ≡ {Z(t) : t ≥ 0} and we want to consider the

scaled stochastic process Zu,v ≡ {Zu,v(t) : t ≥ 0}, where

Zu,v(t) ≡ uZ(vt), t ≥ 0,

for positive real numbers u and v. Suppose that Z(t) ⇒ Z(∞) as t → ∞. Then Zu,v(t) ⇒
Zu,v(∞) as t →∞, where

Zu,v(∞) = uZ(∞) .

Let µ be the mean and σ2 the variance of Z(∞); let µu,v be the mean and σ2
u,v the variance of

Zu,v(∞). Then

µu,v = uµ and σ2
u,v = u2σ2 .

The relation is different for the asymptotic parameters: Observe that EZu,v(t) = uEZ(vt)

for t ≥ 0 and, under the assumption that Z is a stationary process,

Cov(Zu,v(0), Zu,v(t)) = u2Cov(Z(0), Z(vt)), t ≥ 0 .

As a consequence, the asymptotic bias and the asymptotic variance are

β̄u,v =
u

v
β̄ and σ̄2

u,v =
u2

v
σ̄2 .
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Thus, once we have determined the asymptotic parameters of a stochastic process of in-

terest, it is easy to obtain the asymptotic parameters of associated stochastic processes con-

structed by scaling time and space. If the scaling parameters u and v are either very large or

very small, then the scaling can have a great impact on the required run length. Indeed, as we

show below, in standard queueing examples the scaling is dominant.

6.2. RBM Approximations

Consider the queue-length (number in system) stochastic process {Qρ(t) : t ≥ 0} in the

G/G/s/∞ with traffic intensity (rate in divided by maximum rate out) ρ, with time units

fixed by letting the mean service time be 1, without the usual independence assumptions. As

reviewed in Whitt (1989, 2002), in remarkable generality (under independence assumptions and

beyond), there is a heavy-traffic stochastic-process limit for the scaled queue-length processes,

obtained by dividing time t by (1− ρ)2 and multiplying space by (1− ρ), i.e.,

{(1− ρ)Qρ(t(1− ρ)−2) : t ≥ 0} ⇒ {R(t; a, b) : t ≥ 0} as ρ ↑ 1

for appropriate parameters a and b, where {R(t; a, b) : t ≥ 0} is RBM(a, b) and again ⇒
denotes convergence in distribution, but here in the function space D containing all sample

paths.

The limit above is very helpful, because the number of relevant parameters has been greatly

reduced. We see that the queue behavior for large ρ should primarily depend upon only ρ and

the two parameters a and b. Moreover, it turns out the parameters a and b above can be

conveniently characterized (in terms of scaling constants in central limit theorems for the

arrival and service processes). For example, in the standard GI/GI/s/∞ model the heavy-

traffic limit holds with

a = −s and b = s(c2
a + c2

s) ,

where c2
a and c2

s are the SCV’s of an interarrival time and a service time, respectively (provided

that the second moments are finite). Similar limits hold for workload processes, recording the

amount of remaining unfinished work in service time in the system.

We thus can apply the stochastic-process limit with the scaling properties in Section 6.1 and

the properties of RBM to obtain approximations paralleling the exact results for the M/M/1

queue. We apply the stochastic-process limit to obtain the approximation

{Qρ(t) : t ≥ 0} ≈ {(1− ρ)−1R(t(1− ρ)2; a, b) : t ≥ 0} .
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The resulting approximations for the mean and variance of the steady-state distribution of the

queue-length process are thus

E[Qρ(∞)] ≈ b

2a(1− ρ)
and σ2

ρ ≡ Var(Qρ(∞)) ≈ b2

4a2(1− ρ)2
;

the approximations for the asymptotic parameters are

β̄ρ ≈ b2

4|a|3(1− ρ)3
and σ̄2

ρ ≈
b3

2a4(1− ρ)4
.

In the GI/GI/s/∞ case, we just substitute the specific parameters a and b above. The

resulting approximate asymptotic variance is

σ̄2
ρ ≡ σ̄2

(s,ρ,c2a,c2s) =
(c2

a + c2
s)

3

2s(1− ρ)4
.

Note that these formulas agree with the limits of the M/M/1 formulas as ρ ↑ 1. Thus, we

see that the M/M/1 formulas are remarkably descriptive more generally. But we also see

the impact of s servers and the GI arrival and service processes: The asymptotic variance

is directly proportional to 1/s and to the third power of the overall “variability parameter”

(c2
a + c2

s) as well as to the fourth power of (1− ρ)−1.

