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Abstract

In this paper, we focus on simple exponential approximations for steady-state tail
probabilities in G/GI/1 queues based on large-time asymptotics. We relate the large-time
asymptotics for the steady-state waiting time, sojourn time and workload. We evaluate the
exponential approximations based on the exact asymptotic parameters and their approximations
by making comparisons with exact numerical results for BMAP/GI/1 queues. Numerical

examples show that the exponential approximations are remarkably accurate at the 90" percentile

and beyond.
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1. Introduction and Summary

This paper is a sequd to [1], in which we studied exponential approximations for waiting-
time tail probabilities in infinite-capacity queues based on large-time asymptotics. Let W be the
steady-state waiting time (before beginning service) in an infinite-capacity queue with the first-

come first-served queue discipline. In great generality,
P(W > x) Dae ™™ asx - o, 1

i.e, e”P(W > X) - a asx — o, where n and a are positive constants (independent of X)
called the asymptotic decay rate and the asymptotic constant, respectively. Moreover, the
limiting exponentia form is often a surprisingly good approximation when x is not too small. For
example, the associated approximation for the (100p)" percentile wp = inf{x:

P(W>x) =1-p},
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is usualy remarkably good for p = 0.90. (It is easy to see that the relative error in an
approximation for a high percentile is typically much lower than the relative error in an

approximation for atail probability itself.)

In [1] we presented numerical examples based on exact numerica solutions of the
BMAP/GI/1 queue (with batch Markovian arrival process) and the GI/Gl/s queue to show that the
exponentia approximation based on (1) is remarkably good, lending support to previous work in
the same direction, notably by Tijms [26] and Asmussen [4]. Moreover we developed simple

effective approximations for the asymptotic parametersa and ) in (1).

The purpose of this paper is to relate the large-time asymptotic behavior of the steady-state
waiting time W to the large-time asymptotic behavior of the sojourn time T (response time, i.e.,

waiting time plus service time) and the workload L (virtual waiting time). In particular, we show



that corresponding asymptotics for T and L are valid in any G/GI/1 queue (with general stationary
arrival process) whenever (1) is valid. Moreover, we show that the resulting approximations are

remarkably good by making comparisons with exact numerical values.

There is a substantial body of related literature. For additional work on asymptotics related to
(1), see Abate, Choudhury and Whitt [2], Asmussen [5], [6], Asmussen and Perry [7], Baiocchi
[8], Borovkov [9], Chang [10], Choudhury and Whitt [13], de Smit [14], Elwalid and Mitra [15],
[16], Elwalid, Mitra and Stern [17], Fleming [18], Neuts [22], [23] and Takahashi [25]. In
particular, in [2] we obtain asymptotic results for the steady-state waiting time, workload and
gueue lengths (at arrivals, at arbitrary times and at departures) in the BMAP/GI/1 queue. Our

results here are different because we treat the sojourn time and the more general G/GI/1 model.

The remarkable quality of the exponential approximation (1) for M/GI/1 queues is discussed
in Section 1.9 of Tijms [26] and Section 9 of Abate and Whitt [3]. However, Example 4 of [1]
shows that (1) need not be valid for M/GI/1 queues, even when the service-time distribution has a
finite moment generating function in some neighborhood of the origin. (It isevident that the limit
(1) can fail when this condition does not hold.) In 822 of Borovkov [9] it is shown how to
establish alternative asymptotic behavior (not pure-exponential) for GI/Gl/1 queues when (1) does
not hold. However, Example 4 of [1] shows that the quality of the approximation provided by the
large-time asymptotics deteriorates dramatically when the pure-exponential form is lost. (This
behavior also holdsto T and L.) This phenomenon demonstrates that having a limit such as (1)
does not by itself guarantee a good approximation. However, it turns out that, not only is the
pure-exponential large-time asymptotics in (1) often valid, but it turn out to be a surprisingly

good approximation.

It is now relatively well understood that an exponential approximation based on (1) is good

for the waiting time. It may be surprising, though, that a similar exponential approximation is



also often good for the sojourn time (waiting time plus service time) without any special
assumptions on the service-time distribution. This idea has been advanced by Fleming [18], who
proposes simple heavy-traffic approximations for sojourn-time percentiles as well as waiting-time
percentiles in a class of M/GI/1 queues. (He focuses on two-point service-time distributions,
which are realistic for computer systems.) We provide additional support for thisidea, as well as

develop new approximations for more general models.

