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Abstract

We establish a heavy-traffic asymptotic expansion (in powers of one minus the traffic

intensity) for the asymptotic decay rates of queue-length and workload tail probabilities in stable

infinite-capacity multi-channel queues. The specific model has multiple independent

heterogeneous servers, each with i.i.d. service times, that are independent of the arrival process,

which is the superposition of independent non-identical renewal processes. Customers are

assigned to the first available server in the order of arrival. The heavy-traffic expansion yields

relatively simple approximations for the tails of steady-state distributions and higher percentiles,

yielding insight into the impact of the first three moments of the defining distributions.

Key words: queues, multi-channel queues, waiting-time distribution, tail probabilities,

asymptotics, heavy traffic



1. Introduction

Let Q and W be the steady-state queue length (number in system) and workload (remaining

service time of all customers in the system) at an arbitrary time in an infinite-capacity queueing

model. In surprisingly great generality,

σ − kP(Q > k) → β as k → ∞ (1)

and

e ηxP(W > x) → α as x → ∞ , (2)

where σ and η are the asymptotic decay rates and β and α are the asymptotic constants. For the

GI/G/1 queue, such exponential small-tail asymptotics were established in 1953 by Smith [20];

these results require that the service-time distribution have a finite moment generating function in

a neighborhood of the origin. For recent extensions and more references, see Abate, Choudhury

and Whitt [1]-[3], Asmussen and Perry [5], Asmussen and Rolski [6], Elwalid and Mitra [10],

[11], Falkenberg [12], Neuts [18], Tijms [21] and Whitt [23]. Corresponding small-tail

asymptotics also typically hold for the steady-state random variables associated with the

embedded processes, observing just before arrivals or just after departures, with the same

asymptotic decay rates, but different asymptotic constants; see [2].

In even greater generality, we have the weaker limits

k − 1 log P(Q > k) → log σ as k → ∞ (3)

and

x − 1 log P(W > x) → − η as x → ∞ ; (4)

see Chang [7] and Glynn and Whitt [13]. The limits (1) and (2) support the approximations

P(Q > k) ∼∼ β σk and P(W > x) ∼∼ αe − ηx , (5)



- 2 -

and the limits (1)–(4) support the cruder approximations

P(Q > k) ∼∼ σk and P(W > x) ∼∼ e − ηx . (6)

Moreover, these approximations are often surprisingly good; see Section 1.9 and Chapter 4 of

Tijms [21] and [1]. The cruder approximations in (6) are often good for high percentiles.

In [1] a heavy-traffic expansion was developed for the decay rate η in the GI/GI/1 model,

which reveals how η depends on the first three moments of the interarrival-time and service-time

distributions when the traffic intensity is not too low. The first term corresponds to the familiar

heavy-traffic limit [16], [17]. The second term is especially revealing as a refinement of this

heavy-traffic limit. Numerical examples in [1] clearly demonstrate the value of this approach. It

is significant that the heavy-traffic refinements for η are much more tractable than the heavy-

traffic refinements for the mean EW; i.e., we obtain useful exact formulas for η, whereas this is

not possible for the mean; see [22] and [1].

The purpose of this paper is to develop the corresponding heavy-traffic expansions for both η

and σ in the general multi-channel queue, with m heterogeneous servers and the superposition of

n independent non-identical renewal arrival processes. This multichannel model is of

considerable interest to study the effect of statistical multiplexing in communication networks.

The asymptotic decay rates play a key role in concepts of effective bandwidth for admission

control; see Chang [7], Elwalid and Mitra [10], [11] and Whitt [23]. The way to determine the

decay rates for this model was indicated in [23]. Theoretical justification was provided first for

the special case of phase-type distributions by Neuts [18] and then for the special case of a single

server by Chang [7] and Glynn and Whitt [13]. However, in full generality, the formula for the

decay rates remains to be justified.

Interestingly, the GI/GI/1 analysis extends directly to the
i = 1
Σ
n

GI i /GI/ m model with m
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identical servers in parallel and an arrival process that is the superposition of n independent and

identical renewal arrival processes, because the decay rates σ and η are the same as for the

GI/GI/1 model, after an appropriate adjustment of the time scale. However, this also remains to

be fully proved.

Here is how this paper is organized. In Section 2 we review the equations determining the

asymptotic decay rates; in Section 3 we establish the heavy-traffic expansion; and in Section 4 we

make a few concluding remarks.

Since this paper was written, we have made significant extensions of the results here in

Choudhury and Whitt [9] and Glynn and Whitt [13], [14]. We have also developed numerical

algorithms and evaluated the approximations based on the asymptotics. In Choudhury, Lucantoni

and Whitt [8] we show that the quality of the cruder asymptotic approximations in (6) based on

the decay rates η and σ alone can deteriorate dramatically when the number of sources gets large.