More generally, we see how the parameters s, ρ, a and b in more general G/G/s/∞ models

(with non-renewal arrival processes and non-IID service times) will affect the required simula-

tion run length. Once we have established the corresponding heavy-traffic limit and identified

the new values of a and b for these alternative models, we can apply the results above. For the

relative-width criterion, the key ratios are

β̄a,b

µa,b
≈ b

2a2(1− ρ)2
and

σ̄2
a,b

µ2
a,b

≈ 2b

a2(1− ρ)2
.

Values of the key parameters a and b in alternative models have been determined; e.g., see

Sections 5.2-5.5 of Whitt (1989) and Fendick, Saksena and Whitt (1989).

6.3. Many-Server Queues

The analysis above applies to multiserver queues, but when the number of servers is large, the

RBM approximation tends to be inappropriate. When the number of servers is large, it is often

preferable to consider different limits in which the number s of servers is allowed to increase as

the arrival rate λ increases; see Halfin and Whitt (1981), Chapter 10 of Whitt (2002), Whitt

(2005) and references therein. Alternatively, when there is a large number of servers, a more

elementary direct approach is to consider an infinite-server model as an approximation for the
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model with finitely many servers. We thus might approximate the queue-length (number in

system) process in the G/G/s model (with finite or infinite waiting room) by the stochastic

process representing the number of busy servers in the associated G/G/∞ model.

When we do consider the G/G/∞ model, it is natural to develop approximations based on

heavy-traffic stochastic-process limits, where now heavy-traffic is defined by having the arrival

rate λ increase without bound. For that purpose, let Qλ(t) denote the number of busy servers

at time t as a function of the arrival rate λ. Again, under regularity conditions, there is a

heavy-traffic stochastic-process limit, but it takes a different form. Now

{[Qλ(t)− λ]/
√

λ : t ≥ 0} ⇒ {L(t) : t ≥ 0} as λ →∞ ,

where the limit process L ≡ {L(t) : t ≥ 0} is a zero-mean Gaussian process, i.e., for which

(L(t1), . . . , L(tk)) has a k-dimensional normal distribution for all positive integers k and all

time points 0 < t1 < · · · < tk; see Section 10.3 of Whitt (2002), Glynn and Whitt (1991) and

references therein. As with the previous RBM limit, this limit generates a natural approxima-

tion; here it is

{Q(t) : t ≥ 0} ≈ {λ +
√

λL(t) : t ≥ 0} .

For the G/M/∞ special case, when the service times are IID and exponentially distributed

(still with mean 1), the Gaussian limit process L is OU(-1, 1+c2
a), where c2

a is the normalization

constant in the central limit theorem for the arrival process, corresponding to the SCV of an

interarrival time in the renewal (GI) case. Thus the approximate asymptotic variance is

σ̄2 ≡ σ̄2
Qλ
≈ λ

(1 + c2
a)

3

2
.

For the more general G/GI/∞ model, when the service times are not exponentially dis-

tributed, the limiting Gaussian process is not Markov (except if G is a mixture of an expo-

nential and a point mass at 0; see Glynn (1982)). If G denotes the cdf of the service time and

Gc(t) ≡ 1−G(t) is the associated complementary cdf (ccdf), then the autocovariance function

of the stationary version L∗ of the limit process L is

Cov(L∗(0), L∗(t)) =
∫ ∞

0
G(u)Gc(t + u) du + c2

a

∫ ∞

0
Gc(t + u)Gc(u) du .

In the special case of the M/GI/∞ model, c2
a = 1 and the autocovariance function simplifies,

becoming

Cov(L∗(0), L∗(t)) =
∫ ∞

0
Gc(t + u) du = Gc

e(t) ,
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where Gc
e is ccdf associated with the stationary-excess cdf Ge in (4.1). Since Ge has mean

(c2
s + 1)/2, the asymptotic variance of L∗ is (c2

s + 1)/2. Thus, for the M/GI/∞ model the

approximate asymptotic variance of Qλ is

σ̄2 ≡ σ̄2
Qλ
≈ λ(c2

s + 1)
2

.

