
USING DISTRIBUTED-EVENT PARALLEL SIMULATION
TO STUDY DEPARTURES FROM MANY QUEUES IN SERIES

by

Albert Greenberg

AT&T Bell Laboratories
Murray Hill, NJ 07974-0636

Otmar Schlunk

Coordinated Science Laboratory
University of Illinois

Urbana, IL 61801

and

Ward Whitt

AT&T Bell Laboratories
Murray Hill, NJ 07974-0636

November 5, 1990

Revision: November 6, 1991

Abstract

Exciting new opportunities for efficient simulation of complex stochastic systems are

emerging with the development of parallel computers with many processors. In this paper we

describe an application of a new distributed-event approach for speeding up a single long

simulation run to study the transient behavior of a large non-Markovian network of queues. In

particular, we implemented the parallel-prefix-based algorithm of Greenberg, Lubachevsky and

Mitrani (1991) on the 8192-processor CM-2 Connection machine to simulate the departure times

D(k, n) of the k th customer from the n th queue in a long series of single-server queues. Each

queue has unlimited waiting space and the first-in first-out discipline; the service times of all the

customers at all the queues are i.i.d. with a general distribution; the system starts out with k

customers in the first queue and all other queues empty. Glynn and Whitt (1991) established limit

theorems for this model, but unfortunately very little could be said about the limits themselves.

The simulation results here describe the limits and the quality of the approximations. For this

model, speeding up a single long run is far superior to independent replications, because very

long runs are required to obtain unbiased estimates of the desired quantities and the variance of

the estimator at the end of the run is small. The achieved simulation rate was about thirty billion

service completions per hour, which is a speedup by about a factor of 100 compared to simulation

on a conventional single-processor machine.

AMS 1980 subject classifications. primary 60K25, 60F17; secondary 90B22, 60J60.

Keywords and phrases. simulation, parallel simulation, parallel processing, queues, queueing

networks, tandem queues, departure process, transient behavior, reflected Brownian motion, limit

theorems, hydrodynamic limit.

1. Introduction

The motivation behind this paper is our desire to better understand the performance of

complex stochastic systems such as the AT&T long distance network. This goal leads to the

following three questions:

1. What models are appropriate?

2. What do we want to learn from these models?

3. How can we effectively exploit simulation for this purpose?

As always, the appropriate model depends on the features of the system we want to better

understand. One important feature is the ‘‘network effect.’’ To capture the network effect, we

are led to consider multidimensional models, but to be able to say anything about these

multidimensional models, we must make them otherwise relatively simple; e.g., they might be

symmetric. Classic examples of models of this sort are the loss networks in Kelly (1991) and

Mitra, Gibbens and Huang (1991a,b).

One class of interesting questions about these models concerns the transient behavior: How

does the multidimensional structure influence the approach to equilibrium? A classic study of the

transient behavior of a multidimensional stochastic system is the study of card shuffling in

Aldous and Diaconis (1987).

In this paper, following Glynn and Whitt (1991), we focus on the transient behavior of a

multidimensional non-Markovian model. In particular, we consider a series of n single-server

queues, each with unlimited waiting space and the first-in first-out (FIFO) service discipline. The

service times of all the customers at all the queues are i.i.d. but with a general distribution. At

time 0 the system is empty and k customers are placed in the first queue. We wish to describe the

time D(k,n) required for all k customers to complete service from all n queues. In the scheduling

literature, this time is often called the makespan.

- 2 -

This series network problem is of interest in its own right, but we believe it is also of interest

as an illustration of the kind of multidimensional models we want to consider and the kinds of

questions we want to ask. Hence, when we consider how to effectively apply simulation to

analyze this particular problem, we believe that this has important implications for the way we

can effectively exploit simulation more generally.

As we detail in Section 3, Glynn and Whitt (1991) proved limit theorems describing the

asymptotic behavior of D(k,n) as k → ∞ and/or n → ∞. Appropriate normalizations were

found under which limits exist, but unfortunately very little could be said about the limits

themselves. One purpose here is to apply simulation to describe the limits. Our first answer to

the third question above is that simulation can be effectively exploited when used together with

mathematical analysis. Together the two methods of analysis yield more than either alone.

Another purpose here is to present a case for distributed-event parallel simulation. We

contend that models like our series queueing network are natural candidates for applying parallel

simulation. Moreover, as we detail in Section 2, we contend that the distributed-event approach

is especially effective for these models. We support this claim by our implementation of the

distributed-event parallel-prefix-based algorithm of Greenberg, Lubachevsky and Mitrani (1991)

on the 8192-processor CM-2 Connection machine to simulate departures from this series network.

The achieved simulation rate was about thirty billion service completions per hour, providing

speedup by about a factor of 100 compared to simulation on a conventional single-processor

machine.

Here is how the rest of the paper is organized. In Section 2 we provide background on

parallel simulation and in Section 3 we provide background on the limit theorems for the series

network. In Section 4 we present our simulation results and in Section 5 we describe our

simulation methodology in more detail.

- 3 -

2. Background on Parallel Simulation

The approaches for using parallel processing to speed up simulations can be divided into two

classes – those that use parallelism for speeding up a single run and those that do not. The

methods that use parallelism to speed up a single run can be further classified as following either

the distributed-subsystem approach or the distributed-event approach. We discuss each of these

in turn.

In evaluating the different approaches, we have in mind very large numbers of processors,

including the thousands that are available today and even more that will be available in the future.

In particular, the simulations reported here were performed on the 8192-processor CM-2

Connection machine.

2.1 Methods That Do Not Use Parallelism on a Single Run

Parallelism sometimes can be effectively exploited by simply performing separate runs on

each processor. The different runs may represent different scenarios or independent replications.

With different scenarios, we typically use a common random number stream to facilitate

comparisons. With independent replications, we typically use independent random number

streams and average the results from all the runs to reduce variance. Independent replications

also helps determine the statistical quality of the results.

The great appeal of these approaches is their simplicity, but they do have drawbacks. First, it

may be difficult to simultaneously execute a separate run on each processor. For example, the

memory associated with each processor may not be sufficient for a complex system. Moreover,

there may be inefficiencies because some scenarios may require much longer runs than others.

Second, the ‘‘batch processing’’ nature of multiple scenarios thwarts rapid use of parallel

processing for interactive simulation studies. In practice, one simulation suggests another.

Determining which scenarios to simulate, and even how long to run the simulation of each

- 4 -

scenario, requires experimentation.

Independent replications avoids some of the difficulties associated with multiple scenarios and

indeed it seems to have great promise; see Heidelberger (1986a,b), Glynn and Heidelberger

(1990a,b) and Heidelberger and Stone (1990). Many stochastic systems require large experiments

in order to obtain reliable estimates; e.g., this is true of even a single queue with high traffic

intensity; see Whitt (1989). Moreover, in many cases independent replications are as effective as

one long run. However, there typically are difficulties with very large numbers of independent

replications of very short runs; see Whitt (1991). Thus, independent replications may have

difficulty exploiting the full power of very large numbers of processors.

Moreover, we contend that multidimensional complex stochastic systems often exhibit two

structural properties that make independent replications even less helpful:

First Structural Property. To obtain a useful result from a single replication, the run often
must be very long. Independent replications, by itself, thus offers no way to reduce the
time required for a given replication.

Second Structural Property. The variance of the desired result obtained from each
independent replication often is not large. The variance may be such that ten replications
may be needed to obtain reliable results, but not thousands.

These two structural properties do not hold for the single-queue models discussed in

Whitt (1989, 1991), but we contend that these properties often appear with more complex

multidimensional stochastic models. Indeed, this is dramatically illustrated by the series

queueing network model considered here.

2.2 The Distributed-Subsystem Approach

Most parallel simulation methods that have been proposed take the following distributed-

subsystem approach; see Fujimoto (1991) for a survey. The system to be simulated is partitioned

into subsystems and a different processor is assigned to each subsystem. Applied to the

simulation problem here, a different processor would be assigned to each queue or group of

queues. A processor generates the sample path of its subsystem, taking care to coordinate with

- 5 -

other processors on events that couple their sample paths. Unfortunately, the degree of

parallelism is limited to the number of subsystems, e.g., the number of queues. On parallel

computers having thousands of processors, it may be difficult or impossible to fashion an efficient

simulation by partitioning into thousands of subsystems.

2.3 The Distributed-Event Approach

If E events with comparable running times are to be simulated on P processors, then the ideal

running time would be O(E / P), as if the E events were distributed evenly among the P

processors (without significant overhead). The distributed-event approach tries to attain this goal

by exploiting parallel methods and by exploiting special properties of the system being simulated.

Indeed, for the simulation problem here, we do use completely different methods, presented in

Greenberg, Lubachevsky and Mitrani (1991), which exploit special properties of the recurrences

describing job arrivals and departures in a series of queues.

Our problem here is to simulate the passage of the first K jobs through a series of N queues,

yielding O(KN) events. Our algorithm in Section 5 takes O(N((K / P + log P)) time using P

processors. By duality, see Section 2 of Glynn and Whitt (1991), K and N are interchangeable, so

that we may take K to be the larger than N. For large K, the time becomes O(NK / P), which is

optimal. The method is simple and well suited for implementation on today’s massively parallel

SIMD (single-instruction, multiple-data; i.e., each processor executes the same instruction at each

cycle but applies the instruction to different data) computers. We implemented the algorithm on

an 8192 processor CM-2 Connection machine.

3. Background on the Series Queueing Network Model

The model we consider is a series of n single-server queues, each with unlimited waiting

space and the FIFO discipline. The service times of all the customers at all the queues are i.i.d.

with a general distribution having mean 1 and finite positive variance σ2 . At time 0 the system is

- 6 -

empty and k customers are placed in the first queue. We wish to describe the distribution of the

time D(k, n) required for all k customers to complete service from all n queues.

In Glynn and Whitt (1991a), hereafter referred to as GW, limit theorems were proved which

describe the asymptotic behavior of D(k, n) as k → ∞ and/or n → ∞. We complement GW by

applying simulation to describe the limits. The simulation results suggest several interesting

conjectures.

In §2 of GW it is noted that there is a duality implying that D(k, n) is distributed the same as

D(n , k) for each k and n. Hence, limits as n → ∞ have counterparts as k → ∞. As a

consequence, a heavy-traffic limit theorem by Iglehart and Whitt (1970) for the case k → ∞ with

fixed n implies that

n − 1⁄2 [D(k, n) − n] = = > σD̂ k (1) as n → ∞ for each k , (3.1)

where = = > denotes convergence in distribution and D̂ k (1) is a functional of a standard k-

dimensional Brownian motion (BM) B̂ ≡ (B̂ 1 , . . . , B̂ k), which has independent one-dimensional

standard (zero drift, unit variance) BMs B i ≡ {B i (t) : t ≥ 0 } as components; i.e.,

D̂ 1 (t) = B̂ 1 (t) and

D̂ k (t) =
0 ≤ s ≤ t

sup



D k − 1 (s) + B k (t) − B k (s)





, t ≥ 0 . (3.2)

We may also choose to focus on the interdeparture times, defined by

∆(k, n) = D(k + 1 , n) − D(k, n) , k ≥ 1 . (3.3)

The corresponding limit is

n − 1⁄2 ∆(k, n) = = > σ ∆̂ k (1) as n → ∞ , (3.4)

where ∆̂ k = D̂ k − D̂ k − 1 with D k ≡ {D k (t) : t ≥ 0 }. The process (∆̂ 1 , . . . , ∆̂ k) is a k-

dimensional reflected Brownian motion (RBM) as in Harrison (1978), Harrison and

- 7 -

Reiman (1981a,b), Reiman (1984) and Harrison and Williams (1987). The RBM is to be

expected because ∆(k, n) is distributed the same as the sojourn time of customer n at queue k,

S(n , k) = D(n , k) − D(n , k − 1), by virtue of the duality mentioned above.

Given the convergence in (3.1) and (3.4), our main problem is to say something about the

limits D̂ k (1) and ∆̂ k (1). It is significant that these limits do not depend on the underlying

service-time distribution. Of course, the convergence in (3.1) and (3.4) depends on the first two

moments of the service-time distribution, but only through elementary scaling. Hence,

knowledge about D̂ k (1) and ∆̂ k (1) has quite wide applicability.

We are interested in approximations for D(k, n) and ∆(k, n) not only when n is large but also

when k is large. This suggests considering the asymptotic behavior of ∆̂ k (1) and ∆̂ k (1) as

k → ∞. Theorem 7.1 of GW implies that

k − 1⁄2 D̂ k (1) = = > α as k → ∞ , (3.5)

where α is deterministic. One of our primary goals is to estimate the limit α in (3.5). Hence, it is

important to note that, for this purpose, our model possesses the two structural properties in §2.1.

We need a long run to estimate k − 1/2 ED̂ k (1) for large k. At the same time, by (3.5), the variance

Var [k − 1/2 D̂ k (1)] is going to zero. Indeed, based on our simulations, we conjecture that

VarD̂ k (1) → 0 without normalization, so that the variance of k − 1/2 D̂ k (1) is small indeed.

Based on (3.5), we also conjecture that

k
1⁄2 E[∆̂ k (1)] = = > α/2 as k → ∞ . (3.6)

Indeed, if k
1⁄2 a k → a as k → ∞ for a deterministic sequence {a k : k ≥ 1 }, then necessarily

k − 1⁄2

j = 1
Σ
k

a j → 2a (e.g., see Lemma 4 of Glynn and Whitt (1992)).

The limits (3.5) and (3.6) suggest that we might profitably look at D(k, n) with the scaling

[D(k, n) − n]/√ kn for k ≤ n. The advantage of this perspective is apparent from Table 3 in

- 8 -

Section 4. For k ≤ 5000 and n ≤ 106 , all observed normalized averages fall in the interval [0.76,

3.00].

We have mentioned that one of our goals is to estimate the constant α appearing in (3.5) and

(3.6). Our simulation evidence strongly indicates that 2 ≤ α ≤ 2. 63. In fact, we conjecture that

α = 2. It should be apparent that the estimation presents a challenge for simulation because, by

(3.6), α/2 is a limit of the k th coordinate of k-dimensional RBM as k → ∞.

To obtain information about D̂ k (1), ∆̂ k (1) and α as well as D(k, n) and ∆(k, n), we

simulated the series of queues for two service-time distributions having mean and variance one:

exponential and Bernoulli. The Bernoulli random variables assume the values 0 and 2 each with

probability 1/2. To obtain relatively reliable estimates, we performed multiple independent

replications for n up to 106 and k up to 5000. (In fact, we actually switched the role of n and k.)

In GW attention was not only focused on the iterative limit as first n → ∞ in (3.1) and then

k → ∞ in (3.5), but also on the joint limit with k ≡ k n → ∞ as n → ∞. Indeed, in some sense it

is shown that

[D(k n , n) − n]/√ nk n = = > α as n → ∞ (3.7)

with k n → ∞ satisfying k n ≤ n 1 − ε . However, a very different story exists for k n = n.

Theorem 6.3 of GW shows that for service-time distributions having an exponential tail that

n − 1 D(xn , n) → γ(x) as n → ∞ , (3.8)

where x is the integer part of x. In the case of exponential service-time distributions, it follows

from Srinivasan (1989) that γ(x) = (1 + √ x)2 . In GW it is conjectured that γ(1) in (3.8)

depends on the service-time distribution beyond its first two moments. This is verified by

simulation here. From the simulation results, it is clear that γ(1) < 4 for the Bernoulli

distribution.

- 9 -

For estimating the limit γ(x) in (3.8), it is also evident that we have the two structural

properties in §2.1.

4. Simulation Results

4.1 The Simulation Cases

Table 1 displays estimates of the first, second and fourth moments of ∆(k, n)/√ n for an

exponential service time with mean 1 in the cases k = 1 , 2 , . . . , 10 and n = 10 j for

j = 1 , 2 , . . . , 6. Table 2 contains the associated estimates of the squared coefficient of variation

(SCV, variance divided by the square of the mean) of ∆(k, n)/√ n based on Table 1. These

estimates are based on 1000 independent replications. In each replication, D(k, 10 j) is obtained

for each k and j, so that the results for different k and j are dependent. Obviously the dependence

is greater as we change k for fixed j than when we change j for fixed k.

Tables 3 and 4 display the mean, second moment and SCV of [D(k, n) − n]/√ kn for the

same cases, based on the same 1000 replications. The normalization is motivated by the limits

(3.1), (3.5), (3.7) and (3.8).

To obtain estimates of ∆(k, n), D(k, n), ∆̂ k (1) and D̂ k (1) for larger k, we performed

10 independent replications for k = 103 and n = 106 . These values appear in Tables 3, 5 and 7.

We also performed a few runs for k = 5000 and n = 106 . In addition to the case of exponential

service times, we also considered Bernoulli service times, which assume the values 0 or 2, each

with probability 1/2. Results for the Bernoulli distribution appear in Tables 5-7.

4.2 Properties of D̂ k (1) and ∆̂ k (1)

By (3.2), D̂ k (1) is increasing in k and, by §5 of GW, ∆̂ k (1) is stochastically decreasing in k.

By Remark 3.3 of GW, ∆̂ 1 = B̂ 2 − B̂ 1 =
d

√ 2 B̂ 1 . Hence, ∆̂ 1 (1) has a positive normal

distribution with E[∆̂ 1 (1)] = 2/√ π = 1. 128, E[∆̂(1)2] = 2 and E[∆̂(1)4] = 12. We now

- 10 -

describe additional properties deduced from the simulations.

The numerical evidence strongly supports the conclusions that E[D̂ k (1)]/√ k is increasing in

k to the established limit α and that, remarkably, Var D̂ k (1) → 0 as k → ∞; see Tables 3, 5 and

6. The numerical evidence also suggests that ED̂ k (1) − α√ k = o(√ k) as k → ∞, so that

D̂ k (1) − α√ k = = > 0 as k → ∞ . (4.1)

It is of course hard to pin down specific numbers precisely, but it appears that α = 2. 0. The

numerical evidence appears stronger in the Bernoulli case in Table 6 than in the exponential case

in Table 3, but both give quite strong support. In addition to the numerical evidence, we offer the

following heuristic argument (developed after seeing the numerical results). For the exponential

case, we know that n − 1 D(xn , n) → (1 + √ x)2 w.p.1 as n → ∞ for each fixed x by

Theorem 6.1 of GW. We act as if this is true for x of the form x / n. Then

n − 1 [D(x , n) − n] ∼∼ (1 + √ x / n)2 − 1 = 2√ x / n + x / n for large n

or

n − 1⁄2 [D(x , n) − n] ∼∼ 2√ x + x /√ n for large n . (4.2)

Finally, we act as if the first term on the right of (4.2) is valid for all service-time distributions.

