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WEAK CONVERGENCE OF FIRST PASSAGE TIME PROCESSES

WARD WHITT, Yale University

1. Summary

Let D = D[0, o) be the space of all real-valued right-continuous functions on
[0, o) with limits from the left. For any stochastic process X in D, let the as-
sociated supremum process be S(X), where

(1.1) S(x)(t) = sup x(s), t=0,

0<s<t
for any x € D . It is easy to verify that S: D — D is continuous in any of Skorohod’s
(1956) topologies extended from D[0, 1] to D[O0, oo) (cf. Stone (1963) and Whitt
(1970a,c)). Hence, weak convergence X, =~ X in D implies weak convergence
S(X,) = S(X) in D by virtue of the continuous mapping theorem (cf. Theorem
5.1 of Billingsley (1968)).

Let E = E[0,0) be the subset of D containing those xeD for which
lim,,,, S(x)(t) = + 0. Let E be endowed with the relative topology. For any
stochastic process X in E, let the associated first passage time process in E be
T(X), where

(1.2) T(x)(t) = inf{s = 0: x(s) > ¢}, t=20,

for any xe E. (The infimum is always attained.) We show that T:E — E is
continuous in Skorohod’s (1956) M, topology on E. Hence, weak convergence
X, = X in E(M,) implies weak convergence T(X,) = T(X) in E(M,). More-
over, S:E —» E is also continuous in the M, topology, T(S) = T and
T(T) = S. Hence, S(X,) = S(X) if and only if T(X,) = T(X) in E(M,) where
S(X) = T(T(X)) and T(X) = T(S(X)). For any stochastic process X in E(M,),
we therefore call the associated stochastic processes S(X) and T(X) dual processes.
For example, the Wiener process or Brownian motion W is in E with probability
one. The associated dual processes are S(W), the reflecting Brownian motion
or one-dimensional Bessel process, and T(W), the one-sided stable process with
exponent %. It is interesting that T(T(W)) = S(W). The corresponding distri-
butions at a single time point are displayed in Feller ((1949), p. 109) where the
duality relationship is also discussed to some extent.

Received in revised form 4 September 1970.
417

This content downloaded from
128.59.222.107 on Wed, 05 Jan 2022 16:55:35 UTC
All use subject to https://about.jstor.org/terms



418 WARD WHITT

By relating the weak convergence of {S(X,)} and {T(X,)}, we are providing
a supplement to Iglehart and Whitt (1969) in which the equivalence of functional
central limit theorems for point processes or counting processes and associated
partial sums was demonstrated. The first passage time processes here can be
regarded as counting processes in the special case in which T'(X,)and T(X) are
integer-valued; then S(X,) = T(T(X,)) and S(X) = T(T(X)) are the associated
partial sum processes. In [9] the random functions in D had positive translation
terms; here the random functions have no translation terms. The results in [9]
can obviously be extended to the slightly more general setting of this paper.

In Section 2 we prove the results described above; in Section 3 we discuss two
examples; and in Section 4 we mention possible applications.

2. The results

Let D = D[0, ) be the space of all real-valued right-continuous functions
on [0, c0) with limits from the left. We shall consider two different topologies on
D. Stone (1963) extended Skorohod’s (1956) J, topology to D by defining con-
vergence of a sequence of functions {x,} to a function x in D by the existence of
a sequence of continuous, one-to-one functions {4,} of [0, co0) onto itself such that
for each m >0

@.1) sup |4 () —t| >0
0Zt<m
and
(2.2) sup [ x,(t) = x(Z,(1) | - 0
0=Zt<m

as n — oo. We shall also extend Skorohod’s (1956) M, topology to D. We
define the graph G(x) of x € D as the subset of R? which contains all pairs (x, £)
such that for all ¢ the point x belongs to the segment joining x(t—) and x(f).
The graph G(x) is a continuous curve in R?. The pair of functions (x(s), #(s))
gives a parametric representation of the graph G(x) if those and only those pairs
(x,1) belong to it for which an s can be found such that x = x(s) and t = #(s),
where t(s) is continuous and monotonically increasing and x(s) is continuous.
We say the sequence {x,} is M,-convergent to x in D if there exist parametric
representations (x(s), #(s)) of G(x) and (x,(s), t,(s)) of G(x,) such that for every
m>0

2.3) sup  {[x,(8) = x(s)| + [1,(8) = () [} » 0

0 gf(:)gm

as n —» oo . We remark that the M, topology is weaker than the J, topology.
If the limit x is contained in C = C[0, o0), then both the J, and M, topologies
reduce to the topology of uniform convergence on compacta. For further dis-
cussion, see [19], [20], [25], and [27].
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Weak convergence of first passage time processes 419

Let E have the relative topology from D. Let S: E —» E be the supremum
function and let T:E — E be the first passage time function defined in (1.1) and
(1.2). The function T is in a sense an inverse mapping for S because T(S) = T
and T(T(S)) = S. For weak convergence we need

Lemma. The supremum function is continuous on E in both the J, and M,
topologies. The first passage time function is continuous on E in the M { topology,
but not in the J, topology.

