Chapter 3

The Framework for
Stochastic-Process Limits

3.1. Introduction

In Chapters 1 and 2 we saw that plots of stochastic-process sample paths
can suggest stochastic-process limits. Now we want to define precisely what
we mean by those stochastic-process limits.

The main idea is to think of a stochastic process as a random function.
With that mindset, convergence of a sequence of stochastic processes natu-
rally becomes convergence of a sequence of probability measures on a func-
tion space (space of functions). There then remain three problems: First,
what should we mean by the convergence of a sequence of probability mea-
sures on an abstract space? Second, what should be the underlying function
space containing the sample paths of the stochastic processes? And, third,
what should be the topology (notion of convergence) in the underlying func-
tion space?

We start in Section 3.2 by defining the standard notion of convergence
for a sequence of probability measures on a metric space. We also define
the Prohorov metric on the space of all probability measures on the metric
space, which induces that convergence.

In Section 3.3 we discuss the function space D that we will use to rep-
resent the space of possible sample paths of the stochastic processes. We
define two different metrics on the functions space D: One is the standard
J1 metric, which induces the Skorohod (1956) Ji topology. The other is the
M metric, which induces the Skorohod (1956) M; topology. The commonly
used J; topology is often referred to as “the Skorohod topology.” We use
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94 CHAPTER 3. THE FRAMEWORK

the M; topology in order to be able to establish stochastic-process limits
with unmatched jumps in the limit process.

In Section 3.4 we state three versions of the continuous-mapping theorem
that support the continuous-mapping approach for obtaining new stochastic-
process limits from established stochastic-process limits. In Section 3.5 we
introduce useful functions mapping D or the product space D x D into D that
preserve convergence and thus facilitate the continuous-mapping approach.
We conclude in Section 3.6 by describing the organization of the book.

This chapter is intended to be brief, providing background for the intro-
ductory chapters. We elaborate in Chapter 11 and refer to Billingsley (1968,
1999) for more details.

3.2. The Space P

Our goal is to precisely define what we mean by a stochastic-process limit,
i.e., the convergence of a sequence of stochastic processes. We use metrics
for that purpose. We define a metric on a space of stochastic processes in
two steps: First, we define a metric on the space of probability measures
on a general metric space and, second, we define a metric on the underlying
function space containing the sample paths of the stochastic processes.

A metric is a distance function satisfying certain axioms. In particular,
a metric m on a set S is a nonnegative real-valued function on the product
space S x S = {(s1,s2) : 51 € S,s2 € S} such that m(z,y) = 0 if and only
if z = y, satisfying the symmetry property

m(z,y) =m(y,z) forall z,yeS
and the triangle inequality
m(z,z) <m(z,y) + m(y,z) forall z,y,z€S.

A sequence in a set S is a function mapping the positive integers into
S. A sequence {z,, : n > 1} in a metric space (S, m) converges to a limit x
in S if, for all € > 0, there exists an integer ng such that m(z,,z) < € for
all n > ngy. If we use the metric only to specify which sequences converge,
then we characterize the topology induced by the metric: In a metric space,
the topology is a specification of which sequences converge. Topology is
the more general concept, because different metrics can induce the same
topology. For further discussion about topologies, see Section 11.2.

As a regularity condition, we assume that the metric space (S, m) is
separable, which means that there is a countable dense subset; i.e., there is
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a countably infinite (or finite) subset Sy of S such that, for all z € S and all
e > 0, there exists y € Sy such that m(z,y) <e.

We first consider probability measures on a general separable metric
space (S,m). In our applications, the underlying metric space S will be
the function space D, but now S can be any nonempty set. To consider
probability measures on (S, m), we make S a measurable space by endowing
it with a o-field of measurable sets (discussed further in Section 11.3). For
the separable metric space (S,m), we always use the Borel o-field B(S),
which is the smallest o-field containing the open balls

Bp(z,7) ={y € S :m(z,y) <r}.

The elements of B(S) are called measurable sets. We mention measurability
and o-fields because, in general, it is not possible to define a probability
measure (satisfying the axioms of a probability measure) on all subsets; see
p- 233 of Billingsley (1968).

We say that a sequence of probability measures {P, : n > 1} on (S, m)
converges weakly or just converges to a probability measure P on (S, m),
and we write P, = P, if

nlg%[gfdp :/SfdP (2.1)

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S. The metric m enters in by determining which functions f
on S are continuous. It remains to show that this is a good definition; we
discuss that point further in Section 11.3.

We now define the Prohorov metric on the space P = P(S) of all proba-
bility measures on the metric space (S, m); the metric was orginally defined
by Prohorov (1956); see Dudley (1968) and Billingsley (1999). Let A€ be
the open e-neighborhood of A, i.e.,

A°={ye S:m(z,y) <e forsome z¢€ A}.
For P, P, € P(S), the Prohorov metric is defined by
(P, P2) =inf{e > 0: Pi(A) < P,(A%)+e forall AeB(S)} . (2.2)

At first glance, it may appear that 7 in (2.2) lacks the symmetry prop-
erty, but it holds. We prove the following theorem in Section 1.2 of the
Internet Supplement.
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Theorem 3.2.1. (the Prohorov metric on P) For any separable metric
space (S, m), the function © on P(S) in (2.2) is a separable metric. There
is convergence w(P,, P) — 0 in P(S) if and only if P, = P, as defined in
(2.1).