As rough approximations for the mean and standard deviation of D̂ k (1), we propose

ED̂ k (1) ∼∼ 2√ k − 1. 6
√ k

log k_ ____ and SD(D̂ k (1)) ∼∼
3 log k

4_ ______ ; (4.3)

e.g., see Tables 3, 5 and 6. It is quite difficult to determine the asymptotic form of SD(D̂ k (1))

from the simulation results; e.g., it might be of order k − 1/4 instead of (log k) − 1 as in (4.3). For

the three cases in Table 5 with k = 10 j for j = 1 , 2 , 3, (4.3) yields estimates for SD(D̂ k (1)) of

0.58, 0.29 and 0.19; whereas k − 1⁄4 yields 0.56, 0.32 and 0.18.

As an extension of (4.1), we conjecture that

- 11 -

SD(D k (1))

D̂ k (1) − 2√ k_ ____________ = = > L 1 as k → ∞ , (4.4)

where L 1 has mean 0 and variance 1. From (4.3)–(4.4), we obtain the approximation.

D̂ k (1) ∼∼ 2√ k − 1. 6
√ k

log k_ ____ ±
3 log k

4_ ______ , (4.5)

where ± δ means that δ is the estimated standard deviation.

Note that (4.5) implies that the approximation improves, in an absolute sense as well as a

relative sense, as k increases. For example, by (4.5),

D̂ 10 (1) ∼∼ 6. 32 − 1. 18 ± 0. 58 ∼∼ 5. 14 ± 0. 58 (4.6)

and

D̂ 1000 (1) ∼∼ 63. 25 − 0. 35 ± 0. 19 ∼∼ 62. 90 ± 0. 19 . (4.7)

Turning to ∆̂ k (1), we conjecture that

√ k E∆̂ k (1) → 1 as k → ∞ , (4.8)

by virtue of (3.6). Indeed, the limit in (4.8) seems to provide a remarkably good approximation

for all k. We conjecture that

√ k E∆̂ k (1) ≥ 1 for all k (4.9)

and

√ k E∆̂ k (1) − 1 ≤ 0. 10 for all k ≥ 2 . (4.10)

We also estimate the m th moment of ∆̂ k (1) for m = 1 , 2 , 3 and 4 by estimating the m th

moment of ∆(k, n)/√ n for n = 106 using the following estimator

- 12 -

n
1_ _

j = 1
Σ
n 


 √ j

∆(k, j)_ ______




m

. (4.11)

The smoothing in (4.11) significantly decreases the variance, but it also introduces a bias, which

is itself hard to estimate. We used (4.11) in 10 replications with n = 106 and k = 103 . The

resulting 95% confidence intervals (based on a t-distribution with 9 degrees of freedom) were

√ k E[∆̂ k (1)] = 1. 070 ± 0. 005

k E[∆̂ k (1)2] = 2. 237 ± 0. 023 (4.12)

k 2 E[∆̂ k (1)4] = 25. 8 ± 0. 76 .

If the bias in (4.11) is not significant, then (4.12) implies that γ̂(1) ∼∼ 2. 14 instead of 2.0.

However, we suspect the discrepancy is due to the bias in (4.11).

We also conjecture that the SCV of ∆̂ k (1) is increasing in k from the exact value of 0.57 for

k = 1 to an upper limit, which we conjecture is 1. (See Table 4. The estimates in (4.12) indicate

that the upper limit should be about 0.954.) Hence, we further conjecture that

√ k ∆̂ k (1) = = > L 2 as k → ∞ , (4.13)

where E L 2 = Var L 2 = 1 and EL2
4 ∼∼ 25. The limit (4.13) leads to the approximation

∆̂ k (1) ∼∼
√ k
1_ ___ ±

√ k
1_ ___ . (4.14)

As we should expect, (4.5) and (4.14) indicate that ∆̂ k (1) is much more relatively variable than

D̂ k (1) and thus harder to predict.

If the random variables ∆̂ k (1) were uncorrelated, then we would have Var D̂ k (1) ∼∼ log k,

assuming that Var ∆̂ k (1) ∼∼ 1/ k. However, from (4.3) we see that Var D̂ k (1) ∼∼ 1. 8/(log k)2 .

The fact that

- 13 -

Var D̂ k (1) <<
j = 1
Σ
k

Var ∆̂ j (1) (4.15)

indicates that there is considerable negative correlation among the variables ∆̂ k (1).

4.3 The Hydrodynamic Limit

In GW it was conjectured that the limit γ(x) in (3.8) depends on the service-time distribution

beyond its first two moment. This conjecture is strongly confirmed by the simulations.

Ten independent replications of n − 1 D(n , n) for n = 1000 were simulated for the exponential

and Bernoulli distributions. The ten exponential values fell in the interval [3.902, 3.999], while

the ten Bernoulli values fell in the interval [3.604, 3.630]. For n = 1000, we can statistically

conclude that the two distributions of n − 1 D(n , n) have different means. Moreover, the

exponential variables had mean 3.951 which is within 0.049 of the known limit.

It is interesting that in the Bernoulli case we have the w.p.1 bound D(n , n) ≤ 4n − 2. This

upper bound corresponds to a path from (1,1) to (n , n) in the n × n array of service times

discussed in §2 of GW containing all 2’s. Evidently the maximum path contains only about 81%

2’s asymptotically as n → ∞.

From (3.8) we know that n − 2 Var D(n , n) → 0 as n → ∞. Assuming that

n − β Var D(n , n) converges to a proper limit as n → ∞, from Table 7 it appears that the

exponent β, as well as the limit, depends on the distribution. For the Bernoulli case, we estimate

β = 1/2; for the exponential case, we estimate that 3/4 ≤ β ≤ 1.

Even though the limit γ(x) in (3.8) evidently depends on the service-time distribution, the

heuristic argument supporting (4.2) leads us to conjecture that

γ(x) = 1 + 2√ x + o(x) as x → 0 , (4.16)

at least for a large class of service-time distributions.

- 14 -

4.4 The Approximations

The simulations also reveal how well D(k, n) and ∆(k, n) are approximated by the limits in

(3.1) and (3.4)–(3.8), at least in the cases considered of exponential and Bernoulli random

variables. The tables indicate that the limits E D̂ k (1) and E ∆̂ k (1) are approached monotonically

as n → ∞.

From Table 7, the rate of convergence of ED(n , n)/ n to γ(1) appears to be about O(1/√ n).

A rough approximation in the exponential case is

ED(n , n) ∼∼ 4n − 1. 8√ n . (4.17)

For fixed k, Tables 3 and 6 suggest that the rate of convergence of [ED(k, n) − n]/√ n to

ED̂ k (1) also seems to be about O(1/√ n). The rate of convergence seems to be faster for the

Bernoulli service-time distribution.

The data in Table 3 also suggest as a rough approximation

√ xn
1⁄2 n

ED(xn
1⁄2  , n)_ ____________ ∼∼ 2 +

n
1⁄4

log x_ ____ (4.18)

in the exponential case for n ≥ 103 and 0. 1 ≤ x ≤ 4. 0.

5. The Simulation Methodology

Following Greenberg et al. (1991), our basic building block is a fast, parallel method for

simulating a long run of a single FIFO queue. Specifically, use P processors we compute the

arrival and departure times of the first K customers in O((K / P) + log P) time. We describe this

simulation method in some detail, and then the extension to simulating queues in series.

Afterwards, we tell how to deal with delay computations and space constraints.

A basic problem and its parallel solution lies behind our methods. Given K inputs

x 1 , . . . , x K and an associative operator o, the parallel prefix problem is to compute the K partial

- 15 -

products x 1 ,x 1 ox 2 , . . . , x 1 ox 2 o . . .ox K ; see Ladner and Fischer (1980) and pp. 47, 341 of

Akl (1989). The problem can be solved in O((K / P) + log P) time using P processors; see

Kruskal, Rudolph and Snir (1985). Moreover, as shown by Leighton (1992), very efficient

solutions can be tailored to a wide variety of parallel architectures, and special hardware or

microcode is commonly used to effect such solutions. Parallel prefix problems arise below the

operator o being either addition or matrix multiplication.

We now show that the standard recursions for the arrival times and departure times (e.g., (2.1)

of Glynn and Whitt (1991)) can be expressed as parallel prefix problems. In particular, let A(k)

and D(k) denote the arrival and departure times of the k th customer. For all k ≥ 0,

A(k + 1) = A(k) + U(k) (5.1)

and

D(k + 1) = (A(k + 1) ∨D(k)) + V(k) , (5.2)

where x∨y = max {x,y}, A(0) = D(0) = 0 and U(k) and V(k) are the k th interarrival time and

k th service time, respectively. A significant part of our approach is to exploit the recurrences in

(5.1) and (5.2) instead of event lists and other standard features of general purpose simulation

languages. However, the recurrences by themselves do not exploit the parallelism. Indeed, the

recurrences are often used without exploiting the parallelism; e.g., see Suresh and Whitt (1990).

Our approach is to first compute the arrival times A(1) , . . . , A(K), and then the departure

times D(1) , . . . , D(K). Telescoping (5.1), i.e., writing

A(k + 1) = U(1) + . . . + U(k) , (5.3)

shows that computing the first K arrival times is a parallel prefix problem, where the inputs are

the random variables U(k).

- 16 -

To treat the departure times, we recast the departure-time recurrence (5.2) in terms of a

semiring over the reals, where ∨ acts as the addition operator (with identity − ∞) and + as the

multiplication operator (with identity 0). In this setting, the distributive law becomes

x + (y∨z) = (x + y) ∨(x + z)

and the departure-time recurrence becomes


 0
D(k + 1)

 = 
 − ∞
V(k)

0
A(k + 1) + V(k)



 0
D(k)

 . (5.4)

Checking the first row,

D(k + 1) = (V(k) + D(k)) ∨ ((A(k + 1) + V(k)) + 0) = (D(k) ∨ A(k + 1)) + V(k) .

The second row is an entirely formal computation, which would not be retained in

implementation. Identifying the left side of (5.4) with a 2-vector D̃(k + 1) and the 2 × 2 matrix

on the right hand side with a matrix M(k + 1), and telescoping, we obtain

D̃ k + 1 = M k
.M k − 1

. . .M 1
.D̃ 0 . (5.5)

Thus, a mirror image of the parallel prefix problem appears: Compute the K matrix products M 1 ,

M 2
.M 1 , . . . , M K

. . .M 1 . The matrices are of the form


− ∞

x
0
y


and the product formula is



− ∞

x 1

0

x 2





− ∞

y 1

0

y 2



=


 − ∞
(x 1 + y 1)

0

((x 1 + y 2) ∨x 2)



.

Having solved this parallel prefix problem, it remains only to multiply each result M k
. . .M 1 by

D̃ 0 , an operation of the form

- 17 -



− ∞

x 1

0

x 2





0

y



=


 0

(x 1 + y) ∨x 2



,

which is quite simple since D(0) = 0.

Generating K independent versions of the random variables U(k) and V(k) is completely

parallelizable; i.e., the cost is O(K / P) time using P processors. The parallel prefix problem that

produces the K arrival times A(k) costs O((K / P) + log P) time using P processors. Computing

K matrix products M k
. . .M 1 has cost of the same order. The final multiplications by D̃ 0 are

completely parallelizable. Thus, in O((K / P) + log P) time, we can compute A(1) , . . . , A(K),

and D(1) , . . . , D(k), as was to be shown.

A short step brings us to our algorithm for simulating the first K customers through a series of

N queues. For the first queue, compute arrivals D(0 , 1) , . . . , D(0 ,K) and departures

D(1 , 1) , . . . , D(1 ,K) as above in O((K / P) + log P) time. Taking these departures as arrivals

to the second queue, compute the departures from that queue, D(2 , 1) , . . . , D(2 ,K) in

O((K / P) + log P) time. Taking in turn these departures as arrivals to the third queue, compute

the departures from the third queue, and so forth. In this way, the total computation is completed

in O(N((K / P) + log P)) time using P processors. By overwriting the arrivals to the n th queue

with departures from the (n + 1) st , the total space needed is held to O(K).

By the duality, we can freely interchange K and N. For the way we have developed the

algorithm, we want to have N ≤ K. For K sufficiently large, the required time of

O((NK / P) + N log P) is O(NK / P), which is optimal.

We remark that we have treated the successive queues in a serial manner above, as in Suresh

and Whitt (1990), but the operation of computing departure sequences {D(k,n) : 1 ≤ k ≤ K} for

1 ≤ n ≤ N is also a parallel prefix problem. We do not exploit this fact, because we have already

put all the processors to work. If we exploited the full associativity, we could achieve a solution

- 18 -

in O((NK / P) + log P) instead of O((NK / P) + N log P). Assuming that (K / P) > log P, the

gain is not first order.

For the investigations reported here we require delay statistics. Consider the problem of

computing the delay of the k th customer at the n th queue, ∆(k,n) = D(k,n) − D(k,n − 1);

computing total delays D(k,N) − D(k, 0) is similar. Having the D(k,n) and the D(k,n − 1)

simultaneously in memory, tallying ∆(k,n) is completely parallelizable. Computing delay

moments entails powering individual delays and summing the results. The powering problem is

completely parallelizable, and the summing can be done in tree-like fashion in

O((K / P) + log P) time. Thus, delay statistics have cost of the same order as the rest of the

computation. Queue-length statistics can be computed at comparable cost via merging and

parallel prefix computations; see Greenberg, Lubachevsky and Mitrani (1991).

In practice, for large K, it may be necessary to make do with less than O(K) space. Consider

the single-queue computation. Suppose that there is sufficient space to hold A(1) , . . . , A(B) and

D(1) , . . . , D(B), for some B < K. We can compute these vectors in O((B / P) + log P) time.

Next, we can overwrite these vectors with a second batch of values, A(B + 1) , . . . , A(2B), and

D(B + 1) , . . . , D(2B), using the same algorithm, and retaining only A(B) and D(B) (playing

the roles of A(0) and D(0), resp.) from the first batch. Processing in this way, the time used

becomes O(N((K / P) + (K / B) log P)).

References

Akl, S. G. (1989). The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood

Cliffs, NJ.

Aldous, D. and Diaconis, P. (1987). Shuffling cards and stopping times. Amer. Math. Monthly

93, 333-348.

Apostolico, A., Atallah, M. J., Larmore, L. L. and McFaddin, H. S. (1988). Efficient parallel

algorithms for string editing and related problems. University of California, Irvine.

Chandy, K. M. and Sherman, B. (1989). Space-time and simulation. Distributed Simulation

1989. The Society for Computer Simulation, 53-57.

Fujimoto, R. M. (1991). Parallel discrete event simulation. Commun. ACM 33, 31-53.

Glynn, P. W. and Heidelberger, P. (1990a). Analysis of parallel, replicated simulations under a

completion time constraint. IBM Research Report RC 15466 (#68774).

Glynn, P. W. and Heidelberger, P. (1990b). Experiments with initial transient deletion for

parallel, replicated steady-state simulations. IBM Research Report RC 15700 (#70118).

Glynn, P. W. and Whitt, W. (1991). Departures from many queues in series. Ann. Appl. Prob. 1,

to appear.

Glynn, P. W. and Whitt, W. (1992). The asymptotic efficiency of simulation estimators. Oper.

Res., to appear.

Greenberg, A. G., Lubachevsky, B. D. and Mitrani, I. (1991). Algorithms for unboundedly

parallel simulations. ACM Trans. Computer Systems, to appear.

- R-2 -

Harrison, J. M. (1978). The diffusion approximation for tandem queues in heavy traffic. Adv.

Appl. Prob. 10, 886-905.

Harrison, J. M. and Reiman, M. I. (1981a). Reflected Brownian motion on an orthant. Ann.

Prob. 9, 302-308.

Harrison, J. M. and Reiman, M. I. (1981b). On the distribution of multidimensional reflected

Brownian motion. SIAM J. Appl. Math 41, 345-361.

Harrison, J. M. and Williams, R. J., (1987). Brownian models of open queueing networks with

homogeneous customer populations. Stochastics 22, 77-115.

Heidelberger, P. (1986a). Discrete event simulations and parallel processing: statistical

properties. SIAM J. Sci. Statist. Comput. 9, 1114-1132.

Heidelberger, P. (1986b). Statistical analysis of parallel simulations. 1986 Winter Simulation

Conf. Proc., J. Wilson and J. Henriksen (eds.), IEEE Press, 290-295.

Heidelberger, P. and Stone, H. (1990). Parallel trace-driven cache simulation by time

partitioning. Proceedings 1990 Winter Simulation Conference, IEEE, New Orleans, 734-737.

Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic. II: sequences,

networks and batches. Adv. Appl. Prob. 2, 355-369.

Kelly, F. P. (1991). Loss networks. Ann. Appl. Prob. 1, 319-378.

Kruskal, C. P., Rudolph, L. and Snir, M. (1985). The power of parallel prefix. IEEE Trans.

Computers C-34, 10, 965-968.

Ladner, R. E. and Fischer, M. J. (1980). Parallel prefix computation. J. ACM 27, 831-838.

- R-3 -

Leighton, F. T. (1991). Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufman, San Mateo, CA.

Mitra, D., Gibbens, R. J. and Huang, B. D. (1991a). State dependent routing on symmetric loss

networks with trunk reservations, I. IEEE Trans. Commun., to appear.

Mitra, D., Gibbens, R. J. and Huang, B. D. (1991b). State dependent routing on symmetric loss

networks with trunk reservations, II: asymptotics, optimal design. Annals. Oper. Res., to appear.

Nicol, D., Greenberg, A. G. and Lubachevsky, B. D. (1991). Massively parallel algorithms for

trace-driven cache simulations, to appear.

Ramachandran, V. et al. (1991). The telephone connect problem, to appear.

Reiman, M. I. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9, 441-458.

Righter, R. and Walrand, J. (1989). Distributed simulation of discrete event systems. Proc. IEEE

77, 99-113.

Srinivasan, R. (1992). Queues in series via interacting particle systems. Math. Oper. Res., to

appear.

Suresh, S. and Whitt, W. (1990). The heavy-traffic bottleneck phenomenon in open queueing

networks. Oper. Res. Letters 9, 335-362.

Wagner and Fischer (1973).

Whitt, W. (1989). Planning queueing simulations. Management Sci. 35, 1341-1366.

