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Abstract

Traffic measurements from communication networks
have shown that many quantities characterizing network
performance have long-tail probability distributions, i.e.,
with tails that decays more slowly than exponentially. Long-
tail distributions can have a dramatic effect upon perfor-
mance, but it is often difficult to describe this effect in de-
tail, because performance models with component long-tail
distributions tend to be difficult to analyze. We address
this problem by developing an algorithm for approzimating
a long-tail distribution by a finite mizture of exponentials.
The fitting algorithm is recursive over time scales. At each
stage, an ezponential component is fit in the largest remain-
ing time scale and then the fitted exponential component
is subtracted from the distribution. Even though a miz-
ture of exponentials has an ezponential tail, it can match
a long-tail distribution in the regions of primary interest
when there are enough exponential components.

1 Introduction

A major challenge for engineering the emerging high-
speed integrated-services communication networks is to de-
velop models that can realistically capture the performance
effects of the complex traffic that will be offered to and
carried by these networks. Evidence of traffic complexity
appears in many forms, such as in the long-range depen-
dence and self-similarity found in the statistical analysis of
traffic measurements [11]. There is also strong evidence of
important phenomena at several different time scales [13].

In this paper we focus on one phenomenon that seems to
underlie much of the observed traffic complexity: long-tail
probability distributions. Let F be a cumulative distribu-
tion function (cdf) and let the associated complementary
cdf (cedf) be F(t) = 1 — F(t). We say that a cdf F (or
its associated ccdf F€) has a long tail (also known as fat
tail or heavy tail) if the ccdf F© decays more slowly than
exponentially, i.e., if

e"F(t) 00 as t— oo forally>0. (1.1)
In contrast, we say that a cdf F has a short tail if its cedf
F¢ decays exponentially, i.e., if there exists some v > 0

such that

e"F(t) 50 ast—oo. (1.2)

Neither (1.1) nor (1.2) describes the actual decay rates of
the ccdf’s well; they are intended for general classification.
A typical long-tail cdf might have a power tail, i.e.,

Fe(t) ~at™ as t—o00, (1.3)
where « and § are positive constants and f(t) ~ g(t)
t — co means that f(t)/g(t) = 1 as ¢ — oo, whereas

typical short-tail cdf might have bounded support (F¢(t)
0 for some t) or an exponential tail, i.e.,

Il o 8§

Fe(t) mae™ as t 3 o0 (1.4)
for positive constants « and 7.

Two familiar long-tail distributions are the Pareto dis-
tribution and the Weibull distribution. One form of the
Pareto distribution, which we refer to as Pareto(a,b), has
cedf

Fe(t) = (14 bt)~* (1.5)

for positive parameters a and b (p. 233 [10]). One form of
the Weibull distribution, which we refer to as Weibull(c, a),
has ccdf

Fe(t) = e~t/o)* (1.6)

for positive parameters a and ¢ (Ch. 20 [10]). From (1.5)
it is easy to see that the Pareto ccdf in (1.5) has a power
tail and so always has a long tail. The Weibull ccdf in (1.6)
has a long tail but not a power tail if ¢ < 1.

In recent years, many traffic measurement studies have
found long-tail distributions. For example, the analysis of
a large dataset of local area Internet IP traffic collected at
Bellcore showed that traffic is highly variable over several
time scales. Measurements of source on and off times (high
and low activity times) of individual network sources within
the Bellcore dataset have indicated long-tail distributions
{11], and it has been proven that such long-tailed on and off
times for individual sources can explain the self-similarity
in the aggregate traffic [19].

Long-tail distributions yield statistically better models
for the tail behavior of durations, number of bytes, and
burst bytes of ftp connections on the Internet [15]. Intervals
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between connection requests in Internet traffic have long-
tail distributions [7]. Recent analysis of the durations of
world wide web transfers have led to scrutinizing the file
length distribution on file servers [6]. Both distributions
have been found to be long-tailed.

The accumulated evidence is clear: many important
probability distributions associated with network traffic
have long tails. Moreover, it is known that long-tail distri-
butions can have a dramatic impact upon network perfor-
mance. For example the steady-state waiting-time distri-
bution in an infinite-capacity single-server queue inherits
the long-tail property of a service-time distribution. How-
ever, the impact of a long-tail distribution depends on the
context and requires careful analysis. For example, in the
single-server queue, large delays are caused by large service
times and short interarrival times.

Not only are long-tail distributions prevalent and im-
portant, but they are difficult to analyze. For example,
even the relatively simple M/G/1 queue is difficult to an-
alyze when the service-time distribution is Pareto. Abate
et al. [1] calculate performance measures for the GI/G/1
queue when the general interarrival-time and service-time
distributions are long-tailed using numerical transform in-
version, but it is necessary to have the Laplace transforms
of these distributions, and there evidently is no convenient
expression for the Laplace transforms of the Pareto and
Weibull distributions.

