Chapter 15

The Spaces E and F

15.1. Introduction

In this final chapter we introduce new spaces of functions larger than
D. These new spaces of functions are intended to serve as spaces of sample
paths for new stochastic processes that are limits for sequences of appro-
priately scaled stochastic processes that have significant fluctuations in two
different time scales. We have in mind applications to queueing models of
communication networks and manufacturing systems, but there are many
other possible applications, e.g., to stochastic models of earthquake dynam-
ics, cancer growth or stock prices.

Here is how this chapter is organized: To provide motivation for the
new function spaces, we start in Section 15.2 by discussing three important
time scales for the performance of queues: the performance time scale, the
service time scale and the failure time scale. When the failure time scale falls
between a shorter service time scale and a longer performance time scale,
stochastic-process limits with scaling of space and time may provide insight
into the impact of the failures upon performance. However, the failures in an
intermediate time scale can lead to more complicated oscillations in buffer
content, which require a new framework for the stochastic-process limits.
We discuss these oscillations and their impact in Section 15.3.

In order to have stochastic-process limits with greater oscillations, we
need functions spaces larger than D. In Section 15.4 we define the space
FE and specify conditions under which the Hausdorff metric inducing the
analog of the My topology on E is well defined. In Section 15.5 we develop
alternative characterizations of convergence in (E, M2). In Section 15.6 we
give an example of convergence of stochastic processes in (F, My), where
there is no convergence in D. The example is closely related to extreme-
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value limits to extremal processes. We show how previous limits in that
context can be viewed in a new way.

In Section 15.7 we define the space F' and introduce the analog of the
M; metric. We conclude in Section 15.8 by discussing queueing applications.
We obtain a heavy-traffic stochastic-process limit describing a queue that
experiences long rare failures, where the failures are more complicated than
the service interruptions considered previously.

The present chapter is a brief introduction, identifying a direction for
future research. The goal is to establish analogs for the spaces E and F,
to the extent possible, of all the results for the space D in earlier chapters.
There could even be another book!

15.2. Three Time Scales

In this section we discuss three important time scales for the perfor-
mance of queues. A source of motivation for the queueing models is the
desire to understand and control the performance of evolving communica-
tion networks. In some communication networks, such as Internet Protocol
(IP) networks, there is evidence that performance degradation occurs, not
only because of periods of exceptionally high user demand, but also because
of various kinds of system failures (or by the combination of the two phe-
nomena). One possible model of this phenomenon is a complex queueing
system (network of queues) subject to occasional failures. This system al-
ternates between periods of being “in control,” and “out of control,” where
only some portion of the network may be experiencing difficulties when the
system is out of control. The net-input process of packets into the network
nodes (with buffers or queues) changes when the system changes state from
in control to out of control, and so on. In this context, our goal is to obtain a
suitable framework for establishing heavy-traffic stochastic-process limits for
buffer-content stochastic processes that reveal the performance degradation
caused by the system failures.

Similar problems arise in manufacturing systems. As above, a key factor
in system performance is often system failures. We anticipate a customary
randomness in the production process, e.g., associated with setups when
changing a machine from one function to another, but occasional larger
disruptions may be caused by system failures. A factory also alternates
between periods of being “in control” and “out of control.” The factory may
be out of control when a critical machine breaks down or when a shipment
of essential parts fails to arrive when scheduled. The system failures may
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cause work-in-process inventories to temporarily build up to high levels at
various work centers.

Both the communication network and the manufacturing system can be
modeled as a network of queues, with the queues containing the bits or pack-
ets to be transmitted or the work-in-process that needs further processing.
In that context, our goal is to capture the impact of system failures upon
performance through appropriate stochastic-process limits. As an initial ab-
straction, consider a single queue. The system failures may cause significant
modification in the input or the service capacity. For example, failure at
that queue might cause an interruption of service. A substantial backlog
can build up if input keeps arriving during the service interruption. Sim-
ilarly, failures elsewhere might cause sudden decrease or increase of input.
These failure modes can have a dramatic impact on system performance, if
the failures cannot be corrected quickly. Obviously it is desirable to elim-
inate the failures whenever possible, but to effectively manage the system
it is also important to understand and control the system when occasional
failures do occur.

To understand the impact of system failures upon the performance of
queues, it is useful to examine the relevant time scales. We draw attention
to three different times scales for the performance of queues:

(i) the performance time scale
(ii) the service time scale

(iii) the failure time scale. (2.1)

The performance time scale is the time scale of concern when judging system
performance; the service time scale is the time scale of individual service
times; the failure time scale is the time scale of failure durations.

We are primarily concerned with the case in which the performance time
scale is much longer than the service time scale. For example, in commu-
nication networks, the performance time scale is often rooted in human
perception. We often want to ensure satisfactory performance in the “hu-
man” time scale of seconds. In contrast, the service time scale corresponds
to packet transmission times, which may be in milliseconds or less, depend-
ing upon the transmission rate. Similarly, in a make-to-order production
facility, the performance time scale may be associated with product delivery
times, i.e., the interval between a customer order and the product delivery,
which might be measured in days or weeks. In contrast, the service time
scale, determined by the production times on individual machines, might be
measured in minutes.
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Earthquake dynamics would seem to be a very different phenomenon,
because the performance time scale is usually shorter than the “service”
time scale: As before, our concern might be rooted in human perception,
and thus may be measured in the time scale of seconds, minutes or days,
whereas key factors in the system dynamics (which serve as analogs of the
service times in a queue) may occur in the much longer time scale of months
or years, or even longer.

When the time scale of interest in performance evaluation of a queueing
system is much longer than the time scale of individual service times, it is
likely that asymptotic analysis can provide useful insight. We may be able
to usefully describe the macroscopic behavior of the system in the longer
time scale of interest for performance by establishing heavy-traffic limits
for stochastic processes after appropriately scaling space and time. Hope-
fully, the macroscopic description will capture the essential features of the
microscopic model, while discarding inessential detail.

We want to include system failures in this framework. Assuming that
the performance time scale is much greater than the service time scale, there
are five possibilities for the failure time scale:

(i) failure time scale > performance time scale

ii) failure time scale = performance time scale
iii) performance time scale > failure time scale > service time scale

iv) failure time scale = service time scale

(
(
(
(v) failure time scale < service time scale (2.2)

Here we are primarily concerned with the common case (iii), but we are
also interested in cases (ii) and (iv). From a performance-analysis perspec-
tive, cases (i) and (v) are relatively trivial. In case (i), the failures totally
dominate, in which case attention should be concentrated there. In case
(v), failures tend to be have little consequence, so that they probably can
be ignored.

In cases (ii), (iii) and (iv), it is worth carefully studying the impact
of failures upon performance. In case (iv), the failures can be treated as
random perturbations of the service times, so that the failures can usually
be analyzed by making minor modifications of models that do not account
for the failures.

We are particularly interested in case (iii) in (2.2). We then say that the
failures occur in an intermediate time scale. When the failure time scale falls
between a shorter service time scale and a longer performance time scale, it
is useful to consider heavy-traffic stochastic-process limits with time scaling.
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In such a limit, the failure durations may be asymptotically negligible in the
performance time scale, while the overall performance impact of the failures
may still be significant, being much greater than can be captured by inflating
the mean and variance of service times in case (iv).