Whitt, W. (1991). The efficiency of one long run versus independent replications in steady-state

simulation. Management Sci. 37, 645-666.

- R-4 -

_ ___
k 

 n = 101 
 n = 102 

 n = 103 
 n = 104 

 n = 105 
 n = 106

_ __

1 1.113 1.144 1.137 1.123 1.131 1.190
2 0.922 0.850 0.816 0.801 0.783 0.745
3 0.741 0.697 0.650 0.645 0.614 0.612
4 0.717 0.597 0.545 0.545 0.543 0.497

m = 1 5 0.689 0.499 0.492 0.458 0.473 0.524
6 0.624 0.493 0.481 0.464 0.435 0.418
7 0.613 0.450 0.420 0.391 0.396 0.386
8 0.621 0.487 0.410 0.383 0.369 0.377
9 0.589 0.427 0.379 0.369 0.342 0.357

10 0.562 0.393 0.345 0.341 0.339 0.309_ ___
k 















n = 101 














n = 102 














n = 103 














n = 104 














n = 105 














n = 106
_ __

1 2.05 2.06 1.95 2.03 1.99 2.14
2 1.44 1.22 1.12 1.04 1.00 0.93
3 1.000 0.816 0.721 0.697 0.634 0.647
4 0.890 0.636 0.529 0.505 0.496 0.433

m = 2 5 0.873 0.456 0.422 0.388 0.400 0.488
6 0.693 0.453 0.417 0.408 0.339 0.315
7 0.711 0.391 0.325 0.272 0.282 0.283
8 0.706 0.443 0.313 0.271 0.231 0.255
9 0.636 0.343 0.264 0.241 0.226 0.236

10 0.596 0.283 0.222 0.209 0.206 0.185_ ___
k 















n = 101 














n = 102 














n = 103 














n = 104 














n = 105 














n = 106
_ __

1 14.9 13.0 10.4 12.7 11.0 13.2
2 7.7 4.9 4.1 3.6 3.2 2.8
3 4.4 2.4 2.0 1.7 1.4 1.6
4 3.23 1.72 1.18 0.95 0.87 0.80

m = 4 5 3.07 0.83 0.65 0.66 0.62 1.01
6 2.45 0.97 0.76 0.83 0.49 0.41
7 2.29 0.83 0.50 0.29 0.34 0.44
8 2.11 0.88 0.47 0.36 0.21 0.28
9 1.73 0.56 0.29 0.23 0.29 0.30

10 1.81 0.35 0.26 0.18 0.18 0.19_ ___ 

















































































































































































































Table 1. Estimates of E[(∆(k, n)/√ n) m] = E[(S(n , k) √ n) m] in the case of exponential

service times with mean 1 for m = 1 , 2 , 4, k = 1 , . . . , 10 and n = 10 j for j = 1 , . . . , 6.

These estimates are based on 1000 independent replications. For the case m = 1 (m = 2), the

width of 95% confidence intervals are about 6% (10-15%) of the given values, approximately

uniformly over all cases.

_ ___
k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106 average_ ___
1 0.65 0.57 0.52 0.61 0.56 0.51 0.57
2 0.69 0.69 0.68 0.62 0.63 0.68 0.67
3 0.82 0.68 0.71 0.68 0.68 0.72 0.72
4 0.73 0.78 0.78 0.70 0.68 0.75 0.74
5 0.84 0.83 0.74 0.85 0.79 0.78 0.81
6 0.78 0.86 0.80 0.90 0.52 0.80 0.78
7 0.89 0.93 0.84 0.78 0.80 0.90 0.86
8 0.83 0.87 0.86 0.85 0.70 0.79 0.82
9 0.83 0.88 0.84 0.77 0.93 0.85 0.85

10 0.88 0.83 0.87 0.80 0.79 0.94 0.85_ ___
avg. 0.79 0.79 0.76 0.76 0.71 0.77 0.77_ ___ 

























































































































































Table 2. Estimates of c 2 (∆(k, n)/√ n) ≡ Var (∆(k, n)/(E[∆(k, n)])2 using the estimates from

Table 1. (The exact limiting value as n → ∞ for k = 1 is 0.571.)

_ __
k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

_ __
2 0.76 0.78 0.76 0.76 0.80 0.84
3 1.15 1.13 1.09 1.08 1.10 1.12
4 1.37 1.32 1.27 1.26 1.26 1.27
5 1.55 1.46 1.38 1.38 1.38 1.36
6 1.69 1.53 1.46 1.44 1.44 1.46
7 1.80 1.60 1.54 1.51 1.50 1.51
8 1.90 1.66 1.58 1.55 1.54 1.54
9 1.98 1.70 1.63 1.59 1.58 1.58

10 2.07 1.77 1.66 1.61 1.59 1.60
11 2.15 1.81 1.68 1.64 1.62 1.62
20 2.04 1.74 1.81 1.74 1.80
50 2.43 2.01 1.93 1.87 1.82

100 2.81 2.20 2.02 1.98 1.94
200 2.37 2.06 1.99 1.97
500 2.65 2.19 2.04 1.98

1000 2.95 2.30 2.07 2.01
2000 2.45 2.13 2.04
4000 2.63 2.21 2.07
5000 2.72 2.23 2.07
106 3.00*_ __ 
























































































































































































































Table 3. Estimates of E[D(k, n) − n]/√ kn in the case of exponential service times with

mean 1. For k ≤ 11, the estimates are based on 1000 independent replications. The 95%

confidence intervals are about 1% of the given values, as can be seen from Table 4. For

20 ≤ k ≤ 1000, the estimates are based on 10 independent replications. For 2000 ≤ k ≤ 5000, the

estimates are from a single run. (The exact limiting value as n → ∞ for k = 2 is 0.798. The

asterisked value for k = 106 is the exact limiting value as n → ∞ for k = n.)

_ __
k n = 103 n = 104 n = 105 n = 106

_ __
50 1.85 1.88 1.87 1.87

100 2.03 1.93 1.90 1.93
200 2.11 1.96 1.99 1.96
500 2.35 2.04 2.00 2.00

1000 2.62 2.06 2.01 1.99
2000 2.15 2.02 2.00
4000 2.30 2.04 2.00
5000 2.37 2.04 2.01
106 2.63*_ __ 




















































































Table 6. Estimates of E[D(k, n) − n]/√ kn in the case of Bernoulli − { 0 , 2 } service times.

The estimates are based on ten independent replications for k ≤ 1000 and a single run for

k > 1000. The asterisked value for k = 106 is estimated from the case k = n = 5000.

_ ___
k 

 n = 101 
 n = 102 

 n = 103 
 n = 104 

 n = 105 
 n = 106

_ __

2 1.15 1.05 0.96 0.96 1.00 1.03
3 1.74 1.55 1.41 1.40 1.42 1.45
4 2.20 1.95 1.77 1.74 1.75 1.76
5 2.66 2.26 2.02 2.00 2.00 1.99

second 6 3.08 2.47 2.22 2.17 2.18 2.22
moment 7 3.44 2.69 2.43 2.34 2.33 2.34

8 3.79 2.85 2.56 2.46 2.44 2.45
9 4.17 3.07 2.70 2.58 2.54 2.56

10 4.50 3.22 2.82 2.68 2.62 2.66
11 4.81 3.34 2.90 2.76 2.70 2.71_ ___
k 















n = 101 














n = 102 














n = 103 














n = 104 














n = 105 














n = 106
_ __

2 0.76 0.66 0.62 0.62 0.60 0.57
3 0.65 0.52 0.47 0.48 0.46 0.44
4 0.57 0.46 0.40 0.39 0.40 0.38
5 0.50 0.36 0.34 0.31 0.31 0.38

standard 6 0.47 0.36 0.30 0.31 0.33 0.30
deviation 7 0.45 0.36 0.24 0.24 0.28 0.24

8 0.42 0.31 0.25 0.24 0.26 0.28
9 0.50 0.42 0.21 0.23 0.21 0.25

10 0.46 0.30 0.25 0.30 0.30 0.32
11 0.43 0.25 0.28 0.27 0.27 0.29_ ___ 








































































































































































Table 4. Estimates of the second moment and standard deviation of [D(k, n) − n]/√ kn in the

case of exponential service times with mean 1 based on 1000 independent observations.

_ __
quantity estimated exponential Bernoulli_ __

mean 5.112 5.065
std. dev. 0.648 0.627

k = 10
mean/√ k 1.617 1.602

95% conf. int. ±0.0013 ±0.0012_ __
mean 19.40 19.25

std. dev. 0.29 0.28
k = 100

mean/√ k 1.940 1.925
95% conf. int. ±0.0066 ±0.0063_ __

mean 63.763 62.821
std. dev. 0.177 0.208

k = 1000
mean/√ k 2.016 1.987

95% conf. int. ±0.0013 ±0.0015_ __ 


















































































































Table 5. Estimates of the mean and standard deviation of [D(k, n) − n]/√ n for n = 106 and

k = 10 j for j = 1 , 2 , 3. The cases k = 100 and 1000 are based on 10 independent replications,

while the case k = 10 is based on 1000 independent replications. The 95% confidence interval

for the mean/√ k is given in each case based on the Student t distribution.

_ __
service-time distribution_ __

exponential  Bernoulli_ __
n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000_ __

mean 30.8 380.8 3,951 29.9 356.8 3,619_ __
standard deviation 4.26 7.21 25.8 2.90 5.00 9.3_ __
variance 18.19 52.00 666.1 8.39 24.97 87.4_ __
sample size 1000 10 10 1000 10 10_ __
variance/n 1.82 0.52 0.67 0.84 0.25 0.087_ __
variance/n 3/4 3.23 1.64 3.74 1.49 0.79 0.49_ __
variance/n 1/2 5.75 5.20 21.1 2.65 2.50 2.76_ __ 


































































































































Table 7. Estimates of the mean standard deviation and variance of D(n , n) for n = 10 j for

j = 1 , 2 , 3 for the cases of exponential and Bernoulli service times.

To: marko Subject: info

In the new latgreen (verylatgreen?) there are some pictures included using

To get this to work for you you should strip the /usr/albert/Ward/DATA part, and in the troff

command include -mpictures after your -mm.

If that doesn’t make sense, its fine to just comment out these pictures by bracketing them with

-- Albert %!PS-Adobe-2.0 EPSF-2.0 %%Title: S graphics %%Creator: albert %%CreationDate:

Thu Jan 23 16:40:38 1992 %%Pages: (atend) %%BoundingBox: 20 11 591 781

%%EndComments % beginning of preamble 100 dict begin /bd {bind def} def % drawing

commands /I {Coord SetPage 1 setlinecap 1 setlinejoin

LineTypes {RastersPerPoint ScaleArray} forall

/Helvetica findfont

PointSize RastersPerPoint mul Cex mul scalefont setfont} bd /A {PageBegin} bd /B

{newpath} bd /C {currentpoint stroke moveto} bd /E {stroke} bd /M {moveto} bd /L {lineto} bd

/S {moveto lineto stroke} bd /F {closepath fill} bd /P {gsave moveto Pch-x Pch-y rmoveto Pch

Show grestore} bd /T {/Adjust exch def gsave translate StringRot rotate 0 0 moveto

dup stringwidth pop neg Adjust mul 0 rmoveto

currentpoint translate TextShow grestore} bd /X {erasepage InPage {PageEnd} if} bd /Z

{gsave showpage grestore PageEnd} bd /W {end} bd

% parameter setting commands /St {1 sub LineTypes dup 3 1 roll length Rem floor get 0 setdash}

bd /Sw {abs 2 div RastersPerPoint mul setlinewidth SetClip} bd /Sc {dup dup 1 lt exch 0 ge and

{1 exch sub setgray}

{1 sub Colors dup 3 1 roll length Rem floor get dup type /arraytype eq {aload pop

sethsbcolor} {setgray} ifelse} ifelse} bd /Sp {Pch exch 0 exch put SetPchSize} bd /Sx {dup Cex

div /Ratio exch def

/Cex exch def

currentfont Ratio scalefont setfont

/Pch-x Pch-x Ratio mul def

/Pch-y Pch-y Ratio mul def

/Text-y Text-y Ratio mul def} bd /So {4 1 roll exch 4 -1 roll Plot astore pop SetClip} bd /Sg

{4 1 roll exch 4 -1 roll Figure astore pop SetClip} bd /Sr {/StringRot exch def} bd /Sh {/CharRot

exch def} bd /Sd {0 eq /ClipToPlot exch def SetClip} bd /Sf {dup 0 lt /Outline exch def abs

1 sub Fonts dup 3 1 roll length Rem floor get

findfont PointSize Cex mul RastersPerPoint mul scalefont dup setfont

dup /FontMatrix get /Matrix exch def /FontBBox get aload pop

Matrix transform 4 2 roll Matrix transform

exch pop add /Text-y exch def pop SetPchSize} bd

% other variable definitions /InPage false def /Clip 4 array def /Page 4 array def /Figure [0 0 1 1]

def /Plot [0 0 1 1] def /ClipToPlot true def /Cex 1 def /Outline false def /Pch 1 string def /Pch-x 0

def /Pch-y 0 def /Text-y 0 def /LineTypes [% in default units [] [1

2] [4 4] [8 4] [13 3] [16 2 2 2] [8 2 2 2] [1

13] [6 5] [12 4]] def

% other procedure definitions /Rem {2 copy div floor mul sub floor cvi} bd /RastersPerPoint

{RastersPerInch 72 div} bd /ScaleArray {/Factor exch def /Array exch def 0 1 Array

length 1 sub {dup Array exch get Factor mul Array 3 1 roll put} for} bd /Coord

{Region aload pop /uy exch def /ux exch def /ly exch def /lx exch def uy ly sub ux lx sub

Landscape {exch} if /Width exch def /Height exch def lx ly translate Landscape {90

rotate 0 Height neg translate} if 1 RastersPerPoint div dup scale} bd /SetPchSize {gsave

newpath 0 0 moveto Pch false charpath flattenpath pathbbox exch 3 1 roll

add 2 div neg /Pch-y exch def add 2 div neg /Pch-x exch def

grestore} bd /TextShow {CharRot StringRot sub dup 0 eq {pop SimpleShow} {FancyShow}

ifelse} bd /SimpleShow {0 Text-y 2 div neg rmoveto Show} bd /FancyShow { /RotDiff

exch def /Cos RotDiff cos abs def /Sin RotDiff sin abs def {

() dup 0 4 -1 roll put dup stringwidth pop /CharWidth exch def

Cos 0 eq { Text-y Sin div } {

Sin 0 eq { CharWidth Cos div

} { /H Text-y Sin div def

/W CharWidth Cos div def H W

lt {H} {W} ifelse } ifelse } ifelse 2 div /CharDist exch

def CharDist 0 translate 0 0 moveto gsave

RotDiff rotate CharWidth 2 div neg Text-y 2 div

neg rmoveto Outline {false charpath stroke} {show} ifelse

grestore CharDist 0 translate 0 0 moveto } forall } bd

/Show {Outline {false charpath stroke} {show} ifelse} bd /BoxClip {/CLW currentlinewidth def

2 {CLW add 4 1 roll} repeat 2 {CLW sub 4 1 roll} repeat initclip

newpath 2 index exch 2 index exch dup 6 index exch moveto 3 {lineto} repeat closepath

clip newpath} bd /Subregion {/A exch def /Uy exch def /Ux exch def /Ly exch def /Lx exch def

Ux Lx sub A 0 get mul Lx add Uy Ly sub A 1 get mul Ly add Ux

Lx sub A 2 get mul Lx add Uy Ly sub A 3 get mul Ly add} bd /SetFigure {Page aload

pop Figure Subregion} bd /SetPlot {SetFigure Plot Subregion} bd /SetClip {ClipToPlot

{SetPlot} {SetFigure} ifelse BoxClip} bd /SetPage {0 0 Width Height Page astore

RastersPerPoint ScaleArray} bd /PageBegin {save /PageContext exch def /InPage true def} bd

/PageEnd {PageContext restore /InPage false def} bd % end of preamble

% fixed controlling parameters /Landscape false def /Region [20.8788 11.802 590.881 780.438]

def /RastersPerInch 300 def /PointSize 14 def /Fonts [/Helvetica /Courier

/Times-Roman /Helvetica-Oblique /Helvetica-Bold /Helvetica-

BoldOblique /Courier-Oblique /Courier-Bold /Courier-BoldOblique

/Times-Italic /Times-Bold /Times-BoldItalic /Symbol

/AvantGarde-Book /AvantGarde-BookOblique /AvantGarde-Demi

/AvantGarde-DemiOblique /Bookman-Demi /Bookman-DemiItalic

/Bookman-Light /Bookman-LightItalic /Helvetica-Narrow

/Helvetica-Narrow-Bold /Helvetica-Narrow-BoldOblique /Helvetica-

Narrow-Oblique /NewCenturySchlbk-Roman /NewCenturySchlbk-Bold

/NewCenturySchlbk-Italic /NewCenturySchlbk-BoldItalic /Palatino-

Roman /Palatino-Bold /Palatino-Italic /Palatino-BoldItalic

/ZapfChancery-MediumItalic /ZapfDingbats] def /Colors [0 0.6

0.3 0.9 0.4 0.7 0.1 0.5 0.8 0.2]

def

% all initialization action here I

%%EndProlog

%%Page: 1 1 A 1 St 1 Sw 1 Sc 0 Sr 111 Sp 1 Sx 0.120842 0.938106 0.11147 0.910387 So 0 1 0

1 Sg 0 Sh 0 Sd 1 Sf 359 452 P 500 492 P 574 669 P 625 682 P 666 689 P 700 728 P 729 761 P

755 786 P 779 813 P 800 823 P 820 845 P 839 850 P 856 954 P 873 954 P 888 967 P 903 992 P

918 1012 P 931 1028 P 945 1035 P 958 1040 P 970 1067 P 982 1073 P 994 1080 P 1005 1080 P

1017 1103 P 1028 1114 P 1038 1121 P 1049 1164 P 1059 1182 P 1070 1198 P 1080 1209 P

1089 1209 P 1099 1220 P 1109 1286 P 1118 1304 P 1128 1320 P 1137 1329 P 1146 1336 P

1156 1340 P 1165 1345 P 1174 1365 P 1183 1370 P 1192 1388 P 1200 1388 P 1209 1397 P

1218 1401 P 1227 1403 P 1236 1440 P 1244 1442 P 1253 1465 P 1262 1476 P 1271 1507 P

1279 1507 P 1288 1512 P 1297 1517 P 1306 1519 P 1315 1532 P 1323 1539 P 1332 1557 P

1341 1573 P 1350 1578 P 1360 1596 P 1369 1618 P 1378 1621 P 1387 1623 P 1397 1657 P

1406 1666 P 1416 1679 P 1426 1697 P 1435 1713 P 1445 1738 P 1456 1743 P 1466 1761 P

1477 1774 P 1487 1790 P 1498 1799 P 1510 1801 P 1521 1826 P 1533 1842 P 1545 1844 P

1557 1853 P 1570 1860 P 1584 1874 P 1597 1890 P 1612 1908 P 1627 1910 P 1642 1923 P

1659 1978 P 1676 1987 P 1695 1996 P 1715 2039 P 1736 2082 P 1760 2122 P 1786 2156 P

1815 2274 P 1849 2387 P 1890 2473 P 1941 2489 P 2015 2755 P 2156 2821 P 1 Sd (Quantiles of