Our main contribution in this paper is to point out that
it is possible to approximate long-tail probability distribu-
tions by convenient short-tail probability distributions, so
that available performance models can be effectively an-
alyzed and so that the effect of the long-tail distribution
upon performance can be determined. (We do not claim
that the long-tail distribution has no effect.) Moreover,
we develop a remarkably simple algorithm for construct-
ing suitable approximating distributions for a large class of
long-tail distributions. The class of long-tail distributions
that can be approximated by the method developed here
includes the Pareto and Weibull distributions in (1.5) and
(1.6) as special cases.

Although at first it may be surprising that long-tail dis-
tributions can be approximated by short-tail distributions,
there is a simple explanation in the notion of time scale. In
almost all network performance settings, the distribution
of interest only matters through its values in some finite
interval [t1,15]. For t; sufficiently small and ¢, sufficiently
large, the precise form of the distribution outside the in-
terval [t;,%;] should not matter. (Because of the nature of
time scales, it is usually appropriate to measure time log-
arithmically. Thus, we might have t; = 10~¢ and t; = 10°
for appropriate constants @ and b.) The main point is that,
in principle, it should be possible to approximate any long-
tail distribution by a short-tail distribution. A simple way
to do this is to truncate the distribution at the points ¢,
and {5 and assign the negligible probabilities of the intervals
[0,21) and (t2,00) to the points ¢; and t2, respectively. Al-

though this produces a short-tail distribution that captures
the essential behavior of the original long-tail distribution,
it may not be a convenient approximation.

Here we consider hyperexponential distributions as ap-
proximating distributions. A hyperezponential (Hj) distri-
bution is a mixture of k exponentials for some k, i.e., the
cedf has the form

k
He(t) =) pie™"
i=1
where p; > 0 for all ¢ and p; + ...+ py = 1. Our fitting
algorithm fits a hyperexponential distribution to a given
long-tail distribution, aiming to be accurate over a finite
interval {1, ,] for suitably small ¢; and suitably large t,.
Given data that might be well described by either a
Pareto distribution or a hyperexponential distribution, we
would usually prefer the Pareto distribution for a simple
description because it provides a more parsimonious de-
scription. The Hy distribution in (1.7) has 2k — 1 param-
eters, whereas the Pareto distribution has only 2. Statis-
tical estimation also tends to work better when there are
fewer parameters. We primarily suggest replacing long-tail
distributions such as the Pareto distribution by hyperex-
ponential distributions, because performance models tend
to be easier to analyze when component distributions in
the model are hyperexponential. One reason is that hyper-
exponential distributions are special phase-type distribu-
tions, which have been found to make performance models
more tractable [14]. Another reason that we might choose
hyperexponential distributions is because they have simple
Laplace transforms. the Laplace transform of the density h
of the ccdf H® in (1.7) and the Laplace-Stietjes Transform
of the cdf H is

OO
h{s =/ e dH(t) = .
)= [ eman =3 e

The explicit Laplace transform (1.8) makes it possible to
analyze many performance models by numerical transform
inversion, e.g., see {1, 5]. For these numerical transform
inversion algorithms, having a relatively large number of
phases (e.g., 10 or 100) presents no serious difficulty. We
will illustrate this advantage by considering the M/G/1
queue with a long-tail service-time distribution. We have
no difficulty calculating the steady-state waiting-time dis-
tribution in the M/G/1 queue by numerical transform in-
version after making the hyperexponential approximation.

Hyperexponential distributions also make it easier to ob-
tain Markov stochastic processes, which tend to be far eas-
ier to analyze than non-Markov stochastic processes. In
particular, hyperexponential approximations can help an-
alyze superpositions of independent on-off sources, where
each source sends input at a constant rate (fluid) or as
a Poisson process when it is on. If the on or off periods
have long-tail distributions, then the aggregate input model
tends to be intractable, but if the on and off periods of each
source have hyperexponential distributions, then the aggre-
gate input becomes a Markov-modulated fluid or Poisson

(1.7)

k
iAi
Pici (1.8)
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process (see the longer version of this paper for details),
for which there are effective algorithms. Unfortunately,
however, this representation is not totally satisfactory, be-
cause the Markovian state space becomes larger when the
number of exponential components in a mixture increases.
Hence, if there are many sources, the state space of the
approximating aggregate input model may be so large that
analysis remains difficult. Nevertheless, the approximation
is a step towards tractable models. If there are only a few
source, then the model can now be solved, whereas it could
not be solved before.