In fact, we have already considered examples illustrating failures occur-
ing in an intermediate time scale: The examples were the queues with rare
long service interruptions, discussed in Sections 6.5 and 14.7. In those mod-
els we assumed that the times between successive failures are in the long
performance time scale, while the failure durations occur in an intermedi-
ate time scale, shorter than the performance time scale but longer than the
service time scale. With appropriate definitions and scaling, heavy-traffic
limits can be established in which failures occasionally occur in the (perfor-
mance) time scale of the limit process. Since the failure durations are in the
intermediate time scale, the failure durations are asymptotically negligible
in the limit, so that failures occur instantaneously at single time points in
the limit. However, the failures cannot be disregarded altogether. When the
failure occurs, service stops while the input keeps arriving, so that a large
backlog can quickly build up. With appropriate scaling, the failure leads to
a sudden jump up in the limit process representing the asymptotic queue
length or workload. The jump up represents the stronger consequence of
the failure when the failure time scale is longer than the service time scale.

To be more explicit, we review the scaling that was used for the heavy-
traffic stochastic-process limits for queues with rare long service interrup-
tions. (See Section 5.5 for a general discussion of heavy-traffic scaling.) For
the standard heavy-traffic limit for the single-server queue with unlimited
waiting room, time is scaled by multiplying by n while space is scaled by
dividing by v/n, where n typically corresponds to (1— p)~2, with p being the
traffic intensity. When the traffic intensity is allowed to increase with n in
this way, the queue length or waiting time unscaled tends to grow without
bound. Since the steady-state means are of order (1 — p)~! as p — 1, the
appropriate space scaling to obtain a nondegenerate limit is to divide by
v = (1—p)~ 1. Tt turns out that the associated time scaling is to multiply
by n=(1—p)~2

To capture the impact of failures in the way described, we let the time
between failures be of order n and the failure durations be of order y/n. In
particular, assuming that a system failure corresponds to a service interrup-
tion, the queue buildup will be by the number of arrivals during the service
interruption. Assuming that the service times are of order 1, the arrival
rate is also order 1. Thus the queue buildup in a service interruption whose
duration is of order /n will also be of order y/n. Hence the failures are
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represented in a content limit process by occasional jumps up. In perfor-
mance analysis, these jumps quantitatively describe the performance impact
of the failures. The jumps reveal sudden performance degradation from the
perspective of the long performance time scale.

To establish such limits with jumps for queues with service interruptions,
we need to exploit the M7 topology on D, because the limiting jump is
approached gradually as a consequence of many arrivals during the service
interruption. Thus the system failures serve as a major source of motivation
for considering the function space D with the M; topology.

15.3. More Complicated Oscillations

Our purpose now is to go beyond the space (D, M71). We want to be able
to treat failures that cause more complicated oscillations in the stochastic
process of interest. On D, the M, topology is useful because it allows the
converging functions to have quite general fluctuations in the neighborhood
of a limiting discontinuity.

Example 15.3.1. The use of the My topology on D. Let the limit function
be z = I}; 9 in D([0, 2], R). Then z, — x in (D, Mz) as n — oo, but not for
any of the other Skorohod topologies if

) zn(1—=3n"") =0,

) = 3/4,z,(1-n"") =1/5
(1) = 7/8, z,(1+n"1) =1/16,

) = za(2) =1, (3.1)

with z,, defined by linear interpolation elsewhere. =

Example 15.3.1 shows the advantage of the space (D, Ms) over the space
(D, M), but Example 15.3.1 also shows two shortcomings of the space
(D, My): First, the nature of the fluctuations in z,, in the neighborhood
of t = 1 are not evident from the limit function x; we only know that the
process I, is in the neighborhood of the interval [0,1] for t € (1 —¢,1 + €)
for all sufficiently small e. We might want functions to be defined so that
the limit shows that z, goes up from 0 to 3/4, then down to 1/5, then up
to 7/8, then down to 1/16, and finally up to 1 in the neighborhood of time
1.

A second shortcoming of the space (D, Ms) is the requirement that all
functions assume values at discontinuity points between the left and right
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limits there. Of course, we actually have required more; we have required
that the functions actually be right-continuous. However, the space D with
the M; or My topology is unchanged if we only require that the functions
have left and right limits everywhere, provided that the function value at
each discontinuity point falls between the left and right limit, because the
completed graph is then the same as for the right-continuous version.

Now we want to allow for more general fluctuations. If functions z,, do
have significant fluctuations in the neighborhood of some point ¢, then the
functions z, might well visit regions outside the interval [z(t—) A z(t+),
z(t—) V z(t+)] in the neighborhood of . And we might well want to say
that x, converges as n — oo in that situation.

To illustrate, consider the following example.

Example 15.3.2. The need for spaces larger than D. With the same limit
function = Ij; o) in Example 15.3.1, the functions z, might be defined,
instead of by (3.1), by

2,(0) = z(1-3n"") =0,
z,(1-2n"1Y) = 2, 2,(1-n"1) = -1,
z,(1) = 3, z,(14+n"') =1/16,
(14207 = z,(2) =1, (3.2)

with z,, again defined by linear interpolation elsewhere. In this case, z, /4 x
in (D, Ms) as n — oo. However, we might want to say that z, does actually
converge to a limit as n — oco. It is natural that the graph of the limit
be the graph I'; of  augmented by the vertical line segment [—1, 3] x {1}.
Then the graph shows the range of points visited by z,. In addition, we
might want the limit to reflect the fact that x,, goes up from 0 to 2, then
down to —1, then up to 3, then down to 1/16, and finally up to 1 in the
neighborhood of time 1. =

Example 15.3.3. Another example requiring a larger space. Another sim-
ple example is the case in which z, = I;; 1,1 149,-1) in D([0,2],R). This
is the classic example in which z, converges pointwise for all ¢ to z with
z(t) =0, 0 <t <2, but z, fails to converge in any of the Skorohod topolo-
gies. However, we might well want to say that z,, does in fact converge, and
that it converges to a limit that captures the fluctuation experienced by x,.
Clearly, the graph of the limit should be the graph of z, i.e., {0} x [0,77],
augmented by the vertical line segment [0,1] x {1}. =
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The first new space we introduce, the space F, allows for extra excur-
sions at individual time points. We construct an element of E([0,7],R) by
augmenting a function z in D([0,7],R) by adding vertical line segments to
the graph of z at these specially designated excursion times. We do this in
such a way that the graphs remain compact subsets of R¥t1. Then, paral-
leling (D, M>), we induce a topology (which we call the M, topology) on E
by using the Hausdorff metric on the resulting set of graphs.

We also construct another space of functions, F', in order to capture
more information about the fluctuations of the converging functions in the
limit. One important source of motivation for the space F' is our desire
to apply reflection maps to establish heavy-traffic stochastic-process limits
for queueing processes with limits in one of these larger spaces. Thus it is
helpful to reconsider Example 13.5.2, which shows that the standard one-
dimensional reflection map is not continuous on D with the My topology.

