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ABSTRACT

Suitors come to the castle in order to try to win the hand of the Princess Saralinda. The

first suitor to perform n amazing feats will succeed. If the number n of feats is large and the

times to perform the feats are all i.i.d., then how long is it before a suitor will win the hand

of the Princess? We develop asymptotics describing the distribution of this random time as

the number of feats gets large; e.g., we show that this time is of order nm−σ
√
n logn, where

m and σ2 are the mean and variance of the time to perform a single feat, provided that the

time to perform a single feat has a finite moment generating function and the suitor arrival

process obeys a strong law of large numbers. The −√logn term reflects the fact that there is
an arrival process of suitors instead of just one. The asymptotic effect of the arrival process

is equivalent to having α
√
n suitors present at time 0 with no additional arrivals. We also

obtain large deviations results that depend on the full interarrival-time distribution.

Keywords: princesses, dukes, asymptotics, tandem queues, infinite-server queues in series,
parallel processing, large deviations, extreme values.



1. Introduction

“Once upon a time, in a gloomy castle on a lonely hill, where there were thirteen
clocks that wouldn’t go, there lived a cold, aggressive Duke, and his niece, the
Princess Saralinda. She was warm in every wind and weather, but he was always
cold. His hands were as cold as his heart. He wore gloves when he was asleep,
and he wore gloves when he was awake, which made it difficult for him to pick
up pins or coins or the kernels of nuts, or to tear the wings from nightingales...
Wickedly scheming, he would limp and cackle through the cold corridors of the
castle, planning new impossible feats for the suitors of Saralinda to perform. He
did not wish to give her hand in marriage, since her hand was the only warm
hand in the castle;” from The Thirteen Clocks by James Thurber [17].

Suitors come to the castle in order to win the hand of the Princess Saralinda. Suppose

that the suitors arrive according to a stochastic point process and that the Duke requires

each suitor to perform n feats, where the times required to perform the feats are all i.i.d.

and independent of the arrival process. Then what can be said about the time Tn that one of

the suitors finally succeeds as the number n of feats gets large? And what is the probability

that the first suitor wins within time t of his arrival?

Expressed somewhat more prosaically, we have a series of initially empty, identical,

infinite-server queues with all service times mutually independent, fed by an arrival pro-

cess. We ask about the time Tn the first customer completes service from the n
th queue as

n→∞. This model can be thought of as an infinite-server analog of the single-server queues
in series considered in Glynn and Whitt [9] and Greenberg et al. [11]; see also Anantharam [1],

Bambos and Walrand [2], Coffman and Whitt [4], Cox et al. [5] and Srinivasan [16]. The

model here has potential application in the study of parallel processing, stochastic scheduling

and transport in random media. We mention that Vere-Jones [18] already showed that the

stationary departure process from the nth queue is asymptotically Poisson as n→∞.
The model here also can be regarded as a single infinite-server queue. In particular, Tn

is the time of the first departure from a single, initially empty G/G/∞ queue with i.i.d.
service times, each of which is the sum of n i.i.d. random variables. This first departure

time considered here should be distinguished from the busy period or depletion time, which

is the time until the system is first empty; see Browne and Steele [3].

Let Ai be the arrival epoch of the i
th suitor and let Vij be the time required for the i

th



suitor to perform his jth feat. Then clearly

Tn = inf{Ai +
n
∑

j=1

Vij : i ≥ 1} . (1.1)

Let V be a generic time to perform a feat. Throughout this paper we assume that Vij are

i.i.d. and that Var(V ) = σ2, 0 < σ2 <∞. Let m = EV , F be the cdf of V and Fn its n-fold

convolution. We will make additional assumptions in our theorems below.

We now put our problem in perspective. Let ⇒ denote convergence in distribution as
in the central limit theorem (CLT) and let � denote almost sure convergence to a set for

a subsubsequence for all subsequences, as in the law of the iterated logarithm (LIL). Let

N(a, b) be a normally distributed random variable with mean a and variance b. If there were

only one suitor (as is the case for single-server queues in series), then we would have

(Tn − nm)/σ
√
n⇒ N(0, 1) as n→∞ (1.2)

by the CLT and

(Tn − nm)/σ
√

2n log log n � [−1, 1] as n→∞ (1.3)

by the LIL, so that

lim inf
n→∞

{(Tn − nm)/σ
√

2n log log n} = −1 . (1.4)

In contrast, if δ = inf{t : P (V ≤ t) > 0} and if all suitors were present at time 0, then
Tn = nδ w.p.1. Instead, if there were a total of αn

β suitors, all present at time 0, and if the

times required for the feats were normally distributed, then

(Tn − nm)/σ
√

2βn logn⇒ −1 as n→∞ (1.5)

by the standard extreme-value limit for normally distributed random variables, Theorem 1.5.3

of Leadbetter et al. [12]. As a first result, we show that this result remains true for general

distributions under regularity conditions. We give all proofs later.