Once a hyperexponential fit is contemplated, there are
many ways to proceed, such as a least squares fit using
a mathematical program. A natural alternative is the
expectation-maximization {(EM) algorithm, which is an it-
erative procedure that minimizes the Kullback-Leibler “dis-
tance”; see Asmussen, Nerman and Olsson [2], Turin [17]
and references therein. A difficulty with the EM algorithm
is that the iteration can be slow when there are many pa-
rameters. The EM algorithm can be enhanced significantly

~ if a good starting point can be provided. In preliminary ex-
periments we have found that our algorithm is also useful
to quickly provide a good starting point for the EM algo-
rithm, but we do not discuss those experiments here.

We intend to compare various fitting schemes in a future
paper. In this paper we present a simple recursive scheme,
based on the notion of time scales. We recursively fit start-
ing in the largest time scale that matters and successively
reduce the time scale. We start by fitting a weighted ex-
ponential pje~*1? to the tail of the given ccdf. Since we
focus on the tail, A\]'! should be suitably large. Then we
subtract this weighted exponential from the original cedf
and fit a second weighted exponential pye=??* to the new
tail where A;' < AT!. Since the exponential ccdf’s are
short tailed, it should be possible to choose the second ex-
ponential component so that it is negligible further out in
the region where the first exponential pje~*t* was fit. We
describe the algorithm in more detail and discuss previous
related work in Section 4.

To illustrate right away, we consider an example. More
examples are given in an expanded version of this paper to
appear in Performance Evaluation.

Example 1. Suppose that we consider a Weibull distribu-
tion as in (1.6) with exponent ¢ = 0.3 and a chosen so that
the distribution has mean 1. (That makes a = 9.26053.)
Since ¢ is close to 0, this Weibull distribution is strongly
long-tailed. This is partly reflected by its next two mo-
ments, which are mg = 29.2 and m3 = 4481. However, the
first three moments do not nearly capture the full long-tail
effect. To illustrate, we first consider fitting an Ho dis-
tribution {(a mixture of two exponentials, which has three
parameters) to the Weibull distribution by matching the
first three moments (p. 136 [18]). The resulting H; param-
eters are p; = 0.00501, A\; = 0.019, and X; = 1.355. The
approximating Hy density and ccdf are compared to their
Weibull counterparts in Figure 1 (a), (b). It is obvious that

the fit is quite poor, even though the H, distribution has
the same first three moments.

L
107 10N TOMT N0m1z 10U Tone 100 108 14

100 10 102 10 104 108

(b) Cedf

i ¥
3 T T
H ~ AN
b B 03
z fitted hyperexponetilial N H
£y A g
: \ s \
;
o \~. g \
f 4 —— Welbull 0.3 \
2 i =+ fhted hyperexponential .
N \ . N
B e e wa e v e e e e st o e e on vou 19 e 1o
\ .
(¢) Density (d) Cedf

Figure 1: A comparison between the Weibull(0.3, 9.261)
density and ccdf- with hyperexponential approximations.
This example shows the difference in the quality of fit be-
tween matching three moments (a), (b) and applying our
algorithm (c), (d).

In contrast, the density and ccdf of an H} fit obtained
by our algorithm in Section 4 is shown in (c) and (d) of
Figure 1. The fit is so good that it is hard to see two
curves in (c) and (d). This Hy fit has k = 20 exponentials.
The three moments of the approximating Hoo distribution
are my = 1.0060, my = 30.6, and mz = 4640.

By this example, we do not mean to imply that 20 expo-
nentials are necessarily required to produce a satisfactory
approximation of this Weibull distribution, but this num-
ber certainly seems to be sufficient for almost all network
performance applications.

An attractive feature of our algorithm is that it does not
depend on the moments. Therefore, it can be used even if
the moments do not exist or are not known. However, it is
useful to calculate the first few moments of the original and
the approximating distributions to help judge the quality
of the fit.

Here is how the rest of this paper is organized. In Sec-
tion 2 we discuss robustness of performance models. We
refer to some of the evidence indicating that if a compo-
nent probability distribution in a performance model is well
approximated by another, then the performance measures
of interest will be suitably close. We also give a precise
meaning for “close.” In Section 3 we rigorously prove that
it is possible to approximate many long-tail distributions
by hyperexponential distributions. We identify a class of
distributions containing many long-tail distributions, in-
cluding Pareto and Weibull, for which arbitrarily close hy-
perexponential approximations can be made.

9b.2.3
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We present our recursive algorithm for constructing ap-
proximating hyperexponential distributions in Section 4.
In Section 5 we explain when the algorithm should be ef-
fective.