Example 15.3.4. The reflection map is not continuous on (D, Ms). Recall
that Example 13.5.2 shows that the one-sided one-dimensional reflection
map ¢ : D — D defined in Section 13.5 is not continuous with the M,
topology. That example has z = —1I}; o in D([0, 2], R),

2,000 =2,(1-3n")=2(1-n"") =0

and
z,(1—-2n"1Y) = z,(1) = 2,(2) = —1

with z,, defined by linear interpolation elsewhere. Then z,, — z in (D, M>),
but ¢(z,) A ¢(x) in (D, My), where ¢(z)(t) = 0 for all £. This example
fails to provide a counterexample in (D, M;) because then z,, /4 z.

However, we might well want to have a topology allowing us to say that
zn — & and ¢(z,) — ¢, where £ and ¢ are different from z and ¢(x) above,
being elements of F' instead of elements of D. Indeed, for this example, it
is natural to say that ¢(z,) converges to a limit in (E, M), which coincides
with the zero-function ¢(z) augmented by the vertical line [0, 1] x {1}. Our
new space allows us to reach that conclusion.

For that purpose, we want the initial limit Z to reflect the parametric
representations that can be used to justify M, convergence z, — z. In
particular, when r(s) = 1, u(s) goes from 1 to 0, to 1 and back to 0, in
order to match the fluctuation in z,. Assuming that we keep track of the
fluctuation detail in Z, the associated limit ¢(Z) should have a graph equal
to the zero-function ¢(z) augmented by the vertical line [0,1] x {1}. When
we introduce another space with an appropriate topology, we will be able
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to say that z,, — Z. Then the reflection map will be continuous, so that we
will have ¢(z,) — ¢(£). Moreover, since this new topology will be stronger
than the My topology, we will be able to deduce that ¢(z,) converges to the
graph of ¢(Z) in E, as desired. =

The need for a new space can also be explained by the fact that the
reflection map is not even well defined on E. In order to define the reflection
of an element of E, we need to know the order in which the points in a
vertical segment are visited.

Example 15.3.5. Mazimal and minimal reflection maps on E. To see that
the reflection map is not well defined on E, consider the function Z in E
obtained from z = I}y ;) in D([0,2],R) with graph

Iz = ({1} x [0,1)) U ({0} x [1,2]) (3-3)

augmented by the vertical line [—2, 3] x {1}, i.e., with graph

o= ({1} x [0,1) U (2,3 x (1N U0} x [1,2) . (34)

A mazimal reflection map ¢ can be defined by assuming that, at time 1,
Z first goes from 1 down to —2, then goes up to 3 and finally goes down to
the right limit 0. The graph of ¢ (%) is

Lyt = ({1} x [0, 1)) U([0,5] x {1}) U ({2} x (1,2]) . (3-5)

On the other hand, a minimal reflection map ¢~ can be defined by assuming
that z first goes up to 3, then down to —2 and then up to 1. The graph of

¢~ (Z) is
Ly-@ = ({1} x [0,1)) U ([0,3] x {1}) U ({2} x (1,2]) . (3.6)

Note that the maximum value of ¢*(Z) is 5, while the maximum value of
¢~ () is 3. Thus, to be well defined, the reflection map needs to know the
order of the points visited during the excursions. =

To faithfully represent the fluctuations at excursions we introduce a new
space F' based on parametric representations. In particular, we consider
parametric representations of the graphs of the elements of E. We say that
two parametric representations of I'z for £ € E are equivalent if they visit
the same points in the same order. We let F' be the space of equivalence
classes with respect to that equivalence relation. The space F is larger than
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FE because there are many different elements of F' with the same graph. We
give F an analog of the M7 metric. The space (D, M) itself is homeomorphic
to a subset of F', in which the graphs correspond to functions in D and the
parametric representations are monotone in the order put on the graphs in
Sections 3.3 and 12.3.

The spaces (E, My) and (F, M) allow us to obtain a satisfactory treat-
ment of reflection. First, working with F' instead of E, we avoid the ambigu-
ity about the order points are visited in Example 15.3.5. In particular, the
reflection map ¢ is well defined and continuous on (F, M;). Thus, starting
from convergence Z,, — Z in (F, My), we obtain ¢(&,) — ¢(2)in (F, M).
Since convergence in (F, M7) implies convergence in (E, My) for the graphs
of the elements of F', we obtain as a consequence associated convergence
in (E, M) for the graphs of ¢(&,) and ¢(£). In particular, we obtain the
proposed limit in (E, Ms) in Example 15.3.4.

The example above is for the one-dimensional reflection map. We can
also treat the multidimensional reflection map. Paralleling Chapter 14, we
need to make assumptions about the domain and the range: First for the
domain, it suffices to assume that the limit Z belongs to the space Fi, the
subset of F' in which the excursions and discontinuities occur only in one
coordinate at a time. Next for the range, we need the product topology:
First, we can use the space (F,W M;); then we can go to (E,WM,). In
other words, convergence of functions in the domain (F, W M;), where the
limit belongs to F; will imply convergence of the graphs of the reflections in
the range (E, W M,).

In summary, we introduce new function spaces F and F' to supplement
the familiar ones C and D considered before. Hence, we have four spaces of
functions, each larger than the one before:

—  Continuous functions

Discontinuous functions

— functions with extra Ezcursions

— functions with extra excursions that faithfully model Fluctuations

N EOQ
!

We omit most proofs in this chapter, which are similar to proofs for
(D, M3) and (D, M;). A more extensive discussion of the spaces E and F
is planned for the Internet Supplement.
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15.4. The Space E

Our general approach to defining the new function spaces E and F is to
base the definitions on the My and M; topologies used on D. Now we use
the graphs and parametric representations, not only to define the topologies,
but also to define the functions themselves.

The space E is larger than D because the functions are allowed to have
extra excursions, which occur at single time points. We initially represent
E = E(|[0,T],R*) as the space of ezcursion triples

(z,S,{I(t):t € S}), (4.1)

where z € D = D([0,T],RF), the space of all right-continuous RF-valued
functions on [0, 7] with left limits everywhere, S is a countable set with

Disc(z) €S C[0,T], (4.2)

and, for each t € S, I(t) is a compact subset of R¥ with at least two points
such that
z(t),z(t—) € I(t) forall te€§. (4.3)

We call the function z in D the base function. We call S the set of
excursion times or the set of discontinuity points of the new function. We
want to allow the new function to make excursions where the base function
x is continuous, so Disc(xz) may be a proper subset of S. We call the set
I(t) the set of excursion values; I(t) is the set of values assumed by the new
function at time ¢ for ¢ € S. By requiring that I(¢) contain at least two

points, we ensure that {z(¢)} 7Cé I(t) when t € Disc(x)®. Hence, each t € S
corresponds to some genuine form of discontinuity.
Associated with the excursion triple (z, S, {I(t),t € S}) is the
set-valued function

o | I, tesS
I‘“Z{ (z(t)}, t€5. (44)

Associated with the set-valued function 7 is its graph
T: = {(z,t) e RF x [0,T]: 2 € ()} . (4.5)

Clearly, it is possible to construct the excursion triple (z, S,{I(t),t € S}),
the set-valued function Z and the graph 'z, starting from any one of the
three. Hence these are three equivalent representations for the elements of
the space E. For brevity, we will let elements of ¥ be denoted by Z.
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Unlike the graphs I';, and G, for z € D defined in Section 12.3, the set
I(t) appearing in the graph T'; in (4.5) need not be a segment. Indeed it
need not even be connected. We will impose further restrictions below.

