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Abstract

We consider the maximum waiting time among the first n customers in the GI/G/1 queue. We

use strong approximations to prove, under regularity conditions, convergence of the normalized

maximum wait to the Gumbel extreme-value distribution when the traffic intensity ρ approaches

1 from below and n approaches infinity at a suitable rate. The normalization depends on the

interarrival-time and service-time distributions only through their first two moments,

corresponding to the iterated limit in which first ρ approaches 1 and then n approaches infinity.

We need n to approach infinity sufficiently fast so that n( 1 − ρ)2 → ∞. We also need n to

approach infinity sufficiently slowly: If the service time has a p th moment for ρ > 2, then it

suffices for ( 1 − ρ) n 1/ p to remain bounded; if the service time has a finite moment generating

function, then it suffices to have ( 1 − ρ) log n → 0. This limit can hold even when the

normalized maximum waiting time fails to converge to the Gumbel distribution as n → ∞ for

each fixed ρ. Similar limits hold for the queue length process.

Key words: extreme values, queues, maximum waiting time, diffusion approximations, reflected

Brownian motion, strong approximations, limit theorems.



1. Introduction

When doing performance analysis of a service system, we usually try to describe the

congestion experienced by a typical arrival, actual or virtual (at an arbitrary time), and thus do the

standard steady-state analysis. An alternative approach, known as extreme-value engineering (see

Costillo [8]), is to describe the maximum congestion experienced over some typical interval.

This may still entail steady-state analysis, in that we consider stationary stochastic processes, but

now we focus on large values, e.g., the largest customer waiting time over an hour.

In order to be able to effectively use extreme-value engineering in performance analysis, we

need to be able to determine the distribution, or at least the mean, of the maximum congestion.

This requirement is a major difficulty, because distributions of maximum congestion measures in

queueing models are unavailable except in very special cases. However, extreme-value theory

comes to our aid. Fundamental limit theorems in extreme-value theory imply that the extreme-

value distributions over suitably long intervals can be approximated by a few special distributions

[8]. Thus, there is statistical regularity associated with looking at extremes, paralleling the more

familiar statistical regularity associated with looking at sums and averages, stemming from the

central limit theorem.

However, even with the approximating extreme-value distributions, there remains a difficulty,

because the parameters of the extreme-value distributions depend upon the queueing processes,

and thus the model data, in a complicated way. Berger and Whitt [6] proposed ways to

circumvent this difficulty through appropriate approximations for the key parameters. In

particular, Berger and Whitt [6] developed and evaluated several heuristic approximations for

extreme values of queueing processes over large time intervals. One of these approximations

combined the extreme-value limit for reflected Brownian motion (RBM), established in [6], with

an approximation of the queueing process by RBM, which separately can be justified by familiar
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heavy-traffic limit theorems.

Our purpose here to to establish double limits that determine regions in which the overall

approximation in [6] is asymptotically correct. For this purpose, we construct a sequence of

queueing systems indexed by n in which the traffic intensities ρ n approach 1 from below as

n → ∞. The length of the interval over which the maximum is taken, t n , must also approach

infinity, but neither too quickly nor too slowly. We need ( 1 − ρ n )2 t n → ∞ as n → ∞ to have

the relevant time in RBM go to infinity, but we also need to impose conditions on how fast t n

grows. These conditions allow the limit to hold even when the normalized maximum wait fails to

have the customary extreme-value limit as t → ∞ for fixed ρ.

Our principal tools are strong approximation theorems, as in Cso
..

rgo
..

and Re ́ ve ́ sz [10]. Strong

approximations were used in a similar way to study extreme values associated with sliding

window flow control schemes, or scan statistics, in Berger and Whitt [5]. A concrete application

of these extreme-value approximations is to compare alternative traffic descriptors in emerging

high-speed communication networks; see Berger and Whitt [7].

The specific process we consider is the sequence of waiting times in the GI/G/1 queue (so that

t n above should be an integer), but the argument extends easily to other processes and models,

given that corresponding strong approximations hold; e.g., see Horva ́ th [6] and Phillipp and

Stout [13]. The corresponding limit for the discrete queue-length process is interesting because

no extreme-value limit holds for each fixed ρ. See Iglehart [14], Leadbetter, Lindgren and

Rootze ́ n [12] for background on the basic extreme-value theory. Theorem 2.1 of Horva ́ th [6]

provides a strong approximation for the queue length process.