In Section 6 we investigate how our fitting algorithm
is related to fitting probability distributions to data. We
show through simulation experiments that, consistent with
intuition, it is usually much better to fit a long-tail dis-
tribution with only a few parameters to the data and then
afterwards apply our algorithm to the long-tail distribution
in order to obtain a high-order hyperexponential approx-
imation than it is to apply our algorithm directly to the
empirical distribution generated from the data. Finally,
we state our conclusions in Section 7.

2 The Robustness of Performance Models

Since we intend to approximate component distributions
in performance models by other distributions, it is im-
portant that the performance models be robust to such
changes. As a specific example, we will consider approx-
imating long-tail service-time distributions by hyperexpo-
nential distributions in the GI/G/1 queue. (The GI/G/1
queue is just one example; There are many possible ap-
plications of hyperexponential approximations besides the
GI/G/1 queue). The GI/G/1 queue has a single server,
unlimited waiting room and interarrival times and ser-
vice times coming from independent sequences of indepen-
dent and identically distributed random variables with gen-
eral distributions. If we approximate the given general
interarrival-time and service-time distributions by other
distributions, then we want descriptive performance mea-
sures such as the steady-state waiting-time distribution
also to be approximately what it would be with the origi-
nal interarrival-time and service-time distributions. Fortu-
nately, such robustness, stability or continuity properties
have been established for performance models.

Even though robustness results have been established,
care is needed because the robustness results do not hold
unconditionally. The robustness depends upon what we
mean by “close” and upon regularity conditions. We say
that a sequence of random variables { X,, : n > 1} converges
in distribution to a random variable X, and write X,, = X,
if Ef(Xn) = Ef(X) as n — oo for all bounded continuous
real-valued functions f. If F, and F are the cdf’s of X;; and
X, ie., Fu.(t) = P(X, <1), then X,, = X is equivalent to
convergence of cdf’s in the form F,(t) — F(t) as n — o
for all points ¢ that are continuity points of the limiting cdf
F, which we denote by F, = F.

With this background, we can state a robustness the-
orem for the GI/G/1 queue due to Borovkov [4] p. 118.
A random variable is said to be proper if it is finite with
probability one.

Theorem 2.1. (Borovkov). Consider a sequence of
GI/G/1 queueing models indexed by n with interarrival

times, service times and steady-state waiting-time dis-
tributed as U™, V(*) and W) respectively. Consider a
prospective limiting GI/G /1 model with corresponding ran-
dom variables U,V and W. If EV(®) < EU®™) for dll n,
EV<EU,Us=U,Va=Vand EV, - EV as n — oo,
then W) n > 1, and W are proper random variables and
Wn > W as n = co.

The condition EV ™) < EU™) in Theorem 2.1 is needed
in order to ensure that the n'® model is stable, i.e., that
a proper steady-state waiting-time W(™) exists. An im-
portant point in Theorem 2.1 is that we also need to as-
sume that the limiting system is stable (EV < EU), that
the mean service times converge (EV, — EV), and that
the limiting mean is necessarily finite (EV < oo since
EV < EU). We need to assume that EV, — EV as
n — 0o, because convergence in distribution does not imply
convergence of moments. As a secondary point, note that
there is no requirement that the mean interarrival times
EU®) and EU be finite or that EU() — EU as n — co.

To illustrate how we can apply Theorem 2.1, suppose
that a GI/G/1 queueing system of interest has a generic
service time V with a Pareto distribution as in (1.5). In
the next section we will show that, without imposing any
moment conditions, we can approximate the Pareto distri-
bution of V arbitrarily closely by a hyperexponential dis-
tribution as in (1.7); i.e., for each n we can let V(*) have a
hyperexponential distribution (where the number of com-
ponent exponentials depends on n) and have V(*) = V as
n — oo.

We would like to deduce that W(*) = W for the waiting-
times in the associated GI/G/1 models. (Assume that the
interarrival-time distribution is fixed.} However, we cannot
draw this conclusion without the extra conditions in The-
orem 2.1. The crucial extra condition is that EV < oo; for
the GI/G/1 application we must require that the Pareto
distribution have a finite mean. If EV = oo, then the ap-
proximation procedure will fail, but if EV < oo, then it
will work. It turns out that we can choose the approximat-
ing distributions so that EV(®) — EV as n — oo, and we
need to do so, but we also need to require that £V < oo
and EV < EU as well. However, with such extra condi-
tions, approximating component distributions can achieve
the desired result. The remaining questions are only the
practical ones: How many exponentials are needed before
the distribution of V(*) is suitably close to the distribution
of V? And how do we actually find a good approximating
distribution?