Standard Normal) 1258 112 0.5 T 90 Sr 90 Sh (Sorted Data) 42 1636 0.5 T 0 Sr 0 Sh 560 357

560 318 S 909 357 909 318 S 1258 357 1258 318 S 1606 357 1606 318 S 1955 357 1955 318 S

560 357 1955 357 S (-2) 560 252 0.5 T (-1) 909 252 0.5 T (0) 1258 252 0.5 T (1) 1606 252 0.5 T

(2) 1955 252 0.5 T 90 Sr 90 Sh 287 596 248 596 S 287 1162 248 1162 S 287 1727 248 1727 S

287 2292 248 2292 S 287 2857 248 2857 S 287 596 287 2857 S (1.85) 182 596 0.5 T (1.90) 182

1162 0.5 T (1.95) 182 1727 0.5 T (2.00) 182 2292 0.5 T (2.05) 182 2857 0.5 T 0 Sr 0 Sh 0 Sd B

287 2916 M 287 357 L 2228 357 L 2228 2916 L 287 2916 L E Z

%%Trailer W %%Pages: 1 %!PS-Adobe-2.0 EPSF-2.0 %%Title: S graphics %%Creator: albert

%%CreationDate: Thu Jan 23 16:40:41 1992 %%Pages: (atend) %%BoundingBox: 20 11 591

781 %%EndComments % beginning of preamble 100 dict begin /bd {bind def} def % drawing

commands /I {Coord SetPage 1 setlinecap 1 setlinejoin

LineTypes {RastersPerPoint ScaleArray} forall

/Helvetica findfont

PointSize RastersPerPoint mul Cex mul scalefont setfont} bd /A {PageBegin} bd /B

{newpath} bd /C {currentpoint stroke moveto} bd /E {stroke} bd /M {moveto} bd /L {lineto} bd

/S {moveto lineto stroke} bd /F {closepath fill} bd /P {gsave moveto Pch-x Pch-y rmoveto Pch

Show grestore} bd /T {/Adjust exch def gsave translate StringRot rotate 0 0 moveto

dup stringwidth pop neg Adjust mul 0 rmoveto

currentpoint translate TextShow grestore} bd /X {erasepage InPage {PageEnd} if} bd /Z

{gsave showpage grestore PageEnd} bd /W {end} bd

% parameter setting commands /St {1 sub LineTypes dup 3 1 roll length Rem floor get 0 setdash}

bd /Sw {abs 2 div RastersPerPoint mul setlinewidth SetClip} bd /Sc {dup dup 1 lt exch 0 ge and

{1 exch sub setgray}

{1 sub Colors dup 3 1 roll length Rem floor get dup type /arraytype eq {aload pop

sethsbcolor} {setgray} ifelse} ifelse} bd /Sp {Pch exch 0 exch put SetPchSize} bd /Sx {dup Cex

div /Ratio exch def

/Cex exch def

currentfont Ratio scalefont setfont

/Pch-x Pch-x Ratio mul def

/Pch-y Pch-y Ratio mul def

/Text-y Text-y Ratio mul def} bd /So {4 1 roll exch 4 -1 roll Plot astore pop SetClip} bd /Sg

{4 1 roll exch 4 -1 roll Figure astore pop SetClip} bd /Sr {/StringRot exch def} bd /Sh {/CharRot

exch def} bd /Sd {0 eq /ClipToPlot exch def SetClip} bd /Sf {dup 0 lt /Outline exch def abs

1 sub Fonts dup 3 1 roll length Rem floor get

findfont PointSize Cex mul RastersPerPoint mul scalefont dup setfont

dup /FontMatrix get /Matrix exch def /FontBBox get aload pop

Matrix transform 4 2 roll Matrix transform

exch pop add /Text-y exch def pop SetPchSize} bd

% other variable definitions /InPage false def /Clip 4 array def /Page 4 array def /Figure [0 0 1 1]

def /Plot [0 0 1 1] def /ClipToPlot true def /Cex 1 def /Outline false def /Pch 1 string def /Pch-x 0

def /Pch-y 0 def /Text-y 0 def /LineTypes [% in default units [] [1

2] [4 4] [8 4] [13 3] [16 2 2 2] [8 2 2 2] [1

13] [6 5] [12 4]] def

% other procedure definitions /Rem {2 copy div floor mul sub floor cvi} bd /RastersPerPoint

{RastersPerInch 72 div} bd /ScaleArray {/Factor exch def /Array exch def 0 1 Array

length 1 sub {dup Array exch get Factor mul Array 3 1 roll put} for} bd /Coord

{Region aload pop /uy exch def /ux exch def /ly exch def /lx exch def uy ly sub ux lx sub

Landscape {exch} if /Width exch def /Height exch def lx ly translate Landscape {90

rotate 0 Height neg translate} if 1 RastersPerPoint div dup scale} bd /SetPchSize {gsave

newpath 0 0 moveto Pch false charpath flattenpath pathbbox exch 3 1 roll

add 2 div neg /Pch-y exch def add 2 div neg /Pch-x exch def

grestore} bd /TextShow {CharRot StringRot sub dup 0 eq {pop SimpleShow} {FancyShow}

ifelse} bd /SimpleShow {0 Text-y 2 div neg rmoveto Show} bd /FancyShow { /RotDiff

exch def /Cos RotDiff cos abs def /Sin RotDiff sin abs def {

() dup 0 4 -1 roll put dup stringwidth pop /CharWidth exch def

Cos 0 eq { Text-y Sin div } {

Sin 0 eq { CharWidth Cos div

} { /H Text-y Sin div def

/W CharWidth Cos div def H W

lt {H} {W} ifelse } ifelse } ifelse 2 div /CharDist exch

def CharDist 0 translate 0 0 moveto gsave

RotDiff rotate CharWidth 2 div neg Text-y 2 div

neg rmoveto Outline {false charpath stroke} {show} ifelse

grestore CharDist 0 translate 0 0 moveto } forall } bd

/Show {Outline {false charpath stroke} {show} ifelse} bd /BoxClip {/CLW currentlinewidth def

2 {CLW add 4 1 roll} repeat 2 {CLW sub 4 1 roll} repeat initclip

newpath 2 index exch 2 index exch dup 6 index exch moveto 3 {lineto} repeat closepath

clip newpath} bd /Subregion {/A exch def /Uy exch def /Ux exch def /Ly exch def /Lx exch def

Ux Lx sub A 0 get mul Lx add Uy Ly sub A 1 get mul Ly add Ux

Lx sub A 2 get mul Lx add Uy Ly sub A 3 get mul Ly add} bd /SetFigure {Page aload

pop Figure Subregion} bd /SetPlot {SetFigure Plot Subregion} bd /SetClip {ClipToPlot

{SetPlot} {SetFigure} ifelse BoxClip} bd /SetPage {0 0 Width Height Page astore

RastersPerPoint ScaleArray} bd /PageBegin {save /PageContext exch def /InPage true def} bd

/PageEnd {PageContext restore /InPage false def} bd % end of preamble

% fixed controlling parameters /Landscape false def /Region [20.8788 11.802 590.881 780.438]

def /RastersPerInch 300 def /PointSize 14 def /Fonts [/Helvetica /Courier

/Times-Roman /Helvetica-Oblique /Helvetica-Bold /Helvetica-

BoldOblique /Courier-Oblique /Courier-Bold /Courier-BoldOblique

/Times-Italic /Times-Bold /Times-BoldItalic /Symbol

/AvantGarde-Book /AvantGarde-BookOblique /AvantGarde-Demi

/AvantGarde-DemiOblique /Bookman-Demi /Bookman-DemiItalic

/Bookman-Light /Bookman-LightItalic /Helvetica-Narrow

/Helvetica-Narrow-Bold /Helvetica-Narrow-BoldOblique /Helvetica-

Narrow-Oblique /NewCenturySchlbk-Roman /NewCenturySchlbk-Bold

/NewCenturySchlbk-Italic /NewCenturySchlbk-BoldItalic /Palatino-

Roman /Palatino-Bold /Palatino-Italic /Palatino-BoldItalic

/ZapfChancery-MediumItalic /ZapfDingbats] def /Colors [0 0.6

0.3 0.9 0.4 0.7 0.1 0.5 0.8 0.2]

def

% all initialization action here I

%%EndProlog

%%Page: 1 1 A 1 St 1 Sw 1 Sc 0 Sr 111 Sp 1 Sx 0.120842 0.938106 0.11147 0.910387 So 0 1 0

1 Sg 0 Sh 0 Sd 1 Sf 359 452 P 517 452 P 622 743 P 701 743 P 764 914 P 817 914 P 862 1035 P

902 1129 P 938 1129 P 970 1206 P 1000 1206 P 1027 1376 P 1052 1376 P 1076 1376 P 1098

1420 P 1119 1420 P 1139 1420 P 1158 1497 P 1176 1497 P 1193 1531 P 1210 1531 P 1225

1531 P 1241 1562 P 1255 1591 P 1270 1618 P 1283 1668 P 1297 1668 P 1310 1668 P 1322

1691 P 1335 1712 P 1347 1733 P 1358 1733 P 1370 1752 P 1381 1771 P 1392 1789 P 1403

1789 P 1413 1806 P 1423 1806 P 1434 1822 P 1444 1838 P 1454 1854 P 1463 1883 P 1473

1935 P 1482 1935 P 1492 1948 P 1501 1959 P 1510 1959 P 1519 1971 P 1528 1971 P 1537

1993 P 1545 2004 P 1554 2024 P 1563 2024 P 1571 2034 P 1580 2053 P 1588 2063 P 1597

2072 P 1605 2072 P 1614 2089 P 1622 2089 P 1630 2114 P 1639 2145 P 1647 2145 P 1655

2145 P 1664 2167 P 1672 2174 P 1681 2174 P 1689 2181 P 1697 2181 P 1706 2208 P 1714

2227 P 1723 2233 P 1732 2251 P 1740 2263 P 1749 2279 P 1758 2279 P 1767 2290 P 1777

2331 P 1786 2345 P 1795 2350 P 1805 2402 P 1815 2418 P 1825 2422 P 1836 2425 P 1847

2452 P 1858 2459 P 1869 2459 P 1881 2476 P 1894 2483 P 1907 2483 P 1921 2534 P 1937

2554 P 1953 2582 P 1971 2605 P 1992 2615 P 2016 2740 P 2045 2801 P 2085 2807 P 2156

2821 P 1 Sd (Quantiles of Exponential Mean 1) 1258 112 0.5 T 90 Sr 90 Sh (Sorted Data) 42

1636 0.5 T 0 Sr 0 Sh 726 357 726 318 S 938 357 938 318 S 1432 357 1432 318 S 1645 357 1645

318 S 2138 357 2138 318 S 726 357 2138 357 S (0.05) 726 252 0.5 T (0.10) 938 252 0.5 T (0.50)

1432 252 0.5 T (1.00) 1645 252 0.5 T (5.00) 2138 252 0.5 T 90 Sr 90 Sh 287 837 248 837 S 287

1129 248 1129 S 287 1806 248 1806 S 287 2098 248 2098 S 287 2775 248 2775 S 287 837 287

2775 S (0.005) 182 837 0.5 T (0.010) 182 1129 0.5 T (0.050) 182 1806 0.5 T (0.100) 182 2098

0.5 T (0.500) 182 2775 0.5 T 0 Sr 0 Sh 0 Sd B 287 2916 M 287 357 L 2228 357 L 2228 2916 L

287 2916 L E Z

%%Trailer W %%Pages: 1

USING DISTRIBUTED-EVENT PARALLEL SIMULATION

TO STUDY DEPARTURES FROM MANY QUEUES IN SERIES

by

Albert G. Greenberg

AT&T Bell Laboratories

Murray Hill, NJ 07974-0636

Otmar Schlunk

Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

and

Ward Whitt

AT&T Bell Laboratories

Murray Hill, NJ 07974-0636

February 5, 1992

Abstract

Exciting new opportunities for efficient simulation of complex stochastic systems are

emerging with the development of parallel computers with many processors. In this paper we

describe an application of a new distributed-event approach for speeding up a single long

simulation run to study the transient behavior of a large non-Markovian network of queues. In

particular, we implemented the parallel-prefix-based algorithm of Greenberg, Lubachevsky and

Mitrani (1990, 1991) on the 8,192-processor CM-2 Connection machine and the 16,384-processor

MasPar computer to simulate the departure times D(k, n) of the k th customer from the n th queue

in a long series of single-server queues. Each queue has unlimited waiting space and the first-in

first-out discipline; the service times of all the customers at all the queues are i.i.d. with a general

distribution; the system starts out with k customers in the first queue and all other queues empty.

Glynn and Whitt (1991) established limit theorems for this model, but very little could be said

about the limits themselves. The simulation results here describe the limits and the quality of the

approximations resulting from using the limits for finite k and n. Indeed, the simulations suggest

some very interesting conjectures. For this model, speeding up a single long run is far superior to

independent replications, because very long runs are required to obtain unbiased estimates of the

desired quantities and the variance of the estimator at the end of the run is small. The achieved

simulation rate was about seventeen billion service completions per hour, which is a speedup by

about a factor of 100 compared to simulation on a conventional single-processor machine. This

speedup contributed greatly to performing the desired experiments.

AMS 1980 subject classifications. primary 60K25, 60F17; secondary 90B22, 60J60.

Keywords and phrases. simulation, parallel simulation, parallel processing, queues, queueing

networks, tandem queues, departure process, transient behavior, reflected Brownian motion, limit

theorems, hydrodynamic limit.

6. Introduction

The motivation behind this paper is our desire to better understand the performance of

complex stochastic systems such as the AT&T long distance network. This goal leads to the

following three questions:

1. What models are appropriate?

2. What do we want to learn from these models?

3. How can we effectively exploit simulation for this purpose?

As always, the appropriate model depends on the features of the system we want to better

understand. One important feature is the ‘‘network effect.’’ To capture the network effect, we

are led to consider multidimensional models, but to be able to say anything interesting about

these multidimensional models, we must make them otherwise relatively simple; e.g., they might

be symmetric. Classic examples of models of this sort are the loss networks in Kelly (1991) and

Mitra, Gibbens and Huang (1991a,b).

One class of interesting questions about these models concerns the transient behavior. For

example, how does the multidimensional structure influence the approach to equilibrium? A

classic study of the transient behavior of a multidimensional stochastic system is the study of card

shuffling in Aldous and Diaconis (1987).

In this paper, following Glynn and Whitt (1991), we focus on the transient behavior of a

multidimensional non-Markovian model, for which there is no nondegenerate equilibrium. In

particular, we consider a series of n single-server queues, each with unlimited waiting space and

the first-in first-out (FIFO) service discipline. The service times of all the customers at all the

queues are i.i.d. but with a general distribution. At time 0 the system is empty and k customers

- 2 -

are placed in the first queue. We wish to describe the time D(k,n) required for all k customers to

complete service from all n queues. (In the long run, all queues are empty.) In the scheduling

literature, the time D(k,n) is often called the makespan.

This series network problem is of interest in its own right, but we believe it is also of interest

as an illustration of the kind of multidimensional models we want to consider and the kinds of

questions we want to ask. Hence, when we consider how to effectively apply simulation to

analyze this particular problem, we believe that this has important implications for the way we

can effectively exploit simulation more generally.

As we detail in Section 3, Glynn and Whitt (1991) proved limit theorems describing the

asymptotic behavior of D(k,n) as k → ∞ and/or n → ∞. Appropriate normalizations were

found under which limits exist, but unfortunately very little could be said about the limits

themselves. One purpose here is to apply simulation to describe the limits. (This paper is a

revision of our 1990 paper cited in Glynn and Whitt (1991).) Our first answer to the third

question above is that simulation can be effectively exploited when used together with

mathematical analysis. Together the two methods of analysis yield more than either alone.

The limit theorems assist further analysis by indicating appropriate ways to scale the variables

D(k,n) as functions of k and n. This is important for both having an effective algorithm (see

Section 5) and interpreting the simulation results (see Section 4). Moreover, since some of the

limits involve invariance principles (see Section 3), we see that simulation of the model for one

service-time distribution yields useful results for all service-time distributions.

Another purpose of this paper is to present a case for distributed-event parallel simulation

(described below). We contend that models like our series queueing network are natural

candidates for applying parallel simulation. Moreover, as we detail in Section 2, we contend that

the distributed-event approach is especially effective for these models. We support this claim by

- 3 -

our implementation of the distributed-event parallel-prefix-based algorithm of Greenberg et al.

(1990,1991) on the 8,192-processor CM-2 Connection machine and the 16,384-processor MasPar

computer. (We performed our first experiments on the Connection machine in 1990; we started

using the MasPar in 1991.) The achieved simulation rate was about seventeen billion service

completions per hour, providing speedup by about a factor of 100 compared to simulation on a

conventional single-processor high-speed workstation.

Here is how the rest of the paper is organized. In Section 2 we provide background on

parallel simulation and in Section 3 we provide background on the limit theorems for the series

network. In Section 4 we present our simulation results and in Section 5 we describe our

simulation methodology in more detail. We conclude in Section 6 with a theorem that provides

additional support for one of the principal conjectures.

7. Background on Parallel Simulation

The approaches for using parallel processing to speed up simulations can be divided into two

classes – those that use parallelism for speeding up a single run and those that do not. The

methods that use parallelism to speed up a single run can be further classified as following either

a distributed-subsystem approach or a distributed-event approach. We discuss each of these in

turn.

In evaluating the different approaches, we have in mind very large numbers of processors,

including the thousands that are available today and even more that will be available in the future.

In particular, the simulations reported here were performed on the 8,192-processor CM-2

Connection machine built by Thinking Machines (1990) and the 16,384-processor MasPar

computer; see Blank (1990). Both are SIMD (single-instruction multiple-data) machines; i.e.,

each processor executes the same instruction at each cycle but applies the instruction to different

data.