We primarily want to specify when weak convergence P, = P holds,
thus we are primarily interested in the topology induced by the Prohorov
metric. Indeed, there are other metrics inducing this topology; e.g., see
Dudley (1968).

Instead of directly referring to probability measures, we often use ran-
dom elements. A random element X of (S,B(S)) is a (measurable; see
Section 11.3) mapping from some underlying probability space (2, F, P) to
(S,B(S)). (In the underlying probability space, €2 is a set, F is a o-field
and P is a probability measure.) The probability law of X or the probability
distribution of X is the image probability measure PX ! induced by X on
(S,B(S)); i.e.,

PX~1(A) P(X7'(A)=P{weQ: X(w) € A})
P(Xe€A) for AeB(S),

where P is the probability measure in the underlying probability space
(Q,F,P). We often use random elements, but when we do, we usually
are primarily interested in their probability laws. Hence the underlying
probability space (€2, F, P) is often left unspecified.

We say that a sequence of random elements {X,, : n > 1} of a metric
space (S, m) converges in distribution or converges weakly to a random ele-
ment X of (S,m), and we write X,, = X, if the image probability measures
converge weakly, i.e., if

P.X;'=PX ! on (S,m),

using the definition in (2.1), where P, and P are the underlying probability
measures associated with X, and X, respectively. It follows from (2.1) that
X, = X if and only if

lim Ef(X,)=Ef(X) forall feC(S). (2.3)
n—o0
Thus convergence in distribution of random elements is just another way to
talk about weak convergence of probability measures. When S is a function
space, such as D, a random element of S becomes a random function, which
we also call a stochastic process.
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We can use the Skorohod representation theorem, also from Skorohod
(1956), to help understand the topology of weak convergence in P(S). As

d e g e
before, = means equal in distribution.

Theorem 3.2.2. (Skorohod representation theorem) If X,, = X in a sepa-
rable metric space (S, m), then there ezist other random elements of (S, m),
Xn,n > 1, and X, defined on a common underlying probability space, such
that

Xnan,nZL g

S

X

and
P(lim X, =X)=1.
n—0o0

The Skorohod representation theorem is useful because it lets us relate
the structure of the space of probability measures (P,7) to the structure
of the underlying metric space (S,m). It also serves as a basis for the
continuous-mapping approach; see Section 3.4 below. We prove the Sko-
rohod representation theorem in Section 1.3 of the Internet Supplement.

3.3. The Space D

We now consider the underlying function space of possible sample paths
for the stochastic processes. Since we want to consider stochastic processes
with discontinuous, but not too irregular, sample paths, we consider the
space D of all right-continuous RF-valued functions with left limits defined
on a subinterval I of the real line, usually either [0,1] or Ry = [0, 00);
see Section 12.2 for additional details. We refer to the space as D(I,RF),
D([0,1], R¥) or D([0,0), R*), depending upon the function domain, or just
D when the function domain and range are clear from the context. The space
D is also known as the space of cadlag or cadlag functions — an acronym for
the French continu a droite, limites a gauche.

The space D includes all continuous functions and the discontinuous
functions of interest, but has useful regularity properties facilitating the de-
velopment of a satisfactory theory. Let C(I,R¥), C([0, 1], R¥) and C([0, c0), RF),
or just C, denote the corresponding subsets of continuous functions.

We start by considering D([0, 1], R), i.e., by assuming that the domain is
the unit interval [0, 1] and the range is R. Recall that the space D([0, 1], R)
was appropriate for the stochastic-process limits suggested by the plots in
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Chapter 1. The reference metric is the uniform metric ||z; — z2||, defined in
terms of the uniform norm

Il = sup {la(t)]} (3

On the subspace C' the uniform metric works well, but it does not on D:
When functions have discontinuities, we do not want to insist that corre-
sponding jumps occur exactly at the same times in order for the functions to
be close. Appropriate topologies were introduced by Skorohod (1956). For
a celebration of Skorohod’s impressive contributions to probability theory,
see Korolyuk, Portenko and Syta (2000).

To define the first metric on D, let A be the set of strictly increasing
functions A mapping the domain [0, 1] onto itself, such that both A and its
inverse A\~! are continuous. Let e be the identity map on [0,1], i.e., e(t) = t,
0 <t < 1. Then the standard J; metric on D = D([0,1],R) is

dy, (21,22) = inf{flo1 0 A — 22| V[]A —ell} (3-2)

where a V b = maz{a, b}.

The general idea in going from the uniform metric || - || to the J; metric
dy, is to say functions are close if they are uniformly close over [0,1] after
allowing small perturbations of time (the function argument). For example,
dj, (zp,z) = 0 as n — oo, while ||z, — z|| > 1 for all n, in D([0,1],R) when
z=1Iy 1 and z, = (1 + n_l)I[271+n71,1], n > 3.