Example 2. To illustrate the robustness of the queueing
model, we consider the Weibull distribution in Example 1
as a service-time distribution in the M/G/1 queue (having
an exponential interarrival-time distribution). We let the
arrival rate (and thus the traffic intensity) be 0.75. We
focus on the steady-state waiting-time ccdf P(W > t). In
addition to the three-moment H fit and the Hyg fit by our
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algorithm in Section 4, we consider a simple exponential fit
obtained by matching only the mean.
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Figure 2: The steady-state M/G/l waiting-time cedf

P(W > t) with a Weibull(.3, 9.261) service-time distribu-
tion having mean = 1. the numerical results (calc) are
for the model with the approximating hyperexponential
and exponential service-time distributions. The simula-
tions (exp) are for the model with the Weibull and the ap-
proximating hyperexponential distribution. Parts (a) and
(b) contain the H3 fit by matching the first three moments,
while parts (c) and (d) contain the Hyq fit by the algorithm
in Section 4. Parts (b) and (d) are the same as parts (a)
and (c), respectively, but with the y-axis in log scale.

We compare numerical results (calc) for the M/H»/1
and M/M/1 models to simulations (exp) of the M/H,/1
and M/W/1 models in (a) and (b) of Figure 2 (W stands
for Weibull)." In contrast, we compare numerical results
for the M/ Hyo/1 and M/M/1 models to simulations of the
M/Hap/1 and M/W/1 models in (c) and (d) of Figure 2.
In all cases, the steady-state waiting-time ccdf is displayed,
with the y-axis being in log scale in (b) and (d).

The M/M/1 model is appealing, because the steady-
state waiting-time cdf for it is available in closed form
(a simple exponential plus an atom at the origin), but
it yields a remarkably poor approximation. Clearly the
service-time distribution beyond its mean matters greatly.
The M/ H,/1 numerical results could be obtained in several
ways; we used numerical transform inversion {1]. The sim-
ulations were based on a time interval of 5.3 x 10%, which
corresponds to about 4 x 108 arrivals.

From (a) and (b) of Figure 2, we see that the M/H,/1
approximation for the waiting-time ccdf is much better
than the H, approximation for the W service-time dis-
tribution directly. This reflects the extensive experience
showing that approximations based on two moments of
the interarrival-time and service-time distributions can be

quite effective. However, even though the M/Hy/1 ap-
proximation might be good enough for some engineering
applications, the M/H20/1 approximation in (c} and (d) is
far better.

3 Complete Monotonicity

To have a good theoretical basis for approximating one
distribution by another, it is appropriate to consider what
is possible. From this perspective, it is important to note
that every hyperexponential distribution has a decreasing
probability density functions (pdf) and possibly an atom
at 0. Thus, hyperexponential distributions cannot capture
departures from this structure, such as atoms away from 0
or a non-monotone pdf.

On the other hand, there is a large class of distributions
(necessarily with monotone pdf’s) which can be approxi-
mately arbitrarily closely by hyperexponentials. The nice
class of probability distributions are those with completely
monotone pdf’s. A probability density function (pdf) f is
said to be completely monotone if all derivatives of f exist
and

(~1)"f™ () >0 forall >0 and n>1; (3.1)

see p. 439 of [8]. the link between completely monotone
pdf’s and mixtures of exponential pdf’s is provided by
Bernstein’s theorem [8].

Theorem 3.1. (Bernstein) Every completely monotone
pdf f is a mizture of exponential pdf’s, i.e.,

ft) = /oo AeMdG(A), t>0, (3.2)

0

for some proper cdf G.

We call G in (3.2) the spectral cdf. (Then the support of
G is called the spectrum. The support of G is the set of ail
t for which G(t+¢€)— G(t—¢) > 0 for all € > 0.) Of course,
the spectral cdf G appearing in (3.2) is a general cdf; it
need not have finite support. (A cdf G has finite support if
it has a probability mass function attaching probabilities p;
to n points ¢; with p; +...4+p, = 1 for some n.) However,
cdf’s with finite support are dense in the family of all cdf’s.
Hence, Theorem 3.1 implies the following result.

Theorem 3.2. If F is a ¢df with a completely monotone

pdf, then there are hyperezponential cdf’s F("), n > 1, i.e.,
cdf’s of the form

kn
FM@) = pai(l~e*=t, 20, (3.3)
i=1

with Ap; < 00 and ppy + .. .ppk, = 1, such that F(") = F
as n — oo.