With many-server queues, we are often less interested in the queue-length process than

other stochastic processes. For example in the M/M/s/0 (Erlang loss or B) model, which has

s servers, no extra waiting room and arrivals blocked or lost without affecting future arrivals

when arrivals find all servers busy, instead of the number of busy servers, we are often interested

in the steady-state blocking probabilty. In the corresponding M/M/s/∞ (Erlang delay or C)

model, which has s servers and unlimited extra waiting room, we are often interested in the

steady-state delay probability, i.e., the probability that an arrival must wait before beginning

service, or the probability that an arrival must have to wait more than some designated time,

such as 20 seconds (a common target in telephone call centers).

To consider the simulation run length required to estimate these alternative characteristics,

we may nevertheless use the infinite-server model and the analysis above as a rough guide. To

get better estimates we can consider the multi-server model with s servers (instead of letting

s = ∞). It has been found useful to consider limits in which s increases along with λ. It turns

out to be appropriate to let s and λ increase so that

λ− s√
λ
→ γ as λ →∞ .

Then, just as in the infinite-server case, under regularity conditions there is again a heavy-

traffic limit for [Qλ(t)− λ]/
√

λ but now with a different limit process L; see Halfin and Whitt

(1981), Srikant and Whitt (1996, 1999), Puhalskii and Reiman (2000) and Whitt (2005). That

in turn allows us to approximate the asymptotic variance and estimate the required simulation

run length. The issue of required simulation run lengths for many-server loss systems is the

main focus of Srikant and Whitt (1996, 1999).

7. Deleting an Initial Portion of the Run to Reduce Bias

We have seen that for various Markov processes we can estimate the bias of a sample mean as-

sociated with any contemplated initial distribution and simulation run length. If the estimated

bias is too large, then we can try to reduce the bias by choosing alternative initial conditions.

We can estimate the bias reduction gained by choosing alternative initial distributions, because

the asymptotic bias β̄(ξ) is a function of the initial probability distribution ξ.
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If the estimated bias is too large, and it is difficult to change the initial conditions, then we

might instead consider not collecting data for an initial portion of the simulation run, given

the natural initial conditions. However, it is more difficult to estimate the bias reduction from

not collecting data from an initial portion of the run. For that purpose, we need to know the

time-dependent mean E[X(t)], where {X(t) : t ≥ 0} is the stochastic process being observed.

The asymptotic bias when we do not collect data over an initial interval [0, c] is

β̄(ξ, c) =
∫ ∞

c
(EX(t)− µ) dt .

A rough approximation for the asymptotic bias β̄(ξ, c) can be based on the exponential

approximation

E[X(t)]− µ ≈ e−t/β̄, t ≥ 0 ,

where the parameter β̄ is chosen to yield the correct asymptotic bias β̄ = β̄(ξ, 0). Then we

obtain the approximation

β̄(ξ, c) ≈
∫ ∞

c
e−t/β̄ dt = β̄e−c/β̄ .

Unfortunately, however, the exponential approximation is not very reliable, because the

time-dependent mean rarely has such a simple exponential form. For better estimates of

the reduced bias, we need to estimate the time-dependent mean EX(t). Fortunately, for

some commonly occurring stochastic processes, expressions for the time-dependent mean are

available. For example, exact and approximate expressions for the time-dependent mean for

M/M/1 and RBM are contained in Abate and Whitt (1987a, b, 1988b).

For the M/GI/∞ model with arrival rate λ and service-time cdf G,

E[Qλ(t)] = E[Qλ(∞)]Ge(t) = λGe(t), t ≥ 0 ,

where Ge is the stationary-excess cdf, just as in the covariance function; see Section 4 of Eick

et al. (1993). So the asymptotic bias is λ(c2
s + 1)/2, just like the asymptotic variance.

8. Directions for Further Research

We described two classes of models that have been analyzed rather thoroughly to understand

the required simulation run lengths: single-server queues and many-server queues (here ap-

proximated by infinite-server queues). Other important classes of stochastic models should be

analyzed in the same way.

The analysis here is based on the normal approximation for the sample mean reviewed

in Section 2. The conditions in the central limit theorem yielding the normal approximation
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are not satisfied when there are heavy-tailed distributions or long-range dependence. Since

these features tend to arise in practice, it is natural to include them in simulations. As can be

seen from Chapter 4 of Whitt (2002), there is alternative asymptotic theory for heavy-tailed

distributions or long-range dependence, and there is a body of statistical techniques, as in Beran

(1994), but more needs to be done to plan simulations in that context. In general, simulations

in face of such stochastic complexity are difficult. Work to cope with such complexity is

described by Juneja and Shahabuddin in Chapter 11.
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