- 4 -

7.1 Methods That Do Not Use Parallelism on a Single Run

Parallelism sometimes can be effectively exploited by simply performing separate runs on

each processor. The different runs may represent different scenarios or independent replications.

With different scenarios, we typically use a common random number stream to facilitate

comparisons. With independent replications, we typically use independent random number

streams and average the results from all the runs to reduce variance. Independent replications

also helps determine the statistical quality of the results.

The great appeal of these approaches is their simplicity, but they do have drawbacks. First, it

may be difficult to simultaneously execute a separate run on each processor. For example, the

memory associated with each processor may not be sufficient for a complex system. Moreover,

there may be inefficiencies because some scenarios may require much longer runs than others.

Second, the ‘‘batch processing’’ nature of multiple scenarios thwarts rapid use of parallel

processing for interactive simulation studies. In practice, one simulation suggests another.

Determining which scenarios to simulate, and even how long to run the simulation of each

scenario, requires experimentation.

Independent replications avoids some of the difficulties associated with multiple scenarios and

indeed it seems to have great promise; see Heidelberger (1986a,b) and Glynn and Heidelberger

(1990a,b). Many stochastic systems require large experiments in order to obtain reliable

estimates; e.g., this is true of even a single queue with high traffic intensity; see Whitt (1989).

Moreover, in many cases independent replications are as effective as one long run. However,

there typically are difficulties with very large numbers of independent replications of very short

runs; see Whitt (1991). Thus, independent replications may have difficulty exploiting the full

power of very large numbers of processors.

Moreover, we contend that multidimensional complex stochastic systems often exhibit two

- 5 -

structural properties that make independent replications even less helpful:

First Structural Property. To obtain a useful result from a single replication, the run often
must be very long. Independent replications, by itself, thus offers no way to reduce the
time required for a given replication.

Second Structural Property. The variance of the desired result obtained from each
independent replication often is not large. The variance may be such that ten replications
may be needed to obtain reliable results, but not thousands.

These two structural properties do not hold for the single-queue models discussed in

Whitt (1989, 1991), but we contend that these properties often appear with more complex

multidimensional stochastic models. Indeed, this is dramatically illustrated by the series

queueing network model considered here.

7.2 Methods that Do Use Parallelism on a Single Run

The Distributed-Subsystem Approach

Most simulation methods that have been proposed to use parallelism to speed up a single run

take the following distributed-subsystem approach; see Fujimoto (1991) for a survey. The system

to be simulated is partitioned into subsystems and a different processor is assigned to each

subsystem. Applied to the simulation problem here, a different processor would be assigned to

each queue or group of queues. A processor generates the sample path of its subsystem, taking

care to coordinate with other processors on events that couple their sample paths. Unfortunately,

the degree of parallelism is limited to the number of subsystems, e.g., the number of queues. On

parallel computers having thousands of processors, it may be difficult or impossible to fashion an

efficient simulation by partitioning into thousands of subsystems.

The Distributed-Event Approach

If E events with comparable running times are to be simulated on P processors, then the ideal

running time would be O(E / P), as if the E events were distributed evenly among the P

processors (without significant overhead). The distributed-event approach tries to attain this goal

- 6 -

by exploiting parallel methods and by exploiting special properties of the system being simulated.

Indeed, for the simulation problem here, we do use methods that are completely different from

their serial counterparts, which exploit special properties of the recurrences describing job arrivals

and departures in a series of queues. This approach is quite new. Thus far, distributed-event

methods have appeared for simulations of networks of queues and related systems in Greenberg et

al. (1990,1991) and Baccelli and Canales (1991), trace-driven cache simulations in Heidelberger

and Stone (1990) and Nicol et al. (1991), and simulations of multiserver queues without waiting

rooms in Feder et al. (1992).

Indeed, the present study seems to be the first implementation of the distributed-event

approach to simulate a stochastic system on a massively parallel computer. As indicated above,

we used both the 8,192-processor CM-2 Connection machine and the 16,384-processor MasPar

computer. The examples in Greenberg et al. (1990,1991) were preformed on the 16-processor

Sequent machine. Reports of subsequent implementations on the MasPar computer appear in

Nicol et al. (1991) and Feder et al. (1992).

Our problem here is to simulate the passage of the first K jobs through a series of N queues,

yielding O(KN) events. Our algorithm in Section 5 takes O(N((K / P + log P)) time using P

processors. By duality, see Section 2 of Glynn and Whitt (1991), K and N are interchangeable, so

that we may take K to be larger than N. For large K, the time becomes O(NK / P), which is

optimal. The method is simple and well suited for implementation on today’s massively parallel

SIMD computers.

8. Background on the Series Queueing Network Model

The model we consider is a series of n single-server queues, each with unlimited waiting

space and the FIFO discipline. The service times of all the customers at all the queues are i.i.d.

with a general distribution having mean 1 and finite positive variance σ2 . At time 0 the system is

- 7 -

empty and k customers are placed in the first queue. We wish to describe the distribution of the

time D(k, n) required for all k customers to complete service from all n queues.

As noted in Section 2 of Glynn and Whitt (1991), hereafter referred to as GW, this problem

also has an abstract formulation. Let V(i , j) be i.i.d. random variables (the service times) for

1 ≤ i ≤ k and 1 ≤ j ≤ n. Let Π(k,n) be the set of all rectilinear nondecreasing paths (of length

k + n − 1) from (1,1) to (k,n) in the set of ordered pairs (i , j) with 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Then D(k,n) is distributed as the maximum over all paths in Π(k,n) of the sum of the k + n − 1

service times on the path.

In GW, limit theorems were proved which describe the asymptotic behavior of D(k, n) as

k → ∞ and/or n → ∞. In §2 of GW it is noted that there is a duality implying that D(k, n) is

distributed the same as D(n , k) for each k and n. Hence, limits as n → ∞ have counterparts as

k → ∞. As a consequence, a heavy-traffic limit theorem by Iglehart and Whitt (1970) for the

case k → ∞ with fixed n implies that

[D(k, n) − n]/√ n = = > σD̂ k (1) as n → ∞ for each k , (3.1)

where = = > denotes convergence in distribution and D̂ k (1) is a functional of a standard k-

dimensional Brownian motion (BM) B̂ ≡ (B̂ 1 , . . . , B̂ k), which has independent one-dimensional

standard (zero drift, unit variance) BMs B i ≡ {B i (t) : t ≥ 0 } as components; i.e.,

D̂ 1 (t) = B̂ 1 (t) and

D̂ k (t) =
0 ≤ s ≤ t

sup



D k − 1 (s) + B k (t) − B k (s)





, t ≥ 0 . (3.2)

We may also choose to focus on the interdeparture times, defined by

∆(k, n) = D(k + 1 , n) − D(k, n) , k ≥ 1 . (3.3)

- 8 -

The corresponding limit is

∆(k, n)/√ n = = > σ ∆̂ k (1) as n → ∞ , (3.4)

where ∆̂ k = D̂ k − D̂ k − 1 with D k ≡ {D k (t) : t ≥ 0 }. The process (∆̂ 1 , . . . , ∆̂ k) is a k-

dimensional reflected Brownian motion (RBM) as in Harrison (1978), Harrison and

Reiman (1981a,b), Reiman (1984) and Harrison and Williams (1987), but note that this RBM

does not have a proper limiting distribution as t → ∞. The RBM is to be expected because

∆(k, n) is distributed the same as the sojourn time of customer n at queue k,

S(n , k) = D(n , k) − D(n , k − 1), by virtue of the duality mentioned above.

Given the convergence in (3.1) and (3.4), our main problem is to say something about the

limits D̂ k (1) and ∆̂ k (1). It is significant that these limits are invariance principles; i.e., they do

not depend on the underlying service-time distribution beyond its first two moments. Of course,

the convergence in (3.1) and (3.4) depends on the first two moments of the service-time

distribution, but only through elementary scaling. Hence, knowledge about D̂ k (1) and ∆̂ k (1) has

quite wide applicability.

We are interested in approximations for D(k, n) and ∆(k, n) not only when n is large but also

when k is large. This suggests considering the asymptotic behavior of D̂ k (1) and ∆̂ k (1) as

k → ∞. Theorem 7.1 of GW implies that

D̂ k (1)/√ k = = > α as k → ∞ , (3.5)

where α is deterministic, but the theorem does not determine the numerical value of α in (3.5).

One of our primary goals is to estimate α. Hence, it is important to note that, for this purpose,

our model possesses the two structural properties in §2.1. We need a long run to estimate

ED̂ k (1)/√ k for large k. (We need k and n both large to have (3.1) and (3.5). Moreover, as we

discuss below, we actually need n large compared to k.) At the same time, by (3.5), the variance

- 9 -

Var [D̂ k (1)/√ k] is going to zero. Indeed, remarkably, based on our simulations we conjecture

that Var [D̂ k (1)] is decreasing without normalization, so that the variance of D̂ k (1)/√ k is small

indeed.

In GW attention was not only focused on the iterated limit as first n → ∞ in (3.1) and then

k → ∞ in (3.5), but also on the joint limit with k ≡ k n → ∞ as n → ∞. Indeed, in some sense it

is shown that

[D(k n , n) − n]/√ σ2 nk n = = > α as n → ∞ (3.6)

with k n → ∞ satisfying k n ≤ n 1 − ε for fixed ε with 0 < ε < 1. However, a very different story

applies for k n = n. Theorem 6.3 of GW shows that for service-time distributions having an

exponential tail that

D(xn , n)/ n → γ(x) as n → ∞ , (3.7)

where x is the integer part of x. In the case of exponential service-time distributions, it follows

from Srinivasan (1992) that γ(x) = (1 + √ x)2 , so that γ(1) = 4. In GW it is conjectured that

γ(1) in (3.7) depends on the service-time distribution beyond its first two moments. For

estimating the limit γ(x) in (3.7), it is also evident that we have the two structural properties in

§2.1.

9. Simulation Results

9.1 The Simulation Cases

To obtain information about D̂ k (1), ∆̂ k (1), α and γ(1), as well as D(k, n) and ∆(k, n), we

simulated the series of queues for two service-time distributions having mean and variance one:

exponential and Bernoulli. The Bernoulli random variables assume the values 0 and 2 each with

probability 1/2. (By the invariance property, the limits except for γ(1) are the same for these two

- 10 -

distributions.) To obtain relatively reliable estimates, we performed multiple independent

replications for n up to 106 and k up to 5000.

Table 1 displays estimates of the first, second and fourth moments of ∆(k, n)/√ n for an

exponential service time with mean 1 in the cases k = 1 , 2 , . . . , 10 and n = 10 j for

j = 1 , 2 , . . . , 6. Table 2 contains the associated estimates of the squared coefficient of variation

(SCV, variance divided by the square of the mean) of ∆(k, n)/√ n based on Table 1. These

estimates are based on 1000 independent replications. In each replication, D(k, 10 j) is obtained

for each k and j, so that the results for different k and j are dependent. The dependence is greater

as we change k for fixed j than when we change j for fixed k.

Tables 3 and 4 display the estimated mean, second moment and standard deviation of

[D(k, n) − n]/√ kn for the same exponential cases, based on the same 1000 replications.

(Simulation results for other cases are also displayed in Table 3.) The normalization is motivated

by the limits (3.1), (3.5), (3.6) and (3.7). (Note that the normalization in (3.6) and (3.7) are

consistent since k = n in (3.7).) The advantage of this perspective is dramatically demonstrated

by Table 3. For k ≤ 5000 and n ≤ 106 , all observed normalized averages fall in the interval [0.76,

3.00]. This shows that much of the behavior of D(k,n) is captured by the scaling. This also

helps us to focus on the remaining effects.

To obtain estimates of ∆(k, n), D(k, n), ∆̂ k (1) and D̂ k (1) for larger k, we performed 100

replications for k = 100 and n = 106 and 20 independent replications for k = 5000 and

n = 106 . These values appear in Tables 3, 5, 6 and 7.

9.2 Properties of D̂ k (1)

We first discuss the limiting Brownian motion functional D̂ k (1) in (3.2). This is the limit as

n → ∞ in (3.1). By (3.2), D̂ k (1) is increasing in k. We now describe additional properties

deduced from the simulations.

- 11 -

We infer properties about D̂ k (1) by simulating [D(k,n) − n]/√ n for large n, which is

justified by (3.1). (Here σ = 1.) Hence, we regard the last n = 106 column of Tables 3 and 6 as

estimates of D̂ k (1)/√ k . By (3.5), D̂ k (1)/√ k approaches α as k → ∞. However, for larger

values of k, we begin to see the effect of the different limit in (3.7). Thus in Tables 3 and 6 the

values evidently go above α for each n when k gets sufficiently large.

Conjectures 4.1. We make the following conjectures about the limit variables D̂ k (1) in

(3.1), (3.2) and (3.5):

(i) E[D̂ k (1)]/√ k is increasing in k;

(ii) The limit in (3.5) is α = 2;

(iii) Var [D k (1)] is decreasing in k;

(iv) Var [D k (1)] → β as k → ∞, where 0 < √ β < 0. 25;

(v) E[D̂ k (1)] − α√ k → 0 as k → ∞;

(vi) D̂ k (1) − α√ k = = > L 1 as k → ∞, where E[L1
2] < ∞;

(vii) [D̂ k (1) − α√ k]/√ Var [D̂ k (1)] = = > N(0 , 1) as k → ∞, where N(0 , 1) is a

standard normal random variable.

Discussion. (i) The monotonicity of E[D̂ k (1)]/√ k is strongly supported by the final columns in

Tables 3 and 6. Indeed, it appears that E[D(k,n) − n]/√ kn is increasing in k for each n, at least

for these two distributions.

(ii) It is of course hard to pin down specific numbers precisely, but it appears that α = 2. 0.

The numerical evidence appears stronger in the Bernoulli case in Table 6 than in the exponential

case in Table 3, but both give quite strong support. Our uncertainty is primarily due to the effect

of the diagonal limit in (3.7) rather than the variability of the estimator. The half-width of 95%

confidence intervals for E[D(k,n) − n]/√ kn for k = 5000 and n = 106 was 0.0014 for both the

- 12 -

exponential and Bernoulli distributions with 20 replications, as can be seen from Table 5. (A

95% confidence interval using the Student-t distribution is obtained by dividing the standard

deviation in Table 5 by √ 20k and multiplying by 2.09.)

In addition to the numerical evidence, we offer the following heuristic argument (developed

after seeing the numerical results). For the exponential case, we know that

n − 1 D(xn , n) → (1 + √ x)2 w.p.1 as n → ∞ for each fixed x by Theorem 6.1 of GW. We act

as if this is true for x of the form y / n. Then

n − 1 [D(xn , n) − n] ∼∼ (1 + √ y / n)2 − 1 = 2√ y / n + y / n for large n

or

n − 1⁄2 [D(y , n) − n] ∼∼ 2√ y + y /√ n for large n . (4.1)

Finally, we act as if the first term on the right of (4.1) is valid for all service-time distributions.

Stronger evidence (although not a proof) is provided by a new limit theorem in Section 6.

(iii) – (iv) Remarkably, Var [D̂ k (1)] seems to be decreasing in k, without normalization, as

can be seen from Table 5. While this monotonicity is quite evident, it is not clear whether the

limit β is zero (as claimed in Remark 7.1 of GW). Since the observed values decrease so slowly,

we now conjecture that β > 0, but the evidence is not strong. If actually β = 0, then it appears

that the rate of decrease of Var [D k (1)] is quite slow. For example, we might have

Var[D̂ k (1)] ∼
(log k)2

4_ _______ as k → ∞ . (4.2)

(v) – (vi) From Tables 3 and 5 it appears that

√ k
E[D k (1)]_ ________ − α = o



 √ k

1_ ___




as k → ∞ , (4.3)

- 13 -

which is equivalent to (v). A rough approximation based on our data is

E[D̂ k (1)] ∼∼ 2√ k − 1. 6
√ k

log k_ ____ . (4.4)

Conjectures (iii)–(v) naturally suggest (vi).

(vii) Looking at the data for 100 ≤ k ≤ 5000 and n = 106 (e.g., via Q-Q plot, see an

unpublished appendix) supports the conclusion that D̂ k (1) is approximately normally distributed

for large k. Since D̂ k (1) is the k-fold partial sum of ∆̂ j (1), 1 ≤ j ≤ k, this is to be anticipated.

However, the property is not immediate because the random variables ∆̂ j (1) are neither

independent nor identically distributed.

9.3 Properties of ∆̂ k (1)

We now turn to the variables ∆̂ k (1) ≡ D̂ k + 1 (1) − D̂ k (1). By §5 of GW, ∆ k (1) is

stochastically decreasing in k. By Remark 3.3 of GW, ∆̂ 1 = B̂ 2 − B̂ 1 =
d

√ 2 B̂ 1 . Hence,

∆̂ 1 (1) has a positive normal distribution with E[∆̂ 1 (1)] = 2/√ π = 1. 128, E[∆̂(1)2] = 2 and

E[∆̂(1)4] = 12.

Conjectures 4.2. We make the following conjectures about the limit variables ∆̂ k (1) in (3.4):

(i) √ k E[∆̂ k (1)] → α/2 = 1 as k → ∞;

(ii) √ k E[∆ k (1)] − 1 ≤ 0. 1 for all k ≥ 2;

(iii) √ k E[∆̂ k (1)] ≥ 1. 0 for all k;

(iv) SCV(∆̂ k (1)) is increasing in k;

(v) SCV(∆̂ k (1)) → 1 as k → ∞;

(vi) √ k ∆̂ k (1) = = > L 2 as k → ∞; where L 2 has an exponential distribution with

mean 1.

- 14 -

Discussion. (i)–(v) The mean and SCV formulas are consistent with Tables 1 and 2. (In Table 1

the values should be multiplied by √ k to see the effect.) We also estimated the m th moment of

∆̂ k (1) for m = 1 , 2 , 3 and 4 by estimating the m th moment of ∆(k, n)/√ n for n = 106 using

the following estimator

n
1_ _

j = 1
Σ
n 


 √ j

∆(k, j)_ ______




m

. (4.5)

The smoothing in (4.5) significantly decreases the variance, but it also introduces a bias, which is

itself hard to estimate. We used (4.5) in 10 replications with n = 106 and k = 103 . The

resulting 95% confidence intervals (based on a t-distribution with 9 degrees of freedom) were

√ k E[∆̂ k (1)] = 1. 070 ± 0. 005

k E[∆̂ k (1)2] = 2. 237 ± 0. 023 (4.6)

k 2 E[∆̂ k (1)4] = 25. 8 ± 0. 76 .