9b.2.5
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Theorems 3.1 and 3.2 are important for approximat-
ing long-tail distributions because many long-tail pdf’s are
completely monotone. For example, by differentiating (and
using mathematical induction), it is easy to see that the
pdf’s of the Pareto distribution in (1.5) and the Weibull
distribution with a < 1 in (1.6) are completely monotone.
The gamma pdf with shape parameter less than 1 is also
completely monotone. The Pareto mixture of exponen-
tials (PME) distribution considered in [1] is also completely
monotone, because it directly satisfles (3.2). The PME
distribution is convenient because its Laplace transform is
available.

4 The Recursive Fitting Procedure

In this section we specify the recursive procedure for
fitting a hyperexponential (Hy) cdf H to a given cdf F on
the nonnegative real line. We think of the original cdf as
being a long-tail distribution such as Pareto or Weibull with
exponent less than one. We think of the cdf F as having
a monotone probability density function (pdf) f, but we
do not require it. We discuss conditions under which the
procedure should be effective in Section 5.

The H; distribution has cedf (1.7). Without loss of gen-
erality, let the exponential parameters A; be labeled so that
A1 < ... < Ag. Then the higher indexed components have
tails which decay more rapidly. Our idea is to fit the Hj
components recursively, starting with the pair (A;,p1) and
then proceeding to (A2, p2) and so forth. If ), is sufficiently
greater than Ay, then Z:;? e~ 2 should be negligible com-
pared to pre~*t for ¢ sufficiently large (in the tail). This
should enable us to choose the pair (p1, A1) without being
concerned about the other Hy parameter values. We then
subtract the component p;e~*1* from both H°(t) and F(t)
and fit the second component to the remaining tail. If again
A3 is sufficiently greater than A,, then Ef:s e~ %t should
be negligible compared to pae~*3t for ¢ sufficiently large,
and we can fit the pair (Ag,ps) without being concerned
about the other H) parameters.

After deriving this recursive fitting procedure, we
learned that the general recursive estimation procedure ac-
tually has a long history, being known as Prony’s method
(p. 114 [16]). In that context, we contribute by showing
when the recursive fitting procedure should be effective
{Sections 3 and 5 here) and by applying it to approximate
long-tail distributions.

Here is the procedure: we first choose the number & of
exponential components and k arguments where we will
match quantiles: 0 < ¢x < k-1 < ... < ¢;. We assume
that the ratios ¢;/¢;i41 are sufficiently large; e.g., we could
have ¢; = ¢;107%=1) for 2 < i < k. Let b be such that
1 < b < ¢ifciyr for all 45 eg., with ¢; = ¢110-6-1) we
could have b = 2.

We choose A; and p; to match the cedf F°(2) at the

arguments ¢; and bey; i.e., we solve the two equations
pre~ 21" = F(z¢;) for £ = 1 and b

for py and Ay, assuming that ¢y, b, F°(c;) and F¢(bc;) are
known, obtaining

1 Fe(cy)

M= T M Fepey)

) and p; = F(c;)erer.

With this procedure, we are assuming that \; will be
sufficiently larger than Ay for all ¢ > 2 that the final ap-
proximation will satisfy

k
Zp;e"\"‘ ~pre~t for t > .
i=1

We have no guarantee that this property will hold, but the
accuracy can be checked when the fit is complete. (See
Section 5 for further discussion.)

Next, for 2 < i <k, let

=1
Ff(zei) = Ffoq(2ei) - Z: pje~ %% for £ = 1 and b
i=1

where F{(t) = F¢(t). Then proceed as above, letting
pie~ N = Ff{ze;) forz =1 and b

to obtain

1 Fi(ei) = F¢(p)erici
T=Da In( Ff(bc,-)) and p; = F(ci)e

A=

for 2 < i € k — 1. Finally, for the last parameter pair
(Ak, pr), we require that

k-1

pe =1-7_ p; and pre ¥+ = Fi(ck),
i=1

where F¢(cx) is defined, so that
1 C
Me = — In(pe/F{(ck)) -
Ck

Assuming that we obtain probability weights (p; > 0
for all ¢), and that the parameters A; are well separated,
we should obtain a good fit. Assuming that we obtain
probability weights, the procedure produces an Hj cecdf
H< that is larger than the original ccdf F°© at the matching
points, i.e.,

H(zc;) > Fzci), 1 <i<k, forz=1andb.

However, if F© is a long-tail distribution, then there will be
a to such that

Fe(t) > H(t) forall t> 1.
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Hence, it is important to choose ¢; sufficiently large that
1o is beyond the region of interest.

Our implementation of the algorithm in software allows
the user to proceed interactively, choosing new parameter
settings as desired, after looking at tables and graphs of
the results. The standard approach is to specify k, ¢1, ck,
and b. Then the algorithm chooses the remaining ¢; such
that the ratio of ¢;/¢i4+1 is constant and proceeds with the
fitting procedure. An available alternative is to specify one
point at a time, start with the pair (c;,b;), inspect the
preliminary result, and continue by choosing the next pair
(Cig1,bi41).