Hereis how the rest of this paper is organized. In 82 we relate the asymptotic behavior of the
waiting time, workload and sojourn time in the G/GI/1 model. In particular, we show that all
three satisfy (1) with the same asymptotic decay rate n and asymptotic constantsayy, o and a1
that can be simply related. In 83 we briefly discuss light traffic. In particular, we note that the
asymptotic decay rate n approaches the asymptotic decay rate of the service-time distribution,
defined in (9) below, asp — 0, where p is the traffic intensity. In 84 we apply the asymptotic
exponentia approximations to develop an approximation for the ratio EL/EW. In 85 we discuss
numerical examples for the workload and sojourn time, drawing on Lucantoni [21], Abate and
Whitt [3], Choudhury and Lucantoni [12] and Choudhury [11], just asin [1]. In 86 we relate the
asymptotic decay rate n in (1) to the asymptotic decay rate for the steady-state queue length.

Finally, we state our conclusionsin 87.

2. Sojourn Time and Workload

In this paper we consider the G/GI/1 queueing model with one server, unlimited waiting
space, the first-come first-served discipline and i.i.d. service times that are independent of a
general stationary arrival process. We assume that the mean service timeis 1 and that the arrival
rae is p < 1. We assume that the various steady-state distributions discussed below exist as
proper probability distributions. For the GI/GI/1 queue, it suffices for the interarrival-time

distribution to be nonlattice; see Chapter 8 of Asmussen [4]. For the more general G/GI/1 model,



see Franken et al. [20].

Let V be ageneric service time random variable. Theorem 11 and Example 4 of [1] show that
in order for the large-time asymptotics (1) for W to be valid in the G/GI/1 queue, it is necessary,

but not sufficient, to have Ee%V < « for somes > 0.

In this section we show that the steady-state sojourn time or response time T and the steady-
state workload or virtual waiting time L tend to have the same asymptotic decay rate n as the
steady-state waiting time W and asymptotic constants o, and a1 that are easily related to the

waiting-time constant o = a .

For GI/PH/1 queues, the asymptotic behavior of W, L and T was described in detail by Neuts
[22]. These relationships are also a consegquence of interesting phase-type results in Asmussen
[6]; see Corollary 2.2. In particular, Asmussen shows that if the service-time distribution is
phase-type characterized by the pair (11,Q) where Tt is a d-dimensional vector and Q is a dxd
generator matrix, then W, L and T have distributions, which except for a probability mass at the
origin, are also phase-type with representations (nw,é), (T, (3) and (TtT, (3) where (3 isa
common dxd generator matrix and Tty, 1 and Tty arein general different d-dimensional vectors.
Since the asymptotic decay rate ) is the Perron-Frobenius eigenvalue of (NQ it is identical for all
three random variables. The asymptotic constants involve the eigenvectors associated with the
dominant eigenvalue and the vectors Ty, 1. and Tty.

Remark 1. We conjecture that this structural solidarity result extends to GI/PH/s models with
s>1, but without having the number of phases in 6 be equal to the number d of service-time

~

phases. Indeed, we conjecture that the number of phases in Q s

Ed +§_ 18 = (d+s-1)!/(d—-1)!sl. Thisisbased on the structural solidarity result for GI/H 4/s

queues established by de Smit [14]; the waiting-time distribution is again hyperexponentia (plus

amass at the origin) with this larger number of exponential terms. m



We extend Neuts [22] and Asmussen [6] for the sojourn time by replacing the Gl and PH in
GI/PH/1 by G and GlI, respectively, but we only consider the asymptotic parameters. This next
result extends easily to s servers.

Theorem 1. Inthe G/GI/1 model, if e™P(W>x) — ay asx — o,thenEe"V < o and
eP(T>x) - ar =aywEe?"Y >ayasx - o .
Proof. By Theorem 11 of [1], Ee"Y < . SinceT = W + V where Wand V areindependent,

eMP(T>x) = foxe”(x‘“) P(W>x-u)edP(V < u) + e”P(V > X)

= J'Owl[oyx] e~ p(W > x-u)elUdP(V < u) + e™P(V > Xx) .