In the example above, the limit function has a single jump of magnitude
1 at time 27!. The converging functions have jumps of size 1 + n~! at
time 27! +n!; both the magnitudes and locations of the single jump in z,
converge to those of the limit function z. That is a characteristic property of
the J; topology. Indeed, from definition (3.2) it follows that, if dj, (z,,z) —
0 in D(]0,1],R), then for any ¢ with 0 < ¢ < 1 there necessarily exists a
sequence {t, : n > 1} such that ¢, — t, z,(tn) — z(t), zp(th—) — z(t—)
and

ZTn(tn) — Zn(th—) = z(t) —z(t—) as n — oo ;

i.e., the jumps converge. (It suffices to let t, = A, (t), where | A, —e ||— 0
and || zp o A, — z ||= 0.) Thus, if z has a jump at ¢, i.e., if z(t) # z(t—),
and if z, — x, then for all n sufficiently large x,, must have a “matching
jump” at some time t,,. That is, for any € > 0, we can find ng such that, for
all n > ny, there is ¢, with |t, —t| < € and

|(@n (tn) = zn(tn=)) — (x(t) — 2 (t=))] <e.
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We need a different topology on D if we want the jump in a limit function
to be unmatched in the converging functions. For example, we want to allow
continuous functions to be arbitrarily close to a discontinuous function; e.g.,
we want to have d(z,,z) — 0 when z = Ij5-1 ;) and

Ip = n(t — 2_1 + n_l)I[2—1_n—172—1) + 1[2—1,1] ,

as shown in Figure 3.1. (We include dips in the axes because the points
271 —n~! and 27! are not in scale. And similarly in later figures.) Notice

zn(t)

..ﬂ ‘

0 2=1 _p-1 21 1 t

Figure 3.1: The continuous functions z, that we want converging to the
indicator function z = Ijp-1 1) in D.

that both ||z, —z| = 1 and dy, (z,,,z) = 1 for all n, so that both the uniform
metric and the J; metric on D are too strong.

Another example has discontinuous converging functions, but converging
functions in which a limiting jump is approached in more than one jump.
With the same limit  above, let

Ipn = 271][2—1_71—1’2—1) + 1[2—1,1] ;

as depicted in Figure 3.2. Again, ||z, — z|| /A 0 and dj, (z,,z) /# 0in D as
n — 0.

In order to establish limits with unmatched jumps in the limit function,
we use the M) metric. We define the M; metric using the completed graphs
of the functions. For z € D([0,1],R), the completed graph of z is the set

r, = {(»t)eRx|0,1]:
z=oazr(t—) + (1 —a)z(t) for some «a, 0<a<1} (3.3)
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Tn(t)

Figure 3.2: The two-jump discontinuous functions z,, that we want converg-
ing to the indicator function z = Ijp-1 .

where z(t—) is the left limit of z at t. The completed graph is a con-
nected subset of the plane R? containing the line segment joining (x(t),t)
and (z(t—),t) for all discontinuity points ¢. To illustrate, a function and its
completed graph are displayed in Figure 3.3.

T - .

Figure 3.3: A function in D(][0, 1], R) and its completed graph.

We define the M7 metric using the uniform metric defined on parametric
representations of the completed graphs of the functions. To define the
parametric representations, we need an order on the completed graphs. We
define an order on the graph T', by saying that (z1,%1) < (29,%2) if either
(i) t1 <t or (ii) t; = t2 and |z(t1—) — 21| < |z(t2—) — 2z2|. Thus the order
is a total order, starting from the “left end” of the completed graph and
concluding on the “right end”.
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A parametric representation of the completed graph I'; (or of the func-
tion z) is a continuous nondecreasing function (u,r) mapping [0,1] onto
I'z, with u being the spatial component and r being the time component.
The parametric representation (u,r) is nondecreasing using the order just
defined on the completed graph T';.

Let II(z) be the set in D = D([0,1],R). For any zi, o € D, the M;
metric is

duy(21,22) = inf - {lus — | Vi — eI} (3.4)
30T J

j=1,2

where again a V b = maz{a, b}. It turns out that dyz, in (3.4) is a bonafide
metric on D. (The triangle inequality is not entirely obvious; see Theorem
12.3.1.)

It is easy to see that, if z is continuous, then das, (zp,x) — 0 if and only
if ||z, — z|| — 0. It is also easy to see that dps (zn,z) — 0 as n — oo
for the examples in Figures 3.1 and 3.2. To illustrate, we display in Figure
3.4 specific parametric representations (u,r) and (uy,r,) of the completed
graphs of z and z, for the functions in Figure 3.1 that yield the distance
dar, (zn, ) = n~t. The spatial components u and u,, are identical. The time
components satisfy || r, — 7 ||=n"’.

For applications, it is significant that previous limits for stochastic pro-
cesses with the familiar J; topology on D will also hold when we use the
M, topology instead, because the J; topology is stronger (or finer) than the
M, topology; see Theorem 12.3.2.

