Chapter 8

Fluid Queues with On-Off
Sources

8.1. Introduction

In this chapter we consider a queueing model introduced to help under-
stand the performance of evolving communication networks. As indicated
in Section 2.4.1, traffic measurements have shown that the traffic carried on
these networks is remarkably bursty and complex, exhibiting features such
as heavy-tailed probability distributions, strong positive dependence and
self-similarity. These traffic studies have generated strong interest in the
impact of heavy-tailed probability distributions and other forms of traffic
burstiness upon queueing performance.

A useful model for studying such phenomena is a fluid queue having input
from multiple on-off sources; e.g., see Anick et al. (1982), Roberts (1992),
Willinger et al. (1997), Taqqu et al. (1997), Choudhury and Whitt (1997),
Boxma and Dumas (1998) and Zwart (2001). The queue represents a switch
or router in the communication network, where data must be temporarily
stored and then forwarded to its destination. The queue may have constant
or random release rate, representing the available bandwidth. The actual
flow of data in many small packets is modelled as fluid. Each of the many
sources alternates between periods when it is busy (active or on) and periods
when it is idle (inactive or off). During busy periods, the source transmits
data at a constant or random rate; during idle periods, the source is idle,
not transmitting anything. The total input to the queue is the superposition
(sum) of the inputs from the separate sources, which usually are assumed to
be stochastically independent. Given such a model, with stochastic elements

295



296 CHAPTER 8. ON-OFF SOURCES

specified in more detail, the object is to describe the distributions of quan-
tities such as the buffer content, data loss and end-to-end delay experienced
by users.

In this chapter we establish heavy-traffic stochastic-process limits for
fluid-queue models with multiple on-off sources. Much of the literature
on the fluid queue with multiple on-off sources focuses on the relatively
tractable special case of homogeneous (IID) sources in which the busy peri-
ods and idle periods come from independent sequences of IID exponentially
distributed random variables; e.g., see Anick et al. (1982). We consider
more general models, aiming to capture the performance impact of features
such as heavy-tailed distributions and strong dependence. We show how
the heavy-traffic limits can identify key features determining performance
in more complicated queueing models.

The on-off source traffic model represents stochastic fluctuations at two
different time scales. The pattern of busy periods and idle periods produces
stochastic fluctuations in a longer time scale. The stochastic process depict-
ing the fluid flow during busy periods represents stochastic fluctuations in
a shorter time scale. If we let the flow during a busy period be at a deter-
ministic constant rate, then we are deciding in advance that the stochastic
fluctuations in the shorter time scale are neglibible compared to the stochas-
tic fluctuations in the longer time scale. More generally, the model gives us
the opportunity to compare the impact of stochastic fluctuations in the two
different time scales.

We could consider fluctuations in an even longer time scale by letting the
number of sources itself evolve as a stochastic process, but here we consider
a fixed number of sources. The heavy-traffic stochastic-process limits can
be extended to the more general setting by treating the number of sources
as a random environment, as in Example 9.6.2.

It will be obvious that in the principal cases the stochastic processes of
interest have continuous sample paths. Thus, if there is convergence of a
sequence of fluid-queue stochastic processes to a limiting stochastic process
with discontinuous sample paths, as we establish in Section 8.5, then the
Skorohod M; topology must be used. Such limits with discontinuous sample
paths will arise under heavy-traffic conditions and heavy-traffic scaling when
the busy-period or idle-period distributions of some sources have heavy tails
(infinite variance).

Here is how this chapter is organized: In Section 8.2 we introduce the
more-detailed multi-source on-off model for the input to a fluid queue, Then
in Section 8.3 we apply the continuous-mapping approach again to estab-
lish heavy-traffic stochastic-process limits for the more-detailed fluid-queue
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model.

We consider the special cases of Brownian-motion and stable-Lévy-motion
heavy-traffic stochastic-process limits for fluid-queue models in Sections 8.4
and 8.5. In these sections we discuss properties of the reflected limit pro-
cesses to demonstrate that the stochastic-process limits lead to tractable
approximations. In some cases, probability distributions of random quanti-
ties associated with the limit process can be given explicitly in closed form.
In other cases, the probability distributions can be conveniently character-
ized via transforms. Then numerical transform inversion can be exploited
to calculate the probability distributions. There is a great potential for
combining asymptotic and numerical methods.

In some cases, such as with convergence to reflected stable Lévy motion,
the limit process is relatively complicated. Then, for applications, there may
be interest in developing approximations for the limit process. In Section 8.6
we show how a second stochastic-process limit can be used for that purpose.

We consider strongly-dependent net-input processes in Section 8.7. When
the input comes from many independent sources, the central limit theorem
for processes in Section 7.2 implies that the net-input process can be approx-
imated by a Gaussian process. With strong dependence, the scaled net-input
processes converge to fractional Brownian motion (FBM). Then the asso-
ciated sequence of scaled workload processes converges to a reflected FBM
(RFBM). We develop approximations for the steady-state distribution of
RFBM and more general reflected stationary Gaussian processes in Section
8.8.

As in Chapter 5, we give proofs for the theorems in this chapter, but we
are primarily interested in the result statements and their applied signifi-
cance. The proofs draw on material in later chapters.

Remark 8.1.1. Literature on non-Brownian heavy-traffic limits. Our dis-
cussion of heavy-traffic stochastic-process limits for fluid queues, emphasiz-
ing non-Brownian limit processes, follows Whitt (2000a, b). Non-Brownian
heavy-traffic limits for queues and related models have been established by
Brichet et al. (1996, 2000), Boxma and Cohen (1998, 1999, 2000), Cohen
(1998), Furrer, Michna and Weron (1997), Konstantopoulos and Lin (1996,
1998), Kurtz (1996), Resnick and Rootzén (2000), Resnick and Samorodnit-
sky (2000), Resnick and van den Berg (2000) and Tsoukatos and Makowski
(1997, 2000).
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8.2. A Fluid Queue Fed by On-Off Sources

In this section we add extra detail to the fluid-queue model introduced
in Section 5.2. In particular, we consider multiple on-off sources.

In the fluid queue model, there can be infinite (unlimited) or finite stor-
age space, as discussed in Section 5.2. We assume that there is a single
shared buffer receiving the input from all the sources. (We discussed the
case of separate source queues in Section 2.4.2.) Fluid can be processed ac-
cording to the general stochastic process S, as described in Section 5.2. As
indicated there, an important special case is S(t) = ut for all ¢ > 0 w.p.1;
i.e., the fluid can be processed continuously at constant rate p whenever
there is work to process. However, we consider the general case. For exam-
ple, it allows us to model service interruptions; for further discussion about
service interruptions, see Remark 8.3.2.

8.2.1. The On-Off Source Model

Input arrives from each of m sources. Each source is alternatively busy
(active or on) and idle (inactive or off) for random busy periods B; and idle
periods I;, 1 > 1. Without loss of generality, let the first busy period begin at
time 0. (That is without loss of generality, because we can redefine By and
I; to represent alternative initial conditions; e.g., to start idle, let B; = 0.
To have the busy and idle periods well defined, we assume that I; > 0 for
all 4 and B; > 0 for all 4 > 2.) For mathematical tractability, it is natural
to assume that the successive pairs (B;, I;) after the first are IID, but we
do not make that assumption. Our key assumption will be a FCLT for the
associated partial sums, which from Chapter 4 we know can hold without
that IID assumption.

A busy cycle is a busy period plus the following idle period. Thus the
termination time of the j* busy cycle is

J
T,=> (Bi+1). (2.1)

i=1

(As before, we use = instead of = to designate equality by a definition.) As
a regularity condition, we assume that T; — co with probability one (w.p.1)
as j — oo. Let N = {N(¢) : t > 0} be the busy-cycle counting process,
defined by

N(t) =min{j >0:T; <t}, t>0, (2.2)
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where Ty = 0. Let A; be the set of times when the 4™ busy period occurs,
ie.,
Aj={t:Tj-1 <t <Tj1 + By, (2.3)

where Ty = 0. Let A be the source activity period — the set of times when
the source is busy; i.e.,

A= Ej Ay . (2.4)
n=1

For any set S, let Is be the indicator function of the set S; i.e., Ig(z) =1
if z € S and Ig(xz) = 0 otherwise. Thus, for A in (2.4), {Ia(t) : t > 0} is
the activity process; I4(t) = 1 if the source is active at time ¢ and I4(t) =0
otherwise. Let B(t) represent the cumulative busy time in [0, ]; i.e., let

B(t)z/otlA(s)ds, £>0. (2.5)

Possible realizations for {I4(t) : ¢ > 0} and {B(¢) : t > 0} are shown in
Figure 8.1.

Let input come from the source when it is active according to the stochas-
tic process {A(t) : t > 0}; i.e., let the cumulative input during the interval
[0,¢] be

C(t)=(AoB)(t) =A(B(t), t>0 (2.6)

where o is the composition map. (This definition ignores complicated end
effects at the beginning and end of busy periods and idle periods.)

We assume that the sample paths of A are nondecreasing. A principal
case is

PAt) =X, t>0)=1

for a positive deterministic scalar A, in which case C(t) = AB(t), but we
allow other possibilities. (We use the notation X here because we have
already used A as the overall input rate, i.e., the rate of C(¢).) To be
consistent with the busy-period concept, one might require that the sample
paths of A be strictly increasing, but we do not require it. To be consistent
with the fluid concept, the sample paths of A should be continuous, in which
case the sample paths of C will be continuous. That is the intended case,
but we do not require it either.

Notice that the random quantities {7} : j > 1} in (2.1), {4;:j > 1} in
(2.3), Ain (2.4), {Ia(t) : ¢ > 0} and {B(t) : t > 0} in (2.5) and {C(¢) : t > 0}
in (2.6) are all defined in terms of the basic model elements — the stochastic
processes {(Bj,I;) : 7 > 1} and {A(t) : ¢ > 0}. Many measures of system
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Figure 8.1: Possible realizations for the initial segments of a source-activity
process {I4(t) : t > 0} and cumulative-busy-time process {B(t) : t > 0}.

performance will depend only on these source characteristics only via the
cumulative-input process {C(t) : t > 0}. Also notice that we have imposed
no stochastic assumptions yet. By using the continuous-mapping approach,
we are able to show that desired heavy-traffic stochastic-process limits hold
whenever corresponding stochastic-process limits hold for stochastic pro-
cesses associated with the basic model data.

Now suppose that we have m sources of the kind defined above. We add
an extra subscript I, 1 <[ < m, to index the source. Thus the basic model
elements are {{(By;,I;;) : 7 > 1},1 <1 <m} and {{Ay(t) : 1 >0},1 <1<
m}. The cumulative input from source ! over [0,¢] is Cy(t). The cumulative
input from all m sources over [0, ] is

C(t) = i Cit), t>0. (2.7)
=1
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As indicated above, we suppose that the input from these m sources is
fed to a single queue where work is processed according to the available-
processing stochastic process S. At this point we can apply Section 5.2 to
map the cumulative-input process C and the available-processing stochastic
process S into a net-input process, a potential-workload process and the
workload process, exploiting a reflection map. We use the one-sided reflec-
tion map if there is unlimited storage capacity and the two-sided reflection
map if there is limited storage capacity.

Motivated by the fluid notion, it is natural to assume that the sample
paths of the single-source cumulative-input processes are continuous. Then
the aggregate (for all sources) cumulative-input stochastic process and the
buffer-content stochastic process in the fluid queue model also have contin-
uous sample paths. However, as a consequence of the heavy-tailed busy-
period and idle-period distributions, the limiting stochastic processes for
appropriately scaled versions of these stochastic processes have discontinu-
ous sample paths. Thus, stochastic-process limits with unmatched jumps in
the limit process arise naturally in this setting.