SinceEe"V < o, e™P(V > x) -~ 0asx — . Then the assumed convergence for W plus the
bounded convergence theorem implies the desired conclusion. =

Remark 2. From [22], [23] and [2], we know that the correction term Ee" in Theorem 1 must
be ™!, where o is the queue-length asymptotic decay rate; see §6 here for further discussion.
Remark 3. It may seem surprising that the sojourn-time distribution should have the same
asymptotic exponential form as the waiting time with the same asymptotic decay rate. However,
Theorem 1 is especialy easy to understand when the service time-distribution is deterministic;
then P(T > x) = P(W > x - 1) Dae "®"D asx - o, sothat a; = ae. The case of a
service-time distribution with finite support is a minor modification. Theorem 1 is the natural
generalization.

Remark 4. When p is not too small, so that n is sufficiently small, we can use the approximation

U 2\/2 3y/3
Ee”V@EDl+r]V+nV +nV
0 2 6

]
O
0
n2(cs + 1) . n3vs

H1+n+ 5 =

u ©)

We now treat the workload in the G/GI/1 model. For this, we use a relation between a



distribution and its associated stationary-excess distribution. If X is a nonnegative random
variable with cdf G and finite mean, then X, is a random variable with the associated stationary-

excess distribution, i.e.,
_ 1 e
P(Xe > X) = WJ-X P(X > y) dy, x=0. (4)

Lemmal. If EeX <, then

., _ E(e¥-1)

Ee
sEX

Proof. Apply integration by parts. =

Theorem 2. Inthe G/GI/1 model, if e*P(W>X) - aywasx — oo, then
a
e"™P(L>X) - o, = %p(Ee”V—l) :

Proof. By the generalized Takacs formula, (4.5.9) on p. 129 of Franken et al. [20],
P(L>x) = pP(W + V¢>X) ®)

for al x, where V. isindependent of W and has the stationary-excess distribution of the service-
time distribution. The rest of the argument is as in Theorem 1. We use Lemma 1 (and the fact

that EV = 1) to obtain
apEVe = an_p(Ee”V—l) .

Remark 5. As with T in Theorem 1, we can express the correction term for L in Theorem 2
directly in terms of the asymptotic decay rates n and o (see Remark2); i.e,
pE(" - 1)/n = p(1-0)/no.

Remark 6. Noticethat Theorem 2 is consistent with the well known property that L has the same
distribution as W in the M/G/1 queue, because then p(Ee"Y —1)/n = 1 by the defining property

of n. Similarly, for GI/M/1,



Ee"V -1 a
:q-p( ) - ap =p

(o
L n o

becausea = 0 = 1 — n. Findly, for the GI/PH/1 queue, Theorems 1 and 2 agree with 82 of
Neuts[22].

Remark 7. Paralleling Remark 4, we can use the approximation

a O 2\ /2 33 0
a, B \r/]vF3EhE\/+r]EVJrr]EVD
O

O 2 O
anpm+q(cs+1) + Vs, (6)
O O

Given formula (33) in[1] for GI/GI/1, we see that for GI/Gl/1asp - 1

4(1-p)3v3

W + O((l_p)s))

oL Bawp(l + (1-p) - n"(1-p)? +

Haw(l - &(1-p)? + O((1-p)°) asp - 1, ()

where

2 (uz-6c2)  2(cZ-1)
3(cZ+c?) (E+cD)

€ = (8)

Note that the correction term & in (7) and (8) is O((1- p)?) instead of O(1-p). Also note that &
is independent of the third service-time moment. Finally, note that ¢ = 1 in the case of M/G/1,

asitmust. m

Theorems 1 and 2 show how to compute o and o given n and oy or approximations for
them. When it is not convenient to calculate Ee"V, Remarks 4 and 7 show how to approximate
ot and o given n and oy or approximations for them. Paralleling 86 of [1], we also suggest

the approximations o oy = NET and a5, = NEL.