We now want to modify the space D([0,1],R) in two ways: We want to
extend the range of the functions from R to RF and we want to allow the
domain of the functions be the semi-infinite interval [0, c0) instead of the
unit interval [0,1]. First, the J; and M; metrics extend directly to D* =
D([0,1], R¥) when the norm |- | on R in (3.1) is replaced by a corresponding
norm on R* such as the maximum norm

lall = max |a’|
1<i<k
for a = (a',...,a*) € R¥. With the maximum norm on R¥, we obtain the

standard or strong J; and M; metrics on D¥. We call the topology induced
by these metrics the standard or strong topology, and denote it by SJ; and
SM;, respectively.

We also use the product topology on D*, regarding D* as the product

space D x --- x D, which has z,, — x as n — oo for z,, = (z),...,zF) and
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U, Up,

Figure 3.4: Plots of parametric representations (u,r) of 'y and (up,r,) of
T, yielding dpy, (xn,z) = n~! for the functions in Figure 3.1. The points a
and b are arbitrary, satisfying 0 < a < b < 1.

= (z',...,2%) in D* if ', — 2% as n — oo in D for each i. The product
topology on D* is induced by the metric

k

dy(z,y) = d(a', ) (3.5)

i=1

where d is the metric on D!. Since convergence in the strong topology im-
plies convergence in the product topology, we also call the product topology
the weak topology, and we denote it by W J; and W M;.

The definitions for D([0,1],R*) extend directly to D([0,],R¥) for any
t > 0. It is natural to characterize convergence of a sequence {z, : n > 1}
in D(]0, o), R¥) in terms of associated convergence of the restrictions of x,
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to the subintervals [0,#] in the space D([0,],R¥) for all ¢ > 0. However,
note that we encounter difficulties in D([0,¢], R¥) if the right endpoint #
is a discontinuity point of a prospective limit function z. For example, if
tn = t as n — oo, but ¢, > ¢ for all n, then the restrictions of I, ) to
the subinterval [0,#] are the zero function, while I} ) is not, so we cannot
get the desired convergence I;, o) — I[t,00) We want. Thus we say that
the sequence {z, : n > 1} converges to z as n — oo in D([0,00), RF) if
the restrictions of z, to [0,¢] converge to the restriction of z to [0,%] in
D([0,t],R*) for all ¢ > 0 that are continuity points of z.

The mode of convergence just defined can be achieved with metrics.
Given a metric d; on D([0,t],R) applied to the restrictions of the functions
to [0,%], we define a metric dy, on D([0,00),R) by letting

(o]
doo(T1,22) = / e Hdy(z1,2) A1)dt
0

where a A b = min{a, b} and dy(z1,z2) is understood to mean the distance
dy (either J; or M) applied to the restrictions of z; and z2 to [0, t].

The function space D with the J; or M7 topology is somewhat outside
the mainstream of traditional functional analysis, because addition is not a
continuous map from the product space D x D with the product topology
to D.

Example 3.3.1. Addition is not continuous.
A simple example has z = —y = Ij5-1 ;) with

Ty = I[Q—l_n—l’” and Yn = —I[Qfl_i_nfl,l] .
Then (z +y)(t) =0 for all ¢, while
Ty +Yp = I[2—1_H—1,2—1+n—1] .

With the non-uniform Skorohod topologies, , — = and y, — y as n — o0,
but z, +y, Ax+yasn—>00. =

Thus, even though D is a vector space (we can talk about the linear
combinations ax + by for functions x and y in D and numbers a and b in
R), D is not a topological vector space (and thus not a Banach space) with
the J; and M; topologies (because those structures require addition to be
continuous).

Nevertheless, in applications of the continuous-mapping approach to es-
tablish stochastic-process limits, we will often want to add or subtract two
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functions. Thus it is very important that addition can be made to preserve
convergence. It turns out that addition on D x D is measurable and it is
continuous at limits in a large subset of D x D. For any of the non-uniform
Skorohod topologies, it suffices to assume that the two limit functions z and
y have no common discontinuity points. With the M; topology (but not the
J1 topology), it suffices to assume that the two limit functions z and y have
no common discontinuity points with jumps of opposite sign. (For instance,
in Example 3.3.1, , —y, — ¢ —y in (D, M;y).) In many applications, we
are able to show that the two-dimensional limiting stochastic process has
sample paths in one of those subsets of pairs (z,y) w.p.1. Then we can
apply the continuous-mapping theorem with addition.

3.4. The Continuous-Mapping Approach

The continuous-mapping approach to stochastic-process limits exploits
previously established stochastic-process limits and the continuous-mapping
theorem to obtain new stochastic-process limits of interest. Alternative ap-
proaches are the compactness approach described in Section 11.6 and vari-
ous stochastic approaches (which usually exploit the compactness approach),
which exploit special stochastic structure, such as Markov and martingale
structure; e.g., see Billingsley (1968, 1999), Ethier and Kurtz (1986), Jacod
and Shiryaev (1987) and Kushner (2001).