Just as for the renewal processes in Section 6.3, it is obvious here that
any jumps in the limit process must be unmatched. What is not so obvious,
again, is that there can indeed be jumps in the limit process. Moreover, the
setting here is substantially more complicated, so that it is more difficult
to explain where the jumps come from. To show that there can indeed be
jumps in the limit process, we once again resort to simulations and plots.
Specifically, we plot the buffer-content process for several specific cases.

8.2.2. Simulation Examples

To have a concrete example to focus on, suppose that we consider a
fluid queue with two IID sources. Let the mean busy period and mean idle
period both be 1, so that each source is busy half of the time. Let the sources
transmit at constant rate during their busy periods. Let the input rate for
each source during its busy period be 1. Thus the long-run input rate for
each source is 1/2 and the overall input rate is 1. The instantaneous input
rate then must be one of 0,1 or 2.

In the queueing example in Section 2.3 we saw that it was necessary to
do some careful analysis to obtain the appropriate scaling. In particular,
in that discrete-time model, we had to let the finite capacity K and the
output rate u depend on the sample size n in an appropriate way. We avoid
that complication here by assuming that the capacity is infinite (by letting
K = o0) and by letting the output rate exactly equal the input rate (by
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letting g = 1, where p here is the output rate).

With those parameter choices, the instantaneous net-input rate (input
rate minus output rate) at any time must be one of —1,0 or +1. To un-
derstand the plots, it is good to think about the consequence of having
exceptionally long busy periods and idle periods. If both sources are simul-
taneouly in long busy periods, then there will be a long interval over which
the net-input rate is +1. Similarly, if both sources are simultaneously in
long idle periods, then there will be a long interval over which the net-input
rate is —1. If only one source is in a long busy period, then the other source
will oscillate between busy and idle periods, so that the net-input rate will
oscillate between 0 and +1, yielding an average rate of about +1/2. Simi-
larly, if only one source is in a long idle period, then again the other source
will oscillate between busy and idle periods, so that the net-input rate will
oscillate between 0 and —1, yielding an average rate of about —1/2.

The likelihood of exceptionally long busy periods (idle periods) depends
on the busy-period (idle-period) probability distribution, and these proba-
bility distributions have yet to be specified. To illustrate light-tailed and
heavy-tailed alternatives, we consider the exponential and Pareto(1.5) dis-
tributions. We consider four cases: We consider every combination of the
two possible distributions assigned to the busy-period distribution and the
idle-period distribution. We call the model Pareto/exponential if the busy-
period distribution is Pareto and the idle-period distribution is exponential,
and so on.

We plot four possible realizations of the workload sample path for each of
the four combinations of busy-period and idle-period distributions in Figures
8.2 — 8.5. We generate 1,000 busy cycles (idle period plus following busy
period) for each source, starting at the beginning of an idle period. We plot
the workload process in the interval [0,7], where T" = min(71,T>) with T;
being the time that the 1,000*" busy cycle ends for source i. Note that
E[T;] = 2000.

The differences among the plots are less obvious than before. Places
in the plots corresponding to jumps in the limit process have steep slopes.
Jumps up only are clearly discernable in the plot of the Pareto/exponential
workload in Figure 8.3, while jumps down only are clearly discernable in
the plot of the exponential/Pareto workload in Figure 8.4. In contrast,
both jumps up and down are discernable in the plots of the Pareto/Pareto
workload in Figure 8.5. However, these jumps are not always apparent in
every realization. The plots of the exponential/exponential workloads in
Figure 8.2 are approaching plots of reflected Brownian motion. Just as
for plots of random walks, sometimes plots that are approaching a relected
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Figure 8.2: Plots of four possible realizations of the workload process in
the two-source infinite-capacity exponential/exponential fluid queue having
exponential busy-period and idle-period distributions with mean 1, where
the input rate equals the output rate. Each source has up to 10% busy cycles.
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Figure 8.3: Plots of four possible realizations of the workload process
in the two-source infinite-capacity Pareto/exponential fluid queue having
Pareto(1.5) busy-period distributions and exponential idle-period distribu-
tions with mean 1, where the input rate equals the output rate. Each source
has up to 103 busy cycles.
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Figure 8.4: Plots of four possible realizations of the workload process in the
two-source infinite-capacity exponential/Pareto fluid queue having exponen-
tial busy-period distributions and Pareto(1.5) idle-period distributions with
mean 1, where the input rate equals the output rate. Each source has up to
103 busy cycles.
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Figure 8.5: Plots of four possible realizations of the workload process in the
two-source infinite-capacity Pareto/Pareto fluid queue having Pareto(1.5)
busy-period and idle-period distributions with mean 1, where the input rate
equals the output rate. Each source has up to 10 busy cycles.
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stable Lévy motion appear quite similar to other plots that are approaching a
reflected Brownian motion. However, additional replications and statistical
tests can confirm the differences.

8.3. Heavy-Traffic Limits for the On-Off Sources

In this section, following Whitt (2000b), we establish stochastic-process
limits for the more-detailed multi-source on-off fluid-queue model in Section
8.2. From Theorems 5.4.1 and 5.9.1, we see that it suffices to establish a
stochastic-process limit for the cumulative-input processes, so that is our
goal.

Let model n have m,, on-off sources. Thus the basic model random
elements become {{{(Bn i, Insi) : ¢ > 1}, 1 <1 < myp}, n > 1} and
{{{An(t) :t >0}, 1 <1 <myp}, n > 1}. Let the source cumulative-input
processes C,; be defined as in Section 8.2. Let the aggregate cumulative-
input process be the sum as before, i.e.,

Cn(t) =Cra(t) +-+++ Cpm,(t), t>0. (3.1)

We establish general limit theorems for the stochastic processes { N, ;(t) :

t >0}, {Bp,(t) :t >0} and {Cy, () : t > 0}. Recall that N, ;(t) represents
the number of completed busy cycles in the interval [0, ], while By, ;(t) rep-
resents the cumulative busy time in the interval [0,t], both for source [ in

model n. We first consider the stochastic processes {Ny (t) : ¢ > 0} and
{Bn,(t) : t > 0}.

8.3.1. A Single Source

We first focus on a single source, so we omit the subscript [ here. We
now define the scaled stochastic processes in (D, M;). As before, we use bold
capitals to represent the scaled stochastic processes and associated limiting
stochastic processes in D. We use the same scaling as in Section 5.4; i.e.,
we scale time by n and space by ¢, where ¢, /n — 0 as n — co. Let

[nt]
B,(t) = ¢, Z(Bn,i —mpp)
=1

L;tJ
Cﬁl Z(In,i — i)
i=1

Nu(t) = ¢, [No(nt) — yuni]
B/ (t) = ¢, [Bu(nt) —é&unt], t>0, (3.2)

!
S
—~

o~
N—

Il
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where again |nt] is the integer part of nt,

MBn 1
————  and = . 3.3
MBn + Mip T mpBn + Mip ( )

€n

We think of mp, in (3.2) as the mean busy period, EB, ;, and mr, as
the mean idle period, EI, ;, in the case {(By i, In;) : 4 > 1} is a stationary
sequence for each n, but in general that is not required. Similarly, we think
of &, in (3.3) as the source on rate and ~,; ! in (3.3) as the mean source cycle
time.

When we consider a sequence of models, as we have done, scaling con-
stants can be incorporated in the random variables. However, in (3.2) and
later, we include space and time scaling consistent with what occurs with a
single model in heavy traffic.

We first show that a limit for (By,,I,) implies a limit for (N, B!,) jointly
with (Bp,I,). That follows by applying the continuous-mapping approach
with the addition, inverse and composition functions. Here is a quick sketch
of the argument: Since N, is the counting process associated with the partial
sums of By, ; + I, ;, we first apply the addition function to treat B, + I,
and then the inverse function to treat N,. The reasoning for the counting
process is just as in Section 7.3. Then the cumulative busy-time B, (t) is
approximately a random sum, i.e.,

Nn(t)
Bu(t)~ Y Bn,

i=1
so that we can apply composition plus addition; see Chapter 13. For the
case of limit processes with discontinuous sample paths, the last step of the
argument is somewhat complicated. Thus, the proof has been put in the
Internet Supplement; see Section 5.3 there.

As before, let Disc(X) be the random set of discontinuities in [0, c0) of

X. Let ¢ be the empty set. (We will refer to the reflection map by ¢x to
avoid any possible confusion.)

Theorem 8.3.1. (FCLT for the cumulative busy time) If
(Bn,In) = (B,I) in (D, M) (3.4)

for B, and I, in (3.2), ¢, = o0, ¢,/n — 0, mp,, — mp, mr, — my, with
0<mp+mr <oo, sothat &, — € with0 <€ <1 and vy, — v>0 for &,
and v, in (3.3), and

P(Disc(B) N Disc(I) =¢) =1, (3.5)



8.3. HEAVY-TRAFFIC LIMITS FOR THE ON-OFF SOURCES 309

then
(B,,I,,N,,B") = (B,I,N,B') in (D, M)*, (3.6)
for N, Bl in (3.2) and
N({) = —y[B(yt) +1(~t)]
B'(t) = (1-&B(yt) —£L(vt) - (3.7)

Next, given that the single-source cumulative-input process is defined
as a composition in (2.6), the continuous-mapping approach can be applied
with the convergence preservation of the composition map established in
Chapter 13 to show that a joint limit for B, (¢) and A,(t) implies a limit for
Cyp(t), all for one source. Note that this limit does not depend on the way
that the cumulative-busy-time processes B, (t) are defined. Also note that
the process {A,(t) : t > 0} representing the input when the source is active
can have general sample paths in D. The fluid idea suggests continuous
sample paths, but that is not required.

We again omit the source subscript [. Let e be the identity map on R, ,
ie,e(t)=t,t>0. Let

An(t) = ¢l [An(nt) — Aunt]
Cn(t) = ¢, [Cu(nt) —\ynt], t>0. (3.8)

Theorem 8.3.2. (FCLT for the cumulative input) If
(An,By) = (A,B') in (D,M)’ (3.9)

for Ay, in (3.8) and B!, in (3.2), where ¢, = 00, cn/n — 0, & —= &, Ap = A
for0 < A < o0 and Aoée and B’ have no common discontinuities of opposite
sign, then

(An,B],C,) = (A,B',C) in (D,M;)?. (3.10)

for Cy, in (3.8) with A\, = fnj\n and

C(t) = A(&t) + AB'(1) . (3.11)

Proof. Given that B!, = B’, we have B! = &e for B"(t) = n ' B(nt).
Then we can apply the continuous-mapping approach with composition and
addition to treat C,,, i.e., by Corollary 13.3.2,

Chn=A,0B! +\,B, = Acte+ ) B . =
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From (3.11), we see that the limit processes A and B’ appear in C as a
simple sum with deterministic scalar modification. The stochastic fluctua-
tions in the cumulative-input process over a longer (shorter) time scale are
captured by the component AB’(t) (A(£t) ). Thus, the contribution of each
component to the limit process C can easily be identified and quantified.

As shown in Section 5.4, we can apply the continuous mapping theorem
with the reflection map ¢x in (2.9) to convert a limit for the cumulative-
input processes C), into a limit for the workload processes W,, and the as-
sociated processes L,, U, and D,.

8.3.2. Multiple Sources

Now we are ready to combine Theorems 5.4.1, 8.3.1 and 8.3.2 to obtain
simultaneous joint limits for all processes with m sources. To treat the fluid
queues, we introduce the sequence of available-processing processes {{S,(t) :
t >0} : n > 1} and the sequence of storage capacities {K, : n > 1}.