3. Light Traffic

It is possible to develop light-traffic and heavy-traffic interpolation formulas for tail
probabilitiesin the spirit of Fleming and Simon [19], Whitt [27] and references therein, but we do
not develop this idea here, because then we would lose the simple exponential form of the
approximations considered here. (Recall that we have algorithms to compute the exact values.)
However, it is useful to understand what happens in the light-traffic limit (asp — 0). It is easy
to show that the asymptotic decay rate ) in (1) approaches the asymptotic decay rate 1(V) of the

service-time distribution, defined as
m(V) = sup{y > 0: Ee" < w} . )

Note that the definition of asymptotic decay rate in (9) is more general than (1), because we do
not assume that the convergence in (1) necessarily holds. For example, we could have
P(V > X) DGVX_BV e "™ asx — . The asymptotic decay rate (V) in turn coincides with

the asymptotic decay rate (V) of the service-time stationary-excess distribution.

Indeed, from (5) it is easy to see that the steady-state workload distribution in the G/GI/1
model approaches the service-time stationary-excess distribution in the light-traffic limit; thisis
proved in Sigman [24]. This analysis applies directly only to the steady-state workload, but it
applies to the other steady-state variables through the relationships we establish. Of course,
Theorem 2 only goesfrom Wto L. It iseasy to go the other way in the context of (9), because (5)
impliesthat P(L > xtL. > 0) = P(W + V. > x) and

1-L(s) _

5 1 - W(S)Ve(s)

for G/GI/1 queues.



4. An Approximation for the Ratio EL/EW

In this section we discuss an approximation for the ratio EL/EW, which yields EL and EW if
we have either one. The approximation is based on the exact form of o /oy given in Theorem 2

and the approximations
aw BNEW and a, BnEL . (10)
In particular, we suggest

EL ar _ p(l-0)
= 11
EW - Ow no (1D

whereo = Ee"V. By Remark 6, this approximation in (11) is exact for both M/Gl/1 and GI/M/1.

For the GI/GI/1 queue we can combine (7), (8) and (11) to obtain the approximation
EL 2
—— H1-q(1- 12
=T H1-2(1-p)%, (12

for Cin (8).

This approximation in (11) can also be used for the ratio of mean gqueue lengths at arbitrary

timesand at arrivals. For theoretical support, see Theorem 11 of [2].

5. Numerical Examplesfor the Sojourn Time and the Workload

In Remark 3 we noted that it is easy to see that the asymptotic behavior of T and W are closely
related when the service-time distribution is deterministic. We now consider what happens with

service-time distributions that are substantially more variable than an exponential distribution.

Asin [1], we obtain the exact tail probabilities from the algorithms in Lucantoni [21], with
transform inversion from Abate and Whitt [3], as implemented by Choudhury [11]. We obtain
the exact values of the asymptotic parameters from the moment-based generating-function-

inversion agorithm in Choudhury and Lucantoni [12]. We also estimate the asymptotic
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parameters by linear regression applied to the numerically caculated tail probabilities (after
taking logarithms) as described in [1].

Example 1. Consider the M/H5/1 queue with a hyperexponential service-time distribution with
balanced means, as defined in Example 1 of [1]. Let the arrival rate be p = 0.7 and, as aways,
let the service-time distribution have mean 1. Consider the case of service-time sguared
coefficient of variation (variance divided by the square of the mean) cZ = 4.0. Then the

parameters of the density arep; = 0.8872983, A1 = 1.7744966 and A, = 0.2254034.

Since the arrival process is Poisson (M), the distributions of W and L coincide. We apply the
Pollaczek-Khintchine formula to obtain EL = 5.833 and ET = 6.833. The exact asymptotic

parametersfor L and T obtained from Choudhury and Lucantoni [12] and the linear regression are

n = 0.1000040, o, = Oy = 0.5727238  and  ap = 0.6545448, so that

o) aw/at = 0.87500.

The approximations from 84 and 86 of [1] ae nur = 0.1200, n, = 0.0984,
OLap = NEL = 0.5833, oy = NET = 0.6833, n,EL = 0.5740 and N, ET = 0.6724. As

in[1], the approximations for the asymptotic parameters are quite good.

Tables 1 and 2 display exact values of the tail probabilities P(L > x) and P(T > x) and the
associated exponential approximations. The regression estimates are displayed as well to show
the (in this case, spectacular) rate of convergence to the exponentia limit. In this case, the linear
regression easily produces the exact asymptotic parameters.