Proof. Since

sup | sup x(9) — sup x| S sup |x,(0) — x(2,0)]
0<t<m 0=ss<t O0<s=<t 0=<t=<m

for all m and n, S is continuous in the J, topology, and hence also in the M 1

topology.

Note that [S(x)(s), #(s)] serves as a parametric representation for T(S(x)) as
well as S(x) when the roles of S(x) and ¢ are switched because S(x) is non-de-
creasing. Hence, T(S(x,)) - T(S(x)) (M,) if S(x,) = S(x) (M,). Since S is
continuous (M,), T(S(x,) - T(S(x)) (M,) if x, > x (M,). Finally, since
T(S) = T, T itself is continuous (M;). To show that T is not continuous in the
J, topology, define x and x, by

o
lIA
lIA

x(t) = 1, 1

IIA
IIA
N}

N
|
_
)
IIA
-

and
t, 0t<1-1/n

1—-1/n, 1-1/n=<t<3)2
1+1/n, 32=Zt<2+1/n

x(1) =

t—1, 24+1/n <t.

Note that sup,o|x,(#) — x(1)| = 1/n > 0, but | T(x,)(s) — T(x) ()| 2 % for
all n and A, with s = 1.

Let X, (n 2 1) and X be random functions in E, and write X, = X for weak
convergence. By the lemma and the continuous mapping theorem ([11, p. 29),
we have

Theorem. (i) If X, = X in E (J, or M), then S(X,) = S(X) and T(X,) = T(X)
in E(M,).

(i) Let {X,} be a sequence of random functions in E. There exists a random
function 4 € E such that S(X,) == 4 (M,) if and only if there exists a random
function B € E such that T(X,) = B (M,). Moreover, T(4) = B and T(B) = A.

This content downloaded from
128.59.222.107 on Wed, 05 Jan 2022 16:55:35 UTC
All use subject to https://about.jstor.org/terms



420 WARD WHITT

Proof. Only (ii) needs comment. Recall that T = T(S) so that B = T(A4).
Also T(T) = S so that T(B) = 4.

Our principal concern here is the first passage time function T and the
weak convergence T(X,) = T(X). We remark that even though the M, topology
is weaker than the J, topology, weak convergence in the M, topology means
convergence of all finite-dimensional distributions in an everywhere dense subset
of R! plus a form of tightness (cf. Chapter 3 of [1] and Section 3.2 of [19]).

3. Examples

If X, = Win E(M,), where Wis the standard Wiener process, then S(X,) = S(W),
and T(X,) = T(W) in E(M,), where S(W) is the reflecting Brownian motion
or one-dimensional Bessel process (cf. [10], pp. 40 and 59) and T(W) is the one-
sided stable process with exponent 4 and rate 2, that is, T(W) has increasing
paths, may be regarded as in E, is diiferential, and is homogeneous with law

P{T(W)(t) — T(W)(s) < x} = P{T(W)(t—s) < x}
(3.1)

x
f (t—s)2nv*) " exp{—(t—5)*/20}dv,
0
for 0 <s<t=1and 0 £ x<1, and characteristic function

(3.2 Praryey(0) = exp{—(— 21“29)*}

for all real 6 (cf. [10] p. 25). For further properties, see [15] and [16]. It is inter-
esting to note that T(T(W)) = S(W) and T(S(W)) = T(W) too.

Let C(t) = ct for t = 0 and ¢ > 0. Then W + C is the Wiener process with a
positive drift, and W + C is in E with probability one. If X, =~ W + C in E(M,),
then T(X,) = T(W + C), where T(W + C) is the inverse Gaussian process,
which may regarded as in E, has stationary and independent increments, and
has the law

(3.3) P{TW+C)(@) £ x} = f Jc(c3t/21w"')‘1‘ exp{ —(c/2tv) (v—ct)*}dv,
0

0 =t <1land0 = x < 1(cf. [17]). For further properties of the inverse Gaussian
process, see [17], [21], [22], [23], and [24].

Recall that the projections =, ..,.:D — R*, defined for any xeD by
..... 0 (X) = [x(ty), -+, x(t,)], are not necessarily continuous in either the J; or
the M, topology, but each such projection is continuous almost everywhere
with respect to the two processes discussed above. Hence, we have convergence
in R! to the laws described in (3.1) and (3.3) for n,(T(X,)) with weak convergence.
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Weak convergence of first passage time processes 421

We remark that the discussion here applies also to more general passage times
and stopping times. For example, we could consider P: E — E, defined for any
xeE by

(3.4 P(x)(t) = inf{s = 0: x(s) > g(},

where g(t) = ct*, o > 0 (cf. [2], [3], and [18]). Of course, the problem with this
greater generality is that it is hard to evaluate the weak convergence limits.

4. Applications

We do not intend to pursue any of the many possible applications of the weak
convergence theorems for first passage times in this paper. Some of the applica-
tion areas with related references are: first emptiness in dams and storage models
[3], [6], [13], and [14]; the ruin problem in collective risk theory [8]; the busy
period in queueing and the virtual waiting time for lower priority customers
when there is a preemptive-resume discipline [7] and [28]; k-dimensional renewal
theory [11] and [26]; and the superposition and thinning of point processes [12].
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