We define the following random elements of (D,M;) associated with
source [, 1 <1 < m:

Lnt]

'Y (Buji — mBny)
=1

[nt]

3
~
—~
o~
N
Il

L) = ¢ Z(In,l,i — M)
Ang(t) = ' [Ang(nt) — Angnd]
Nn,l(t) = 71[N l(nt) Tn, lnt]
B;z,l(t) = _1[B i(nt) — {n ant]
Cn,l(t) = 71[Cn l(nt) n l§n lnt] (312)

Theorem 8.3.3. (heavy-traffic limit for the fluid-queue model with m sources)
Consider a sequence of fluid queues indexed by n with m, = m sources, ca-
pacities K,, 0 < K, < oo, and cumulative-available-processing processes
{Sn(t ) t > 0}. Suppose that K, = ¢, K, 0 < K < 00, Wy 4(0) > 0 and

Zl 1 ( ) < Kn;
(Bn,la In,la An,la CT:IWn,l(O)a 1< l < m, Sn)
= (BlaIlaAlaVVl,(O)al Sl Sma S) (313)

in (D, Mp)>™ X R™ for By, Ly, Any in (3.12) and Sy, in (4.4) of Chapter
5, where ¢, — 00, ¢p/n =0, Apy = A for 0 < N < 00, mpp; — mp, and
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myng — mrg with 0 <mp;+my; < oo, so that

MpBn,l
MBp,l + MIp

€ng = —§ (3.14)

and )
Yy =—————=>7>0. (3.15)
MBnl+ MInl

If, in addition, Disc(Bjo~ye), Disc(I;ovye) and Disc(Ajo&e), 1 <1 <m,
are pairwise disjoint w.p.1, and A, — pn, — 0 so that

nnzn(kn—un)/cn—)n as n — oo (3.16)

for —oo < m < 00, where

m
An = Z)‘n,l and A71,l = gn,lAn,l (317)
=1

for each 1, 1 <[ <m, then

(Bn,laIn,laAn,laNn,laBl Cn,la 1<1<m,Cy, Sn,XnanUn’Ln)

n,l»

= (BlaIlaAlaNla ;acla]- < l < m,C,S,X,W,U,L)

in (D, M1)%™%6 for N, ;, B! ,, C,,; in (3.12), C,, in (3.8) with (X,,, W,,U,,Ly,)

n,l’

in (4.4) of Chapter 5 and

Ni(t) = —w[Bi(nt) + Li(nt)]
Bi(t) = (1—&)Bi(nt)—&Li(nt)
Ci(t) = A(&t) + N1 —&)By(wt) — T (t))]
Ct) = Ci(t)+-+Cnlt)
X(t) = Y W/(0)+C(t)—S(t) +nt
=1
W(t) = ¢x(X)(t)
(U@®),L(t) = @uX)®),y(X)(®#), t=>0, (3.18)

for ¢k and (Yy,r) in (2.9) or (2.10) and n in (3.16).

In many heavy-tailed applications, the fluctuations of the idle periods
I, ;i and the process A, ;(t) will be asymptotically negligible compared to
the fluctuations of the busy periods By, ; ;. In that case, condition (3.13) will
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hold with I;(¢) = Ay(t) =0, 1 <1 < m. Then C; in (3.18) simplifies to a
simple scaling of the limit process By, i.e., then

Ci(t) = N1 —&)By(wt), t>0. (3.19)

Moreover, if some sources have more bursty busy periods than others,
then only the ones with highest burstiness will impact the limit. In the
extreme case, B;(t) will be the zero function for all but one [, say [*, and

C(t) = Cp(t) = A= (1 — &4)Bys (i+t), >0, (3.20)

and the stochastic nature of the limit for the workload process will be de-
termined, asymptotically, by the single limit process {B;(¢) : ¢ > 0} in
(3.13).

In summary, we have shown that a heavy-traffic stochastic-process limit
holds for the scaled workload process, with appropriate scaling (includ-
ing (3.16)), whenever associated stochastic-process limits hold for the basic
model elements. In the common case in which we have no initial workloads,
deterministic processing according to the rates u, and the source input dur-
ing busy periods is deterministic (i.e., when A, ;(t) = )A\n,lt for deterministic
constants 5\,1,1), there is a heavy-traffic stochastic-process limit for the work-
load process whenever the partial sums of the busy periods and idle periods
satisfy a joint FCLT. Donsker’s theorem and its extensions in Chapter 4
thus yield the required initial FCLTs.

Applying Chapter 4 and Section 2.4 of the Internet Supplement, we ob-
tain convergence of the appropriate scaled cumulative-input processes to
Brownian motion, stable Lévy motion and more general Lévy processes, all
of which have stationary and independent increments. We describe conse-
quences of those stochastic-process limits in Sections 8.4 and 8.5 below and
in Section 5.2 in the Internet Supplement.

Remark 8.3.1. The effect of dependence. At first glance, the independent-
increments property of the limit process may seem inconsistent with the
dependence observed in network traffic measurements in the communica-
tions network context, but recall that the limits are obtained under time
scaling. Even if successive busy and idle periods for each source are nearly
independent, the cumulative inputs

C(t1 +h) — C(t1) and C(ts + k) — Clts)

in disjoint intervals (¢1,t1 + h] and (t2,¢ + h] with ¢1 + h < to are likely to
be dependent because a single busy cycle for one source can fall within both
intervals.
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However, when we introduce time scaling by n, as in (4.4), the associated
two scaled intervals (nt1,n(t; + k)] and (nte, n(t2 + h)] become far apart, so
that it is natural that the dependence should disappear in the limit. It is also
intuitively clear that the dependence in the original cumulative-input process
(before scaling space and time) should have an impact upon performance,
causing greater congestion. And that is confirmed by measurements. It is
thus important that the limit can capture that performance impact.

Even though the dependence present in the cumulative-input process
disappears in the limit, that dependence has a significant impact upon the
limit process: After scaling time, the large busy periods which cause strong
dependence over time tend to cause large fluctuations in space. This ef-
fect of time scaling is shown pictorially in Figure 8.6. Thus, even though
the limit processes have independent increments, the burstiness in the orig-
inal cumulative-input process (e.g., caused by a heavy-tailed busy-period
distribution) leads to approximating workload distributions that reflect the
burstiness. For example, with heavy-tailed busy-period distributions, the
limiting workload process will have marginal and steady-state distributions
with heavy tails (with related decay rates), which is consistent with what
is seen when a single-server queue is simulated with the trace of measured
cumulative-input processes. (However, as noted in Section 2.4.1, the pres-

NS= =

T

a) a rate A extending for a time T’ b) after scaling time by n

Figure 8.6: The effect of time scaling: transforming dependence over time
into jumps in space.

ence of flow controls such as that used by the Transmission Control Protocol



314 CHAPTER 8. ON-OFF SOURCES

(TCP) significantly complicates interpretations of simulations based on ac-
tual network traces.)

Remark 8.3.2. Structure for the available-processing processes. Theorem
8.3.3 goes beyond Theorem 5.4.1 by giving the cumulative-input process
additional structure. However, in both cases, the available-processing pro-
cesses {Sp(t) : t > 0} are kept abstract; we simply assumed that the
available-processing processes satisfy a FCLT. However, structure also can
be given to the available-processing processes, just as we gave structure to
the cumulative-input processes. Indeed, the same structure is meaningful. In
particular, we can have multiple output channels or servers, each of which
is subject to service interruption. We can stipulate that the total avail-
able processing in the interval [0,¢] is the superposition of the component
available-processing processes, i.e., with ¢ output channels,

S(t) = S1(t) + -+ + Sg(t), t>0.

If server ¢ is subject to service interruptions, then it is natural to model
the available-processing process S; by an on-off model. The busy periods
then represent intervals when processing can be done, and the idle peri-
ods represent intervals when processing cannot be done. Thus, Theorems
8.3.1 and 8.3.2 can be applied directly to obtain stochastic-process limits
for structured available-processing processes. And we immediately obtain
generalizations of Theorem 8.3.3 and the Brownian limit in Theorem 8.4.1.
For further discussion about queues with service interruptions, see Section
14.7. =

8.3.3. M/G /oo Sources

So far we have assumed that the number of sources is fixed, i.e., that
my, =m as n — 0o. An alternative limiting regime is to have m,, — oo as
n — 00. We can let m,, — 0o and still keep the total input rate unchanged
by letting the rate from each source decrease. One way to do this is by
letting the off periods in each source grow appropriately; e.g., we can let
I ;i =mul; and By, ; = By ;. Let N,(t) be the number of new busy cycles
started in [0,¢] by all sources.

Under regularity conditions, with this scaling of the off periods, N, = N
as n — oo, where N is a Poisson process. Indeed that stochastic-process
limit is the classical stochastic-process limit in which a superposition of inde-
pendent renewal processes with fixed total intensity (in which each compo-
nent process is asymptotically negligible) converges to a Poisson process; see



8.3. HEAVY-TRAFFIC LIMITS FOR THE ON-OFF SOURCES 315

Theorem 9.8.1. Moreover, by a simple continuity argument, the associated
cumulative busy-time for all sources, say {By(t) : t > 0} converges to the
integral of the number of busy servers in an M/G /oo queue (a system with
infinitely many servers, IID service times and a Poisson arrival process). We
state the result as another theorem. Note that there is no additional scaling
of space and time here.

Theorem 8.3.4. (an increasing number of sources) Consider a sequence
of fluid models indexed by n with m, IID fluid sources in model n, where
my, — 00. Let In,l,i = mnIl,i and Bn,l,i = Bl,i where {(Bl,i,Il,i) 11> 1} 18
an IID sequence. Then

(Nn, By) = (N,B) in (D, M;)?, (3.21)

where N is a Poisson process with arrival rate 1/EI ;,

B(t):/OtQ(s)ds, £>0, (3.22)

and Q(t) is the number of busy servers at time t in an M/G/oo queueing
model with arrival process N and IID service times distributed as B 1.

Heavy-traffic stochastic-process limits can be obtained by considering
a sequence of models with changing M /G /oo inputs, as has been done by
Tsoukatos and Makowski (1997, 2000) and Resnick and van der Berg (2000).

Let {Qn(t) : t > 0} be a sequence processes counting the number of busy
servers in M /G /oo systems. Let By(t) be defined in terms of @, by (3.22).
Let

Qn(t) = ;' [Qn(t) —ma), t>0, (3.23)

and
B! (t) = ¢, [Bn(t) —nat], t>0. (3.24)

(We use the prime to be consistent with (3.2).) We think of {Q,(t) : ¢t >
0} as being a stationary process, or at least an asymptotically stationary
process, for each n. Hence its translation term in (3.23) is 1, independent
of t. In contrast, B, (t) grows with ¢, so the translation term of B/ (¢) in
(3.24) is yt.

We can apply the continuous mapping theorem with the integral function
in (3.22), using Theorems 3.4.1 and 11.5.1, to show that limits for Q,, imply
corresponding limits for B,.
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Theorem 8.3.5. (changing M/G/oco inputs) Consider a sequence of fluid
queue models indezed by n with M/G /oo inputs characterized by the pro-
cesses {Qn(t) : t > 0}. If Q, = Q in (D, M;) for Q, in (3.23), then

B, =B in (D,M),

for B!, in (3.24) and
t
B/(t) = / Q(s)ds, >0, (3.25)
0

From heavy-traffic limit theorems for the M /G /oo queue due to Borovkov
(1967) [also see Section 10.3], we know that the condition of Theorem 8.3.5
holds for proper initial conditions when the Poisson arrival rate is allowed
to approach infinity. Then Q is a Gaussian process, which can be fully char-
acterized. In the case of exponential service times, the limit process Q is
the relative tractable Ornstein-Uhlenbeck diffusion process.

We discuss infinite-server models further in Section 10.3. As noted in
Remark 10.3.1, the M /G /oo queue is remarkably tractable, even with a
Poisson arrival process having a time-dependent rate. We discuss limits
with an increasing number of sources further in Section 8.7.