Example 2. To see what happens with a non-renewal arrival process and a service-time
distribution very unlike an exponential distribution, we now consider the MMPP,/D »/1 model of
Example3in[1]. Asbefore,p = 0.7andc5 = 2.0. First, the asymptotic decay rates calculated
for W, T and L by the algorithm in Choudhury and Lucantoni [12] agreed to eight decimal places,

yielding n = 0.11159727. For this model, it is easy to seethat 0~1 = Ee"V = 1.13873. The
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successive approximations in (3) are: 1.0, 1.1115, 1.1301 and 1.1362. The relative error in the

approximation for Ee" is 0.8% and 0.2% using two and three moments.

The asymptotic constants are ay = 0.65738, at = 0.74867 and a, = 0.57261. These
provide empirical evidence supporting Theorems1 and 2. For the asymptotic constant,
(a/aw) = 0.87104. The successive approximations in (6) are 0.7, 0.817, 0.8717. (Note that

(7) does not apply because the arrival processis not renewal.)

Table 3 compares exponential approximations for the tail probabilities of the steady-state
workload and sojourn time with exact values computed using the algorithm in [11]. Again the
exponential approximations perform well. Our experience indicates that, consistent with
intuition, the quality of the exponential approximations for the waiting time and workload is
usually somewhat better than for the sojourn time. However, the difference is hardly perceptible

in Table 3.

With regard to the approximation for EL/EW in 84, here EW = 5.831 and EL = 5.131, so that
EL/EW = 0.880. Since a /ay, = 0.871, we see that the mean ratio approximation in (11)
performs well in this example.

Example 3. We conclude with an MMPPIT 1,,/1 example, which is used to evaluate heavy-
traffic asymptotic expansions for the asymptotic decay rates of the waiting time in 87 of
Choudhury and Whitt [13]. The service-time distribution is gamma with shape parameter 1/2,
which is not rational and thus not PH. It is moderately highly variable, with first three moments

1, 3and 15.

The arrival process is a two-phase MMPP, which has four parameters (the arrival rate and
mean holding time in each phase), one of which we determine by letting the arrival rate be p. A
second parameter is determined by assuming that the long-run arrival rate in each phaseisp/2. A

third parameter is determined by assuming that the expected number of arrivals during each visit
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to each phase is 5. Finally, the last parameter is determined by making the ratio of the arrival

rates in the two phases 4.

Tables 4 and 5 display approximations and exact values for higher percentiles of the steady-
state workload and sojourn-time distributions, respectively. In each case, two values of p are
considered: p = 0.8and p = 0.5. Three approximations are considered. All approximations are
exponential approximations ae3~"* with the exact n, converted to percentilesasin (2). The first
approximation has the exact asymptotic constant, o, and oy, respectively; the second
approximation approximates o, by nEL and at by nET; and the third approximation

approximatesa | and o by 1.

From Tables 4 and 5, we see that the approximations for higher percentiles are very
impressive. The accuracy improves as the percentile increases and as the traffic intensity
increases. At p = 0.8, the relative error of the asymptotic approximation (with exact a) is less
than 0.1% even at the 80" percentile. The approximation based on o B nO mean performs
remarkably well, substantially better than the approximation with a B 1.0. However, for high

percentiles such as 99.99, even o H 1.0 yields a useful approximation.

Finally, with regard to the approximation for EL/EW in 84, the means EW and EL are
and withp = 0.5 and and with p = 0.8, so that the ratio EL/EW is and
with p = 0.5and p = 0.8. On the other hand, the asymptotic constants oy and o are
and with p = 0.5 and and with p = 0.8, so that the ratio a | /a is and

withp = 0.5andp = 0.8.

6. The Queue Length

In this section we indicate how the asymptotic decay rate n for the steady-state waiting time,
sojourn time and workload is related to the asymptotic decay rate o for the steady-state queue

length in alarge class of G/GI/1 models. To establish a connection, we assume that the service-
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time distribution is phase-type (PH). What we present here extends results in Neuts[22] for
GI/PH/1 queues and Abate, Choudhury and Whitt [2] for BMAP/GI/1 queues. It still remains to

give aproof for the general G/GI/1 model.