If the bias in (4.5) is not significant, then (4.6) implies that α ∼∼ 2. 14 instead of 2.0. However, we

believe that the discrepancy is due to the bias in (4.5).

Conjecture 4.2(i) is also related to Conjecture 4.1(v), because for any sequence of real

numbers {a k : k ≥ 1 } if √ k a k → a as k → ∞, then
j = 1
Σ
k

a j /√ k → 2a; e.g., see Lemma 4 of

Glynn and Whitt (1992). In other words, Conjecture 4.2(i) implies Conjecture 4.1(i).

(vi) Note that (4.6) is consistent with an exponential distribution with mean 1, because its first

four moments are 1, 2, 6 and 24. Moreover, the 100-point data set for k = 100 and n = 106

looks like it is from an exponential distribution, as can be seen from the Q − Q plot in

Figure 1.

- 15 -

We remark that for estimating α, i.e., the limiting behavior of D̂ k (1)/√ k , both structural

properties in Section 2.1 hold, but for estimating the limiting behavior of [D̂ k (1) − α√ k] and

√ k ∆̂ k (1) as k → ∞, the second structural property does not hold. To pin down these refined

limits, we would want many replications as well as having k large with n large compared to k.

If the random variables ∆̂ k (1) were uncorrelated, then Conjecture 4.2(v) implies that we

would have Var [D̂ k (1)] ∼∼ log k. However, Conjecture 4.1 (iii) implies that Var [D̂ k (1)] does

not grow with k. This indicates that there is considerable negative correlation among the

variables ∆̂ k (1).

9.4 The Hydrodynamic Limit

We now turn to the hydrodynamic limit in (3.7). Recall that, unlike (3.1), this limit is not an

invariance principle, so that γ(x) depends on the service-time distribution in a yet-to-be-

determined way. Some of the conjectures are motivated by stochastic comparisons that can be

made for D(k,n); we discuss these first.

As noted in Remark 2.1 of GW, the function mapping the service times into the departure

times D(k,n) is increasing and convex. This allows us to deduce how D(k,n) depends on the

service time distribution. We say that one real-valued random variable Y 1 is less than or equal to

another Y 2 in the convex (increasing convex) stochastic order, and write Y 1 ≤ c Y 2 (Y 1 ≤ ic Y 2),

if Ef (Y 1) ≤ Ef (Y 2) for all convex (increasing convex) real-valued functions f for which the

expectations are well defined; e.g., see Stoyan (1983).

Proposition 4.1. If V 1 ≤ c V 2 , where V 1 and V 2 are two candidate service-time distributions,

then D 1 (k,n) ≤ ic D 2 (k,n) for all k and n, so that E[D 1 (k,n) m] ≤ E[D 2 (k,n) m] for all k ,n

and M.

Proof. Note that any increasing convex function of D(k,n) is an increasing convex function of

the service times because the composition of increasing convex functions is increasing and

- 16 -

convex.

Conjectures 4.3. We make the following conjectures concerning the hydrodynamic limit (3.8):

(i) The limit γ(x) depends on the service-time distribution;

(ii) If V 1 and V 2 are two candidate service distributions with V 1 ≤ c V 2 , then γ 1 (x) ≤ γ 2 (x)

for all x;

(iii) For the Bernoulli case, the limit in (3.7) satisfies 3. 60 ≤ γ(1) ≤ 3. 70, so that the

proportion of 2’s on the maximum path in Π(n ,n) is asymptotically 0. 90 < γ(1)/4 < 0. 925.

(iv) The rate that var[D(n ,n)] grows with n depends on the distribution;

(v) For the Bernoulli case, n − 1/2 Var [D(n ,n)] → ξ > 0 as n → ∞;

(vi) For any service-time distribution with finite first two moments,

γ(x) = 1 + 2√ x + o(x) as x → 0 . (4.7)

Discussion. (i) Ten independent replications of n − 1 D(n , n) for n = 1000 were simulated for the

exponential and Bernoulli distributions. The ten exponential values fell in the interval [3.902,

3.999], while the ten Bernoulli values fell in the interval [3.604, 3.630]; see Table 7. For

n = 1000, we can statistically conclude that the two distributions of n − 1 D(n , n) have different

means. Moreover, the exponential variables had mean 3.951 which is within 0.049 of the known

limit as n → ∞.

(ii) This conjecture would follow from Proposition 4.1 if ED(xn ,n)/ n → γ(x), which in

turn is true if {D(xn ,n)/ n:n≥1 } is uniformly integrable. However, these properties remain to

be established.

(iii) The observations in (i) above, support the numerical estimate. In the Bernoulli case we

have the w.p.1 bound D(n , n) ≤ 4n − 2. This upper bound corresponds to a path from (1,1) to

- 17 -

(n , n) in the n × n array of service times discussed in §3 containing all 2’s. Hence, the maximum

path contains about 91% 2’s asymptotically as n → ∞.

(iv) – (v) >From (3.7) we know that n − 2 Var D(n , n) → 0 as n → ∞. Assuming that

n − β Var D(n , n) converges to a proper limit as n → ∞, from Table 7 it appears that the

exponent β, as well as the limit, depends on the distribution. For the Bernoulli case, we estimate

β = 1/2; for the exponential case, we estimate that 3/4 ≤ β ≤ 1.

(vi) Even though the limit γ(x) in (3.7) evidently depends on the service-time distribution, the

heuristic argument supporting (4.2) leads us to conjecture (4.7).

9.5 The Approximations

The simulations also reveal how well D(k, n) and ∆(k, n) are approximated by the limits in

(3.1) and (3.4)–(3.7), at least in the cases considered of exponential and Bernoulli random

variables.

Conjectures 4.4. We make the following conjectures about the way D(k,n) and ∆(k,n) are

approximated by the limits in (3.1) and (3.4)–(3.7) for the two distributions under consideration:

(i) E[∆(k,n) m]/√ n is decreasing in n for all k and m;

(ii) E[(D(k,n) − n) m]/√ n is decreasing in n for all k and m;

(iii) For a given n, E[∆̂ k (1) m] and E[D̂ k (1) m] improve as approximations for

E[(∆(k,n)/√ n) m] and E[(D(k,n) − n]/√ n) m], respectively, as k decreases;

(iv) E[D(n ,n)/ n] is increasing in n;

(v) γ(1) − E[D(n ,n)/ n] is O(√ n).

Discussion. (i)–(v) The monotonicity is strongly supported by the tables. >From Table 7, the

rate of convergence of ED(n , n)/ n to γ(1) appears to be about O(1/√ n). A rough

approximation in the exponential case is

- 18 -

ED(n , n) ∼∼ 4n − 2√ n . (4.8)

For fixed k, Tables 3 and 6 suggest that the rate of convergence of [ED(k, n) − n]/√ n to

ED̂ k (1) also seems to be about O(1/√ n), but the limit is clearly a better approximation for

smaller n when k is smaller. The rate of convergence also seems to be faster for the Bernoulli

service-time distribution.

We conclude by briefly discussing approximations for D(k,n) when k << n. The simplest

heuristic approximation (letting k = 1) is

D(k,n) ∼∼ n ± √ n . (4.9)

A refinement based on the limit theorem and Table 5 is

D(k,n) ∼∼ (n + 2√ kn) ± 0. 4√ n , (4.10)

noting that the true standard deviation decreases from about 0.65 to 0.2. We obtain a further

refinement from Table 3 for specific k and n. For example, suppose k = 10 and n = 10 , 000.

Then

E[D(k,n)] ∼∼ (n + 2√ kn) − 0. 4√ kn = 10 , 632 − 126 (4.11)

while, from Table 4

SD[D(k,n)] ∼∼ 0. 3√ kn = 95 . (4.12)

Thus, the three approximations (4.9), (4.10) and (4.11) plus (4.12) yield, respectively:

- 19 -

10 , 000 ± 100

10 , 632 ± 40 (4.13)

10 , 506 ± 95 .

The three formulas in (4.13) show that the crude approximation (4.9) is remarkably good.

The main improvement is the additional 2√ kn term in the mean. As a proportion of the true

mean, this is approximately 2√ k / n . For k = 10, this improvement is about 6% when

n = 10 , 000 and 20% when n = 1 , 000. The fluctuations about the mean, as indicated by the

standard deviation, are relatively small (slightly less than the adjustment in the mean), essentially

as predicted by (4.9).

The limits help construct approximations much more when k is the same order as n. Then

γ(x) in (3.7) can be very useful.

10. The Simulation Methodology

In this Section, we describe how the simulation methods of Greenberg et al. (1990, 1991)

were tailored to the application here.

A basic problem and its parallel solution lies behind these methods. Given K inputs x 1 , ...,

x K and an associative operator , the parallel prefix problem is to compute the K partial products

x 1 , x 1 x 2 , ..., x 1 x 2
. . . x K ; see Ladner and Fischer (1980) and pp. 47, 341 of Akl (1989). The

problem can be solved in O((K / P) + log P) time using P processors; see Kruskal, Rudolph and

Snir (1985). Moreover, as discussed in Leighton (1992), very efficient solutions can be tailored

to a wide variety of parallel architectures, and special hardware or microcode is commonly used

to effect such solutions.

- 20 -

Now, consider the problem of simulating the passage of K jobs through N queues.

Specifically, the problem is to compute, for each k = 1 to K and each n = 1 to N, the departure time

D(k,n) of job k from queue n. It is advantageous here to treat K as the larger parameter, rather

than N; there is no loss in doing so, by the duality of D(k,n) and D(n ,k) mentioned above. We

show that solving the standard recursion for these departure times (e.g., (2.1) of GW) can be

expressed as a parallel prefix problem. The recursion is

D(k,n) = 
D(k,n − 1) ∨D(k − 1 ,n) + V(k,n) , (5.1)

where x∨y = max {x,y}, D(k, 0) ≡ 0 for all k since it is assumed that all jobs are initially

present at queue 1, and V(k,n) is the service time that the k th job requires at queue n. A

significant part of our approach is to exploit recurrence (5.1) instead of event lists and other

standard features of general purpose simulation languages. However, the recurrence by itself

does not exploit the parallelism. Indeed, the recurrence is often used without exploiting the

parallelism; e.g., see Suresh and Whitt (1990).

Our approach is to compute the K × N matrix of values D(k,n) one column at a time, using

the values D(1 ,n − 1), ..., D(K ,n − 1) of column n − 1 to compute the values D(1 ,n), ...,

D(K ,n) of column n. Column n = 0 is identically 0. Consider the computation for any column

n ≥ 1. Simplifying notation, for all k = 1 to K, let A(k) = D(k,n − 1) denote the job arrival times

to queue n, V(k) their service demands at queue n, and D(k) their departure times from queue n.

Thus (5.1) becomes

D(k) = 
A(k) ∨D(k − 1) + V(k) . (5.2)

To expose the parallelism in (5.2) it helps to recast (5.2) in terms of a semiring over the reals,

where ∨ acts as the addition operator (with identity − ∞) and + as the multiplication operator

(with identity 0). In this setting, the distributive law becomes

- 21 -

x + (y∨z) = (x + y) ∨(x + z)

and recurrence (5.2) becomes


 0
D(k)

 = 
 − ∞
V(k)

0
A(k) + V(k)



 0
D(k − 1)

 . (5.3)

Checking the first row,

D(k) = 
V(k) + D(k − 1) ∨ 

A(k) + V(k) + 0
 = 

D(k − 1) ∨ A(k) + V(k) .

The second row represents an entirely formal computation, which would not be retained in

implementation. Identifying the left side of (5.3) with a 2-vector D̃(k) and the 2 × 2 matrix on

the right hand side with a matrix M(k), and telescoping, we obtain

D̃(k) = M(k) .M(k − 1)M(1) .D̃(0) . (5.4)

The matrices are of the form


− ∞

x
0
y
 ,

the matrix product formula is



− ∞

x 1

0

x 2





− ∞

y 1

0

y 2



=


 − ∞
(x 1 + y 1)

0

((x 1 + y 2) ∨x 2)



, (5.5)

and the matrix vector product formula is



− ∞

x 1

0

x 2





0

y



=


 0

(x 1 + y) ∨x 2



. (5.6)

- 22 -

The key to the algorithm is the associativity of matrix multiplication, allowing us to apply

parallel prefix computation, which breaks up the products in (5.4) in an advantageous way.

Suppose that P processors are available and, for simplicity, that P divides K, Q = P / K. The i th

processor is responsible for the computation of the variables with index k in the range

[(i − 1) Q + 1 ,iQ], for i = 1 to P. The algorithm proceeds as follows.

1. Each processor i generates the matrices M(k) and forms the products

M
_ _

(k) = M(k) .M(k − 1)M((i − 1) Q + 1) ,

for k = (i − 1) Q + 1 to iQ.

2. Processors 1, ..., P − 1 collectively solve the parallel prefix problem on the P − 1 inputs

M
_ _

(Q), M
_ _

(2Q), ..., M
_ _

((P − 1) Q), to produce M̂(1) = M
_ _

(Q), M̂(2) = M
_ _

(2Q) .M
_ _

(Q), ...,

M̂(P − 1) = M
_ _

((P − 1) Q)M
_ _

(Q).

3. Each processor i = 2 to P forms v(i) = M̂(i − 1) D̃(0) and then computes D̃(k) = M(k) v(i),

for k = (i − 1) Q + 1 to iQ, completing the solution.

In step 1, each processor acts completely independently, and completes the step in

O(Q) = O(K / P) time. The parallel prefix problem of step 2 is solved in O(logP) time.

(Alternatively, there is no harm in carrying out this step serially if K is O(P 2).) In step 3, again

the processors work independently and complete the step in O(K / P) time. Thus, using P

processors, we compute the n th column of values D(k,n) in time O(K / P + logP). We may

overwrite the arrivals A(k) with the departures D(k) setting the stage for the computation of the

values of the next column. The space needed is essentially 3K locations per processor: 2K to

hold the upper rows of the 2 × 2 matrices that arise and K to hold the results D(k). After, N

repetitions, we obtain the D(k,N). The total time required is O(N(K / P + logP)), which is

O(NK / P) in the common case that K ≥ PlogP. This three-step algorithm is essentially the

- 23 -

O(K / P + log P) parallel prefix algorithm of Kruskal et al. (1985); the one difference is replacing

the natural matrix multiplication in step 3 with vector multiplications.

The product formulae (5.4) and (5.6) are quite stable numerically; the only operations are a

few additions and maximizations of real numbers. However, since the increments V(k,n) are

mean 1 random variables, the matrix components D(k,n) are expected to be O(kn). For very

large k and n numerical problems might arise unless some scaling method is applied. As

discussed in Section 3, the limit theorems established in GW suggest that as k → ∞ the values

[D(k,n) − k]/√ kn (5.7)

should fall in a finite (albeit a priori unknown) range. However, using (5.7) to scale the D(k,n)

would entail computing square roots and divisions, costly floating point operations that would

significantly slow the computation. A more practical approach is to work with the scaled

variables

D ′ (k,n) = D(k,n) − k ,

which should tend to values O(√ kn). This moderate growth rate is easily managed using double

precision. Moreover, this scaling can be ‘‘brought inside’’ the recurrence as follows, with the

benefit that all intermediate results are also scaled. Let

A ′ (k) = A(k) − k + 1 , (5.8)

V ′ (k) = V(k) − 1 ,

so that (5.2) becomes

D ′ (k) = 
D ′ (k − 1) ∨ A ′ (k) + V ′ (k) . (5.9)

- 24 -

For the investigations reported here we require delay statistics. Consider the problem of

computing the delay of the k th customer at the n th queue, ∆(k,n) = D(k,n) − D(k,n − 1);

computing total delays D(k,N) − D(k, 0) is similar. Having the D(k,n) and the D(k,n − 1)

simultaneously in memory, tallying ∆(k,n) is completely parallelizable. Computing delay

moments entails powering individual delays and summing the results. The powering problem is

completely parallelizable, and the summing can be done in tree-like fashion in

O((K / P) + log P) time. Thus, delay statistics have cost of the same order as the rest of the

computation. Queue-length statistics can be computed at comparable cost via merging and

parallel prefix computations; see Greenberg et al. (1990, 1991).

In practice, for large K, it may be necessary to make do with less than O(K) space. Consider

the computation for a single column of values D(1 ,n), ..., D(K ,n). Suppose that there is

sufficient space to support the computation for K ≤ B, for some fixed B. To handle general K, the

computation is easily adapted to work in batches of size B. First, we compute the submatrix of

values D(k,n) for k = 1 to B and n = 1 to N, column by column as described above. Next, we

overwrite those values with the values of the submatrix D(k,n) for k = B + 1 to 2B and n = 1 to N.

This second matrix is computed column by column as before; the only adjustment needed is to set

D(0) for column n to the value D(B) computed for column n in the first batch. Next, those

values are overwritten with the submatrix of values D(k,n) for k = 2B + 1 to 3B and n = 1 to N,

and so forth. The time needed to compute each B × N submatrix is O(N((B / P) + log P). The

total time needed is O(NK / B((B / P) + log P), which if B is of the same order as PlogP (a

condition easily arranged in practice) is O(NK / P).

Suppose that, for given K, N, and the service time distribution, we wish to perform R

independent replications of the simulation of K jobs through N queues. Problems of this sort fit

easily into our framework, via segmented parallel prefix computation; see Leighton (1992). A

segmented parallel prefix problem is a sequence of independent parallel prefix problems involving

- 25 -

the same associative operator. R such problems with sizes K 1 , ..., K R can be solved together in

time O((K 1 + . . . + K R)/ P + log P) using P processors. Similarly, with little additional

overhead, our algorithm can be adapted to handle the R replications in O(N((KR)/ P + log P))

time. The computation is nearly identical to simulating K ′ = KR through the queues. Thus,

independent replications can be accommodated in a flexible, efficient way, without any special

programming to assign groups of processors to individual replications. In addition, we have seen

that for large speedup we want K (assumed to be larger than N) to be moderately larger than the

number of processors P. In cases where K is small, large speedup is possible if R replications are

needed and KR is moderately larger than P.

Table 8 gives timings for simulations of a single M / M /1 queue (the equivalent of two queues

in series with exponential service times under our setup), and Table 9 gives times for simulations

of series of M / M /1 queues. The timings were collected on the CM-2 parallel computer. For long

series of queues, the speed of the code is about 17 billion simulated services per hour. We found

this to be over 100 times faster than solving the recurrence in the straightforward way on a MIPS

RS2000 workstation.