Different heavy-traffic limits for extreme values of queueing processes follow easily from the

continuous mapping theorem and related arguments in the cases ( 1 − ρ n ) √ t n → c or

ρ n → ρ > 1 as n → ∞; see Section 6 of Whitt [20]. We will review the first case below. The



- 3 -

case of ρ = 1 is treated in Theorem 9.1 of Iglehart and Whitt [13]. Previous related work on

heavy-traffic extreme-value limits for queues has been done by Serfozo [18,19] and McCormick

and Park [15]. See Berger and Whitt [6] for a numerical evaluation of the approximation through

comparisons with simulations.

2. Results

For each n ≥ 1, let W n ≡ {W n (k) :k ≥ 0 } be a waiting time sequence, defined by

W n ( 0 ) = 0 and

W n (k + 1 ) = [W n (k) + ρ n V k − U k ] + , (1)

where [x] + = max {x, 0 }, U ≡ {U k :k ≥ 1 } and V ≡ {V k :k ≥ 0 } are independent sequences of

i.i.d. nonnegative random variables satisfying

EV k = EU k = 1 , (2)

σv
2 ≡ Var V k < ∞ and σu

2 ≡ Var U k < ∞ , (3)

with at least one of σv
2 > 0 and σu

2 > 0. Let

A n =
k = 1
Σ
n

U k and C n =
k = 0
Σ

n − 1
V k .

Then

W n (k) = S n (k) −
0≤ j≤k
min S n ( j) , (5)

where

S n (k) = ρ n C k − A k . (6)

Let B ≡ {B(t) :t ≥ 0 } be canonical (drift 0, variance 1) Brownian motion (BM) and let

R ≡ {R(t) :t ≥ 0 } be canonical RBM (with drift 0 and variance 1), i.e.,
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R(t) = t + B(t) −
0≤s≤t
min {s + B(s) } , t ≥ 0 . (7)

Let

M n (k) =
0≤ j≤k
maxW n ( j) , k ≥ 0 , (8)

and

M(t) =
0≤s≤t
maxR(s) , t ≥ 0 . (9)

Extreme-value limits for M n (k) as k → ∞ for any fixed n are given in Iglehart [12] and

Pakes [16]. These limits require the extra condition

E exp (εV k ) < ∞ for some ε > 0 (10)

and more, and involve relatively complicated normalization constants. However, it is natural to

expect that the situation should simplify in heavy traffic. To start, we give the standard heavy-

traffic result in this setting, paralleling Theorem 9.1 of Iglehart and Whitt [13]. Let = = > denote

convergence in distribution.

Theorem 1. If ρ n ↑ 1 with ( 1 − ρ n ) √ n → c as n → ∞, where 0 ≤ c < ∞ then

n − 1/2 M n (nt) = = >


 c

σu
2 + σv

2
_ ________





M


 σu

2 + σv
2

c 2 t_ ______




as n → ∞ .

Theorem 1 is an elementary consequence of the continuous mapping theorem and the basic

heavy-traffic limit theorem:

n − 1/2 W n ( nt) = = >


 c

σu
2 + σv

2
_ ______





R


 σu

2 + σv
2

c 2 t_ ______




as n → ∞ ; (11)

see Section 6 of Whitt [20 ]. (See Section 2 of Abate and Whitt [2] for a discussion of scaling

time and space.)
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Theorem 1 contains the waiting-time part of Theorem 9.1 of [13] as a special case. The

distribution of the limit in Theorem 1 can be obtained from the Laplace transform of the

associated first-passage-time distribution; see Corollary 3.4.1 of Abate and Whitt [3]. This

transform can easily be inverted numerically; see Abate and Whitt [4].

We can combine Theorem 1 above with Theorem 1 of Berger and Whitt [6] to describe the

iterated limit, as first ρ → ∞ and then t → ∞. For this purpose, let Z be a random variable with

the classical Gumbel extreme-value cdf, i.e.,

P(Z ≤ x) = exp ( − e − x ) , − ∞ < x < ∞ . (12)

The following result justifies (4.4) of Berger and Whitt [6] in the case of the waiting times.

(Related results hold for queue-length and workload processes.)

Corollary. Under the conditions of Theorem 1,



 σu

2 + σv
2

2 ( 1 − ρ n )_ ________




M n (nt) − log


 σu

2 + σv
2

2c 2 t_ ______




= = > Z

as first n → ∞ and then t → ∞, where Z is given in (12).

We now want to generalize the Corollary to Theorem 1 to obtain an appropriate double limit.