When we are done, we calculate several moments of the
Hj, distribution and compare them to the moments of F if
they are available. As numerical measures of achieved fit-
ting accuracy, we compute the absolute and relative errors
of the ccdf and cdf. For both, the cdf and the ccdf, the
absolute error is

AE(F,t) = [H°(t) - F°(t)| = |H({t) — F(t)].

A relative error for both the cdf and ccdf is

|He(t) — Fe(t)]

RE(F1) = Lo, Fe)]

We graphically display these errors as functions of ¢ over
any requested interval (I,u). We calculate the curves by
considering points whose logarithms are evenly spaced over
lLu).

( To illustrate, we display the absolute and relative errors
of the Hy and the Hyp fits to the Weibull distribution in
Example 1 in Figure 3. It turns out that the Hao fit was
done with ¢, = 10~7 and ¢; = 9 x 10%. Since ¢; is not
large, there are somewhat large relative errors for the Hap
cdf in the region 102 —10%. However, the ccdf values in this
region are very small, e.g., F°(10%) = 4.25¢ — 4, F°(10%) =
1.88e— 7, F°(10*) = 3.79¢ — 14, and F°(10%) = 1.67e — 27.

5 When Should the Procedure Work?

In this section we discuss conditions under which the
fitting procedure in Section 4 should be effective. In par-
ticular, we point out that the procedure is natural for dis-
tributions with decreasing failure rate (DFR). to see this,
note that the fitting formula for A; can be rewritten as

_In(Fe(bes) = In(Fe(e:)

Ai= o (5.1)
As b — 1, formula (5.1) approaches
— d 13 - f(ci) _ i
k, = —dt ln(F (t)h:c‘ = F(-C,—) = T(C,) y (52)

which is the hazard rate function (or failure rate function)
associated with the cedf F° evaluated at ¢; [3].

The idea in the procedure of Section 4 is to have A; be
significantly less than A;4; for all i. In order to have A; be
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Figure 3: The relative and absolute errors of the Hs and
the Hap fits to the Weibull(0.3, 9.261) distribution from
Example 1.

less than Aj4, for-all 4, it is natural to require that the ccdf
Fe(t) be DFR. This is equivalent to having F(t) be log-
convez. A sufficient condition for the ccdf F¢(t) to be log-
convex is for the pdf f(t) to be log-convex (p. 73 [9]). Since
mixtures of log-convex pdf’s are log-convex (Theorem 5.4c,
p. 66 [9]), all completely monotone pdf’s are log-convex.
Hence all completely monotone pdf’s are DFR.

In summary, our algorithm is natural for completely
monotone pdf’s such as the Pareto and Weibull distribu-
tions (see Section 3) and, more generally, for DFR pdf’s.
However, by the same reasoning, our algorithm is inap-
propriate for increasing failure rate (IFR) distributions.
For example, our algorithm does not work for the uni-
form distribution, i.e., when F(t) = ¢/5,0 <t < b, and
F(t) = 1,t > b, which clearly has a very short tail. Since
many long-tail distributions are DFR, our algorithm has
substantial applicability.

Even though many long-tail distributions are DFR,
many others are not. Indeed, the long-tail property (1.1) is
unaltered by changing the probability distribution on any
initial interval [0,¢]. Thus, the long-tail property does not
nearly guarantee the DFR property.

6 Fitting to Data

Besides using the fitting algorithm to fit a hyperexpo-
nential distribution to another distribution, we can also use
the fitting algorithm to fit a hyperexponential distribution
to data. In this case the empirical ccdf obtained from the
data replaces the ccdf of the initial probability distribution
in the algorithm.

However, we would suggest caution when applying our
algorithm directly to data. Our experience is that it is

9b.2.7

1102



usually much better to first fit a suitable long-tail proba-
bility distribution with only a few parameters to the data,
and then afterwards apply our algorithm to fit a multi-
parameter hyperexponential distribution to the long-tail
distribution. By this two-step procedure, we usually are
able to obtain a good multi-parameter hyperexponential
fit to data.

We considered a simulation experiment in which we try
to fit a probability distribution to a sample of 1000 points
drawn from the Weibull(.3, 9.261) distribution considered
in Example 1 having unit mean. Even though the sample
size is not very large, it is large enough to obtain a good fit
to the two-parameter Weibull distribution using the max-
imum likelihood estimator (p. 255 [10]). The Weibull pa-
rameters achieved from one sample were ¢ = 0.3016 and
a = 9.369 (yielding a mean of 0.96532). Since the esti-
mated values of ¢ and a are close to the original parameters,
our algorithm applied to the fitted Weibull distribution
can produce an excellent Hyg approximation to the orig-
inal Weibull distribution. For this experiment, the original
Weibull distribution, the fitted Weibull distribution and
the Hyg fit to the fitted Weibull distribution are all very
close, just as in Figure 1.