Here is a simple form of the continuous-mapping theorem:

Theorem 3.4.1. (simple continuous-mapping theorem). If X,, = X in
(S,m) and g : (S,m) — (S',m') is continuous, then

9(Xn) = g(X) in (5, m').

Proof. Since g is continuous, f o g is a continuous bounded real-valued
function on (S, m) for each continuous bounded real-valued function f on
(S',m'). Hence, under the conditions,

E[f o g(Xn)] = E[f o g(X)]

for each continuous bounded real-valued function f on (S’,m'), which im-
plies the desired conclusion by (2.3). =

Paralleling the simple continuous-mapping theorem above, we can use a
Lipschitz-mapping theorem to show that distances, and thus rates of conver-
gence with the Prohorov metric, are preserved under Lipschitz mappings: A



3.4. THE CONTINUOUS-MAPPING APPROACH 105

function g mapping a metric space (S, m) into another metric space (S',m’)
is said to be Lipschitz continuous, or just Lipschitz, if there exists a constant
K such that

m'(g(z),g(y)) < Km(z,y) forall z,yeS. (4.1)

The infimum of all constants K for which (4.1) holds is called the Lipschitz
constant. As before, let aV b = maz{a,b}. The following Lipschitz mapping
theorem, taken from Whitt (1974a), is proved in Section 1.5 of the Internet
Supplement. Applications to establish rates of convergence in stochastic-
process limits are discussed in Section 2.2 of the Internet Supplement. We
write m(X,Y’) for the distance between the probability laws of the random
elements X and Y.

Theorem 3.4.2. (Lipschitz mapping theorem) Suppose that g : (S,m) —
(S',m') is Lipschitz as in (4.1) on a subset B of S. Then

m(9(X),9(Y)) < (K V1)7(X,Y)
for any random elements X and 'Y of (S,m) for which P(Y € B) = 1.

We often need to go beyond the simple continuous-mapping theorem in
Theorem 3.4.1. We often need to consider measurable functions that are
only continuous almost everywhere or a sequence of such functions. Fortu-
nately, the continuous-mapping theorem extends to such settings. We can
work with a sequence of Borel measurable functions {g, : n > 1} all map-
ping one separable metric space (S, m) into another separable metric space
(8", m). Tt suffices to have g(z,) — g(z) as n — co whenever z,, — z as
n — oo for a subset E of limits z in S such that P(X € E) = 1. This gener-
alization follows easily from the Skorohod representation theorem, Theorem
3.2.2: Starting with the convergence in distribution X,, = X, we apply the
Skorohod representation theorem to obtain the special random elements X,
and X with the same distributions as X,, and X such that X, - X w.p.1.

Since X £ X and P(X € E) = 0, we also have P(X € E) = 0. We then
apply the deterministic convergence preservation assumed for the functions
gn to get the limit

g(Xp) - g(X) as n—oo in (S,m) w.p.l.

Since convergence w.p.l implies convergence in distribution, as a conse-
quence we obtain

9(Xn) = g(X) in (8',m).
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Finally, since X,, and X are respectively equal in distribution to X, and X ,
also g,(X,) and g(X) are respectively equal in distribution to g,(X,) and
g()? )- Thus, we obtain the desired generalization of the continuous-mapping
theorem:

g (Xn) = g(X) in (§',m).

It is also possible to establish such extensions of the simple continuous-
mapping theorem in Theorem 3.4.1 directly, without resorting to the Skoro-
hod representation theorem. We can use the continuous-mapping theorem
or the generalized continuous-mapping theorem, proved in Section 1.5 of the
Internet Supplement.

For g : (S,m) — (S',m'), let Disc(g) be the set of discontinuity points
of g; i.e., Disc(g) is the subset of z in S such that there exists a sequence
{zp : n > 1} in S with m(z,,z) — 0 and m/(g(z,), g(x)) 4 0.

Theorem 3.4.3. (continuous-mapping theorem) If X, = X in (S,m) and
g:(S,m) — (8", m') is measurable with P(X € Disc(g)) = 0, then g(X,) =
9(X).

Theorem 3.4.4. (generalized continuous-mapping theorem) Let g and gy,
n > 1, be measurable functions mapping (S, m) into (S',m'). Let the range
(S',m') be separable. Let E be the set of x in S such that g,(z,) — g(z)
fails for some sequence {z, : n > 1} with z,, —» =z in S. If X, = X in
(S,m) and P(X € E) =0, then g,(X,,) = g(X) in (S',m’).

Note that E = Disc(g) if g, = g for all n, so that Theorem 3.4.4 contains
both Theorems 3.4.1 and 3.4.3 as special cases.

3.5. Useful Functions

In order to apply the continuous-mapping approach to establish stochastic-
process limits, we need initial stochastic-process limits in D, the product
space D¥ = D x --- x D or some other space, and we need functions map-
ping D, D* or the other space into D that preserve convergence. The initial
limit is often Donsker’s theorem or a generalization of it; see Chapters 4 and
7.