2. The Model and the Determining Equations

The model is specified by n + m nonnegative mean-one random variables U i , 1 ≤ i ≤ n, and

V j , 1 ≤ j ≤ m, and n + m time-scaling factors (arrival and service rates) ρw i , 1 ≤ i ≤ n, and µ j ,

1 ≤ j ≤ m, where it is understood that
i = 1
Σ
n

w i = 1 and
j = 1
Σ
m

µ j = 1; i.e., the total service rate is 1

and the total arrival rate (which equals the traffic intensity) is ρ. The random variable U i /ρw i is

a generic interarrival time in the i th arrival channel, while the variable V j /µ j is a generic

service-time at the j th server. We assume that customers are assigned to the first available server

in order of arrival, with some procedure to break ties. Interestingly, the tie-breaking mechanism

does not affect the asymptotic decay rates.

Our asymptotic expansion as ρ → 1 will involve the parameters w i and µ j , and the first three

moments of U i and V j , which we assume are finite. Moreover, we assume that the moment
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generating functions E e sV j are all finite for some positive s. This is a necessary (but not

sufficient) condition for (1) and (2); see [1].

Let u ik and v j k be the k th moments of U i and V j , respectively. Let cai
2 and cs j

2 be the squared

coefficients of variation (SCV, variance divided by the square of the mean) of U i and V j . By the

assumptions above,

u i1 = v j1 = 1 , u i2 − 1 = cai
2 and v j2 − 1 = cs j

2 .

Note that u i3 and v j3 are the third moments of U i and V j instead of U i /ρw i and V j /µ j .

We now describe the equations that we conjecture determine the asymptotic decay rates. (As

indicated in the introduction, the references explain where these equations come from and provide

strong supporting evidence for their validity.) The geometric decay rate σ in (1) is the unique

root z in (0,1) of the decay-rate equation

i = 1
Σ
n

a i (z) =
j = 1
Σ
m

s j (z) , (7)

where a i (z) ≡ a i (z , ρ) and s j (z) are the functions of z that are roots of the individual

congestion equations

E e − a i (z) U i /ρw i = z , 1 ≤ i ≤ n , (8)

and

E e s j (z) V j /µ j =
z
1_ _ , 1 ≤ j ≤ m . (9)

Then the exponential decay rate η ≡ η(ρ) in (2) is simply

η =
i = 1
Σ
n

a i (σ) =
j = 1
Σ
m

s j (σ) . (10)
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3. The Heavy-Traffic Expansion

In this section we show how to obtain heavy-traffic asymptotic expansions for the decay rates

σ and η in (1) and (2) as ρ → 1 from below, using a variant of the method used for the GI/GI/1

queue in [1]. For the GI/GI/1 queue, this idea goes back to Smith [20, p. 461], but he considers

only the first term. Even the first term is useful here, because it provides additional support for

§2. The first term yields the exact decay rate of the limiting exponential in the heavy-traffic limit

given in [16]–[17], as we will now demonstrate.

To do the asymptotics for the decay rates, it is convenient to work with the cumulant

generating functions, which are the logarithms of the moment generating functions [15, p. 64].

The specifying equations (8) and (9) become

log Ee − sU i /ρw i = log z , 1 ≤ i ≤ n , (11)

and

log E e sV j /µ j = − log z , 1 ≤ j ≤ m . (12)

The coefficients of s n / n! in the power series expansion of these cumulant generating functions

are the cumulants of − U i / w i ρ and V j /µ j , respectively. The first three cumulants of U i are

u i1 = 1, u i2 − ui1
2 = u i2 − 1 ≡ cai

2 and u i3 − 3u i1 u i2 + 2ui1
3 = u i3 − 3u i2 + 2. We will

express the cumulants via the moments below. The key parameters are

ca
2 =

i = 1
Σ
n

w i cai
2 where cai

2 = u i2 − 1 , (13)

cs
2 =

j = 1
Σ
m

µ j cs j
2 where cs j

2 = v j2 − 1 , (14)

d a =
i = 1
Σ
n

w i 6

(u i3 − 3cai
2 (cai

2 + 1 ) − 1 )_ ______________________ (15)

d s =
j = 1
Σ µ j 6

(v j3 − 3cs j
2 (cs j

2 + 1 ) − 1 )_ ______________________ . (16)
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Theorem. Assuming that the decay-rate equation (7) has a unique root in (0,1) and the cumulant

generating function (11) and (12) admit partial asymptotic expansions in powers of s, we obtain

the following asymptotic expansions for the asymptotic decay rates σ and η in (1) and (2):