For this, we impose extra moment conditions. There are two cases:

Theorem 2. Suppose that ρ n ↑ 1 with ( 1 − ρ n ) √ t n → ∞ as n → ∞. (a) If EVk
p < ∞ for

p > 2 and
n→ ∞
lim
_ __

( 1 − ρ n ) tn
1/ p < ∞ as n → ∞, then

σu
2 + σv

2

2 ( 1 − ρ n ) M n (t n )_______________ − log


 σu

2 + σv
2

2 ( 1 − ρ n )2 t n_ ___________




= = > Z as n → ∞ . (13)

(b) If (10) holds and ( 1 − ρ n ) log t n → 0 as n → ∞, then (13) holds.

The appeal of Theorem 2 is that it justifies using the Gumbel approximation even when

M n (k) is not in its domain of attraction as k → ∞ for each fixed n. Dividing by
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log ( ( 1 − ρ n )2 t n ) in Theorem 2, we obtain the following corollary.

Corollary. Under the conditions of Theorem 2,

log (t n )

2 ( 1 − ρ n ) M n (t n )_______________ = = > log


 σu

2 + σv
2

2_ ______




as n → ∞ .

It remains to determine what happens if t n → ∞ faster than allowed by the conditions of

Theorem 2. Iterated limits as first t → ∞ and then ρ ↑ 1 for the decay rate (the Corollary to

Theorem 2) are established in Abate, Choudhury and Whitt [1] and Choudhury and Whitt [9].

3. Proof of Theorem 2

We apply the classical KMT (Komlo ´s-Major-Tusna ́ dy) strong approximation theorems, as

given in Cso
..

rgo
..

and Reve ́ sz [10]. We use Theorem 2.6.3 on p. 107 of [10] for part (a) and

Theorem 2.6.2 on p. 107 of [10] for part (b).

We only display the the proof of part (a), because the proof of Theorem 3 is almost identical.

Under the assumptions of (a), the KMT theorem yields

S n (k) = − ( 1 − ρ n ) k + √ ρn
2 σv

2 + σu
2 B(k) + o(k 1/ p ) w. p. 1 (14)

uniformly in n. (Under the conditions of (b), the error is O( log k).) Given (14),

M n (t n ) =
0≤k≤t n

max { − ( 1 − ρ n ) k + √ ρn
2 σv

2 + σu
2 B(k)

−
0≤ j≤k
min { − ( 1 − ρ n ) j + √ ρn

2 σv
2 + σu

2 B( j) } } + o(tn
1/ p ) w. p. 1 . (15)

Next, by Corollary 1.2.3 on p. 31 of Cso
..

rgo
..

and Reve ́ sz [10], we can replace the integer

arguments in (15) by continuous ones, i.e.,

M n (t n ) = Y n (t n ) + o(tn
1/ p ) , w. p. 1 , (16)

where
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Y n (t n ) =
0≤t≤t n

max { − ( 1 − ρ n ) t + √ ρn
2 σv

2 + σu
2 B(t)

−
0≤s≤t
min { − ( 1 − ρ n ) s + √ ρn

2 σv
2 + σu

2 B(s) } } + o(tn
1/ p ) w. p. 1 . (17)

Let =
d

denote equality in distribution. By (16), (17) and the conditions in (a),

( 1 − ρ n ) M n (t n ) = ( 1 − ρ n ) Y n (t n ) + o( 1 ) w. p. 1 , (18)

but

Y n (t n ) =
d

0≤u≤t n ( 1 − ρ n )2
max { − u + √ σu

2 + ρn
2 σv

2 B(u)

−
0≤s≤u
min { − s + √ σu

2 + ρn
2 σv

2 B(s) } }

=
d

(σu
2 + ρn

2 σv
2 )

0≤u≤t n ( 1 − ρ n )2
max { −

σu
2 + ρn

2 σv
2

u_ _________ + B


 σu

2 + ρn
2 σv

2

u_ _________




−
0≤s≤u
min { −

σu
2 + ρn

2 σv
2

s_ _________ + B


 σu

2 + ρn
2 σv

2

s_ _________




} }

= (σA
2 + ρn

2 σv
2 ) M



 σu

2 + ρn
2 σv

2

t n ( 1 − ρ n )2
_ __________





(19)

for M in (9). By Theorem 1 of Berger and Whitt [6],

2M


 σu

2 + ρn
2 σv

2

t n ( 1 − ρ n )2
_ __________





− log


 σu

2 + ρn
2 σv

2

2t n ( 1 − ρ n )2
_ ___________





= = > Z as n → ∞ (20)

for Z in (12). The proof is completed by combining (18), (19) and (20), and noting that ρ n → 1.
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