8.4. Brownian Approximations

We now supplement the discussion of Brownian approximations in Sec-
tion 5.7 by establishing a Brownian limit for the more detailed multi-source
on-off fluid-queue model discussed in Sections 8.2 and 8.3. We discuss Brow-
nian approximations further in Section 9.6.

8.4.1. The Brownian Limit

For simplicity, we let heavy traffic be achieved by only suitably chang-
ing the processing rate pu,, so that the output rate u, approaches a fixed
input rate A. Moreover, we can construct the available-processing processes
indexed by n by scaling time in a fixed available-processing process S. Let
the cumulative available processing in the interval [0, | in model n be S, (%).
We assume that the available-processing processes S, satisfy a FCLT, in
particular,

S, =S in (D,M), (4.1)
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where S is a zero-drift Brownian motion with variance parameter 0?9 and
Sn(t) = n~V2(S, (nt — pnnt), t>0. (4.2)

We use the M; topology in (4.1) and later, but it does not play a crucial
role in this section because the limit processes here have continuous sample
paths.

Since we only change the processing rate u,, we can have a single model
for the cumulative input process. In the setting of Theorem 8.3.3, we thus
assume that the random variables B, ;; and I,;; are independent of n.
Moreover, we assume that the processes {A,;(t) : t > 0} are independent
of n. Hence we drop the subscript n from these random quantities. We call
this a single fluid model.

In order to be able to invoke Donsker’s FCLT (specifically, the multi-
dimensional version in Theorem 4.3.5), we make several independence as-
sumptions. First, we assume that the m sources are mutually independent.
By that we mean that the stochastic processes {(B;,[;;) : ¢ > 1} and
{Ay(t) : t > 0} for different /, 1 <! < m are mutually independent. Second,
for each source [, we assume that the rate process {A;(¢) : t > 0} is indepen-
dent of the sequence {(By;,I;;) : i > 1}. We also assume that the sources
are independent of the available-processing process.

To invoke Donsker’s FCLT for {(B;;,I;;) : © > 1}, we assume that
{(B1, I1;) : i > 1} is a sequence of IID random vectors in R? with finite
second moments. In particular, let

mB,l = EBl,l, mI,l = EIl,l;

U%,l = Var By, 0?,1 =Varl,,

0%,1, = Cov(Bi1,11,1) - (4.3)
The second-moment assumption implies that all the quantities in (4.3) are
finite. The positivity assumption on B;; and I;; implies that mp; > 0 and
mr; > 0.

Instead of describing the rate processes {A;(t) : ¢ > 0} in detail, we

simply assume that they satisfy FCLT’s. In particular, we assume that

An,l = A; in (D,Ml) (44)

for each [, where A; is a zero-drift Brownian motion with variance coefficient
Ui,l (possibly zero) and

An () = 0 Y2[A(nt) — Ant], £>0. (4.5)
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Given ); in (4.5), we can define the overall “input rate” X by

A=), (4.6)
=1

where
mpg,

>\l = £l5\l and fl = .
mpy+my

(4.7)
The Brownian heavy-traffic stochastic-process limit follows directly from
Theorems 8.3.3, 4.3.5 and 11.4.4. We obtain convergence to the same Brow-
nian limit (with different variance parameter) if we replace the assumed
independence by associated weak dependence, as discussed in Section 4.4.

Theorem 8.4.1. (Brownian limit for the fluid queue with m on-off sources)
Consider a single fluid-queue model with m on-off sources satisfying the in-
dependence assumptions above, the moment assumptions in (4.3), the scal-
ing assumption in (4.6) and the convergence assumptions in (4.4) and (4.5).
Let a sequence of systems indexed by n be formed by letting the capacity in
system n be K, = \/nK for some K, 0 < K < 00, and introducing available-
processing processes satisfying the limits in (4.1) and (4.2). Let the initial
random workloads from the m sources in system n satisfy

Wni(0) >0, 1<1<m, > Wni0) <K, (4.8)
=1
and
nVPWa(0) =y in R, (4.9)

where y; 18 a deterministic scalar. Assume that
Mm=vn(A\—pn) >n as n— oo (4.10)

for —oo < n < o0, A in (4.6) and py in (4.2). Then the conditions and
conclusions of Theorems 5.4.1, 5.9.1, 8.3.1, 8.3.2 and 8.3.3 hold with ¢, =
Vv, W/(0) =y, v = (mpy+mrg)™t, & in (4.7) and (B;,I;,A;), 1 <1 <m,
being mutually independent three-dimensional zero-drift Brownian motions,
independent of the standard Bownian motion S in (4.1). For each I, the
limit processes (B, Ij) and A, are mutually independent zero-drift Brownian
motions, with (By,I;) having covariance matriz

2 2

o o

_ B, B.,I
Opri 91,1
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The limit processes N, Bj, C; and C are all one-dimensional zero-drift
Brownian motions. In particular,

Nl g O'N,lBa B; g UB,lB
(4.12)
d d
C = o¢B, C = ocB,
where B is a standard Brownian motion and
oxy = (0B +208 1, +07,)
0%3',1 = y(1- fl)ZU%,l -2(1- fl)flajz_f;,f,l + 512‘7%,1) ;
U?},z = fl‘%?x,l + /\1271((1 - fl)QUJQB,l -2(1- fl)fl‘f%,m + 5120%,1) )
m
O'% = Zo%',l ’
=1
03( = 0% +0'§1 . (4.13)
The limit process X is distributed as
XL (B(t;nok,y) : t>0 L {y+nt+oxB@l):t>0},  (414)

for n in (4.10), 0% in (4.13) and y = y1 + - -+ + ym for y; in (4.9).

8.4.2. Model Simplification

We now observe that the heavy-traffic stochastic-process limit produces
a significant model simplification. As a consequence of Theorem 8.4.1, the
scaled workload processes converge to a one-dimension reflected Brownian
motion (RBM). In particular, the limit W is ¢x(X), where X is the one-
dimensional Brownian motion in (4.14) and ¢x is the two-sided reflection
map in (2.9) and Section 14.8. The process W depends on only four param-
eters: the initial position y specified in (4.9), the drift 7 specified in (4.10),
the diffusion coefficient 0% specified in (4.13) and the upper barrier K for
the two-sided reflection. If we are only interested in the steady-state dis-
tribution, then we can ignore the initial position y, which leaves only three
parameters. From the expression for 0% in (4.13), we can determine the
impact of various component sources of variability.

In contrast, the original fluid model has much more structure. The
structure was reduced substantially by our independence assumptions, but
still there are many model data. First, we need to know the m probability
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distributions in R? of the busy periods By 1 and idle periods I; 1, 1 <1 < m.
These m distributions only affect the limit in Theorem 8.4.1 through their
first two moments and covariances. Second, we have the m rate processes
{A;(t) : t > 0} and the available-processing process {S(t) : ¢ > 0}. The
m rate processes affect the limit only through the scaling parameters 5\1
and O'IZ\J in the assumed FCLT in (4.4) and (4.5). The available-processing
process affects the limit only through the scaling parameter o% in (4.1).
We also have the m initial random workloads W), ;(0). The random vector
(Wn1(0),..., Wy mnm(0)) can have a very general m-dimensional distribution.
That distribution affects the limit only via the deterministic limits y; in
(4.8). Since we have convergence in distribution to a deterministic limit, we
automatically get convergence in the product space; i.e.,

N Wni1(0), -, Wim(0)) = (y1,---,Ym) in R™

as n — oo by Theorem 11.4.5. Finally, we have the capacity K, and the
processing rate u,. Thus, for the purpose of determining the limit, there
are 8m + 3 relevant parameters.

It is significant that the stochastic-process limit clearly shows how the
8m+3 parameters in the original fluid model should be combined to produce
the final four parameters characterizing the limiting RBM. First, the final
drift 7 depends only upon the parameters u,, & and A; for 1 <] < m and
n as indicated in (4.10). Second, the final variance parameter o3 depends
on the basic model parameters as indicated in (4.13). We can thus quickly
evaluate the consequence of altering the rate or variability of the stochastic
processes characterizing the model.

We now consider the Brownian approximation for the distribution of the
steady-state workload in the multi-source on-off model. The steady-state
distribution of RBM is given in Theorem 5.7.2. By Theorem 8.4.1, the key

parameter is
2 n —
9x
where \; = &, and W(oo) has pdf in (7.10). As K — oo, the mean of

W (o0o0) approaches —0 ! when 5 < 0. Then W, (co) has approximately an
exponential distribution with mean
EW,(x) =~ /nEW(c0)
2 2
~ Vnox = OX . (4.16)
2vn(pn =225 M) 2(pn — 22521 M)

Notice that the v/n factors in (7.14) and (4.15) cancel out in (4.16).

0

277N
a2 "
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It is instructive to consider the contribution of each source to the overall
mean steady-state workload. Expanding upon formula (4.16) in the case
K = o0, we obtain the approximation

EW (00) ~ (0% + X021 08y)
T 2w -2 N)

Source [ contributes to the approximate mean steady-state workload via
both its rate )\; and its variance parameter O’% I

(4.17)

8.5. Stable-Lévy Approximations

Paralleling Theorem 8.4.1, we now combine the FCLT obtaining con-
vergence of normalized partial-sum processes to stable Lévy motion (SLM)
in Section 4.5 and the general limits for multi-source on-off fluid queues
in Section 8.3 in order to obtain a reflected-stable-Lévy-motion (RSLM)
stochastic-process limit for the multi-source on-off fluid queue. In partic-
ular, we assume that the busy-period distribution has a heavy tail, which
makes the limit for the normalized cumulative-input process be a centered
totally-skewed stable Lévy motion (having g = 0 and 8 = 1). The limit
for the normalized workload process will be the reflection of a constant drift
plus this centered totally-skewed Lévy stable motion. See Section 6.4.3 for
RSLM limits for a more conventional queueing model.

It is possible to obtain more general reflected Lévy process limits for
general sequences of models, which also have remarkably tractable steady-
state distributions when the underlying Lévy process has no negative jumps.
We discuss these more general limits in Sections 2.4 and 5.2 of the Internet
Supplement.

8.5.1. The RSLM Heavy-Traffic Limit

As in Section 5.7, the limit will be achieved under heavy-traffic condi-
tions. As before, we can let heavy-traffic be achieved by suitably changing
the deterministic processing rate u, by scaling a fixed available-processing
stochastic process S, so that the output rate approaches the constant input
rate. As in Section 5.7, we thus have a single model for the cumulative-input
process in the fluid queue, so that we are in the setting of the single-sequence
limit in Section 4.5. In the setting of Theorem 8.3.3, the variables B, ;; and
I, ;; are independent of n. As in Section 5.7, we assume that the processes
{An,(t) : t > 0} also are independent of n. Hence we drop the subscript n
from these quantities. We again call this a single fluid model.
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When the random variables have infinite second moments and appropri-
ately scaled versions of the random walk converge to a stable process, the
scaling depends critically on the tail probability decay rate or, equivalently,
the stable index «. Hence it is natural for one component in the model to
dominate in the sense that it has a heavier tail than the other components.
We will assume that the busy-period distributions have the heaviest tail,
so that the stochastic fluctuations in the idle periods I;, the rate processes
{A4(t) : t > 0} and the available-processing process {S(¢) : t > 0} become
asymptotically negligible. (That is conveyed by assumption (5.5) in Theo-
rem 8.5.1 below.) It is straightforward to obtain the corresponding limits
in the other cases, but we regard this case as the common case. It has the
advantage of not requiring conditions involving joint convergence.