Since we are interested in obtaining stochastic-process limits, the func-
tions preserving convergence must be D-valued rather than R-valued or R¥-
valued. In this section we identify five basic functions from D or D x D to D
that can be used to establish new stochastic-process limits from given ones:
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addition, composition, supremum, reflection and inverse. These functions
will be carefully examined in Chapters 12 and 13.
The addition map takes (z,y) € D x D into = + y, where

(z+y)t)=z@)+y(t), t>0. (5.1)
The composition map takes (z,y) € D x D into x o y, where

(zoy)(t) ==(y(t), t=0. (5.2)
The supremum map takes z € D into =, where

'(t) = sup z(s), t>0. (5.3)
0<s<t

The (one-sided, one-dimensional) reflection map index
takes z € D into ¢(z), where

dx)=z+ (—zvO0)T, t>0, (5.4)
with (z V 0)(t) = z(t) V 0. The inverse map takes x into ™!, where
7' (t) =inf{s > 0:z(s) >t}, t>0. (5.5)

Regularity conditions are required in order for the composition z oy in (5.2)
and the inverse 27! in (5.5) to belong to D; those conditions will be specified
in Chapter 13. We will also specify the domain for the functions in D; the
common case is Ry = [0, 00).

The general idea is that, by some means, we have already established
convergence in distribution

X,=>X in D,
and we wish to deduce that
Y(Xy) = H(X) in D

for one of the functions 1) above. By virtue of the continuous-mapping
theorem or the Skorohod representation theorem, it suffices to show that
1 : D — D is measurable and continuous at all z € A, where P(X € A) = 1.
Equivalently, in addition to the measurability, it suffices to show that %
preserves convergence in Dj i.e., that ¥(z,) — ¥(x) whenever z, — z for
z € A, where P(X € A) = 1.



108 CHAPTER 3. THE FRAMEWORK

There tends to be relatively little difficulty if A is a subset of continuous
functions, but we are primarily interested in the case in which the limit
has discontinuities. As illustrated by Example 3.3.1 for addition, when = &
C, the basic functions often are not continuous in general. We must then
identify an appropriate subset A in D, and work harder to demonstrate that
convergence is indeed preserved.

Many applications of interest actually do not involve convergence preser-
vation in such a simple direct form as above. Instead, the limits involve
centering. In the deterministic framework (obtained after invoking the Sko-
rohod representation theorem), we often start with

cn(tp —z) >y in D, (5.6)
where ¢, — o0, from which we can deduce that
Tn =z in D. (5.7)
From (5.7) we can directly deduce that

Y(zp) = YP(z) in D

provided that 1) preserves convergence. However, we want more. We want
to deduce that

en(P(zn) —p(z)) >z in D (5-8)

and identify the limit z. We will want to show that (5.6) implies (5.8).
The common case is for z in (5.6)—(5.8) to be linear, i.e., for

z =be, wherebe Randee D withe(t)=t forall t.

We call that the case of linear centering. We will consider both linear and
nonlinear centering.
The stochastic applications with centering are less straightforward. We
might start with
X,=U in D, (5.9)

where
X, = b, (X, (nt) = Mnt), >0,

for some stochastic processes {X,(t) : ¢ > 0}. Given (5.9), we wish to
deduce that
Y,=V in D (5.10)
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and identify the limit process V for
Y, = b, (¢(X,)(nt) — unt), t>0. (5.11)
To apply the convergence-preservation results with centering, we can let
T (t) = (PN X, (nt), z(t) =e(t)=t, cnp=n\/b,

and assume that |c,| — co. The w.p.1 representation of the weak conver-
gence in (5.9) yields

cn(typ —2) >u wp.l in D,

where u is distributed as U. The convergence-preservation result ((5.6)
implies (5.8)) then yields

cn[(zn) —Y(z)] v wopl in D. (5.12)

We thus need to relate the established w.p.1 convergence in (5.12) to the
desired convergence in distribution in (5.10). This last step depends upon
the function . To illustrate, suppose, as is the case for the supremum and
reflection maps in (5.3) and (5.4), that 1(e) = e and v is homogeneous, i.e.,
that

Y(ar) =ap(z) for z€D and a>0.

Then

cnlth(@n) —(e)] = by [ (Xn) (nt) — Ant].
Thus, under those conditions on 1, we can deduce that (5.10) holds for Y,
in (5.11) with g = A and V distributed as v in (5.12).

In applications, our primary goal often is to obtain convergence in dis-
tribution for a sequence of real-valued random variables, for which we only
need to consider the continuous mapping theorem with real-valued func-
tions. However, it is often convenient to carry out the program in two steps:
We start with a FCLT in D for a sequence of basic stochastic processes such
as random walks. We then apply the continuous-mapping theorem with the
kind of functions considered here to obtain new FCLT’s for the basic stochas-
tic processes in applied probability models, such as queue-length stochastic
processes in a queueing model. Afterwards, we obtain desired limits for as-
sociated random variables of interest by applying the continuous-mapping
theorem again with real-valued functions of interest. The final map may be
the simple one-dimensional projection map m; mapping = € D into z(t) € RF
when R* is the range of the functions in D, the average ¢! fg z(s)ds or
something more complicated.
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3.6. Organization of the Book

We now expand upon the description of the organization of the book
given at the end of the preface. As indicated there, the book has fifteen
chapters, which can be roughly grouped into four parts, ordered according
to increasing difficulty. The first part, containing the first five chapters,
provides an informal introduction to stochastic-process limits and their ap-
plication to queues.