Paralleling our treatment of (D, M;), we propose making E a separable
metric space by using the Hausdorff metric on the space of graphs I'; for
Z € E. For that purpose, we want to be sure that each graph is a compact
subset of R¥*t1. Without additional assumptions, we need not have that

property.

Example 15.4.1. The graphs need not be compact. To see the need for
additional assumptions in order to guarantee that I'; in (4.5) is compact,
consider the triple {z, S, {I(t) : t € S}} with z(¢) =0, 0 <t < 1, S the set of
rational numbers strictly less than 1/2, and I(¢) = [0,1] for all ¢ € S. Then
T'; is a dense subset of [0, 1] x [0,1/2), which is bounded but not closed, and
thus not compact. =

A simple way to ensure that I'; is compact is to require that the set S
of excursion times be a finite subset of [0,7"], and we think of that being an
important case for applications. However, that assumption is unappealing
because then D would no longer be a proper subset of E. Thus we want to
allow countable sets of excursion times. We can allow countable subsets if we
impose a restriction. We give equivalent characterizations of the condition
below.

When we talk about convergence of sets, the sets will always be compact
subsets of R¥ | and we use the Hausdorff metric, as defined in (5.2) in Section
11.5; i.e., for compact sets A1, Ag,

m(Ay, Ag) = u(A1, A2) V p(Az, Ap) (4.6)
where
p(A1, Az) = sup {||lz — Ao} (4.7)
T€A
and
lz — Al = |A — | = inf{[lz -y} . (4.8)
yeA

For A C R, let §(A) be the diameter of A, i.e.,

6(4) = sup {|lz —yl} - (4.9)
T,yeA
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Theorem 15.4.1. (equivalent conditions) The following conditions for el-
ements of E are equivalent:
(a) For each € > 0, there are only finitely many t for which 6(1(t)) > e.
(b) For each t € [0,T), & has a single-point right limit

Z(t+) = lgiltlf(s) = {z(t)} (4.10)

and, for each (0,T], Z has a single-point left limit

z(t—) = 1;%15&(8) ={z(t—)} . (4.11)

Theorem 15.4.2. (conditions to make the graphs compact) Under the con-
ditions in Theorem 15.4.1, the graph T'z in (4.5) is a compact subset of RET!,

Henceforth let E be the set of graphs I'; for which the conditions of
Theorem 15.4.1 hold. Then, paralleling (D, Ms), we endow E with the
Hausdorff metric, i.e.,

m(‘%la 52) = m(F:/EUP:Ez) ’ (4'12)

where m is the Hausdorff metric on the space of compact subsets of RE+1
as in (4.6). We call the topology induced by m on E the M; topology. Since
the graphs are compact subsets of RF*! . we have the following result.

Theorem 15.4.3. (metric property) The space (E,m) is a separable metric
space.

So far, we have defined the metric m on the space E([0, 7], RF) with the
compact domain [0,7"]. We extend to non-compact domains just as was done
for D. We say that &, — Z in E(I,R*) for an interval I in R if &, — Z for
the restrictions in E([t1,ts], R¥) for all ¢,y € I with ¢; < ty and t1,ty & S.

We also define a stronger metric than the Hausdorff metric m in (4.12)
on E = E([0,T],R¥), which we call the uniform metric, namely,

m*(Z1,Z2) = sup m(Z1(t),z2(t)) , (4.13)
0<t<T

where m is again the Hausdorff metric, here applied to compact subsets of
RE. The following comparison is not difficult.
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Theorem 15.4.4. (comparison with the uniform metric) For any %1,%2 €
E,
m(.’i‘l,.’fiz) S m*(.’fl,.’fiz)

for m in (4.12) and m* in (4.13).

As with the metrics inducing the U and M>s topologies on D, m* is
complete but not separable, while m is separable but not complete.

Example 15.4.2. The metric m on E is not complete. To see that the
Hausdorff metric m on E is not complete, let

n—1
Tp = Z Tk jon 2k +1)/20), m 22 (4.14)
k=1
Then z,, € D([0,1],R),
m(Ts,,Tz,,) >0 as n,m— oo (4.15)
m(Ty,,[0,1] x [0,1]) =0 as n — oo, (4.16)

but the limit is not in E. Hence x,, does not converge to a limit in £. =

We now consider approximations of functions in E by piecewise-constant
functions. Let E, be the subset of piecewise-constant functions in E., i.e.,
the set of functions for which S is finite, z is constant between successive
points in S and I(¢) is finite valued for all ¢t € S. Rational-valued piecewise-
constant functions with S = {jT/k,1 < j < k}, which are elements of
E., form a countable dense subset of (E, m). The following result parallels
Theorem 12.2.2.

Theorem 15.4.5. (approximation by piecewise-constant functions) If €
(E,m), then for all € > 0 there exists T, € E. such that m*(Z,Z.) < € for
m* in (4.13).

Even though the excursion sets I(t) associated with the functions Z in E
must be compact because of the conditions imposed in Theorem 15.4.1, so
far they can be very general. In particular, the excursion sets I(¢) need not
be connected. It may well be of interest to consider the space E with discon-
nected excursions, which the framework above allows, but for the applica-
tions we have in mind, we want to consider graphs that are connected sets.
We will make the stronger assumption that the graphs are path-connected,
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i.e., each pair of points can be joined by a path — a continuous map from
[0,1] into the graph; e.g., see Section V.5 of Dugundji (1966). In fact, we
will assume that the graph can be represented as the image of parametric
representations.

We say that (u,r) : [0,1] — R¥*! is a strong parametric representation
of I'; or

Z in E if (u,r) is a continuous function from [0, 1] onto I'; such that r is
nondecreasing. We say that Z and ['; are strongly connected if there exists
a strong parametric representation of I';.

Similarly, we say that (u,r) is a weak parametric representation of I'z
or Z in E, (u,r) is a continuous function from [0, 1] into I'; such that r is
nondecreasing, 7(0) € #(0) and r(1) € Z(T). We say that £ and T'; are
weakly connected if there exists a weak parametric representation of I';, and
if the union of (u(s),r(s)) over all s, 0 < s < 1, and all weak parametric
representations of I'; is I'; itself.

Let Eg and E,, represent the subsets of strongly connected and weakly
connected functions Z in £. When the range of the functions is R, Fg = Eyi
and Ej; is a subset of E in which I(¢) is a closed bounded interval for each
tesS.

Asin (3.1) and (3.2) in Section 12.3, for a,b € R¥, let [a, b] and [[a, b]] be
the standard and product segments in R¥. Tt is easy to identify (D, SMy)
and (D, W Ms) as subsets of (Eg, m) and (E,x, m), respectively.