We need fewer independence assumptions than we needed in Section
5.7. In particular, now we assume that the m busy-period sequences {B;; :
i > 1} are mutually independent sequences of IID random variables. We
also assume that the idle-periods come from sequences {I;; : i > 1} of
IID random variables for each [, but that could easily be weakened. As
in Section 5.7, we make a stochastic-process-limit assumption on the rate
processes {A;(t) : t > 0} and the available-processing process {S(t) : ¢t > 0}
instead of specifying the structure in detail.

Theorem 8.5.1. (RSLM limit for the multi-source fluid queue) Consider
a single fluid model with m sources satisfying the independence assumptions
above and the scaling assumption in (4.6). Let a sequence of systems indezed
by n be formed by having the capacity in system n be K, = n'/*K for some
K,0< K <o0. . Suppose that 1 < o < 2. Let the initial random workloads
from the m sources in system n satisfy

m
Wpa(0) >0, 1<I<m, > Wn(0) <Ky, (5.1)
=1
and
nil/o‘Wn,l(O) =y n R 1<I<m. (5.2)
Assume that
z*P(B;1 >z) -+ A as T — 00 ; (5.3)

where 0 < A; < oo, and

z*P(L1p >z) -0 as z— o0 (5.4)
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for 1 <1< m. Assume that
Ap;=0 and S,=0 in (D,M),

where
An,(t) = n~ YAy (nt) — Ant), t>0

foreachl, 1 <l <m and
Sni(t) = n~Y(S(nt) — pant), t>0.
Assume that

N = n-e™) A—pp) —n as n— o
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(5.8)

for X in (4.6) and p, in (5.7). Then the conditions and conclusions of
Theorems 8.3.3, 5.9.1 and 5.9.2 (when K = oo in the last case) hold with
e = 0%, mpng =mpy = EBiy, miag =mpy = Ely, &y = &, Yoy =
>0, =A=8=0, W/(0) =y, 1 <Il<m, and By,...,By, being m

mutually independent stable Lévy motions with

d

Bl(t) Sa(altl/aa 170)7 t> 0 )

where

o1 = (A1/Ca)®
for Ay in (5.3) and Cy, in (5.14) in Section 4.5. Moreover,

(Nla B;’ Cla C) (t)
= (=Bi(nt), (1 = &)Bi(nt),

(1 —&)Bi(nt), Y M1 —&)By(nt)

NgE

~

1
L (=B, (- @)y B,

A=) Bi1), > A1 - 51)7?_1]31(75)),
=1

so that C is a centered stable Lévy motion with

m 1/a
ci 2 (Z AF(1— g,)%lAl/Cl> Sa(t*',1,0)

=1

(5.11)

(5.12)
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and

X(t)=y+nt+Ct), t>0, (5.13)

fory = y1 + -+ ym. Hence the limit W = ¢x(X) is the reflection of
the linear drift ne plus standard stable Lévy motion C having parameter
four-tuple (o, 0, 8, 1) = (o, 0¢,1,0) with

m 1/a
oo = (Z (1 — gl)cwlala> : (5.14)
=1

starting at initial position y, 0 < y < K, with reflection having upper barrier
at K, 0 < K < .

Proof. We apply Theorem 8.3.3. First note that (5.3) and (5.4) imply
that
0< EBl,l <o and 0< EIl,l <00 . (5.15)

To apply Theorem 8.3.3, we need to verify condition (3.13). The limits for
B,,; individually follow from Theorem 4.5.3, using the normal-domain of
attraction result in Theorem 4.5.2. The joint FCLT for (B, 1,...,Bnm)
then follows from Theorem 11.4.4. Since the limits for I, ;, A, ; and S, are
deterministic, we obtain an overall joint FCLT from the individual FCLTsS,
using Theorem 11.4.5. That yields the required stochastic-process limit in
(3.13). See (5.7) — (5.11) in Section 4.5 for the scaling yielding (5.12).
For Theorem 5.9.2 with K = oo, we use the fact that S = 0Oe and C
has nonnegative jumps to conclude that P(L € C) = 1 and that all the
conditions on the discontinuities of the limit processes in Theorem 5.9.2 are
satisfied in this setting. =

Theorem 8.5.1 tells us what are the key parameters governing system
performance. First, the nonstandard space scaling by ¢, = n® shows that
the scaling exponent « in (5.3) is critical. But clearly the values of the
means, which necessarily are finite with 1 < a < 2, are also critical. The
values of the means appear via the asymptotic drift  in (5.8).

Since the stable laws with 1 < a < 2 have infinite variance, there are
no variance parameters describing the impact of variability, as there were
in Section 5.7. However, essentially the same variability parameters appear;
they just cannot be interpreted as variances. In both cases, the variability
parameters appear as scale factors multiplying canonical limit processes. In
Theorem 8.4.1, the variability parameter is the parameter o x appearing as a
multiplicative factor before the standard Brownian motion B in (4.14). Cor-
respondingly, in Theorem 8.5.1, the variability parameter is the stable scale
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parameter o¢ in (5.14) and (5.12). That scale parameter depends critically
on the parameters A;, which are the second-order parameters appearing in
the tail-probability asymptotics for the busy-period distributions in (5.3).

The stable Lévy motions and reflected stable Lévy motions appearing in
Theorem 8.5.1 are less familiar than the corresponding Brownian motions
and reflected Brownian motions appearing in Section 5.7, but they have been
studied quite extensively too; e.g., see Samorodnitsky and Taqqu (1994) and
Bertoin (1996).

8.5.2. The Steady-State Distribution

It is significant that the limiting stable Lévy motion for the cumulative-
input process is totally skewed, i.e., has skewness parameter 8 = 1, so that
the stable Lévy motion has sample paths without negative jumps. That im-
portant property implies that the reflected stable Lévy motion with negative
drift has a relatively simple steady-state distribution, both with and without
an upper barrier. That is also true for more general reflected Lévy processes;
see Section 5.2 in the Internet Supplement, Theorem 4.2 of Kella and Whitt
(1991) and Section 4 (a) of Kella and Whitt (1992c). With a finite upper
barrier, the steady-state distribution is the steady-state distribution with in-
finite capacity, truncated and renormalized. Equivalently, the finite-capacity
distribution is the conditional distribution of the infinite-capacity content,
given that the infinite-capacity content is less than the upper barrier.

Theorem 8.5.2. (steady-state distribution of RSLM) Let R = ¢ (ne+S)
be the reflected stable Lévy motion with negative drift (n < 0) and SLM
S having stable index a, 1 < a < 2, and scaling parameter o in (5.12)

(with 8 = 1 and u = 0 ) arising as the limit in Theorem 8.5.1 (where

S(1) £ Su(0,1,0) £ 654(1,1,0) ).

(a) If K = oo, then

lim P(R(t) <z)=H(z) forall =z, (5.16)

t—00

where H is a proper cdf with pdf h on (0,00) with Laplace transform

7 — * — 8T _ S(:ZASI(O) _ 1
h(s) = /0 e =5 N = (5.17)

with
B(s) = log Ee™*MtSa(0L0] — _pg(5%5%/ cos(mar/2)) (5.18)
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and the scale factor v (H,(z) = Hy(z/v)) being

o.Oé

a—1 _
=———>0. 5.19
v n cos(ma/2) > (5.19)
The associated ccdf HC =1 — H has Laplace transform
o .
N 1—
H¢(s) = / e **H(z)dz = hs)
0 S
- v (5.20)

(b) If c < 0 and K < oo, then

lim P(R(t) < z)

<zg< .
lim TR 0<z<K, (5.21)

where H is the cdf in (5.16).

We have observed that the heavy-traffic limit for the workload processes
depends on the parameter five-tuple («, 7,0, K,y). When we consider the
steady-state distribution, the initial value y obviously plays no role, but we
can reduce the number of relevant parameters even further: From Theorem
8.5.2, we see that the steady-state distribution depends on the parameter
four-tuple («, 7, 0, K) only via the parameter triple (o, v, K) for v in (5.19).

As should be anticipated, the steady-state distribution in Theorem 8.5.2
has a heavy tail. Indeed it has infinite mean. We can apply Heaviside’s
theorem, p. 254 of Doetsch (1974) to deduce the asymptotic form of the
ccdf H¢ and pdf h in Theorem 8.5.2. We display the first two terms of
the asymptotic expansions below. (The second term for a = 3/2 seems
inconsistent with the second term for o # 3/2; that occurs because the
second term for a = 3/2 actually corresponds to the third term for o # 3/2,
while the second term is zero.)

Theorem 8.5.3. (tail asymptotics for steady-state distribution) For v = 1,
the steady-state ccdf and pdf in Theorem 8.5.2 satisfy

F(2—o})z°‘—1 o F(3—2a§z2(a—1)’ a#3/2
H(z) ~ (5.22)

1 1 —
Vg2 2 /xad® a=3/2
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and

F(l:ale)wa + r(2—2i)z2a—1’ a#3/2
h(z) ~ (5.23)

1 3 —
2/radl?  Amadl?) a=3/2

as © — oo, where I'(x) is the gamma function.

For the special case a = 3/2, the limiting pdf h and cdf H can be
expressed in convenient closed form. We can apply 29.3.37 and 29.3.43 of
Abramowitz and Stegun (1972) to invert the Laplace transforms analytically
in terms of the error function, which is closely related to the standard normal
cdf. A similar explicit expression is possible for a class of M/G/1 steady-
state workload distributions; see Abate and Whitt (1998). That can be used
to make numerical comparisons.

Theorem 8.5.4. (explicit expressions for @ = 3/2) For a =3/2 andv =1,
the limiting pdf and ccdf in Theorem 8.5.2 are

h(z) = \/% —2e"®°(V2zx), >0, (5.24)

and
H¢(z) = 2e"®°(v2z), >0, (5.25)

where ®¢ is again the standard normal ccdf.

Theorems 8.5.2 — 8.5.4 provide important practical engineering insight.
Note the the ccdf H¢(z) of the steady-state distribution of RSLM with no
upper barrier decays slowly. Specifically, from (5.22), we see that it decays
as the power z=(®~1)_ In fact, the exponent —(a—1), implies a slower decay
than the decay rate —a of the heavy-tailed busy-period cedf Bf,(z) in (5.3).
Indeed, the density h(z) of the steady-state RSLM decays at exactly the
same rate as the busy-period ccdf.

In contrast, for the RBM limit (with negative drift) in Section 5.7, the
steady-state distribution decays exponentially. In both cases, the steady-
state distribution with a finite buffer is the steady-state distribution with
an infinite buffer truncated and renormalized. Equivalently, the steady state
distribution with a finite buffer is the steady-state distribution with an infi-
nite buffer condioned to be less than the buffer capacity K. That property
supports corresponding approximations for finite-capacity queueing systems;
see Whitt (1984a). The fact the ccdf H¢(z) of the steady-state distribution
of RSLM decays as a power implies that a buffer will be less effective in
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reducing losses than it would be for a workload process that can be approx-
imated by RBM.

Also note that the asymptote in (5.22) provides a useful “back-of-the
envelope” approximation for the ccdf of the steady-state distribution:

P(Wy(00) > ) = P((¢/(1 = p)) /P2 > a) (5.26)

where
P(Z > z) = Cz~(@7V (5.27)

for constants ( and C determined by (5.11) and (5.22).

The asymptotic tail in (5.26) and (5.27) is consistent with known asymp-
totics for the exact steady-state workload ccdf in special cases; e.g., see the
power-tail references cited in Remark 5.4.1.

By comparing the second term to the first term of the asymptotic ex-
pansion of the ccdf H¢(z) in Theorem 8.5.3, we can see that the one-term
asymptote should tend to be an upper bound for @ < 1.5 and a lower bound
for @ > 1.5. We also should anticipate that the one-term asymptote should
be more accurate for @ near 3/2 than for other values for a. We draw this
conclusion for two reasons: first, at @ = 3/2 a potential second term in
the expansion does not appear; so that the relative error (ratio of appear-
ing second term to first term) is of order z=2(®~1) instead of z—(®*=V) for
a # 3/2. Second, for a # 3/2 but « near 3/2, the constant I'(3 — 2) in the
denominator of the second term tends to be large, i.e., I'(z) — oo as z — 0.