Chapter 1 exposes the statistical regularity associated with a macro-
scopic view of uncertainty, with appropriate scaling, via plots of random
walks, obtained from elementary stochastic simulations. Remarkably, the
plotter automatically does the proper scaling when we plot the first n steps
of the random walk for various values of n. The plots tend to look the same
for all n sufficiently large, showing that there must be a stochastic-process
limit. For random walks with IID steps having infinite variance, the plots
show that the limit process must have jumps, i.e., discontinuous sample
paths.

Chapter 2 shows that the abstract random walks considered in Chapter
1 have useful applications. Chapter 2 discusses applications to stock prices,
the Kolmogorov-Smirnov statistic and queueing models. Chapter 2 also
discusses the engineering significance of the queueing models and the heavy-
traffic limits. The engineering significance is illustrated by applications to
buffer sizing in network switches and service scheduling for multiple sources.

The present chapter, Chapter 3, introduces the mathematical framework
for stochastic-process limits, involving the concept of weak convergence of a
sequence of probability measures on a separable metric space and the func-
tion space D containing stochastic-process sample paths. Metrics inducing
the Skorohod J; and M; topologies on D are defined. An overview of the
continuous-mapping approach to establish stochastic-process limits is also
given.

Chapter 4 provides an overview of established stochastic-process lim-
its. These stochastic-process limits are of interest in their own right, but
they also serve as starting points in the continuous-mapping approach to
establish new stochastic-process limits. The fundamental stochastic-process
limit is provided by Donsker’s theorem, which was discussed in Chapter 1.
The other stochastic-process limits are generalizations of Donsker’s theo-
rem. Of particular interest for the limits with jumps, is the generalization
of Donsker’s theorem in which the random-walk steps are IID with infinite
variance. When the random-walk steps have such heavy-tailed distributions,
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the limit process is a stable Lévy motion in the case of a single sequence
or a general Lévy process in the case of a triangular array or double se-
quence. When these limit processes are not Brownian motion, they have
discontinuous sample paths. The stochastic-process limits with jumps in
the limit process explain some of the jumps observed in the simulation plots
in Chapter 1.

Lévy processes are very special because they have independent incre-
ments. Chapter 4 also discusses stochastic-process limits in which the limit
process has dependent increments. The principal stochastic-process limits
of this kind involve convergence to fractional Brownian motion and linear
fractional stable motion. These limit processes with dependent increments
arise when there is strong dependence in the converging stochastic processes.
These particular limit processes have continuous sample paths, so the topol-
ogy on D is not critical. Nevertheless, like heavy tails, strong dependence
has a dramatic impact on the stochastic-process limit, changing both the
scaling and the limit process.

Chapter 5 provides an introduction to heavy-traffic limits for queues.
This first queueing chapter focuses on a general fluid queue model that
captures the essence of many more-detailed queueing models. This fluid
queue model is especially easy to analyze because the continuous-mapping
approach with the reflection map can be applied directly. Section 5.5 de-
rives scaling functions, expressed as functions of the traffic intensity in the
queue, which provide insight into queueing performance. Proofs are pro-
vided in Chapter 5, but the emphasis is on the statement and applied value
of the heavy-traffic limits rather than the technical details. This first queue-
ing chapter emphasizes the classical Brownian approximation (involving a
reflected Brownian motion limit process). The value of the Brownian ap-
proximation is illustrated in the Section 5.8, which discusses its application
to plan queueing simulations: The heavy-traffic scaling produces a simple
approximation for the simulation run length required to achieve desired sta-
tistical precision, as a function of model parameters.

The second part, containing Chapters 6 — 10, show how unmatched jumps
can arise and expands the treatment of queueing models. Chapter 6 gives
several examples of stochastic-process limits with unmatched jumps in the
limit process. In all the examples it is obvious that either there are no
jumps in the sample paths of the converging processes or the jumps in the
converging processes are asymptotically negligible. What is not so obvious
is that the limit process actually can have discontinuous sample paths. As
in Chapter 1, simulations are used to provide convincing evidence.

Chapter 7 continues the overview of stochastic-process limits begun in
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Chapter 4. It first discusses process CLT’s, which are central limit theorems
for appropriately scaled sums of random elements of D. Process CLT’s
play an important role in heavy-traffic stochastic-process limits for queues
with superposition arrival processes, when the number of component arrival
processes increases in the heavy-traffic limit.

Then Chapter 7 discusses CLT’s and FCLT’s for counting processes.
They are shown to be equivalent to corresponding limits for partial sums.
Chapter 7 concludes by applying the continuous-mapping approach with the
composition and inverse maps, together with established stochastic-process
limits in Chapter 4, to establish stochastic-process limits for renewal-reward
stochastic processes. The M; topology plays an important role in Chapter
7.