We also considered what happens when we apply our hy-
perexponential fitting algorithm directly to the data. Since
the sample is not large, the range of the empirical ccdf
is limited. Thus, it is not possible to directly apply our
algorithm with many exponential terms. We show what
happens with 4 exponentials. Figure 4 (a), (b) show how
the fitted hyperexponential distribution matches the exper-
imental cdf and ccdf. Figure 4 (c), (d) compare the fitted
hyperexponential distribution to two Weibull distributions:
the original Weibull distribution and the fitted Weibull dis-
tribution. Although the fits in Figure 4 look quite good,
the pictures are deceptive, because the small and large val-
ues are not matched well. To illustrate, the moments are
not matched well. For example, the third moments of the
original Weibull cdf, the data, the H, fit and the Weibull
fit were 4481, 1592, 145, and 3820, respectively. The poor
moments match can be explained in part by the fact that
the sample moments of the data are not very close to the
moments of the sampled distribution.

The experiment we have considered is somewhat biased,
because we considered a hyperexponential fit to Weibull
data. If we know in advance that the data is generated
from the Weibull distribution, then using a statistical esti-
mation procedure tailored to the Weibull distribution ev-
idently should be good. It is less clear with an unknown
data source. However, regardless of the data source, our
fitting procedure is not designed to treat data. It does not
address the statistical problems of the estimation. How-
ever, our procedure might well be applied effectively after
some initial smoothing of the data, but that approach re-
mains to be explored.
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Figure 4: Hy4 fit to the empirical cdf from a sample of
size 1000 from a Weibull(.3, 9.261) distribution using c; =
0.0001 and ¢; = 5.

7 Conclusions

In this paper we have developed an effective simple algo-
rithm for approximating a large class of probability distri-
butions with monotone densities by hyperexponential dis-
tributions (Section 4). We have found that the algorithm
is effective for approximating Pareto and Weibull distribu-
tions (Sections 1, 2). We have shown that the algorithm
should be effective for distributions with decreasing failure
rate, and should not be used for distributions with increas-
ing failure rate (Section 5). We have proved that, in princi-
ple, completely monotone pdf’s (all of which have decreas-
ing failure rate) can be approximated arbitrarily closely
by hyperexponential pdf’s, and that as a result (under ex-
tra regularity conditions) the associated waiting-time dis-
tribution in a GI/G/1 queue with a completely monotone
service-time distribution can be approximated arbitrarily
closely by the waiting-time distribution in the associated
GI/G/1 queue with the approximating hyperexponential
service-time distribution (Sections 2 and 3). Since many
long-tail distributions are completely monotone, these re-
sults serve as a theoretical foundation for approximating
long-tail distributions by hyperexponential distributions.
Since phase-type probability distributions are dense in the
family of all probability distributions, by the same reason-
ing, they are rich enough to approximate any distribution,
if enough phases are allowed. We have pointed out that the
EM algorithm is a candidate fitting algorithm for general
phase-type distribution.

We believe that hyperexponential approximations of
long-tail distributions can be useful, but they do not re-
move all difficulties. If a good fit is done, then the high
variability of the long-tail distribution will be inherited
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by the approximating hyperexponential distribution. This
high variability can make precise estimation by computer
simulation difficult. Hyperexponential approximations also
can make models of the superpositions of on-off sources
more tractable, but since the state space of the Markovian
environment process may be large, the approximating ag-
gregate input process can still be difficult to analyze. How-
ever, we did see that the hyperexponential approximation
makes it possible'to calculate steady-state performance dis-
tributions in the M /G/1 queue with a long-tail service-time
distribution by numerical transform inversion. The same
technique applies to the more general BM AP/G/1 queue
and other performance models.

We have emphasized that our fitting algorithm is in-
tended to approximate one probability distribution by an-
other, and not to fit a probability distribution directly to
data (Section 6). In some circumstances our algorithm
could be used to fit a hyperexponential distribution to an
empirical distribution (histogram) obtained from data, but
our algorithm is not designed for that purpose. Indeed, in
simulation experiments with long-tail data, we found that
much better fits are obtained by first fitting a long-tail dis-
tribution with very few parameters (e.g., 2) to the data and
then applying our algorithm to obtain a hyperexponential
distribution.

Finally, the algorithm presented here is only one of many
possible fitting algorithms. We intend to compare alterna-
tive fitting algorithms in a future paper.
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