Theorem 15.4.6. (when Z reduces to z) Consider an element T in E.
Suppose that S = Disc(x).
(a) If Z € Eg and

I(t) = [z(t—),z(t)] forall te S, (4.17)

then
I'z =T, (4.18)

for the thin graph Ty in (3.3) of Section 12.3.
(b) If T € Eyy and

I(t) = [[z(t—),z(t)]] forall t€S, (4.19)

then
I'; =Gy, (4.20)

for the thick graph G in (3.4) Section 12.3.
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Let Dg and D, be the subsets of all Z in Es; and E,, respectively,
satisfying the conditions of Theorem 15.4.6 (a) and (b). Since the SMy and
W M, topologies on D can be defined by the Hausdorff metric on the graphs
I'; and Gy, the following corollary is immediate.

Corollary 15.4.1. (identifying the spaces (D, SMs) and (D, W Ms)) The
space (D, SMs) is homeomorphic to the subset Dg in (Es,m), while the
space (D, W Ma) is homeomorphic to the subset Dy in (Eyg,m).

15.5. Characterizations of M; Convergence in F

Paralleling Section 12.11, we now want to develop alternative characteri-
zations of Ms convergence on E. For simplicity, we consider only real-valued
functions. Thus there is no need to distinguish between the SMy and W M,
topologies.

We consider My convergence on E = Eg = Eg([0,T], R), assuming that
the conditions of Theorem 15.4.1 hold. By considering E;, we are assuming
that the functions are strongly connected (i.e., there exist parametric rep-
resentations onto the graphs.) Thus the excursion sets I(¢) for ¢ in the set
S of excursion times are all closed bounded intervals.

Given that the functions Z in E are all strongly connected, it is natural
to consider characterizing Ms convergence in terms of parametric represen-
tations. For Z1, T9 € E, let

dsp(T1,82) = b {llun = wall Viire =}, (5.1)
i=1,2
where Il 2(Z;) is the set of all strong parametric representations (u;,7;)
of Z; € E. As in Section 12.11, it turns out that ds2(Z,,Z) — 0 if and
only if m(%,,%) — 0. (We will state a general equivalence theorem below.)
However, as before, ds2 in (5.1) is not a metric on E. That is shown by
Example 12.11.1.

We next introduce a characterization corresponding to local uniform
convergence of the set functions. For this purpose, let the d-neighborhood
of T at ¢ be

Ns(Z)(t) = Uov(t—s)<s<(t+6)ATE(8) - (5.2)
(Since Ny includes only perturbations horizontally, it is not actually the §
neighborhood in the metric m.)

Lemma 15.5.1. (compactness) For each £ € E, t € [0,T] and § > 0,
Ns(%)(t) in (5.2) is a compact subset of RE.
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Let
v(Z1,Z2,t,8) = m(Ns(21)(t), Z2(t)) (5.3)

where m is the Hausdorff metric in (4.6), and

U(ila"i%(s) = sup U('%la'%%t’a) : (54)
0<t<T

An attractive feature of the function space D = D([0,T],R¥) not shared
by the larger space E is that all function values z(t) for z € D are determined
by the function values z(t;) for any countable dense subset {tx} in [0,T].
For ¢t € [0,T), by the right continuity of z, z(t) = limz(¢;) for ¢x | ¢. In
contrast, in E since we do not necessarily have Disc(z) = S, we cannot even
identify the set S of excursion times from function values Z(t) for ¢ outside
S. In some settings it may be reasonable to assume that S = Disc(z), in
which case S can be identified from the left and right limits. For instance,
in stochastic settings we might have P(X (t—) = X(¢)) = 0 when ¢t € S, so
that it may be reasonable to assume that S = Disc(x).

However, even when S = Disc(z), we are unable to discover the set
Z(t) for t € S by observing the set-valued function Z at other time points
t. Hence, in general stochastic processes with sample paths in E are not
separabile; e.g., see p. 65 of Billingsley (1968). Thus it is natural to look
for alternative representations for the functions Z that are determined by
function values on any countable dense subset.

Thus, for € E, let the local-maximum function be defined by

My, +,(Z) =sup{z: 2z € Z(t) : t1 <t <t} (5.5)

for 0 <t; < to <T. It is significant that we can also go the other way. For
z € E, if we are given My, 4,(Z) and My, 4,(—Z) for all ¢1,t3 in a countable
dense subset A of [0, 7], we can reconstruct Z. In particular, for 0 <t < T,

&(t) = [a(t),b()] , (5.6)
with [a,a] = {a}, where
b(t) = lim My, ,(7) (5.7)
1,6t
tQ,k,Lt
and
~a(t) = lim My, , 1, (~) (5.8)
1,kTt

to gt
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with 1 j, and t3; taken from the countable dense subset A. For ¢ = 0,

b(t) = lim Mo,tm (%) (5.9)
2kt
and
—a(t) = lim Mo,t”(—i‘) , (5.10)
okt ’

where 15 is again taken from A. A similar construction holds for ¢ =T It
is significant that Ms convergence in F is also determined by the maximum
function.

We are now ready to state our convergence-characterization theorem. It
is an analog of Theorem 12.11.1 for (D, SMy).

Theorem 15.5.1. (alternative characterizations of My convergence in E)
The following are equivalent characterizations of convergence T, — I in
E([0,T],R):

(i) m(Zn, %) — 0 for the metric m in (4.12) and (4.6).

(ii) p(Tz,,Tz) = 0 for p in (4.7).

(iii) ds 2(Zn, Z) = 0 for dso in (5.1); i.e. for any e > 0 and n sufficiently
large, there exist (u,r) € Il 2(Z) and (up,mn) € Is2(Zy) such that |luy, —
ul|Vllrp — |l <e.

(iv) Given v(Z1,%9,0) in (5.4),

%ﬁ)w(:vn,:v, d)=0. (5.11)

(v) For eacht, 0 <t <T,

lim lim v(%,,%,t,6) =0 (5.12)

0 psoo

for v(Z1,Z2,t,9) in (5.3).
(vi) For all t1,t2 in a countable dense subset of [0,T] with t; < to,
including 0 and T,

Mtl ,tQ(jTL) — Mt1,t2 (fi) n R (513)

and
Mtl,tz(_-%n) — Mtl,tz(—j) in R (514)

for the local mazimum function My, 1, in (5.5).
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For 7 € E, let S'(Z) be the subset of non-jump discontinuities in S(z),
ie.,

§'(F) = {t € 8(3) : I(t) # [z(t—), z(t+)]} . (5.15)

We envision that in many applications S'(Z) will be a finite subset and z,
will belong to D for all n. A more elementary characterization of convergence
holds in that special case.

Theorem 15.5.2. (when there are only finitely many non-jump disconti-
nuities) Suppose that & € E, S'(Z) in (5.15) is a finite subset {t1,...,1}
and x, € D for all n. Then x, — & in (E, Ms) holds if and only if

(i) zn, — x in (D, Ma) for the restrictions over each of the subintervals
[0,t1), (t1,t2),---, (tk—1,tx) and (tg,T)|, where x is the base function of Z,
and

(i1) (5.12) holds for t = t; for each t; € S'(%).