8.5.3. Numerical Comparisons

We now show that the anticipated structure deduced from examining
Theorem 8.5.3 actually holds by making numerical comparisons with exact
values computed by numerically inverting the Laplace transform in (5.20).
To do the inversion, we use the Fourier series method in Abate and Whitt
(1995a); see Abate, Choudhury and Whitt (1999) for an overview.

We display results for a = 1.5, @ = 1.9 and o = 1.1 in Tables 8.1-8.3.
For a = 1.5, Table 8.1 shows that the one-term asymptote is a remarkably
accurate approximation for z such that H¢(z) < 0.20. In Table 8.1 we also
demonstrate a strong sensitivity to the value of a by showing the exact
values for « = 1.49 and o = 1.40. For z = 10* when H¢(z) = 0.056 for
a = 1.50, the corresponding values of H¢(z) for & = 1.49 and « = 1.40 differ
by about 12% and 200%, respectively.

Tables 8.2 and 8.3 show that the one-term asymptote is a much less
accurate approximation for a away from 1.5. In the case @ = 1.9 (a = 1.1),
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H¢(z) for a=15 (v=1)
one-term
r exact a = 1.5 asymptote exact a=1.49 exact a =1.40

10~ 0.7236 1.78 0.7190 0.6778
10°  0.4276 0.5642 0.4290 0.4421
100 0.1706 0.1784 0.1760 0.2278
10> 0.5614 e—1  0.5642 e—1 0.5970 e—1 0.1004
103 0.1783 e—1 0.1784 e—1 0.1946 e—1 0.4146 e—1
104 0.5641 e—2  0.5642 e—2 0.6304 e—2 0.1673 e—1
105 0.1784 e—2  0.1784 e—2 0.2041 e—2  0.6693 e—2
106 0.5642 e—3  0.5642 e—3 0.6604 e—3 0.2670 e—2
107 0.1784 e—3  0.1784 e—3 0.2137 e—3 0.1064 e—2
108 0.5642 e—4  0.5642 e—4 0.6916 e—4 0.4236 e—3
106 0.5642 e—8  0.5642 ¢—8 0.8315 e—8  0.2673 e—6

Table 8.1: A comparison of the limiting ccdf H¢(z) in Theorem 8.5.2 for
a = 1.5 and v = 1 with the one-term asymptote and the alternative exact
values for a = 1.49 and o = 1.40.

the one-term asymptote is a lower (upper) bound for the exact value, as
anticipated. For a = 1.9, we also compare the ccdf values H¢(z) to the
corresponding ccdf values for a mean-1 exponential variable (the case a = 2).
The ccdf values differ drastically in the tail, but are quite close for small z.
A reasonable rough approximation for H¢(z) for all z when « is near (but
less than) 2 is the maximum of the one-term asymptote and the exponential
ccdf e™®. It is certainly far superior to either approximation alone.

The exponent o = 2 is a critical boundary point for the ccdf tail behavior:
Suppose that the random variable A;(1) has a power tail decaying as =~ ®.
If @ > 2, then the limiting ccdf H¢(z) is exponential, i.e., H¢(xz) = ™%, but
for o < 2 the cedf decays as £~(@~ 1) This drastic change can be seen at the
large = values in Table 8.2.

Table 8.3 also illustrates how we can use the asymptotics to numerically
determine its accuracy. We can conclude that the one-term asymptote is
accurate at those z for which the one-term and two-term asymptotes are very
close. Similarly, we can conclude that the two-term asymptote is accurate
at those z for which the two-term and three-term asymptotes are close, and
SO on.
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H¢(z) for a=19 (v=1)
one-term  exponential

T exact asymptote a =2
0.1x20= 0.1 0.878 0.835 0.905
0.1x2' = 0.2 0.786 0.447 0.819
0.1x22= 04 0.641 0.240 0.670
0.1x2*= 1.6 0.238 0.069 0.202

0.1x20= 64 0.312 e—1 0.198 e—1 0.166 e—2
0.1x2% = 256 0.626 e—2 0.568 e—2 0.76 e—11
0.1 x22 = 409.6 0.472 e—3 0.468 e—3 =~ 0
0.1 x 216 = 6553.6 0.386 e—4 0.386 e—4 =~ 0

Table 8.2: A comparison of the reflected stable ccdf H¢(z) in Theorem
8.5.2 for @ = 1.9 and v = 1 with the one-term asymptote and the mean-1
exponential ccdf corresponding to a = 2.

Remark 8.5.1. First passage times. We have applied numerical transform
inversion to calculate steady-state tail probabilities of RSLM. To describe
the transient behavior, we might want to compute first-passage-time proba-
bilities. Rogers (2000) has developed a numerical transform inversion algo-
rithm for calculating first-passage-time probabilities in Lévy processes with
jumps in at most one direction.

8.6. Second Stochastic-Process Limits

The usual approximation for a stochastic process X,, based on a stochastic-
process limit X,, = X is X,, ® X. However, if the limit process X is not
convenient, then we may want to consider developing approximations for
the limit process X. We can obtain such additional approximations by con-
sidering yet another stochastic-process limit. We describe two approaches
in this section.

The first approach is based on having another stochastic-process limit
with the same limit process X: We may be able to establish both X,, = X
and Y, = X, where the process X,, is the scaled version of the relatively
complicated process of interest and Y, is the scaled version of another more
tractable process. Then we can use the double approximation

X, =X=Y,,

where n and m are suitably large. We discuss two possible approximations
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He(z) for a=1.1 (vr=1)

one-term two-term
Tz exact asymptote asymptote
10~ 0.543 1.18 —0.19
10° 0.486 0.94 0.08
101 0.428 0.74 0.20
102 0.373 0.59 0.25
104 0.272 0.373 0.237
106 0.191 0.235 0.181
108 0.129 0.148 0.126
102 0.558 e—1 0.590 e—1 0.555 e—1
106 0.230 e—1 0.235 e—1 0.230 e—1
10%* 0.371 e—2 0.373 e—2 0.371 e—2
1032 0.590 e—3 0.590 e—3 0.590 e—3

331

Table 8.3: A comparison of the reflected stable ccdf H¢(x) in Theorem 8.5.2
for @« = 1.1 and v = 1 with the one-term and two-term asymptotes from
Theorem 8.5.3.

for processes associated with a reflected-stable-Lévy-motion (RSLM) in the
first subsection below.

The second approach is to approximate the limit process X by establish-
ing a further stochastic-process limit for scaled versions of the limit process
X itself. That produces an approximation that should be relevant in an
even longer time scale, since time is now scaled twice. We discuss this sec-
ond approach in the second subsection below.

8.6.1. M/G/1/K Approximations

We now show how the two-limit approach can be used to generate
M/G/1/K approximations for complicated queueing models such as the
multi-source on-off fluid-queue model with heavy tailed busy-period distri-
butions. We first apply Theorem 8.5.1 to obtain a reflected-stable-Lévy-
motion (RSLM) approximation for the workload process in the fluid queue.
We then construct a sequence of M/G/1/K models with scaled workload
processes converging to the RSLM.

Consider a stable Lévy motion oS + ne, where S(1) 4 Sa(1,1,0) with
1 < a < 2and o > 0, modified by two-sided reflection at 0 and K. We
now show that, for any choice of the four paramerters «, 0,7 and K, we
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can construct a sequence of M/G/1/K fluid queues such that the scaled
M/G/1/K net-input processes, workload processes, overflow processes and
departure processes converge to those associated with the given RSLM. Since
we can apply the continuous-mapping approach with the two-sided reflection
map, it suffices to show that the scaled net-input processes converge to
oS + ne. We can apply Theorems 5.4.1 and 5.9.1.

The specific M/G/1/K fluid-queue model corresponds to the standard
M/G/1/K queue with bounded virtual waiting time, which is often called
the finite dam; see Section II1.5 of Cohen (1982). For the workload process,
there is a constant output rate of 1. As in Example 5.7.1, The cumulative
input over the interval [0, ] is the sum of the service times of all arrivals in
the interval [0, ¢], i.e., the cumulative input is

A1)
Ct)=> Vi, t20,
k=1

where {A(t) : t > 0} is a rate-A Poisson arrival process independent of a
sequence {Vj : k > 1} of IID service times. The workload process is defined
in terms of the net-input process X (t) = C(t) — ¢ as described in Section
5.2. Any input that would take the workload above the storage capacity K
overflows and is lost.

The M/G/1/K model is appealing because C = {C(t) : t > 0} is a com-
pound Poisson process, which is a special case of a renewal-reward process;
see Section 7.4. Like the SLM, the processes C' and X are Lévy processes,
but unlike the SLM, the processes C and X almost surely have only finitely
many jumps in a bounded interval.

The key to achieving the asymptotic parameters o and § =1 is to use a
heavy-tailed service-time distribution with power tail, where the ccdf decays
as £~ ® as £ — oo. Thus, we let the service times be mV, where {Vj : k > 1}
is a sequence of IID nonnegative random variables with mean EV; =1 and
an appropriate power tail:

PVi>z)~mz * as z— 0.

Let A = {A(t) : t > 0} be a rate-1 Poisson process. Let the net-input
process in the n'® M/G/1/K model be

A(Ant)
Xn(t)= Y mVi—t, t>0;
k=1
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i.e., we let the service times be distributed as mV; and we let the arrival
process be a Poisson process with rate \,. The associated scaled net-input
processes are

X,(t)=n"Y*X,(nt), t>0.

We will choose the parameters m and A, in order to obtain the desired
convergence
X, =0S+ne.

We must also make appropriate definitions for the queue. Since we scale
space by dividing by n'/® in the stochastic-process limit, we let the upper
barrier in the nt* M/G/1/K queue be K,, = n'/®K. We also must match
the initial conditions appropriately. If the RSLM starts at the origin, then
the M/G/1/K queue starts empty.

To determine the parameters m and )\,, observe that

Xn, =8, + e ,
where
A(Annt)
Sn(t) = n~ 1% Z mVy — Apmnt), t>0,
k=1
and

-1

M =n" Agm—1), n>1.
Hence, we can obtain n,, = n by letting
An =m7H1 + nn_(l_o‘_l)), n>1. (6.1)

Since A\, — m~! as n — 00, S, has the same limit as

A(m~1nt)
Sn(t) = n /e Z mVy —nt), t>0.
k=1
Note that
P(mVy > z) ~ym®2z™® as z— o00.

Hence, we can apply Theorem 7.4.2 for renewal-reward processes to deduce
that
S, =S in (D,J1),
where
5 = yym®m~')C,
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for C, in (5.14) of Section 4.5.1. To achieve our goal of & = o, we must have
m = (0Cq/y)" @71 . (6.2)

With that choice of m, we have S, = ¢S. For ), in (6.1) and m in (6.2),
we obtain S,, = ¢S and X, = ¢S + ne as desired.

For example, as the service-time distribution in the M/G/1/K fluid
queue, we can use the Pareto distribution used previously in Chapter 1.
Recall that a Pareto(p) random variable Z, with p > 1 has ccdf

F(z)=P(Z,>z)=a"P, z2>1, (6.3)

and mean

my=1+@-1)"". (6.4)
To achieve the specified power tail, we must let p = « for 1 < a < 2.
To put the Pareto distribution in the framework above, we need to rescale
to obtain mean 1. Clearly, m;'Z, has mean 1 and

P(m;lZa > .'17) = P(Za > ma_’L') = (mag;)_a, T > 1

?
so that we let V; 4 m,'Z, and have
n=mg® = (14 (=17

Given those model specifications, we approximate the limiting RSLM,
say W, by the n'! scaled M/G/1/K workload process, i.e.,

{W(t):t>0} = {n YW, (nt) : t >0} (6.5)

for suitably large n, where {W,(¢) : ¢ > 0} is the workload (or virtual waiting
time) process in the n*® M/G/1/K queueing system with upper barrier at
K, = n'/*K specified above.

