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1 Introduction

In this paper we consider a generalization of the classical Erlang loss model which incorpo-

rates two important features of real service systems: (i) retrials and (ii) time-dependent arrival

rates. There is a substantial literature on generalizations of the Erlang loss model which in-

corporate each of these features separately. First, early work on stationary loss models with

retrials was done by Kosten [6] and Cohen [1]; see Section 9.2.4 of Syski [9]. Accounts of

more recent work on stationary loss models with retrials can be found in the surveys by Yang

and Templeton [13] and Falin [2] and in Chapter 7 of the textbook by Wolff [12]. Second,

early work on nonstationary loss models without retrials was done by Palm [8] and Khintchine

[5]. Accounts of more recent work on nonstationary loss models with retrials can be found in

Jagerman [3], Taaffe and Ong [10] and Massey and Whitt [7]. However, we are unaware of any

previous work on nonstationary loss models with retrials.

We make assumptions so that the nonstationary loss model with retrials can be represented

as a two-dimensional continuous-time Markov chain (CTMC) {(Qc(t), Qr(t)) : t ≥ 0}, as

depicted in Figure 1. There are L lines (servers), Qc(t) is the number of calls in progress (i.e.,

the number of busy servers) at time t, and Qr(t) is the number of calls in retry mode (in orbit)

at time t. We assume that the external arrival process is a nonstationary Poisson process

with time-dependent intensity function α(t). We assume that the holding times of successive

calls to enter service are i.i.d. exponential random variables with mean µ−1
c
. Thus, the rate

of service completion at time t is µcQc(t). Each arrival that finds all L lines busy is blocked.

We assume that this call leaves the system with probability 1− pr and enters the retry mode

with probability pr. Each call that enters the retry mode tries again after a random delay. We

assume that the successive retry delays are i.i.d. exponential random variables with mean µ−1
r
.

Thus the retry rate at time t is µrQr(t). Moreover, we assume that the arrival process, holding

times and retry delays are all mutually independent. It is easy to see that these assumptions

make (Qc(t), Qr(t)) a non-stationary CTMC on the state space {0, 1, . . . , L} × Z+, where Z+

is the set of nonnegative integers. We give the forward equations characterizing this CTMC in

Section 2. Our model has µc, pr and µr constant and all time-variation in α(t), which seems

to be the case of greatest interest, but we could also let µc, pr and µr depend on t.

The time-dependent distributions P (Qc(t) = j, Qr(t) = k) can be obtained directly by

numerically solving the forward equations if we modify the model to make the state space
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finite. For example, we can let the retrial probability be 0 instead of pr when Qr(t) ≥ R for

a suitably large R. Then the total number of states is (L + 1)(R + 1). Assuming that R is

O(L), this makes the number of states, and thus the number of equations, O(L2). Since typical

cases of interest include L = 100 or L = 1000, the number of equations can be so large that

computation is difficult.

To address this problem, we propose an alternative approximation scheme that has only

L + 2 equations. The idea is to assume, as an approximation, that Qc(t) and Qr(t) can be

approximated by random variables Q̄c(t) and Q̄r(t) that are probabilistically independent; i.e.,

we assume that

P (Q̄c(t) = j, Q̄r(t) = k) = P (Q̄c(t) = j)P (Q̄r(t) = k) (1.1)

for all t, j and k. This allows us to treat the evolution of the one-dimensional probabili-

ties P (Q̄c(t) = j) and P (Q̄r(t) = k) separately via separate systems of forward equations.

Moreover, since Q̄r(t) corresponds to an infinite-server system, we can describe its behavior

through a single equation involving its mean EQ̄r(t). This reduction makes the total number

of equations L+ 2.

Of course, it is important to approximately capture the important dependence between

these probabilities. We do this by making the time-dependent transition rates in each system

depend on the time-dependent distribution of the other component; i.e., when considering

the evolution of P (Q̄c(t) = j), we let the arrival rate from retrials be µrEQ̄r(t); and when

considering the evolution of P (Q̄r(t) = k), we let the arrival rate from retrials by new arrivals

be α(t)prP (Q̄c(t) = L) and the departure rate from the retry mode be Q̄r(t)µr(1−prP (Qc(t) =

L)). The term Q̄r(t)µrprP (Q̄c(t) = L)) represents the rate of retrials completing a retry delay

that immediately retry again because all L lines are busy again. The overall approximation

scheme can be regarded as time-dependent analog of the reduced-load (or Erlang) fixed-point

approximation for blocking probabilities in stationary loss models; see Whitt [11] and Kelly [4].