Theorem 1. If there are αnβ suitors present at time 0 and no further arrivals, and if

E exp θV <∞ for some positive θ, then (1.5) holds. If instead there are α
√

nβ log n suitors

present at time 0 with no additional arrivals, then

P (Tn > nm− σ
√

2βn logn)→ 1− e−α/2
√
πβ as n→∞ . (1.6)
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However, we are primarily interested in the case of an arrival process. We should antic-

ipate that our situation with an arrival process should lead to a limit of the form (1.5) for

appropriate β; we show that it does for β = 1/2 under the suitable regularity conditions.

Let A(t) count the number of arrivals in [0, t]. We say that A(t) obeys a strong law of large

numbers (SLLN) if t−1A(t) converges to a finite positive limit w.p.1 as t → ∞, which here
we take to be 1.

Theorem 2. If A(t) obeys a SLLN and E exp θV <∞ for some positive θ, then

(Tn − nm)/σ
√

n logn⇒ −1 as n → ∞ . (1.7)

Remark 1.1. More generally, by the same proof, if A(t)/tη converges to a finite positive

limit w.p.1, for 0 < η < ∞, then in (1.7) σ should be replaced by ση. Having a SLLN for
A(t) with exponent η is equivalent to having αnβ suitors at time 0, with no future arrivals,

when
√
2β = η or β = η2/2.

�

Let N(t) be the maximum number of feats completed by any suitor by time t. Note that

Tn and N(t) are inverse processes, i.e.,

N(t) ≥ n if and only if Tn ≤ t , (1.8)

so that we can apply Theorem 6 of Glynn and Whitt [8] (see also Theorem 4.1 of Massey

and Whitt [15]) to deduce the following from Theorem 2.

Corollary 1. Under the conditions of Theorem 2,

(N(t)− t/m)/
√

(σ2/m3)t log t⇒ 1 as t→∞ . (1.9)

We also deduce simple weak law of large numbers (WLLN) statements from Theorem 2

and Corollary 1.

Corollary 2. Under the conditions of Theorem 2, Tn/n⇒ m as n→∞ and N(t)/t⇒ m−1

as t→∞.
From Theorem 2 we see that Tn ≈ nm−σ

√
n logn. We now describe the tail probabilities

of Tn − nm in more detail. Our next two results take the form of large deviations behavior,
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but they do not appear to be standard results from that theory. In our next result, we exploit

the relation between the large deviations behavior of a counting process and its inverse, which

was developed in Glynn and Whitt [10].

For our next result we assume that the arrival process A(t) is a renewal process, but this

property is not critical; see Remark 1.2 below. Let Ui be the i
th interarrival time, let U be

a generic interarrival time and let EU = 1. Let ψU be the logarithmic moment generating

function of U , i.e.,

ψU(θ) = logEe
θU . (1.10)

Since the interarrival times are i.i.d.,

n−1 logEeθ(U1+...+Un) = ψU(θ) for all n , (1.11)

so that trivially the Gärtner-Ellis condition with decay rate function ψU holds for the partial

sums, i.e.,

n−1 logEeθ(U1+...+Un) → ψU(θ) as n→∞ . (1.12)

We now introduce auxiliary large deviations conditions for ψU , namely

βu ≡ inf{θ : ψU(θ) = ψU(∞)} > 0 , (1.13)

ψU is differentiable everywhere in (−∞, βu) , (1.14)

lim
θ↑βu

ψ′U (θ) = +∞ if ψU (βu) <∞ (ψU is steep) , and (1.15)

lim
θ↑βu

ψU(θ) = ψU (β
u) . (1.16)

In [10] we prove that if (1.12)–(1.16) hold (without the i.i.d. conditions), then

t−1 logEeθA(t) → ψA(θ) as t→∞ , (1.17)

where the decay rate function ψA of A(t) is

ψA(θ) = −ψ−1U (−θ) (1.18)

and ψA satisfies (1.13)–(1.16), except that (1.17) might not hold for θ = βuA. We exploit

(1.17) in our next theorem. (We only use (1.17) for negative θ.)
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In the next theorem we use a condition on the conditional residual lifetime cdf’s; i.e., we

assume that

Gc(t) = sup{Hc(t + x)/Hc(x) : x ≥ 0} (1.19)

is a proper cdf, where H is the cdf of U . Simple sufficient conditions are for U to be bounded

or to have a new-better-than-used (NBU) cdf (then Gc(t) = Hc(t) for all t). Let Φ be the

standard (mean 0, variance 1) normal cdf.