15.6. Convergence to Extremal Processes

In this section we give a relatively simple example of a stochastic-process
limit in which random elements of D converge in E to a limiting stochastic-
process whose sample paths are in F but not in D.

Let {X,, : n > 1} be a sequence of real-valued random variables and let
{Sn : n > 0} be the associated sequence of partial sums, i.e.,

Sp=X1+-+X,, n>1, (6.1)

with Sy = 0. Let S, and X,, be associated scaled random elements of
D = D(]0,T],R) defined by

Su(t) = ¢ (Siny — pnt)
Xn(t) = ¢ Xy, 0<t<T, (6.2)

where ¢, — 00 as n — 00. Since the maximum jump functional is continu-
ous at continuous functions, p. 301 of Jacod and Shiryaev (1987), we have
X, = 0e in D, where e is the identity function, or equivalently || X,|| = 0,
whenever S,, = S in D and P(S € C) = 1.

However, we cannot conclude that ||X,|| = 0 when the limit S fails
to have continuous sample paths. In this section we show that we can have
X, = X in E = E([0,T],R) in that situation, where X is a random element
of E and not a random element of D.

We establish our result for the case in which {X,, : n > 1} is a sequence
of IID nonnegative random variables with cdf F', where the complementary



638 CHAPTER 15. THE SPACES E AND F

cdf F¢ =1 — F is regularly varying with index —a, ie., F¢ € R(—a), with
a < 2. That is known to be a necessary and sufficient condition for F
to belong to both the domain of attraction of a non-normal stable law of
index a and the maximum domain of attraction of the Frechet extreme value
distribution with index «; see Section 4.5, especially Theorem 4.5.4.

We will use extremal processes to characterize the limit of X, in F.
Hence we now briefly describe extremal processes; see Resnick (1987) for
more details. We can construct an extremal process associated with any cdf
F on R. Given the cdf F, we define the finite-dimensional distributions of
the extremal process by

k k
Fy, n(z1,...,08) = Fh (/\ wz) Ft2—h (/\ w,) o BT (g) ) (6.3)

=1 =2

k
/\ zi =min{z; : j <1<k} . (6.4)
i=j

We are motivated to consider definition (6.3) because the first n successive
maxima

have cdf Fio . n;e.g.,
P(My, <z, My, < zp) = Fk(xk A wn)Fnik(xn) . (6.5)

It is easy to see that the finite-dimensional distributions in (6.3) are
consistent, so that there is a stochastic process Y = {Y'(¢) : ¢ > 0}, with
those finite-dimensional distributions. Moreover, there is a version in D. We
summarize the basic properties in the following theorem; see Resnick (1987)
for a proof.

Theorem 15.6.1. (characterization of the extremal process asociated with
the cdf F') For any cdf F on Ry, there is a stochastic process Y = {Y (¢) :
t > 0}, called the extremal process associated with F, with sample paths in
D((0,00), R, J1) such that

(i) P(t € Disc(Y)) =0 for all t > 0,
(i) Y has nondecreasing sample paths,

Fi(a),

(iii) Y is a jump Markov process with P(Y (t+s) < zY (s) = y) = { 0

>y
<y,
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(iv) the parameter of the exponential holding time in state x is Q(z) =
—log F(x); given that a jump occurs in state x, the process jumps from
x to (—oo,y] with probability 1 — Q(y)/Q(z) if y > = and 0 otherwise.

Having defined and characterized extremal processes, we can now state
our limit in E.

Theorem 15.6.2. (stochastic-process limit with limit process in E) If { X, :
n > 1} is a sequence of IID nonnegative real-valued random wvariables with
cdf F € R(—a), then

X,=X in E((0,00),R)
for X, in (6.2) and
cn = (1/F)(n) = inf{s : (1/F¢)(s) > n} = inf{s: F¢(s) <n~'}, (6.6)

where X is characterized by the mazima My, 1,(X) for 0 < t; < ta. These
mazxima satisfy the properties:

(i) for each k > 2 and k disjoint intervals (t1,t2), (t3,t4),- .-, (top—1, tox),
the random wvariables My, 1,(X), M, 1,(X), ..., My, 1, (X) are mutually
independent, and

(ii) for each t1,ty with 0 < t1 < to,

My, 1, (X) S Y (ty — 1), (6.7)

where Y is the extremal process associated with the Frechet extreme-value
cdf in (5.34) in Section 4.5.

Proof. To carry out the proof we exploit convergence of random point
measures to a Poisson random measure, as in Chapter 4 of Resnick (1987).
We will briefly outline the construction. We use random point measures on
R?. For a € R?, let ¢, be the measure on R? with

awt)={ ok (6.

A point measure on R? is a measure p of the form

o
TE N (6.9)
=1
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where {a; : i > 1} is a sequence of points in R? and
u(K) < oo (6.10)

for each compact subset K of R?. Let M,(R?) be the space of point measures
on R?. We say that u, converges vaguely to p in M,,(]R2) and write p, — u
if

/fdun—>/fd,u as m — o0 (6.11)

for all nonnegative continuous real-valued functions with compact support.
It turns out that M, (R?) with vague convergence is metrizable as a complete
separable metric space; see p. 147 of Resnick (1987).

We will consider random point measures, i.e., probability measures on
the space M,(R?). A Poisson random measure N with mean measure v is a
random point measure with the properties

(i) N(41), N(Asz),...,N(Ag) are independent random variables for all k
and all disjoint measurable subsets A1, Ao, ..., A of R?

(ii) for each measurable subset A of R¥,

(6.12)

where v is a measure on R?. In our context, the random point measure limit
associated with the sequence {Xj : k > 1} is

o0

D Emnxifeny = N (6.13)
k=1

where ¢, is again as in (6.6) and N is a Poisson random measure with mean
measure v determined by

V(A X [z,00)) = A(A)z™* x>0, (6.14)

where A is Lebesgue measure; the proof of convergence is shown in Resnick
(1987).

We now use the Skorohod representation theorem to replace the conver-
gence in distribution in (6.13) by convergence w.p.1 for special versions. It
then follows (p. 211 of Resnick) that

My 1, (Xn) = Y(t2 —t1) in R (6.15)
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for almost all ¢1,t, with 0 < ¢; < 9, again for the special versions. We then
can apply Theorem 15.5.1 to deduce that

X, —> X in E((0,00,R) , (6.16)

again for the special versions. However, the w.p.1 convergence implies the
desired convergence in distribution. Clearly the distributions of X, and X
are characterized by the independence and the distributions of the maxima
Mtl,tz (Xn) and Mtl,tQ (X) |

Thus we have established a limit for the scaled process X, in E and
connected it to the convergence of successive maxima to extremal processes.

15.7. The Space F

We now use parametric representations to define the space F of functions
larger than E. Our purpose is to more faithfully model the fluctuations
associated with the excursions. In particular, we now want to describe the
order in which the points are visited in the excursions.