This approximation can be very useful because the M/G/1/K fluid-queue
model or finite dam has been quite thoroughly studied and is known to be
tractable; e.g., see Takdcs (1967), Cohen (1982) and Chapter 1 of Neuts
(1989).

For the remaining discussion, consider an M/G/1/K model with sevice
times Vi and arrival rate \. For K = oo and p = AEV; < 1, the M/G/1
workload process is especially tractable; e.g., see Abate and Whitt (1994a).
Then the steady-state distribution is characterized by the Pollaczek-Khintchine
transform. For K < oo, the steady-state distribution is the infinite-capacity
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steady-state truncated and renormalized, just as in Theorems 8.5.2 here and
Theorem 5.2.1 in the Internet Supplement.
Given the steady-state workload W (oo) with K < oo, the overflow rate
is
8= /\E[W(OO) + V- K]+ ,
where V7 is a service time independent of W (oo). The rate of overflows of

at least size z is
By = AP(W(c0) + Vi — K > 1) .

(For asymptotics, see Zwart (2000).) The ccdf P(W (o) + Vi > z + K)
is easily computed by numerical transform inversion. For that purpose,
we first remove the known atom (positive probability mass) at zero in the
distribution of W(o0), as discussed in Abate and Whitt (1992a). Since
P(W(c0) =0) =1 — p, we can write

PW(o)+Vi>z+K) = (1—p)P(Vi >z+K)
+pP(W(o0) + Vi >z + K|W(o0) > 0) .

We then calculate the conditional ccdf P(W (c0)+ Vi > 2+ K|W (o0) > 0) by
numerically inverting its Laplace transform (1—Ee~5(W )W ()>0) ge=sV1) /5.

For any K with 0 < K < oo, the M/G/1/K fluid-queue departure process
is an on-off cumulative-input process with mutually independent sequences
of IID busy periods and IID idle periods, with the idle periods being ex-
ponentially distributed with mean A\~!. The departure rate during busy
periods is 1. For K = oo, the busy-period distribution is characterized by
its Laplace transform, which satisfies the Kendall functional equation; e.g.,
as in equation (28) of Abate and Whitt (1994a). The numerical values of the
Laplace transform for complex arguments needed for numerical transform
inversion can be computed by iterating the Kendall functional equation; see
Abate and Whitt (1992b).

In the heavy-tailed case under consideration, P(Vi > z) ~ Azxz~%, where
A = C,0% by virtue of (??) and (??). By de Meyer and Teugels (1980), the
busy-period distribution in this M/G/1/oc model inherits the power tail;
ie.,

P(By > 1) ~A(1—p)~@ g™ a5 2z 0.

Hence, we can apply Theorems 8.3.1 and 8.3.2 to establish a stochastic-
process limit for the M/G/1 departure process with p assumed fixed. How-
ever, as noted at the end of Section 5.3.2, for fixed p with p < 1, the depar-
ture process obeys the same FCLT as the input process, given in Theorem
7.4.2. The two approaches to this FCLT can be seen to be consistent.
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We have indicated that many M/G/1/K fluid-queue random quanti-
ties can be conveniently expressed in terms of the Laplace transform of
the service-time distribution. Unfortunately, the Laplace transform of the
Pareto distribution does not have a convenient simple explicit form, but be-
cause of its connection to the gamma integral, the transform values can easily
be computed by exploiting efficient algorithms based on continued fractions,
as shown by Abate and Whitt (1999a). That algorithm to compute Pareto
distributions by numerical transform inversion is applied in Ward and Whitt
(2000).

For some applications it might be desirable to have even more tractable
“Markovian” service-time distributions. One approach is to approximate
the Pareto distribution by a mixture of exponentials. A specific procedure
is described in Feldmann and Whitt (1998). Since the Pareto distribution
is completely monotone, it is directly a continuous mixture of exponentials.
Thus, finite mixtures can provide excellent approximations for the Pareto
distribution, but since it is impossible to match the entire tail, it is often
necessary to use ten or more component exponentials to obtain a good fit
for applications. Having only two component exponentials usually produces
a poor match.

Alternatively, the M/G/1/K approximations can be produced with dif-
ferent heavy-tailed service-time distributions. Other heavy-tailed distribu-
tions that can be used instead of the scaled Pareto distribution or the approx-
imating hyperexponential distribution are described in Abate, Choudhury
and Whitt (1994) and Abate and Whitt (1996, 1999b, c).

We can also consider other approximating processes converging to the
RSLM. Attractive alternatives to the M/G/1/K models just considered are
discrete-time random walks on a discrete lattice. Such random-walk approx-
imations are appealing because we can then employ well-known numerical
methods for finite-state Markov chains, as in Kemeny and Snell (1960) and
Stewart (1994). For the RSLM based on the totally skewed (5 = 1) a-stable
Lévy motion that arises as the stochastic-process limit in Theorem 8.5.1,
it is natural to construct the random walk by appropriately modifying an
initial random walk with IID steps distributed as the random variable Z
with the zeta distribution, which has probability mass function

p(k)=P(Z=k) =1/((a+1)E*T. k>1, (6.6)

where ((s) is the Riemann zeta function; see p. 240 of Johnson and Kotz
(1969) and Chapter 23 of Abramowitz and Stegun (1972). The zeta distri-
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bution has mean ((«)/{(a + 1) and the appropriate tail asymptotics, i.e.,
Fé(z)=P(Z>z)~1/al(a+1)z* as z— . (6.7)

We can apply Section 4.5 to construct scaled random walks converging to
the totally-skewed a-stable Lévy motion.

8.6.2. Limits for Limit Processes

We now consider the second approach for approximating the limit process
X associated with a stochastic process-limit X,, = X. Now we assume that
X, is the scaled process

X, (t) =n " (X, (nt) —vynt), t>0, (6.8)

where 0 < H < 1. If X is not sufficiently tractable, we may try to establish
to establish a further stochastic-process limit for scaled versions of the limit
process X.

Suppose that we can construct the new scaled process

X, (t)=n H(X(nt) —nynt), t>0 (6.9)

and show that X,, = X as n — co. Then we can approximate the first limit
process X by

(X(t):t>0} = {gt +nfX(t/n) : t >0} . (6.10)

Given the two stochastic-process limits, we can combine the two approx-
imations with the scaling in (6.8) and (6.9) to obtain the overall approxi-
mation

{X,(t):t>0} =~ {vat+nX(t/n):t>0}
~ {vpt+ntnt/n+ nngX(t/nm) 1t >0} (6.11)

for appropriate n and m. In the queueing context, we can fix n by letting
n be such that the traffic intensity p, coincides with the traffic intensity of
the queue being approximated.

Since the limit processes for scaled overflow and departure processes in
the fluid-queue model are somewhat complicated, even in the light-tailed
weakly-dependent case considered in Section 5.7, it is natural to apply this
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two-limit approach to overflow and departure processes. We can apply The-
orem 5.7.4 to obtain FCLT’s for the boundary regulator processes U and L
in the Brownian case. For that purpose, introduce the normalized processes

n'?(U(nt) - Bnt),
W) = n Y2(L(nt) —ant), t>0, (6.12)

= Ch
3
—~
o~
S—
Il

where o and ( are the rates determined in Theorem 5.7.3.

By using the regenerative structure associated with Theorem 5.7.4 (see
Theorem 2.3.8 in the Internet Supplement), we obtain the following stochastic-
process limit.

Theorem 8.6.1. (FCLT for RBM boundary regulator processes) The nor-
malized boundary regulation processes for RBM in (6.12) satisfy

fjn = oyB,
L, = oiB in D, (6.13)

where B is standard BM and o% and o2 are given in (7.26), (7.27) and
(7.30)—(7.32).

In general, a corresponding limit for the departure process is more com-
plicated, but one follows directly from Theorems 8.6.1 and 5.9.1 when the
processing is deterministic, so that the limit process S in (9.2) is the zero
function.

Corollary 8.6.1. (second limit for the departure process) Let D =S — L
be the heavy-traffic limit for the departure process in Theorem 5.9.1 under
the conditions of the general Brownian limit in Theorem 5.7.1. If S = Oe,
then

D, =-L,=0.B in (D,M)

for Ly, in (6.12), B standard Brownian motion and o, as in (7.26), (7.30)
and (7.32).

The condition S = Oe in Corollary 8.6.1 is satisfied under the common
assumption of deterministic processing. We can apply Corollary 8.6.1 to
obtain the approximation

{Dn(t): t>0} = pnt—n'?L(t/n)
pint — n'2at/n — n'?m 2o B(t/nm) . (6.14)

Q
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where
{m2B(t/m) : t >0} L {B(t): ¢ > 0} .

As above, we may fix n by choing p, to match the traffic intensity in the
given queueing system.

8.7. Reflected Fractional Brownian Motion

In this section we discuss heavy-traffic stochastic-process limits in which
the limit process for the scaled net-input process does mot have indepen-
dent increments. Specifically, we consider heavy-traffic limits in which the
scaled workload processes converge to reflected fractional Brownian motion
(RFBM). With time scaling, such limits arise because of strong dependence.
As in the previous section, the RFBM limit occurs in a second stochastic-
process limit.

8.7.1. An Increasing Number of Sources

We consider the same on-off model introduced in Section 8.2, but now
we let the number of sources become large before we do the heavy-traffic
scaling. (We also discuss limits in which the number of sources grows in
Sections 8.3.3 and 9.8.) When we let the number of sources become large,
we can apply the central limit theorem for processes in Section 7.2 to obtain
convergence to a Gaussian process. Then, again following Taqqu, Willinger
and Sherman (1997), we can let the busy-period and idle-period distributions
have heavy tails, and scale time, to obtain a stochastic-process limit for
the Gaussian process in which the limit process is FBM. The continuous-
mapping approach with the reflection map then yields convergence of the
scaled workload processes to RFBM. This heavy-traffic limit supplements
and supports direct modeling using FBM, as in Norros (1994, 2000).

With the on-off model, heavy-tailed busy-period and idle-period distribu-
tions cause the scaling exponent H to exceed 1/2. Specifically, as indicated
in (2.20) in Section 7.2,

H = (3 — amin)/2, (7.1)

where q;y;, is the minimum of the idle-period and busy-period ccdf decay
rates if both have power tails with decay rates a; < 2. Otherwise, it is the
decay rate of the one ccdf with a power tail if only one has a power tail. If
both the busy-period and the idle-period have finite variance, then o, = 2
and H = 1/2. The following result is an immediate consequence of Theorem
7.2.5 and the continuous-mapping approach.
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Theorem 8.7.1. (RFBM limit for the on-off model with many sources)
Consider a family of fluid-queue models indexed by the parameter pair (n, 7).
Let all the models be based on a single on-off source model as specified before
Theorem 7.2.5. In model (n,7) there are n IID on-off sources and time
scaling by 7. Let the processing in model (n,T) be at a constant deterministic
rate

/2 H

Pn,r = ANT +cn , (7.2)

where A = mq /(m1 4+ me) is the single-source input rate. Let the capacity in
model (n,T) be Ky, ; = n'2rHK . Let Wy+(0) =0. Then

(Xn, 7 Whr) = (01imZpu — ce, pr (01imZa — ce)) (7.3)

in (C,U)? as first n — oo and then T — oo, where H is in (7.1), o2, is
in (2.17) or (2.18) in Chapter 4, Zy is standard FBM, X,, ; is the scaled
net-input process

)

n
Xpr =1 "0 20 Ci(rt) = pinst), >0, (7.4)
=1

and Wy, ; is the scaled workload process, i.e.,
Wiz (t) = ¢ (Xn7) - (7.5)

Remark 8.7.1. Double limits. Theorems 8.5.1 and 8.7.1 establish heavy-
traffic limits with different limit processes for the same fluid queue model
with multiple on-off sources having heavy-tailed busy and idle periods. The-
orem 8.5.1 establishes convergence to RSLM with a fixed number of sources,
whereas Theorem 8.7.1 establishes convergence to RFBM when the number
of sources is sent to infinity before the time (and space) scaling is performed.
As indicated in Section 7.2.2, Mikosch et al. (2001) establish more general
double limits that provide additional insight. Then RFBM (RSLM) is ob-
tained if the number of sources increases sufficiently quickly (slowly) in the
double limit. =

8.7.2. Gaussian Input

When looking at traffic data from communication networks, we do not
directly see the source busy and idle periods of the on-off model. Instead,
we see an irregular stream of packets. Given such a packet stream, we must
estimate source busy and idle periods if we are to use the on-off source traffic
model. When we do fit busy and idle periods to traffic data, we may find
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that the busy and idle periods do not nearly have the independence assumed
in Sections 5.7 and 8.5. Thus we might elect not to use the on-off model.