The remaining chapters in the second part apply the stochastic-process
limits, with the continuous-mapping approach, to obtain more heavy-traffic
limits for queues. As in Chapter 5, Chapters 8 — 10 emphasize the applied
value of the stochastic-process limits, but now more attention is given to
technical details. Chapter 8 considers a more-detailed multi-source on-off
fluid-queue model that has been proposed to evaluate the performance of
communication networks. That model illustrates how heavy-traffic limits
can expose the essential features of complex models. This second queueing
chapter also discusses non-classical approximations involving reflected sta-
ble Lévy motion and reflected fractional Brownian motion, stemming from
heavy-tailed probability distributions and strong dependence.

Chapter 9 focuses on standard single-server queues, while Chapter 10
focuses on standard multi-server queues. In addition to the standard heavy-
traffic limits, we consider heavy-traffic limits in which the number of com-
ponent arrival processes in a superposition arrival process or the number of
servers in a multi-server queue increases in the heavy-traffic limit. Those
limits tend to capture the behavior of systems with large numbers of sources
Or servers.

The third part, containing Chapters 11 — 14, is devoted to the technical
foundations needed to establish stochastic-process limits with unmatched
jumps in the limit process. The third part begins with Chapter 11, which
provides more details on the mathematical framework for stochastic-process
limits, expanding upon the brief introduction in Chapter 3.

Chapter 12 presents the basic theory for the function space D. Four
topologies are considered on D: strong and weak versions of the M; topol-
ogy and strong and weak versions of the M, topology. The strong and
weak topologies differ when the functions have range R¥ for k& > 1. The
strong topologies agree with the standard topologies defined by Skorohod
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(1956), while the weak topologies agree with the product topology, regard-
ing D([0,T],R*) as the k-fold product of the space D([0,T],R) with itself.
The M topologies are defined and characterized in Chapter 12. The main
ideas go back to Skorohod (1956), but more details are provided here. For
example, several useful alternative characterizations of these topologies are
given; e.g., see Theorem 12.5.1.

Chapter 13 focuses on the useful functions from D or D x D to D intro-
duced in Section 3.5, which preserve convergence with the Skorohod topolo-
gies, and thus facilitate the continuous-mapping approach to establish new
stochastic-process limits. As illustrated in the queueing chapters, the func-
tions in Chapter 13 can be combined with the FCLT’s in Chapter 4 to obtain
many new stochastic-process limits.

The third part concludes with a final chapter on queues: Chapter 14
establishes heavy-traffic limits for networks of queues. The extension to
networks of queues in Chapter 14 is more complicated because, unlike the
one-dimensional reflection map used for single queues, the multidimensional
reflection map is not simply continuous in the M; topology. However, it is
continuous, using the product M; topology, at all limit functions without
simultaneous jumps of opposite sign in its coordinate functions.

The fourth part, containing only the final chapter, Chapter 15, intro-
duces new function spaces larger than D. These spaces, called E and F, are
intended to express limits for sequences of stochastic processes with oscilla-
tions in their sample paths so great that there is no limit in D. The names
are chosen because of the ordering

CcDCECEF.

Example 3.6.1. Motivation for the spaces E and F. Suppose that the
n'™ function in a sequence of continuous functions takes the value 4 in the
interval [0,27! — n~!], the value 5 in the interval [2= + n=1,1] and has
oscillations in the subinterval [27!—n =1, 271 +n~!] for all n > 3. Specifically,
within the subinterval [271 — n~1, 271 + n~1]) let this n'® function first
increase from the value 4 at the left endpoint 2~ —n ! to 7, then decrease
to 1, and then increase again to 5 at the right endpoint 271 +n~!, as shown
in Figure 3.5.

That sequence of continuous functions converges pointwise to the limit
function z = 41Ijy 5-1y + 5I[o-1 1) everywhere except possibly at ¢ =1 /2, but
it does not converge in D with any of the Skorohod topologies. Nevertheless,
we might want to say that convergence does in fact occur, with the limit
somehow revealing the oscillations of the functions in the neighborhood of
t = 1/2. The spaces E and F allow for such limits
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Figure 3.5: The n'® function in C[0, 1] in a sequence of functions that con-
verges to a proper limit in the space E but not in the space D.

In E, the limit corresponds to the set-valued function that is the one-
point set {4} for ¢ € [0,27!), the one-point set {5} for ¢t € (271,1]) and is
the interval [1,7] at ¢t = 1/2.

In E, the limit fails to capture the order in which the points are visited
in the neighborhood of ¢t = 1/2. The space F exploits parametric represen-
tations to also capture the order in which the points are visited. The larger
spaces F and F' are given topologies similar to the My and M; topologies on
D. Thus Chapter 15 draws heavily upon the development of the M topolo-
gies in Chapter 12. However, Chapter 15 only begins to develop the theory
of ¥ and F. Further development is a topic for future research. =

At the end of the book there are two appendices. Appendix A gives
basic facts about regularly varying functions, while Appendix B gives the
intial contents of the Internet Supplement.