The analog of the independence assumption (1.1) above is the facility-independence assumption

(5) on p. 1814 of [11].

It is significant that our approximation scheme reduces the analysis to two coupled time-

dependent systems that have been analyzed previously. In particular, the process Q̄c(t) evolves

as an Mt/M/L loss model, while Q̄r(t) evolves as an Mt/Mt/∞ model. Hence approximations

for these more elementary nonstationary models can be used to obtain even simpler approxima-

tions. For example, the pointwise stationary approximation (PSA) and modified-offered-load
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(MOL) approximation could be used for theMt/M/L loss model; see [7]. The MOL approxima-

tion reduces the number of equations for the Mt/M/L model from L+1 to 1, and thus reduce

the overall number of equations to 2. However, we found that the PSA and MOL approxima-

tions performed significantly worse than the exact computation of the Mt/M/L probabilities

in the approximation. Hence, we do not discuss such further simplifying approximations here,

but their availability should be noted. The weakness of PSA is in overestimating the blocking

probabilities at peak times and in not computing the time of peak blocking accurately. The

nature of MOL is to be at its best when approximating small probabilities, but we are most

interested in analyzing the retry model when the blocking probabilities are relatively large.

We evaluate our approximations by making numerical comparisons with simulations. Our

approach to simulation itself seems worth mention. We obtain simulation efficiency by per-

forming multiple replications within a single run.

Here is how the rest of this paper is organized. In Section 2 we write down the functional

forward equations for the nonstationary CTMC and derive the approximate equations. In

Section 3 we describe our simulation methodology. In Section 4 we compare the approximations

to simulations for a few numerical examples. Finally, in Section 5 we state our conclusions.

3



References

[1] Cohen, J. W. (1957) Basic Problems of Telephone Traffic Theory and the Influence of

Repeated Calls. Philips Telecom. Rev. 18, 49–100.

[2] Falin, G. (1990) A Survey of Retrial Queues. Queueing Systems 7, 127–167.

[3] Jagerman, D. L. (1975), Nonstationary Blocking in Telephone Traffic, Bell System Tech-

nical Journal, 54, 625–661.

[4] Kelly, F. P. (1991) Loss Networks, Ann. Appl. Prob. 1, 319–378.

[5] Khintchine, A. Y. (1955) Mathematical Methods in the Theory of Queueing, Trudy Math.

Inst. Steklov 49 (in Russian, English translation by Charles Griffin and Co., London,

1960).

[6] Kosten, L. (1947) On the Influence of Repeated Calls in the Theory of Probabilities of

Blocking, De Ingenieur 59, 1–25 (in Dutch).

[7] Massey, W. A. and Whitt, W. (1994) An Analysis of the Modified Offered Load Approx-

imation for the Nonstationary Erlang Loss Model, Ann. Appl. Prob. 4, to appear.

[8] Palm, C. (1943) Intensity Variations in Telephone Traffic, Ericsson Technics, 44, 1–189

(in German). (English translation by North-Holland, Amsterdam, 1988).

[9] Syski, R. (1986) Introduction to Congestion Theory in Telephone Systems, second ed.,

North-Holland, Amsterdam.

[10] Taaffe, M. R. and Ong, K. L. (1987) Approximating Ph(t)/M(t)/S/C Queueing Systems.

Ann. Oper. Res. 8, 103–116.

[11] Whitt, W. (1985) Blocking When Service Is Required from Several Facilities Simultane-

ously, AT&T Tech. J. 64, 1807–1856.

[12] Wolff, R. W. (1989) Stochastic Modeling and the Theory of Queues, Prentice Hall, Engle-

wood Cliffs, NJ.

[13] Yang, T. and Templeton, J. G. C. (1987) A Survey on Retrial Queues. Queueing Systems

2, 201–233.