Theorem 3. If the arrival process is a renewal process with (1.13)–(1.16) holding for ψU(θ)

in (1.10), if G in (1.19) above is a proper cdf and if EV 4 <∞, then

n−1/2 logP (Tn − nm > −xσ
√
n)→ σ

∫ −x

−∞
ψA(log(1− Φ(z)))dz as n→∞ (1.20)

for ψA in (1.18).

Remark 1.2. In our proof of Theorem 3 we exploit the renewal property of the arrival

process via Lemmas 2 and 3 below, but from the proof it is evident that (1.20) holds for

much more general arrival processes; then ψA should be defined by (1.17). For the case in

which A(t) is a cumulative process with respect to a sequence of regeneration times, we can

apply Theorem 7 of Glynn and Whitt [10] to establish (1.17). Extensions of Lemmas 2 and

3 below are easily developed in terms of the regeneration cycles as well. For example, this

extension covers the case in which A(t) is a batch Markovian arrival process as in Lucantoni

[14]. Thus, (1.20) should be regarded as a general relation, requiring regularity conditions

not depending critically on the renewal property of the arrival process.
�

We now obtain a stronger result in the case of a Poisson arrival process. Recall that

f(x) ∼ g(x) as x→∞ means that f(x)/g(x)→ 1 as x→∞. Let φ be the standard normal
density, i.e., the density of Φ. The last assumption below is basically a density assumption,

allowing us to apply a refined CLT on p. 541 of Feller [7].

Theorem 4. If the arrival process is a Poisson process, EV 4 <∞ and limt→∞|E exp(itV )| <
1, then

P (Tn − nm > −xσ
√
n) ∼ α(x) exp(−η(x)

√
n) as n→∞ , (1.21)
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where

α(x) = exp(−(E(V −m)3/6σ3)
∫ −x

−∞
(1− z2)φ(z)dz (1.22)

and

η(x) = σ
∫ −x

−∞
Φ(z)dz ∼ σφ(x)/x2 as x→∞ . (1.23)

Remark 1.3. Note that if U has an exponential distribution, then ψA(θ) = eθ− 1, so that
(1.20) becomes consistent with the stronger result (1.21).

Remark 1.4. Note that, given EV 4 < ∞, the asymptotic behavior in Theorem 4 only
depends on the first three moments of V , while the asymptotic behavior in Theorem 3 only

depends on the first two moments of V . In contrast, the asymptotic behavior in Theorem 3

depends on the entire distribution of U via its logarithmic moment generating function ψU

and its inverse ψA.

Remark 1.5. Note that logΦc(x) ∼ −Φ(x) as x→ −∞, so that

ψA(log Φ
c(x)) ∼ −ψ′A(0)Φ(x) as x→∞ ,

where ψ′A(0) = 1/EU = 1, so that

σ
∫ −x

−∞
ψA(logΦ

c(y))dy ∼ −σ
∫ −x

−∞
Φ(z)dz as − x→ −∞ ,

which is the exponent in the Poisson case. In other words, the limit in Theorem 3 ceases to

depend on the interarrival time distribution as −x→ −∞. �

The special case of Poisson arrivals is much easier to analyze, because the departure

process is a nonhomogeneous Poisson process. This is true even when the arrival process

itself is nonhomogeneous; e.g., see Theorem 1 of Eick et al. [6]. Suppose that the arrival

rate function is λ(t). Then the departure rate function as a function of n is

δn(t) = E[λ(t−
n
∑

j=1

Vij)] =
∫ t

0
λ(t− y)dFn(y) , t ≥ 0 , (1.24)

where F is the cdf of V and Fn is its n-fold convolution. In the special case of λ(t) = 1,

t ≥ 0, Eq. (1.24) becomes δn(t) = Fn(t) and

P (Tn > x) = exp(−
∫ x

0
δn(y)dy) = exp(−

∫ x

0
Fn(y)dy) . (1.25)
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To make our paper self-contained, we give a direct proof of (1.25) as well. (See Lemma 1

below.)

The Poisson departure property enables us to easily deduce many other properties. For

example, let Dn(t) be the number of departures from the n
th queue in the time interval [0, t].

Theorem 5. If the arrival process is a Poisson process, then D(nm+ σx2
√
n)−D(nm+

σx1
√
n) has a Poisson distribution with mean

σ
√
n
∫ x2

x1
Fn(nm + yσ

√
n)dy (1.26)

provided that x1 < x2 and nm + σx1
√
n > 0. Consequently,

Dn(nm+ σx2
√
n)−Dn(nm + σx1

√
n)

σ
√
n

⇒ N(m,m) as n→∞ , (1.27)

where

m =
∫ x2

x1
Φ(y)dy . (1.28)

Note that the asymptotic mean m in (1.28) is approximately (x2 − x1) for x1 suitably

large. The asymptotic relation in (1.23) describes the interesting case of x2 small or negative.