Suppose that the graphs T'; of elements Z of E = E([0, 7], R¥) are defined
as in Section 15.4 and that the conditions of Theorem 15.4.1 hold. We will
focus on the subset Eg; of strongly connected functions in E, and call the
space FE.

We say that two (strong) parametric representations of a graph I'; are
equivalent if there exist nondecreasing continuous function A; and A map-
ping [0,1] onto [0, 1] such that

(u1,71) 0 A1 = (u2,72) 0 A2 . (7.1)

A consequence of (7.1) is that, for each t € S, the functions u; and ug in
the two equivalent parametric representations visit all the points in I(¢), the
same number of times and in the same order. (Staying at a value is regarded
as a single visit.)

We let F' be the set of equivalence classes of these parametric repre-
sentations. We thus regard any two parametric representations that are
equivalent in the sense of (7.1) as two representations of the same function
in F. Let & denote an element of F' and let II4(%) be the set of all parametric
representations of Z, i.e., all members of the equivalence class.

Paralleling the metric ds; inducing the M; topology on D in equation
(3.7) in Section 12.3, let d, be defined on F = F([0,T],R*) by

ds(.’ﬁl,.’ﬁg) = inf ){||u1 — ’U/2|| \% ||’/'1 — 7‘2”} . (72)

(ug,r;)ENg (&
i=1,2
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We call the topology on F' induced by the metric ds in (7.2) the M; topology.

Paralleling Theorem 12.3.1, we can conclude that d; in (7.2) is a bonafide
metric.

Theorem 15.7.1. The space (F,ds) for ds in (7.2) is a separable metric
space.

To prove Theorem 15.7.1, we use the following lemma, which closely
parallels Lemma 12.3.2.

Lemma 15.7.1. For any Z1, @2 € F, (u1,7m1) € Us(21) and € > 0, it is
possible to find (ug,r2) € Is(Z2) such that

||U1 — U,QH \Y ||’l”1 — ‘I”QH < ds(.’fil,.fQ) + €. (73)

Given an element & in F, let (&) denote the associated element of
E. (Note that v : F — E is a many-to-one map.) Let Iz = ') be
the graph of (%) or just . It is easy to relate convergence %, — & in
(F, M) to convergence y(Zp) — v(Z) in (E, M3) because both modes of
convergence have been characterized by parametric representations. Clearly,
M, convergence in F' implies My convergence in E, but not conversely.

Theorem 15.7.2. (relating the metrics d, 9 and d;) For &, 3 € F,

dé’,?(f)/(j;l),’)’(*%?)) < dé’(ﬁ;l:jQ) y

where dg 2 and ds are defined in (5.1) and (7.2). Hence, if £, — Z in (F, M),
then y(Zn) = (&) in (Es, SM2).

To put (F,ds) into perspective, recall that for D with the metric ds in
(3.7) of Section 12.3 inducing the SM; topology, all parametric representa-
tions were required to be nondecreasing, using an order introduced on the
graphs. Thus, all parametric representations of  in D are equivalent para-
metric representations. In contrast, here with the more general functions in
F', there is in general no one natural order to consider on the graphs.

Paralleling Theorem 15.4.6 and Corollary 15.4.1, we can identify (D, SM)
as a subset of (F, My).

Theorem 15.7.3. Let D' be the subset of functions & in F for which Tz is
the graph of a function in D, i.e., for which

I(t) = [z(t—),z(t+)] in RE (7.4)
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for allt € S, and for which the parametric representation is monotone in
the order on the graphs defined in Section 12.3. Then (D', ds) for ds in (7.2)
is homeomorphic to (D,SMi). Indeed,

ds(%1,%2) = ds(v(21),7(22)) (7.5)

where ds(y(21),v(Z2)) is interpreted as the metric on D in (3.7) of Section
12.3.

We now give an example to show how F' allows us to establish new limits.
We will show that we can have z,, = z in (D, M3), zp, /4 = in (D, M;) and
Zn — & in (F, M7). An important point is that the new M; limit Z in F is
not equivalent to the Ms limit z in D.

Example 15.7.1. Convergence in (F,M;) where convergence in (D, M)
fails. Consider the functions z = Ij; o) and

2,(0) = z,(1) =z, (1 +2n"Y) =0
to(1+n ) =2,(1+3n ) =2,(2) =1,

with z,, defined by linear interpolation elsewhere. Note that z, — z in
(D, M), but z,, /4 =z in (D, M;). However, Z,, — % in (F, M), where % is
different from z. The convergence &, — & in F' implies that v(Z,) — v(Z)
in (E, M), which in this case is equivalent to z,, — z in (D, M5). =

15.8. Queueing Applications

In this final section we discuss queueing applications of the spaces F
and F. First, for queueing networks, the key result is the following analog
of results in Chapter 14.

Theorem 15.8.1. (the multidimensional reflection map on F) The mul-
tidimensional reflection map R defined in Section 14.2 is well defined and
measurable as a map from (F, My) to (F, M1). Moreover, R is continuous at
all & in Fy, the subset of functions in F with discontinuities or excursions
in only one coordinate at a time, provided that the range is endowed with
the product topology. Hence, if &, — & in (F,My), where & € Fy, then
V(R(En)) = V(R()) in (Bwk, WMs).

A natural way to establish stochastic-process limits in F' and E is to
start from stronger stochastic-process limits in D and then abandon some
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of the detail. In particular, we can start with a stochastic-process limit
in (D, SM;) that simultaneously describes the asymptotic behavior in two
different time scales. We can then obtain a limit in (F, M;) when we focus
on only the longer time scale. From the perspective of the longer time scale,
what happens in the shorter time scale happens instantaneously. We keep
some of the original detail when we go from a limit in (D, SM;) to a limit
in (F, M1), because the order in which the points are visited in the shorter
time scale at each one-time excursion is preserved.

To illustrate, we consider a single infinite-capacity fluid queue that al-
ternates between periods of being “in control” and periods of being “out of
control.” When the system is in control, the net-input process is “normal;”
when the system is out of control, the net-input process is “exceptional.”
The model is a generalization of the infinite-capacity version of the fluid
queue in Chapter 5. The alternating periods in which the system is in and
out of control generalize the up and down times for the queueing network
with service interruptions in Section 14.7, because here we allow more com-
plicated behavior during the down times.

As in Section 14.7, let {(Uy, Dy) : k > 1} be the sequence of successive
up and down times. We assume that these random variables are strictly
positive and that ) .2, Uy = oo w.p.l. The system is up or in control
during the intervals [T}, Ty + U) and down or out of control during the
intervals [Ty, + Uy, Tk+1), where T}, = Ele(Ui + D;), k > 1, with Ty = 0.