We assume that the steady-state distributions are well defined. Let Q be the steady-state

gueue length at an arbitrary time. Paralleling (1), typically we have
P(Q > k) OBcask » «, (13)

but we define the asymptotic decay rate o more generally by setting
o(Q)™! = sup{z=21:Ez° < w} (14)

asin (9). Wedefiner(L) asin (9) too. We discuss only the steady-state distributions at arbitrary

times, but a corresponding result holds for the steady-state distributions at arrival epochs.

To establish our result, we need to know about the asymptotic decay rates of phase-type
distributions.
Lemma 2. Let V have a k-state phase-type distribution characterized by the pair (a,T) where a
is the initial distribution, T is the infinitesimal generator of the absorbing continuous-time

Markov chain and every phase can occur. Then
m(VvV) = Umin{{;ig: 1 <i <k} 2m(R;)

where R; represents the residual service time starting in phasei.

Proof. Since a; isthe probability of starting in phasei,

so that m(V) = max{mM(R;) : 1 <i <k a; > 0}. Let R; be an exponential random variable

with mean -1/T;, let Py = Ty;/0r;oif Orig> 0 with P = 0 otherwise, and let

k
gi = 1 - > Pj. Then, foranyi,
j=1
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k
R = g™ (g + TETP)

j=1

Ee

so that
mR;) = max{m(T;), M(Rj) :1<j<k,P;>0}.
Since al phases can be reached,

1

mv) = {Q%W(Ri) = {Q%W(Ti) = _—1minkDTiiD :
<I<

We now state our queue length theorem.

Theorem 3. Inthe G/PH/1 queue,
o(Q)! = EeTLV

Proof. Let the service-time distribution have k phases. Let L; and Q; be the steady-state
workload and queue length at an arbitrary time conditional on the server being busy in service
phase i. Let R; be a residual service time starting in phase i. Let 11; be the steady-state
probability of being in service phase i conditional on the server being busy. It iswell known that

P(L > 0) = P(Q > 0) = p, sothat

k o k o
Ee = pY mEe™ and Ez° = p 3 mEz™ (15)
i=1 i=1
and
m(L) = maxm(L;) and o(Q)7t = pgiagf(U(Qi)‘l - (16)

The fundamental relation connecting L and Q is

Qi
s(R; + ZVj)

= Ee = = BT E(EeV)V . (17)

Ee

By Theorem 11 of [1] and Theorem 2 here, (V) < m(L). By Lemma2, m(R;) < m(V), so that
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we can apply (15)—(17) to obtain the desired conclusion. m
Remark 8. In[2] we showed for the BMAP/GI/1 queue that the asymptotic constants o for L
and B in (13) coincide. It does not seem easy to deduce this conclusion from the proof of

Theorem 3.

7. Conclusions

For the G/GI/1 queue, we have shown that the steady-state waiting time W, sojourn time T
and workload L have the same large-time asymptotic behavior with the same asymptotic decay
rate n and the asymptotic constants ay, o+ and o that are smply related. As shown in 86, the
relations among the asymptotic constants ay, o, and ot is intimately connected to the
asymptotic decay rate for the steady-state queue length. We have proposed approximations for
o, o and EL/EW to go with previous approximations for n, ay, and EW. We have presented
numerical examples showing that these exponential approximations based on large-time

asymptotics perform remarkably well.
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Table 1. A comparison of exponential approximations with exact values of the workload tail
probabilities, P(L > x), in the M/H3/1 queue with p = 0.7 and ¢Z = 4.0 in
Examplel. Also included are the loca linear regression estimates of the
asymptotic parameters.
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Table 2. A comparison of exponentia approximations with exact values of the sojourn-time
tail probabilities, P(T > x), in the M/H5/1 queue with p = 0.7 and ¢2 = 4.0 in
Example 1. Also included are the local linear regression estimates of the
asymptotic parameters.
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Table 3. A comparison of exponential approximations for the steady-state workload and
sojourn-time tail probabilities with exact values in the MMPP,/D,/1 queue in
Example 2.
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Table4. A comparison of approximations with exact values of high percentiles of the steady-
state workload in the MMPPPIT 1,,/1 queue in Example 3.
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Table5. A comparison of approximations with exact values of high percentiles of the steady-
state sojourn time in the MMPP/T 1,,/1 queue in Example 3.
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