It is possible to reduce the asymptotic running time further as follows. As indicated in

Section 3, the problem of solving recurrence (5.1) can be recast as a problem of computing

shortest paths in the grid graph on vertices (n ,k), for n = 1 to N and k = 0 to K, where (n ,k) is

connected to (n − 1 ,k) by an edge of weight − V(n ,k) if n > 0 and to (n ,k − 1) by an edge of

weight − V(n ,k) if k > 0. Then − D(n ,k) is the sum of − V(1 , 1) and the weight of the least

weight path from (n ,k) to (1 , 1). The problem of parallel computation of the shortest paths in

such graphs has received extensive study in the Computer Science literature in the context of

string editing and related problems; cf. Wagner and Fischer (1973). Adapted to our problem, the

asymptotically most efficient solution is a clever divide-and-conquer algorithm of Apostolico et

al. (1990). This algorithm produces the D(k,n)’s in time O(logN logK) using O(KN /logN)

- 26 -

processors, assuming a model of parallel computation that allows different processors to

concurrently read common locations in memory in unit time. It may be possible to adapt their

algorithm to obtain one with running time O(NK / P + logP) using P processors. However, the

algorithm is complicated, and the implicit constant in the running time bound is likely to be large.

For large K, which is natural for our application, the simpler parallel-prefix based algorithm given

above has running time O(NK / P), and has the advantage of simplicity and favorable implicit

constants.

11. A New Supporting Limit Theorem

In this section we establish a new limit theorem (developed after the rest of the work was

done) that provides strong support for Conjecture 4.1 (ii), i.e., that the limit α in (3.5) and (3.6) is

two. Indeed, we establish a modification of limit (3.6) where the service-time distributions

change with n. In this new theorem we can conclude that the numerical value of the limit is

indeed two, but since the service-time distributions change with n, we cannot yet conclude that

α = 2 in (3.5) and (3.6). (By the invariance principle associated with (3.6), we can restrict

attention to any single convenient service-time distribution, but (3.6) has not yet been established

for service-time distributions depending on n.)

In particular, we now consider a family of queueing network models indexed by n. As in

(3.6), model n has n queues with k n customers initially in queue 1, where k n → ∞ as n → ∞.

As before the service times of all the customers at all the queues are i.i.d. with finite variance.

However, now the service-time distribution is allowed to depend on n. In model n, the nk n

service times of the k n customers at the n queues are i.i.d. with the distribution of V n , where V n

has the two-point distribution

P(V n = 1 + √ nk n) = 1 − P(V n = 1) =
nk n

σ_ ___ , (6.1)

- 27 -

where σ is a positive constant with σ < nk n for all n ≥ n 0 for some n 0 .

>From (6.1), since nk n → ∞ as n → ∞, it is easy to see that V n = = > 1, E[V n] → 1 and

Var [V n] → σ2 , but E[Vn
2 + δ] → ∞ for all δ > 0 as n → ∞. Moreover, it is evident that, for all

n, V n = 1 + X n where X n has the two-point distribution

P(X n = √ nk n) = 1 − P(X n = 0) =
nk n

σ_ ___ . (6.2)

Let D n (i , j) and Dn′ (i , j) be the departure time of customer i from queue j in model n with service

times V n and X n , respectively. >From above, it is clear that

D n (k n ,n) − (n + k − 1) = Dn′ (k n ,n) , (6.3)

where Dn′ (k n ,n) should be relatively easy to analyze as there are relatively few positive entries.

For this purpose, we apply previous results on the length of the longest increasing subsequence in

a random permutation; see Frieze (1991) and references cited there.

Let {U n : n ≥ 1 } be a sequence of i.i.d. random variables uniformly distributed on [0 , 1].

Let M n be the length of the longest increasing subsequence among the first n variables

U 1 , . . . , U n . (Note that L n has the distribution of the length of the longest increasing

subsequence in a random partition of the vector of integers (1 , . . . , n).) It is known that

L n /√ n → 2 w. p. 1 as n → ∞ . (6.4)

Let Π(λ) be a Poisson random variable with mean λ that is independent of {L n : n ≥ 1 } and

let

L(λ) = L Π(λ) ; (6.5)

i.e., L(λ) is the length of the longest increasing subsequence among the Poisson random number

- 28 -

of uniform random variables. By the strong law of large numbers,

Π(λ)/λ → 1 w. p. 1 as λ → ∞ . (6.6)

Then (6.4)–(6.6) imply that

L(λ)/√ λ → 2 w. p. 1 as λ → ∞ . (6.7)

Theorem 6.1. Let the service times be as in (6.1). (a) If k n → ∞ as n → ∞, then

[D(k n ,n) − (n + k n − 1)]/√ nk n = = > L(σ2) as n → ∞ . (6.8)

(b) If k n / n → 0 as n → ∞, then

[D(k n ,n) − n]/√ σ2 nk n = = > 2 (6.9)

as first n → ∞ and then σ2 → ∞.

(c) As first n → ∞ and then σ2 → ∞,

D(n ,n)/σn = = > 2 . (6.10)

Proof. First, (6.9)–(6.10) follow directly from (6.7) and (6.8), so we focus on (6.8). By (6.3), it

suffices to prove that Dn′ (k n ,n)/√ nk n = = > L(σ2) as n → ∞. Let X n (i , j) be the service time of

customer i at queue j in model n, distributed as in (6.2). For each n, put service time X n (i , j) at

the point (i / k n , j / n) in the unit square [0 , 1]2 for 1 ≤ i ≤ k n and 1 ≤ j ≤ n. Let N n be a counting

process on [0 , 1]2 , with N n (A) counting the number of points (i / k n , j / n) in the measurable

subset A such that X n (i , j) > 0. It is easy to see that

N n = = > M σ2 as n → ∞ , (6.10)

where M λ is a Poisson random measure with intensity measure v(A) = λ µ(A), with µ being

- 29 -

Lebesgue measure on [0 , 1]2; e.g., see Whitt (1972) or Daley and Vere-Jones (1988).

Next, for a finite point process on [0 , 1]2 , the maximum number of points on a nondecreasing

path from (0 , 0) to (1 , 1) is a measurable function which is continuous almost surely with respect

to the limiting Poisson random measure. (We can use the usual topology of weak convergence

for both the underlying space of finite measures on [0 , 1]2 and the space of probability measures

on this space; see Appendix 2 of Daley and Vere-Jones (1988).) Hence, by the continuous

mapping theorem,

D ′ (k n ,n)/√ nk n = = > L(σ2) as n → ∞ , (6.12)

which completes the proof.

Remarks. Part (b) suggests, but does not imply, that α = 2 in (3.6). Part (c) suggests that γ(1)

in (3.7) can assume any value greater than or equal to the obvious lower bound 2 for service-time

distributions with mean 1. Finally, our Conjecture 4.1 (iii) suggests that the distribution of the

longest increasing subsequence in a random permutation may concentrate much more closely

about its mean than indicated by the bound in Frieze (1991).

Acknowledgment. We thank Andrew Odlyzko and Larry Shepp for pointing out the paper by

Frieze (1991).

References

Akl, S. G. (1989). The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood
Cliffs, NJ.

Aldous, D. and Diaconis, P. (1987). Shuffling cards and stopping times. Amer. Math. Monthly
93, 333-348.

Apostolico, A., Atallah, M. J., Larmore, L. L. and McFaddin, H. S. (1988). Efficient parallel
algorithms for string editing and related problems. University of California, Irvine. The Society
for Computer Simulation, 53-57.

Baccelli, F. and Canales, M. (1991) Parallel simulation of stochastic petri nets using recursive
equations. INRIA Rapport de Recherche 1520.

Blank, T. (1990). The MasPar MP-1 Architecture. Compcon, Spring 1990, IEEE Computer
Society Press, San Francisco, CA, 20-24.

Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes,
Springer-Verlag, New York.

Feder, T., Greenberg, A.G., Ramachandran, V., Rausch, M., and Wang, L-C. (1992). The
telephone connect problem, to appear.

Frieze, A. (1991). On the length of the longest monotone subsequence in a random permutation.
Ann. Appl. Prob. 1, 301-305.

Fujimoto, R. M. (1991). Parallel discrete event simulation. Commun. ACM 33, 31-53.

Glynn, P. W. and Heidelberger, P. (1990a). Analysis of parallel, replicated simulations under a
completion time constraint. IBM Research Report RC 15466 (#68774).

Glynn, P. W. and Heidelberger, P. (1990b). Experiments with initial transient deletion for
parallel, replicated steady-state simulations. IBM Research Report RC 15700 (#70118).

Glynn, P. W. and Whitt, W. (1991). Departures from many queues in series. Ann. Appl. Prob. 1,
546-572.

Glynn, P. W. and Whitt, W. (1992). The asymptotic efficiency of simulation estimators. Oper.
Res., to appear.

Greenberg, A. G., Lubachevsky, B. D. and Mitrani, I. (1990). Unboundedly parallel simulations
via recurrence relations. 1990 ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, 1-12.

Greenberg, A. G., Lubachevsky, B. D. and Mitrani, I. (1991). Algorithms for unboundedly
parallel simulations. ACM Trans. Computer Systems, 9, 3, 201-221.

- R-2 -

Harrison, J. M. (1978). The diffusion approximation for tandem queues in heavy traffic. Adv.
Appl. Prob. 10, 886-905.

Harrison, J. M. and Reiman, M. I. (1981a). Reflected Brownian motion on an orthant. Ann.
Prob. 9, 302-308.

Harrison, J. M. and Reiman, M. I. (1981b). On the distribution of multidimensional reflected
Brownian motion. SIAM J. Appl. Math 41, 345-361.

Harrison, J. M. and Williams, R. J., (1987). Brownian models of open queueing networks with
homogeneous customer populations. Stochastics 22, 77-115.

Heidelberger, P. (1986a). Discrete event simulations and parallel processing: statistical
properties. SIAM J. Sci. Statist. Comput. 9, 1114-1132.

Heidelberger, P. (1986b). Statistical analysis of parallel simulations. 1986 Winter Simulation
Conf. Proc., J. Wilson and J. Henriksen (eds.), IEEE Press, 290-295.

Heidelberger, P. and Stone, H. (1990). Parallel trace-driven cache simulation by time
partitioning. Proceedings 1990 Winter Simulation Conference, IEEE, New Orleans, 734-737.

Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic. II: sequences,
networks and batches. Adv. Appl. Prob. 2, 355-369.

Kelly, F. P. (1991). Loss networks. Ann. Appl. Prob. 1, 319-378.

Kruskal, C. P., Rudolph, L. and Snir, M. (1985). The power of parallel prefix. IEEE Trans.
Computers C-34, 10, 965-968.

Ladner, R. E. and Fischer, M. J. (1980). Parallel prefix computation. J. ACM 27, 831-838.

Leighton, F. T. (1992). Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufman, San Mateo, CA.

Mitra, D., Gibbens, R. J. and Huang, B. D. (1991a). State dependent routing on symmetric loss
networks with trunk reservations, I. IEEE Trans. Commun., to appear.

Mitra, D., Gibbens, R. J. and Huang, B. D. (1991b). State dependent routing on symmetric loss
networks with trunk reservations, II: asymptotics, optimal design. Annals. Oper. Res., to appear.

Nicol, D., Greenberg, A. G. and Lubachevsky, B. D. (1991). Massively parallel algorithms for
trace-driven cache simulations, to appear.

Reiman, M. I. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9, 441-458.
Proc. IEEE 77, 99-113.

Srinivasan, R. (1992). Queues in series via interacting particle systems. Math. Oper. Res., to
appear.

Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models. Wiley,

- R-3 -

Chichester.

Suresh, S. and Whitt, W. (1990). The heavy-traffic bottleneck phenomenon in open queueing
networks. Oper. Res. Letters 9, 335-362.

Thinking Machines. (1990). Connection Machine Model CM-2 Technical Summary. Thinking
Machines Corp., Cambridge, MA.

Wagner, R.A. and Fischer, M.J. (1973). The string to string editing problem. Journal of the
ACM. 21, 1, 168-173.

Whitt, W. (1972). On the quality of Poisson approximations. Z. Wahrscheinlichkeitstheorie und
verw. Gebiete 28, 23-36.

Whitt, W. (1989). Planning queueing simulations. Management Sci. 35, 1341-1366.

Whitt, W. (1991). The efficiency of one long run versus independent replications in steady-state
simulation. Management Sci. 37, 645-666.

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

1 1.113 1.144 1.137 1.123 1.131 1.190

2 0.922 0.850 0.816 0.801 0.783 0.745

3 0.741 0.697 0.650 0.645 0.614 0.612

4 0.717 0.597 0.545 0.545 0.543 0.497

m = 1 5 0.689 0.499 0.492 0.458 0.473 0.524

6 0.624 0.493 0.481 0.464 0.435 0.418

7 0.613 0.450 0.420 0.391 0.396 0.386

8 0.621 0.487 0.410 0.383 0.369 0.377

9 0.589 0.427 0.379 0.369 0.342 0.357

10 0.562 0.393 0.345 0.341 0.339 0.309

_ __

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

1 2.05 2.06 1.95 2.03 1.99 2.14

2 1.44 1.22 1.12 1.04 1.00 0.93

3 1.000 0.816 0.721 0.697 0.634 0.647

4 0.890 0.636 0.529 0.505 0.496 0.433

m = 2 5 0.873 0.456 0.422 0.388 0.400 0.488

6 0.693 0.453 0.417 0.408 0.339 0.315

7 0.711 0.391 0.325 0.272 0.282 0.283

8 0.706 0.443 0.313 0.271 0.231 0.255

9 0.636 0.343 0.264 0.241 0.226 0.236

10 0.596 0.283 0.222 0.209 0.206 0.185

_ __

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

1 14.9 13.0 10.4 12.7 11.0 13.2

2 7.7 4.9 4.1 3.6 3.2 2.8

3 4.4 2.4 2.0 1.7 1.4 1.6

4 3.23 1.72 1.18 0.95 0.87 0.80

m = 4 5 3.07 0.83 0.65 0.66 0.62 1.01

6 2.45 0.97 0.76 0.83 0.49 0.41

7 2.29 0.83 0.50 0.29 0.34 0.44

8 2.11 0.88 0.47 0.36 0.21 0.28

9 1.73 0.56 0.29 0.23 0.29 0.30

10 1.81 0.35 0.26 0.18 0.18 0.19

Table 1. Estimates of E[(∆(k, n)/√ n) m] in the case of exponential service times with mean 1
for m = 1 , 2 , 4, k = 1 , . . . , 10 and n = 10 j for j = 1 , . . . , 6. These estimates are based on
1000 independent replications. For the case m = 1 (m = 2), the width of 95% confidence
intervals are about 6% (10-15%) of the given values, approximately uniformly over all cases.

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106 average

1 0.65 0.57 0.52 0.61 0.56 0.51 0.57
2 0.69 0.69 0.68 0.62 0.63 0.68 0.67
3 0.82 0.68 0.71 0.68 0.68 0.72 0.72
4 0.73 0.78 0.78 0.70 0.68 0.75 0.74
5 0.84 0.83 0.74 0.85 0.79 0.78 0.81
6 0.78 0.86 0.80 0.90 0.52 0.80 0.78
7 0.89 0.93 0.84 0.78 0.80 0.90 0.86
8 0.83 0.87 0.86 0.85 0.70 0.79 0.82
9 0.83 0.88 0.84 0.77 0.93 0.85 0.85

10 0.88 0.83 0.87 0.80 0.79 0.94 0.85_ __
avg. 0.79 0.79 0.76 0.76 0.71 0.77 0.77

Table 2. Estimates of SCV(∆(k, n)/√ n) ≡ Var (∆(k, n)/(E[∆(k, n)])2 using the estimates
from Table 1. (The exact limiting value as n → ∞ for k = 1 is 0.571.)

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

2 0.76 0.78 0.76 0.76 0.80 0.84
3 1.15 1.13 1.09 1.08 1.10 1.12
4 1.37 1.32 1.27 1.26 1.26 1.27
5 1.55 1.46 1.38 1.38 1.38 1.36
6 1.69 1.53 1.46 1.44 1.44 1.46
7 1.80 1.60 1.54 1.51 1.50 1.51
8 1.90 1.66 1.58 1.55 1.54 1.54
9 1.98 1.70 1.63 1.59 1.58 1.58

10 2.07 1.77 1.66 1.61 1.59 1.60
11 2.15 1.81 1.68 1.64 1.62 1.62
20 2.04 1.74 1.81 1.74 1.80
50 2.43 2.01 1.93 1.87 1.82

100 2.81 2.20 2.02 1.98 1.95
200 2.37 2.06 1.99 1.97
500 2.65 2.19 2.04 2.009

1000 2.95 2.30 2.07 2.023
2000 2.43 2.14 2.043
4000 2.62 2.20 2.067
5000 2.70 2.22 2.075
106 3.00*

Table 3. Estimates of E[D(k, n) − n]/√ kn in the case of exponential service times with
mean 1. For k ≤ 11, the estimates are based on 1000 independent replications. For k ≤ 11, the
95% confidence intervals are about ±0. 04, as can be seen from Table 4. The other estimates are
based on 20 independent replications. For k ≥ 1000, the 95% confidence intervals are less than
±0. 01. (The exact limiting value as n → ∞ for k = 2 is 0.798. The asterisked value for
k = 106 is the exact limiting value as n → ∞ for k = n.)

k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

2 1.15 1.05 0.96 0.96 1.00 1.03
3 1.74 1.55 1.41 1.40 1.42 1.45
4 2.20 1.95 1.77 1.74 1.75 1.76
5 2.66 2.26 2.02 2.00 2.00 1.99

second 6 3.08 2.47 2.22 2.17 2.18 2.22
moment 7 3.44 2.69 2.43 2.34 2.33 2.34

8 3.79 2.85 2.56 2.46 2.44 2.45
9 4.17 3.07 2.70 2.58 2.54 2.56

10 4.50 3.22 2.82 2.68 2.62 2.66
11 4.81 3.34 2.90 2.76 2.70 2.71__
k n = 101 n = 102 n = 103 n = 104 n = 105 n = 106

2 0.76 0.66 0.62 0.62 0.60 0.57
3 0.65 0.52 0.47 0.48 0.46 0.44
4 0.57 0.46 0.40 0.39 0.40 0.38
5 0.50 0.36 0.34 0.31 0.31 0.38

standard 6 0.47 0.36 0.30 0.31 0.33 0.30
deviation 7 0.45 0.36 0.24 0.24 0.28 0.24

8 0.42 0.31 0.25 0.24 0.26 0.28
9 0.50 0.42 0.21 0.23 0.21 0.25

10 0.46 0.30 0.25 0.30 0.30 0.32
11 0.43 0.25 0.28 0.27 0.27 0.29

Table 4. Estimates of the second moment and standard deviation of [D(k, n) − n]/√ kn in the
case of exponential service times with mean 1 based on 1000 independent observations.

exponential Bernoulli {0,2}
k mean std. dev. mean std. dev.