σ = 1 −
ca

2 + cs
2

2 ( 1 − ρ)_ _______ +


 (ca

2 + cs
2 )3

8 (d s − d a )_ __________ −
(ca

2 + cs
2 )2

2 (ca
2 − 1 )_ ________





( 1 − ρ)2 + O( ( 1 − ρ)3 ) as ρ → 1 (17)

and

η =
ca

2 + cs
2

2 ( 1 − ρ)_ _______ −


 (ca

2 + cs
2 )3

8 (d s − d a )_ __________ −
(ca

2 + cs
2 )2

2 (ca
2 − cs

2 )_ _________




( 1 − ρ)2 + O( ( 1 − ρ)3 ) (18)

=
ca

2 + cs
2

2 ( 1 − ρ)_ _______ ( 1 − X( 1 − ρ) + O( ( 1 − ρ)2 ) as ρ → 1 ,

where

X =
(ca

2 + cs
2 )2

4 (d s − d a )_ _________ +
ca

2 + cs
2

(cs
2 − ca

2 )_ ________ . (19)

Proof. We start by expanding each cumulant generating function in powers of s. We keep only

three terms, but it is easy to go further, provided higher moments are finite. We obtain the

normalized cumulants (expressed via moments) as coefficients; i.e.,

ρw i

− s_ ____ +
2ρ2 wi

2

s 2 (u i2 − 1 )_ __________ −
6ρ3 wi

3

s 3 (u i3 − 3u i2 + 2 )_ _________________ + O(s 4 ) = log z (20)

and

µ j

s_ __ +
2µj

2

s 2 (v j2 − 1 )_ __________ +
6µj

3

s 3 (v j3 − 3v j2 + 2 )_________________ + O(s 4 ) = − log z (21)

as s → 0. We then use the inverse function theorem with (11) and (12), as with reversion of

power series (matched power series) [4, p. 16], to write s ≡ ã i (z) and s ≡ s̃ j (z) as functions of

ε = − log z (where ã i and s̃ j are the values of s as functions of log z and − log z, respectively,

yielding equality in (11) and (12)), i.e., ã i ( − log z) = a i (z) and s j ( − log z) = s j (z), obtaining
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ã i (ε) = ρw i ε +
2

ρw i (u i2 − 1 ) ε2
_ _____________ + ρw i



 2

(u i2 − 1 )2
_ ________ −

6

(u i3 − 3u i2 + 2 )_ _____________




ε3 + O(ε4 ) (22)

and

s̃ j (ε) = µ j ε −
2

µ j (v j2 − 1 )_ __________ ε2 + µ j



 2

(v j2 − 1 )2
_ _________ −

6

(v j3 − 3v j2 + 2 )_ ______________




ε3 + O(ε4 ) (23)

as ε ≡ log z → 0.

Now we can apply (7) to obtain the asymptotic form of the characterizing equation

δ(ε) ≡
j = 1
Σ
m

s̃ j (ε) −
i = 1
Σ
n

ã i (ε) = 0 . (24)

Substituting (22)–(23) and (13)–(16) into (24), we obtain

2

(cs
2 + ρca

2 ) ε_ ___________ + (d s − ρd a ) ε2 + O(ε3 ) = 1 − ρ . (25)

We now intend to apply the inverse function theorem again to (25) to represent ε as a partial

power series in ( 1 − ρ). First, however, we eliminate ρ from the coefficients of εk in the left side

of (25). We write (25) as

Aε + Bε ω + Cε2 + Dε2 ω + O(ε3 ) = ω (26)

where ω = 1 − ρ, A = (cs
2 + ca

2 )/2, B = − ca
2 /2 and C = (d s − d a ). Then, substituting

expression (26) for ω in each appearance of ω in the left side of (26), we get

Aε + (C + AB) ε2 + O(ε3 ) = ω . (27)

Hence, by the inverse function theorem, we get

ε =
cs

2 + ca
2

2 ( 1 − ρ)_ _______ −


 (cs

2 + ca
2 )3

8 (d s − d a )_ __________ −
(cs

2 + ca
2 )2

2ca
2

_ _________




( 1 − ρ)2 + O( ( 1 − ρ)3 ) . (28)
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Finally, since ε = − log z, the geometric decay rate in (1) is

σ = e − ε = 1 − ε +
2
ε2
_ __ + o(ε2 ) as ε → 0 , (29)

which is equivalent to (17).

Next, since η = ψ(σ) = ψ̃( − log σ), where − log σ = ε, ψ =
j = 1
Σ
m

s j and ψ̃ =
j = 1
Σ
m

s̃ j , by

(10), we can apply (23) to obtain

η = ε −
2

cs
2

_ __ ε2 + O(ε3 ) as ε → 0 . (30)

Then we can apply (25) to obtain (18).