Instead, we might directly analyze the aggregate cumulative-input pro-
cess. Measurements of the aggregate cumulative-input process {C(t) : t > 0}
may reveal strong positive dependence. From the data, we may fairly con-
clude that the variance of C(t) is finite, but that it grows rapidly with ¢. In
particular, we may see asymptotic growth of the variance as a function of ¢
according to a power as

Var(C(t)) ~t?% as t— o0 (7.6)

for
1/2<H<1, (7.7)

which indicates strong positive dependence, as we saw in Section 4.6.
Given the asymptotic growth rate of the variance in (7.6), it is natural
to look for a FCLT capturing strong positive dependence with light tails.
From Section 4.6, it is natural to anticipate that properly scaled cumulative-
input processes should converge to fractional Brownian motion (FBM). In
particular, letting the input rate be 1 as before, it is natural to anticipate
that
C,=>0Zy in (C,U) as n— oo, (7.8)

where
C.(t) =n " (C(nt) —nt), t>0, (7.9)

the process Zp is standard FBM, as characterized by (6.13) or (6.14) in
Section 4.6, and o is a positive scaling constant. Since both C,, and Zg
have continuous sample paths, we can work in the function space C.

However, the principal theorems in Section 4.6, Theorems 4.6.1 and 4.6.2,
do not directly imply the stochastic-process limit in (7.8), because there are
extra structural conditions beyond the variance asymptotics in (7.6). In
order to apply the theorems in Section 4.6, we need additional structure —
either linear structure or Gaussian structure.

Fortunately, it is often reasonable to assume additional Gaussian struc-
ture in order to obtain convergence to FBM. With communication networks,
it is often natural to regard the aggregate cumulative-input stochastic pro-
cess as a Gaussian process, because the aggregate cumulative-input process
is usually the superposition of a large number of component cumulative-
input processes associated with different sources, which may be regarded
as approximately independent. The intended activities of different users
can usually be regarded as approximately independent. However, network
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controls in response to lost packets such as contained in TCP can induce
dependence among sources. Hence approximate independence needs to be
checked.

Not only are sources approximately independent, but the individual
source input over bounded intervals is usually bounded because of a limited
access rate. Thus we may apply Theorem 7.2.1 to justify approximating the
aggregate cumulative-input process as a Gaussian process, just as we did
for Theorem 8.7.1. Then there is a strong theoretical basis for approximat-
ing the workload process by reflected FBM without assuming that we have
on-off sources.

We summarize by stating the theorem. Define additional random ele-
ments of C' by

X,(t) = n~H(C(nt) — ppnt) = Cp(t) +n' (1 — pu)t ,
Walt) = éx(Xa)(t), £>0. (7.10)

We apply Theorems 5.4.1 and 4.6.2 to obtain the following result. We apply
Theorem 7.2.1 to justify the Gaussian assumption.

Theorem 8.7.2. (RFBM limit with strongly-dependent Gaussian input)
Consider a sequence of fluid queues indexed by n with capacities Ky, 0 <
K, < 00, and output rates pn, n > 1. Suppose that {C(t) —t:t >0} is a
zero-mean Gaussian process with

Var(Ct)) ~ot??  as t— o0 (7.11)

and
Var(C(t)) < Mt* for all t>0 (7.12)

for some positive constants H, o and M with 1/2 < H < 1. If, in addition,
K,=n K, 0< K <00, 0<W,(0) <K, for all n,

nHW,0)=>y in R as n— oo (7.13)

and
n'TH(1 —p,) = n as n— oo (7.14)

for —oo < < o0, then
(Cny X, Wi) = (0Zp,y + 0Zu +ne, ¢k (y + 0Zp +ne))  (7.15)

in (C,U)3, where Zy is standard FBM with parameter H and (Cy,, Xy, W)
is in (7.9) and (7.10).
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Unfortunately, the limit process RFBM is relatively intractable; see Nor-
ros (2000) for a discussion. The asymptotic behavior of first passage times
to high levels has been characterized by Zeevi and Glynn (2000). We discuss
approximations for the steady-state distribution in the next section.

Of course, it may happen that traffic measurements indicate, not only
that the aggregate cumulative-input process fails to have independent incre-
ments, but also that the aggregate cumulative-input process is not nearly
Gaussian. Nevertheless, the FBM approximation might be reasonable af-
ter scaling. The FBM approximation would be supported by the theory
in Section 4.6 if the cumulative-input process had the linear structure de-
scribed in Section 4.6. With different structure, there might be a relevant
stochastic-process limit to a different limit process. An invariance principle
like that associated with Donsker’s theorem evidently does not hold in the
strongly-dependent case. Thus, careful analysis in specific settings may lead
to different approximating processes.

Remark 8.7.2. Bad news and good news. From an applied perspective, the
FBM heavy-traffic stochastic-process limit provides both bad news and good
news. The main bad news is the greater congestion associated with greater
space scaling as H increases. Part of the bad news also is the fact that
the limit process is relatively difficult to analyze. Moreover, as discussed in
Section 5.5, the greater time scaling as H increases means that significant
relative changes in the process take longer to occur. That is part of the bad
news if we are concerned about recovery from a large congestion event; see
Duffield and Whitt (1997).

The good news is the greater possibility of real-time prediction of future
behavior based on observations of the system up to the present time. As
discussed in Section 4.6, the dependence of the increments in FBM provides
a basis for exploiting the history, beyond the present state, to predict the
future. For further discussion about predicting congestion in queues, see
Duffield and Whitt (1997, 1998, 2000), Srikant and Whitt (2001), Ward and
Whitt (2000) and Whitt (1999a,b). =

8.8. Reflected Gaussian Processes

In the last section we established convergence to reflected fractional
Brownian motion (RFBM) for workload processes in fluid-queue models.
In this section we consider approximations that can be obtained for the
steady-state distributions of RFBM and more general stationary Gaussian
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processes when we have one-sided reflection. To do so, we exploit a lower
bound due to Norros (1994), which has been found to be often an excellent
approximation; e.g. see Addie and Zuckerman (1994) and Choe and Shroff
(1998, 1999).

First let X be a general stochastic process with stationary increments
defined on the entire real line (—oo, 00) with X (0) = 0. Then the (one-sided)
reflection of X is

HX)(H) = X(1)~ inf X(s)
= oi‘?;t{X(t"X(S)}goi‘i‘;t{‘)‘(‘s)}' (8.1)
Assuming that
Oiggt{—X(s)}—>§1;18{—X(—s)}<oo wp.l as t— oo, (8.2)
HX(E) = HX)(00) Lsup{=X(=s)} as t—oo. (83

A finite limit in (8.2) will hold when the process X has negative drift, i.e.,
when EX(t) = —mt for some m > 0 and X is ergodic.

We propose approximating the steady-state tail probability P(¢(X)(c0) >
z) by a lower bound obtained by interchanging the probability and the supre-
mum, i.e.,

P($(X)(o0) >2) = P (sup{—x<—t>} > w)

>0

> §1>110)P(—X(—t) > ) . (8.4)

Assuming that X () - —oo as t — oo, we have —X(—t) - —oc0 as t —
oo. Hence P(—X(—t) > z) will be small for both small ¢ and large ¢, so
it is natural to anticipate that there is an intermediate value yielding the
maximum in (8.4). Moreover, large deviation arguments can be developed to
show that the lower bound is asymptotically correct, in a logarithmic sense,
as £ — oo under regularity conditions; see Duffield and O’Connell (1995),
Botvich and Duffield (1995) Choe and Shroff (1998, 1999), Norros (2000)
and Wischik (2001a). The moderate-deviations limit by Wischik (2001a) is
especially insightful because it applies, not just to the Gaussian process, but
also to superposition processes converging to Gaussing processes (in a CLT
for processes).
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In general, the lower bound may not get us very far, because it tends to
be intractable. However, if we assume that X is also a Gaussian process,
then we can conveniently evaluate the lower bound. For a Gaussian process
X, we can calculate the lower bound in (8.4) Once we find the optimum ¢,
t*, the probability P(—X (—t*) > z) is Gaussian.

We can find t* by transforming the variables to variables with zero means.
In particular, let

—X(t) - B[-X(-1)]

0= B X o]

t>0, (8.5)

and note that Z(¢) has mean 0 (assuming that E[—X(—t)] <0) and
Z(t)>1 ifandonlyif —X(t)>z. (8.6)

Hence, the optimum ¢* for the lower bound in (8.4) is the ¢t* maximizing the
variance of Z(t), where

Var X(—t)
(@ — E[=X(-t)])*

Var Z(t) = (8.7)

Given the mean and covariance function of the Gaussian process X, the
variance Var Z(t) in (8.7) is computable. The final approximation is thus

P(p(X)(0) > 2) ~ P(=X(—t)> z)
= @[z — E[-X(-t")]))/V/Var X(—t*))
= ¥°(1/\/Var Z(t")) (8.8)

where ®¢(z) = 1 — ®(z) is the standard normal ccdf.

The approximation can be applied to any stationary Gaussian process
with negative drift. From the last section, we are especially interested in
the case in which X is FBM. So suppose that

X(t) =oZy(t) +qt, t>0,

where 7 < 0 and Zp is standard FBM. Since Var(X(t)) = o%t?H, the
variance of Z(t) in (8.5) is mazimized for

t* = oH/l|(1 - H).
Consequently, the desired lower bound is

P(p(X)(c0) > ) > @0 (Inl/H)" (z/(1 = H))'™™) ,  (8.9)
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where ®€ is the standard normal ccdf. Using the approximation
O¢(z) =~ e o2

we obtain the approximation

2(1-H)

P(p(X)(o0) >z)me ™ , (8.10)

where

L(M)ZH(;)%PH)
202 ' H 1-H ’
For H > 1/2, approximation (8.10) is a Weibull distribution with relatively
heavy tail. Thus the lower-bound distribution has a Weibull tail. Note
that for H = 1/2 approximation (8.10) agrees with the exact value for
RBM in Theorem 5.7.2. Additional theoretical support for approximation
(8.10) and asymptotic refinements are contained in Narayan (1998), Hiisler
and Piterbarg (1999) and Massoulie and Simonian (1999); see Section 4.5
of Norros (2000). They show that there is an additional prefactor Kz~7 in
(8.10) asz — oo fory = (1—H)(2H—1)/H. The exponent in approximation
(8.10) was shown to be asymptotically correct as x — oo by Duffield and
O’Connell in their large-deviations limit.

N = (8.11)