10 5.11 0.65 5.07 0.63
100 19.52 0.45 19.27 0.42
200 27.91 0.42 27.63 0.38
500 44.92 0.35 44.12 0.25

1000 63.97 0.26 62.80 0.32
2000 91.38 0.33 89.00 0.24
4000 130.73 0.28 126.11 0.21
5000 146.72 0.22 141.17 0.22


























Table 5. Estimates of the mean and standard deviation of [D(k,n) − n]/√ n for n = 106 . The
number of independent replications was 1000 for k = 10, with 100 for k = 100 and 20 in all
other cases.

k n = 103 n = 104 n = 105 n = 106

50 1.85 1.88 1.87 1.87
100 2.03 1.93 1.90 1.93
200 2.11 1.96 1.99 1.95
500 2.35 2.04 2.00 1.97

1000 2.62 2.06 2.01 1.986
2000 2.15 2.01 1.990
4000 2.29 2.03 1.994
5000 2.36 2.04 1.996
106 2.63*

Table 6. Estimates of E[D(k, n) − n]/√ kn in the case of Bernoulli − { 0 , 2 } service times.
The estimates are based on 20 independent replications for n = 106 . The asterisked value for
k = 106 is estimated from the case k = n = 5000.

service-time distribution
exponential Bernoulli

n = 10 n = 100 n = 1000 n = 10 n = 100 n = 1000

mean 30.8 380.8 3951 29.9 356.8 3619

standard deviation 4.26 7.21 25.8 2.90 5.00 9.3

variance 18.19 52.00 666.1 8.39 24.97 87.4

sample size 1000 10 10 1000 10 10

variance/n 1.82 0.52 0.67 0.84 0.25 0.087

variance/n 3/4 3.23 1.64 3.74 1.49 0.79 0.49

variance/n 1/2 5.75 5.20 21.1 2.65 2.50 2.76
























Table 7. Estimates of the mean standard deviation and variance of D(n , n) for n = 10 j for
j = 1 , 2 , 3 for the cases of exponential and Bernoulli service times.

jobs simulated running time (secs)

213 .01
214 .02
215 .02
216 .03
217 .06
218 .12
219 .21
220 .42
221 .80

Table 8. Time to simulate a single M/M/1 queue.

queues running time (secs)

10 4.87
100 45.11

1000 446.03

Table 9. Time to simulate 221 = 2 , 097 , 152 jobs through a series of M/M/1 queues.

o o

o o

o o

o

oo
oo

ooo
ooo

oo
oooo

oo
oooo

ooo
oo
ooooo

oo
o
ooooo

oooo
oooo

ooooo
oooo

ooooo
ooo
oooo

o
ooo
oooo

oooooo
oo
ooo

o
oo o

Quantiles of Exponential Mean 1

S
or

te
d

D
at

a

0.05 0.10 0.50 1.00 5.00

0.
00

5
0.

01
0

0.
05

0
0.

10
0

0.
50

0

Figure 1. Q-Q plot with the exponential mean 1 distribution of estimates of ∆(k, n)/√ n , for
n = 106 and k = 100, and the Bernoulli {0,2} service times. There are 100 estimates from 100
independent replications. The scale is log-log.

APPENDIX

In this appendix we provide some of the data obtained from the simulations. Tables A1 and

A2 display 20 independent replications of estimates of [D(k,n) − n]/√ kn for n = 106 and

various values of k, for the exponential and Bernoulli distributions, respectively. Tables A3-A6

display 100 independent replications of estimates of [D(k,n) − n]/√ kn and ∆(k − 1 ,n)/√ n for

k = 100 and n = 106 , for the exponential and Bernoulli distributions, respectively. Tables A7

and A8 display 20 independent replications of estimates of [D(k,n) − n]/√ kn for n = 10 j with

j = 4 , 5 and 6 and various k, for the exponential and Bernoulli distribution, respectively.

Figure A1 displays the Q − Q plot, for k = 100, n = 106 , and Bernoulli {0,2} service times,

comparing the sample distribution of [D(k,n) − n]/√ kn with the normal distribution.

- A-2 -

k
100 200 500 1000 2000 4000 5000_ __
1.998753 2.007075 2.007203 2.031406 2.047681 2.056927 2.075226
1.976843 2.001208 2.002918 2.030268 2.046753 2.061122 2.079361
1.986527 2.050240 2.042037 2.019230 2.037350 2.068164 2.078118
1.987959 1.977029 2.018986 2.024594 2.048730 2.075183 2.076821
2.034640 1.969923 1.994518 2.037267 2.036755 2.067429 2.072372
2.012347 1.948945 2.011910 2.018378 2.058709 2.071884 2.070145
1.974565 1.958451 2.004516 2.025490 2.051376 2.072193 2.076544
1.943724 1.973839 2.000796 2.014577 2.036499 2.066570 2.079022
2.043871 1.989753 2.015234 2.011691 2.035696 2.066313 2.075178
1.972256 1.955060 1.984847 2.027526 2.042803 2.067340 2.072258
1.869204 1.975322 2.003858 2.027604 2.038704 2.068214 2.078987
2.027284 1.955040 2.002342 2.020948 2.040203 2.061393 2.070942
1.906604 1.985931 1.988228 2.037999 2.040915 2.068830 2.077133
1.928227 1.935804 2.013405 2.009276 2.035517 2.070393 2.077745
1.986888 1.985068 1.994496 2.018189 2.045798 2.063246 2.071285
1.946783 1.982769 1.996152 2.013738 2.042711 2.067094 2.072692
2.012421 2.010218 2.043726 2.024400 2.060917 2.073584 2.075952
2.034717 1.929336 2.006183 2.018344 2.042848 2.066962 2.071069
1.942283 1.946502 2.029564 2.022015 2.035932 2.066467 2.076104
1.899810 1.935085 2.015304 2.035475 2.041577 2.067276 2.072136_ __

mean
1.974285 1.973630 2.008811 2.023421 2.043374 2.067329 2.074954_ __

std. dev.
0.048644 0.029811 0.015781 0.008319 0.007316 0.004350 0.003061

Table A1. Estimates of [D(k,n) − n]/√ kn for n = 1 , 000 , 000 and the exponential distribution.
Each row was obtained from an independent replication.

- A-3 -

k
100 200 500 1000 2000 4000 5000_ __
1.872000 1.975515 1.980888 1.993816 1.993097 1.999730 1.995880
1.966000 1.933654 1.968276 1.965925 1.991755 1.993089 1.999245
1.894800 1.954726 1.980530 1.984772 1.984197 1.992836 1.998171
1.857600 1.916259 1.974359 1.988630 1.985941 1.997706 1.996417
1.918000 2.008466 1.980530 1.968708 1.986031 1.992614 1.995172
1.915800 1.964484 1.982408 1.985721 1.985986 1.993658 1.993249
1.961200 1.970707 1.963357 1.984519 1.995691 1.996188 1.997096
1.901800 1.911734 1.966309 1.984835 2.001683 1.991128 1.997520
2.016000 1.967312 1.973106 1.996283 1.995378 1.989262 1.998680
1.958800 1.947513 1.990727 1.997927 1.992068 1.997231 1.999698
1.931400 1.906077 1.968813 1.984203 1.985673 1.996662 1.999585
1.904200 1.940160 1.977310 2.001595 1.999179 1.995144 1.993560
1.866800 1.970282 1.973375 2.005706 1.989161 1.995650 2.004167
1.943800 1.979475 1.949494 1.977309 1.981469 1.995144 1.992287
1.915400 1.971555 1.951908 1.986416 1.985539 1.986922 1.992966
1.840800 1.969151 1.960763 1.988693 1.988848 1.991761 1.991411
1.924600 1.950483 1.968008 1.977941 1.993320 1.991761 1.995766
1.914000 1.919653 1.982230 1.979396 1.987686 1.997358 1.998991
1.951400 1.980040 1.982230 1.982685 1.986925 1.989262 1.994946
1.895800 1.949211 1.988938 1.980724 1.997032 1.992108 1.993985_ __

mean
1.917510 1.954323 1.973178 1.985790 1.990333 1.993761 1.996440_ __

std. dev.
0.041862 0.026650 0.011174 0.009967 0.005465 0.003288 0.003145

Table A2. Estimates of [D(k,n) − n]/√ kn for n = 1 , 000 , 000 and the Bernoulli {0,2}
distribution. Each row was obtained from an independent replication.

- A-4 -

1.998753 1.884486 2.051369 1.945816 2.032164
1.976843 1.962321 1.987444 1.942332 1.888333
1.986527 1.954882 1.945446 1.921279 1.876464
1.987959 1.918168 1.951275 2.003974 1.883310
2.034640 1.984230 1.944113 1.886833 1.888263
2.012347 1.904058 1.931673 1.928797 1.904042
1.974565 1.933798 1.924885 1.998161 1.951595
1.943724 1.951138 1.898996 1.945314 1.905318
2.043871 1.958494 1.965789 1.934996 1.896280
1.972256 1.908429 1.926922 1.955010 1.973538
1.869204 1.993156 2.001987 1.912617 2.006016
2.027284 1.990247 1.997272 1.982567 1.890728
1.906604 1.938573 1.965913 1.940519 1.949533
1.928227 1.993936 1.886619 2.019505 1.878644
1.986888 2.042476 2.005352 1.879795 1.965861
1.946783 1.886498 2.026569 2.011599 1.952757
2.012421 1.965053 1.917412 1.871708 1.916336
2.034717 1.970512 1.930136 1.924784 1.882780
1.942283 2.004230 1.951696 2.077775 1.991115
1.899810 1.923275 1.964350 1.835061 1.937521

Table A3. Estimates of [D(k,n) − n]/√ kn for k = 100 and n = 1 , 000 , 000 and the exponential
distribution, obtained from 100 independent replications.

- A-5 -

0.448648 0.004102 0.094761 0.046664 0.068307
0.015053 0.177213 0.039410 0.010173 0.017860
0.174293 0.051265 0.151085 0.013240 0.048200
0.068300 0.050820 0.003599 0.060794 0.126213
0.320909 0.043732 0.087121 0.049883 0.047264
0.052584 0.019559 0.072102 0.035841 0.028961
0.001111 0.031887 0.004153 0.023370 0.028723
0.246465 0.072769 0.054707 0.001075 0.178570
0.097930 0.323079 0.168386 0.009408 0.098068
0.008814 0.077401 0.071538 0.091485 0.049663
0.005709 0.028984 0.134063 0.000623 0.183980
0.305782 0.130846 0.188327 0.029730 0.112284
0.269576 0.033901 0.174868 0.335035 0.585732
0.024160 0.052000 0.149231 0.001472 0.112852
0.185136 0.119467 0.059679 0.048147 0.143017
0.034370 0.015145 0.609672 0.101209 0.149134
0.230678 0.037956 0.002193 0.087990 0.028077
0.150577 0.053305 0.075133 0.001480 0.032307
0.209885 0.155704 0.136935 0.072014 0.538689
0.074992 0.113133 0.117586 0.055853 0.282955

Table A4. Estimates of ∆(k − 1 ,n)/√ n for k = 100 and n = 1 , 000 , 000 and the exponential
distribution, obtained from 100 independent replications.

- A-6 -

1.872000 1.886800 1.914800 1.988000 1.930600
1.966000 1.947400 1.964400 1.933400 1.896400
1.894800 1.948800 1.936400 1.944600 1.927800
1.857600 1.856400 1.921200 1.926800 1.932800
1.918000 1.940400 1.985000 1.872400 1.973800
1.915800 2.046800 1.940800 1.869200 1.935000
1.961200 1.972200 1.930600 1.904200 1.882800
1.901800 1.940600 1.924800 1.870000 1.973000
2.016000 1.956600 1.931600 1.837200 1.966200
1.958800 1.981400 2.008400 1.861600 1.956400
1.931400 1.921400 1.920800 1.864600 1.931000
1.904200 1.936800 1.881600 1.998400 1.961800
1.866800 1.911000 1.903200 1.920000 1.967400
1.943800 1.892800 1.912600 1.892800 1.953000
1.915400 1.920000 1.888200 1.960200 1.905200
1.840800 1.892200 2.041000 1.900200 1.951000
1.924600 1.881600 1.858200 1.889200 1.963000
1.914000 1.955600 1.938400 1.977600 1.960400
1.951400 1.891600 1.916200 1.945800 1.885000
1.895800 2.017400 1.918400 1.888800 1.954200

Table A5. Estimates of [D(k,n) − n]/√ kn for k = 100 and n = 1 , 000 , 000 and the Bernoulli
{0,2} distribution, obtained from 100 independent replications.

- A-7 -

0.112000 0.026000 0.078000 0.092000 0.020000
0.130000 0.074000 0.026000 0.250000 0.042000
0.074000 0.122000 0.120000 0.004000 0.282000
0.006000 0.080000 0.154000 0.060000 0.532000
0.296000 0.044000 0.036000 0.072000 0.174000
0.104000 0.232000 0.460000 0.084000 0.020000
0.010000 0.052000 0.334000 0.006000 0.148000
0.070000 0.112000 0.012000 0.036000 0.068000
0.182000 0.206000 0.024000 0.118000 0.028000
0.558000 0.236000 0.038000 0.056000 0.236000
0.048000 0.010000 0.040000 0.018000 0.098000
0.112000 0.158000 0.136000 0.050000 0.048000
0.218000 0.094000 0.138000 0.086000 0.084000
0.050000 0.012000 0.540000 0.246000 0.068000
0.002000 0.214000 0.316000 0.018000 0.216000
0.036000 0.024000 0.032000 0.122000 0.180000
0.008000 0.054000 0.018000 0.004000 0.072000
0.250000 0.090000 0.144000 0.002000 0.046000
0.000000 0.030000 0.094000 0.020000 0.342000
0.042000 0.098000 0.026000 0.154000 0.120000

Table A6. Estimates of ∆(k − 1 ,n)/√ n for k = 100 and n = 1 , 000 , 000 and the Bernoulli {0,2}
distribution, obtained from 100 independent replications.

n
104 104 104 105 105 105 106 106 106_ ___

k
2000 4000 5000 2000 4000 5000 2000 4000 5000_ ___

2.4243 2.6177 2.6930 2.1358 2.2139 2.2253 2.0461 2.0615 2.0720
2.4371 2.6354 2.6948 2.1444 2.2011 2.2309 2.0391 2.0686 2.0771
2.4413 2.6269 2.7025 2.1379 2.2013 2.2237 2.0308 2.0717 2.0770
2.4299 2.6192 2.7066 2.1436 2.1972 2.2213 2.0526 2.0662 2.0718
2.4403 2.6210 2.6933 2.1450 2.1958 2.2196 2.0548 2.0649 2.0685
2.4324 2.6138 2.6835 2.1295 2.1992 2.2272 2.0412 2.0625 2.0845
2.4466 2.6111 2.6954 2.1353 2.2097 2.2184 2.0550 2.0689 2.0735
2.4245 2.6190 2.7007 2.1370 2.1987 2.2242 2.0440 2.0682 2.0808
2.4196 2.6221 2.6963 2.1372 2.2055 2.2232 2.0459 2.0645 2.0742
2.4240 2.6205 2.6860 2.1369 2.2075 2.2240 2.0455 2.0674 2.0759_ ___

mean
2.4320 2.6207 2.6952 2.1383 2.2030 2.2238 2.0455 2.0664 2.0755_ ___

std. deviation
0.0090 0.0067 0.0070 0.0048 0.0059 0.0036 0.0075 0.0031 0.0047

Table A7. Estimates of [D(k,n) − n]/√ kn for the exponential distribution. Each row was
obtained from an independent replication.

- A-8 -

n
104 104 104 105 105 105 106 106 106_ ___

k
2000 4000 5000 2000 4000 5000 2000 4000 5000_ ___

2.1471 2.2977 2.3569 1.9972 2.0252 2.0377 1.9854 2.0023 1.9945
2.1493 2.2920 2.3535 2.0055 2.0288 2.0370 1.9923 2.0046 1.9980
2.1515 2.2930 2.3538 2.0069 2.0297 2.0324 1.9911 1.9946 1.9920
2.1480 2.2876 2.3612 2.0134 2.0256 2.0406 1.9886 1.9978 1.9934
2.1475 2.2860 2.3524 2.0090 2.0310 2.0373 1.9991 1.9938 1.9910
2.1511 2.2927 2.3561 2.0131 2.0259 2.0329 1.9945 1.9984 1.9961
2.1560 2.2945 2.3513 2.0045 2.0297 2.0333 1.9888 1.9994 1.9992
2.1632 2.2968 2.3600 2.0116 2.0260 2.0327 1.9881 1.9929 1.9933
2.1524 2.2917 2.3569 2.0157 2.0286 2.0418 1.9948 1.9910 1.9944
2.1547 2.2885 2.3589 2.0042 2.0275 2.0363 1.9873 1.9979 1.9933_ ___

mean
2.1521 2.2920 2.3561 2.0081 2.0278 2.0362 1.9910 1.9973 1.9945_ ___

std. deviation
0.0049 0.0038 0.0033 0.0056 0.0020 0.0034 0.0042 0.0043 0.0026

Table A8. Estimates of [D(k,n) − n]/√ kn for the Bernoulli {0,2} distribution. Each row was
obtained from an independent replication.

- A-9 -

o
o

o o o
oooo

ooo

ooo
oo
ooo

oooo
ooo
oo
oooo

oo
ooooo

ooooo
oo
ooo
ooo
ooooo

ooo
oooo

ooo
oo
ooo
oooo

oooo
ooo

ooo
ooo

o
o
o
o

o

o

o o

o
o

Quantiles of Standard Normal

S
or

te
d

D
at

a

-2 -1 0 1 2

1.
85

1.
90

1.
95

2.
00

2.
05

Figure A1. Q-Q plot with the standard normal distribution of estimates of [D(k, n) − n]/√ kn ,
for n = 106 and k = 100, and the Bernoulli {0,2} service times. There are 100 estimates from
100 independent replications.