The first-order approximations σ ∼∼ 1 − η and η ∼∼ 2 ( 1 − ρ)/(ca
2 + cs

2 ) in (17) and (18) are the

familiar heavy-traffic limits [16]–[17]. Formulas (17)–(19) agree with previously derived

formulas for the GI/GI/1 queue. For example, the correction factor X in (19) coincides with the

previously derived GI/GI/1 result in the single-channel case [1]: For the GI/GI/1 model,

X =
3 (ca

2 + cs
2 )2

2 (v 3 − 3cs
2 (cs

2 + 1 ) − u 3 + 3cs
2 (cs

2 + 1 ) ) + 3 ( (cs
2 )2 − (ca

2 )2 )_ ______________________________________________________ . (31)

Note that X = 0 when u 3 = v 3 and ca
2 = cs

2 , and thus in the M/M/1 special case.

Formulas (17)–(19) are especially important to develop insight into the way the decay rates

depend on the underlying parameters. First, the arrival process beyond its rate affects

approximations (17) and (18) solely via the parameters ca
2 and d a , while the service process

beyond its rate affects these approximations solely via the parameters cs
2 and d s . From (18)

(regarding the terms lexicographically), we see that η is decreasing (more congestion) in the

arrival rate λ and the ‘‘second-moment’’ terms ca
2 and cs

2 in (13) and (14), as we expect. The

decay rate η is also decreasing in the service ‘‘third-moment’’ parameter d s in (16), but

increasing in the arrival ‘‘third-moment’’ parameter d a in (15). This last property can be
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understood by considering the fact that, for given first two moments, a high third moment usually

means more mass near the origin, and thus more short interarrival times.

We can see the effect of the degree of heterogeneity in the way the four parameters

ca
2 , d a , cs

2 , d s in expansions (17) and (18) are determined. From (13)–(16), we see that these

parameters are all convex combinations of the corresponding single-source parameters, with the

weights depending on the rate of the source.

4. Concluding Remarks

The analysis in this paper extends to other single-channel processes. For example, if the i th

single-channel arrival process is a Markov renewal process (MRP) as in Neuts [18] and §III.B of

[23], then we replace Ee − sU i in (8) by f̂ i (s) where f̂ i (s) is the Perron-Frobenius eigenvalue of the

matrix of Laplace transforms of the MRP. Instead of (16), we expand the function log f̂ i (s /ρw i )

about s = 0; see Choudhury and Whitt [9] and Glynn and Whitt [13], [14]. Key structural

properties of f̂ i (s), including its derivatives, are given in the Appendix of Neuts [19]. The

coefficient (u i2 − 1 ) in (20) should be replaced by the asymptotic variance constant of the

associated rate-1 MRP, i.e., the limit of the index of dispersion for counts (IDC), i.e., I c (∞)

where

I ci (t) =
E A i (t)

Var A i (t)_ ________ , t > 0 , (32)

and A i (t) counts the number of arrivals in the interval [ 0 ,t]; i.e., it is the heavy-traffic limit.

Similarly, if the j th single-channel service process is a Markov renewal process, then we

replace Ee sV j in (9) by ĝ j ( − s) where ĝ j (s) is the Perron-Frobenius eigenvalue of the matrix of

Laplace transforms of the Markov renewal process. Instead of (21), we expand log ĝ j ( − s /µ j )

about s = 0. The coefficient (v j2 − 1 ) in (21) should be replaced by the asymptotic variance

constant of the associated rate-1 MRP, i.e., I c j (∞) where
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I c j (t) =
E S j (t)

Var S j (t)_ ________ , t > 0 , (33)

and S j (t) counts the number of service completions during the first t units of time that the server

is busy.

In this paper we have considered only the asymptotic decay rates σ and η in (1) and (2). In

[1]–[3] we discuss approximations and exact results for the asymptotic constants α and β in (1)

and (2).

The heavy-traffic asymptotic expansion is a convenient approximation, which is useful to

provide insight into the way the tail probabilities depend on the basic model data. It is known

that asymptotic decay rates and asymptotic constants can actually be computed directly from

transforms for a large class of models. For example, suppose that we have the Laplace-Stieltjes

transform of the waiting time, Ee − sW. Then the Laplace transform of P(W > x) is

Ŵ
c
(s) ≡ ∫

0

∞
e − sxP(W > x) dx =

s
1 − Ee − sW
_ _________ . (34)

Then − η is the right-most singularity of Ŵ
c
(s).

Having found η, we can find the asymptotic constant α in (2) by applying the final-value

theorem for Laplace transforms, i.e.,

α ≡
x → ∞
lim e ηxP(W > x) =

s → − η
lim (s + η) Ŵ

c
(s + η) . (35)

To justify (35), we assume that (2) is valid, so that indeed the right-most singularity of Ŵ
c
(s) is a

simple pole. Furthermore, if we can represent Ŵ
c
(s) as N(s)/ D(s) where − η is a root of the

equation D(s) = 0, then we can also express α as

α = N( − η)/ D ′ ( − η) , (36)

where D ′ is the derivative of D.
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