Let X}’ and X}! be potential net-input processes in effect during the Eth
up period and down period, respectively. We regard X}’ and X,‘ci as random
elements of D = D([0,00),R) for each k. However, X} is only realized
over the interval [0,Uy), and X} is only realized over the interval [0, Dy).
Specifically, the overall net-input process is the process X in D defined by

X(t) = { X (t = Tg) + X (Ty), T, <t <Tp+ Uy,
Xo (t—Tp—Up) + X(Th + Ur), T+ Up <t <Tpp,
(8.1)
for ¢ > 0.
Just as in equations (2.5) — (2.7) in Section 5.2, the associated workload
or buffer-content process, starting out empty, is defined by

W(t)=¢(X)(t) =X () — inf X(s), t>0. (8.2)

0<5<t
We want to establish a heavy-traffic stochastic-process limit for a se-
quence of these fluid-queue models. In preparation for that heavy-traffic
limit, we need to show how to identify the limit process in F: We need to
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show how the net-input random element of D approaches a random element
of F when the down times decrease to 0, while keeping the toital net inputs
over the down intervals unchanged. What happens during the down time is
unchanged; it just happens more quickly as the down time decreases.

To formalize that limit, suppose that we are given a fluid queue model
as specified above. We now create a sequence of models by altering the
variables Dy and the processes X,‘j for all k. Specifically, we let

Dy = ¢, Dy (8.3)

for all k, where ¢, — 00 as n — oo. To keep the associated net-input
processes during these down times unchanged except for time scaling, we let

X24() = Xf(eat), >0, (8.4)
which implies that
X2 (pDpy) = X{(pDy) for 0<p<1.

With this special construction, it is easy to see that the original element
of D approaches an associated element of F' as n — oo.

Lemma 15.8.1. (decreasing down times) Consider a fluid-queue model as
specified above. Suppose that we construct a sequence of fluid-queue models
indexed by n, where the models change only by (8.3) and (8.4) with ¢, — oo
as n — oo. Then X, — X in (F,M).

We are now ready to state the heavy-traffic stochastic-process limit for
the fluid-queue model. We start with a more-detailed limit in D, and obtain
the limit in F' by applying Lemma 15.8.1 to the limit process in D.

For the heavy-traffic limit, we start with a sequence of fluid-queue models
indexed by n. In this initial sequence of models, we let the initial up and
down times be independent of n. We then introduce the following scaled
random elements:

Uprp = nU, k2>1,

Dny = nPDy, k>1,

vt = nTIXY(nt), t>0,
Xt t) = n XY (nPt), t>0,

X,(t) = nHX,(nt), t>0,

W,(t) = nTW,(nt), t>0, (8.5)
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where
0<pB<1 and H>0. (8.6)

Note that in (8.5) the time scaling of Uy, Xy, ., Xn(t) and Wy (?) in (8.5)
is all by n, while the time scaling of D and X;‘f x 18 by only n®, where
0 < B < 1. Thus the durations of the down pefiods are asymptotically
negligible compared to the durations of the uptimes in the limit as n — oo.

Here is the result:

Theorem 15.8.2. (heavy-traffic limit in F') Consider a sequence of fluid-
queue models with the scaling in (8.5). Suppose that

{(Uthn,kan,kaXZ,k) tk>1}
= {(Up, D Xj, X{) : k > 1} (8.7)

in (R xR x D xD)® asn — oo, where Uj, >0 for all k and Y ;°, Ul = oo
w.p.1. Then

(X, W,) = (X,W) in (F M) x (F,M)

with the product topology on the product space (F, My) x (F, My), where X is
the limit in F obtained in Lemma 15.8.1 applied to the limiting fluid queue
model with up and down times (U}, D) and potential net-input processes
XY and X¢ in (8.7) and W = ¢(X). Consequently,

A

W, =~v(W) in (E,M,).

A standard sufficient condition for condition (8.7) in Theorem 15.8.2 is
to have the random elements (Un,k,Dn,k,Xx’k,Xg’k) of RxR x D x D be
IID for k£ > 1 and to have

(Un,laDn,lang,laX%,l) = (U{aDlla Ifaxcli) (88)
in RxRx D x D. In the standard case, we have H = 1/2 and X% Brownian
motion with drift down, but we have seen that there are other possibilities.
In this framework, the complexity of the limit process is largely determined
by the limit process X¢ describing the asymptotic behavior of the net-input
process during down times. We conclude by giving an example in which the
limiting stochastic process, regarded as an element of F' or E, is tractable.

Example 15.8.1. The Poisson-excursion limit process. A special case of
interest in the IID cycle framework above occurs when the limit X} in (8.7)
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is deterministic, e.g., X}(t) = ct, t > 0. A further special case is to have
¢ = 0. Then the process is identically zero except for the excursions, so all
the structure is contained in the excursions.

Suppose that we have this special structure; i.e., suppose that X} (¢) = 0,
t > 0. If, in addition, U, is exponentially distributed, then in the limit the
excursions occur according to a Poisson process. We call such a process a
Poisson-excursion process.

To consider a simple special case of a Poisson-excursion process, suppose
that, for each k, the process Xg,k corresponds to a partial sum of three
random variables Z,, 1. 1, Zp k2, Zn k,3 evenly spaced in the interval [0, nP Dy,
i.e., occurring at times n®Dy /4, 2n# Dy /4 and 3nPDy /4. For example, we
could have deterministic down times of the form Dy = 4 for all k£, which
implies that Dy, ; = 4nPB for all k.

Consistent with (8.7), we assume that

" (Znkts Znk2s Zng,s) = (Zka, Zeo, Zes) as n— 0o . (8.9)

Then the base process X associated with the graph of the limit X is

N(t)
X(t)=> Y, t>0, (8.10)
=1

where {N(t) : t > 0} is a Poisson process with rate 1/EU] and {Y;} is an
IID sequence with ¥; < E?Zl Zi ;.

The excursions in more detail are described by the successive partial
sums {Y°7_; Z;j : 1 < n < 3}; ie., the first excursion occuring at time Uj
goes from 0 to Z1, then to Z1 + Zo, and finally to Z; + Z> + Z3. Note that we
have not yet made any restrictive assumptions on the joint distribution of
(Zn ks Znk,2y Zn k,3), SO that the limit (Zj 1, Zg 2, Zk,3) can have an arbitrary
distribution. However, if in addition, Z; 1, Zj 2 and Zj 3 are I1ID, then we
can characterize the limiting distribution of (W), the random element of
E representing the buffer content. The base process W can be represented
as

where {N(t) : t > 0} is the Poisson process counting limiting excursions
and @y is the queue-content in period k of a discrete-time queue with IID
net inputs distributed as Zi, i.e., where {Qy : k > 0} satisfies the Lindley
equation

Qr = max{Qr_1 + Z;,0}, k2>1, (8.12)
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with Qo = 0. Consequently, W(t) = W as t — oo, where the limiting
workload W is distributed as Q) with Q; = @ as k — oo.

The additional excursions in W occur according to the Poisson process
N. Given that the k'™ excursion occurs at time ¢, we can easily describe
it in terms of the four random variables W (t—), Zj 1, Z; 2 and Zj 3: The
process moves from Ay = W(t—) to A1 = maz{0,A¢ + Zi,1}, then to
Ay = maxz{0,A1 + Zi o} and finally to W(t) = A3 = maz{0, A2 + Z 3}.
For the process in F', these three steps all occur at the time ¢. The parametric
representation moves continuously from Ay to Aj, then to Ao and As. The
limiting workload then remains constant until the next excursion. =