Now let us consider which suitor wins the hand of the Princess.

Remark 1.6. If the arrival process is a Poisson process, and if F is absolutely continuous

with density f , then the probability that the first suitor wins and does so within time t of

his arrival is
∫ t

0
fn(y)e

−
∫ y

0
Fn(z)dzdy (1.29)

by (1.25).

Remark 1.7. Theorem 2 enables us to estimate the probability that the various suitors

win. Under the conditions of Theorem 1, the probability that the first suitor completes his

n feats by time nm− σ(1 + ε)√n logn is

Fn(nm− σ(1 + ε)
√

n logn) ∼ Φ(−(1 + ε)
√

log n)

∼ (2πn(1+ε) log n)−1/2 as n→∞ (1.30)
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by Theorem 1 on p. 549 of Feller [7].

Suitor bα√nc has a comparable chance to win, because he arrives at time α√n+ o(√n).
Hence the probability that suitor bα√nc arrives before time nm − σ(1 + ε)

√
n logn is also

given by (1.30). Roughly speaking, the first b√nc suitors each have probability slightly less
than 1/

√
n of winning.

On the other hand, suitor bσ
√
n lognc has a significantly smaller chance to win, be-

cause he arrives at time σ
√
n log n+ o(

√
n logn). So the probability that suitor bσ

√
n lognc

completes his n feats by time nm− σ(1 + ε)√n log n is approximately

Fn(nm− σ(2 + ε)
√

n log n) ∼ (−(2 + ε)
√

log n)

∼ (2πn2+ε logn)−1/2 as n→∞ . (1.31)

Remark 1.8. We have indicated that our model corresponds to a single G/G/∞ queue
with service times that are the sum of n i.i.d. random variables. In contrast, suppose that

instead the service times are distributed as nV (corresponding to one amazing feat for each

suitor, which really is more in the spirit of [17]), so that Fn(y) = F (y/n), where F is the cdf

of V . In the case of Poisson arrivals, we can apply (1.25) to deduce that

P (Tn > nt) = exp(−n
∫ t

0
F (y)dy) , (1.32)

so that

P (Tn > nt)1/n = exp(−
∫ t

0
F (y)dy) , (1.33)

n−1 log(P (Tn > nt)) = −
∫ t

0
F (y)dy , (1.34)

and

n−1 logP (Tn − nm > −xnα)→ −
∫ m

0
F (y)dy as n→∞ (1.35)

for 0 < α < 1. The expression (1.34) and the limit (1.35) should be compared to (1.20).

Theorem 3 describes the large deviations behavior of the right tail probabilities of Tn. Our

final result describes the large deviations behavior of the left tail probabilities of Tn. Theo-

rem 3 concerns deviations of order
√
n logn from the “asymptotic mean” nm − σ

√
n log n.

Our next result concerns deviations of order n. Notice that there is an asymmetry in the

8



conditions. Theorem 3 depends on the large deviations behavior of A(t), whereas the next

result depends on the large deviations behavior of the Vij random variables. Here we do not

need to directly assume that Vij are i.i.d.

Theorem 6. If Ui are i.i.d. with P (0 < U1 <∞) > 0, {Vij : j ≥ 1}, i ≥ 1, are identically
distributed, and for all x in a neighborhood of ε > 0,

n−1 logP





n
∑

j=1

Vij < n(m− x)


→ γ(−x) as n→∞ , (1.36)

where γ is continuous in a neighborhood of ε, then

n−1 logP (Tn ≤ n(m− ε))→ γ(−ε) as n→∞ . (1.37)

2. Proof of Theorems 4 and 5

For any cdf H, let Hc be its complementary cdf, i.e., Hc(x) = 1−H(x). Let A(t) count
the number of arrivals in [0, t]. We start with a direct proof of (1.15).

Lemma 1. With a Poisson arrival process, (1.25) holds.

Proof. We condition on the arrival times and then exploit the fact that the conditional

distribution of each arrival time given A(x) arrivals in [0, x] is uniform in [0, x] (in the fifth

line below) to obtain

P (Tn > x) = E[P (Tn > x|Ak, k ≥ 1)]

= E[Π∞k=1F
c
n(x− Ak)]

= E[Π
A(x)
k=1 F

c
n(x− Ak)]

= E[E[Π
A(x)
k=1 F

c
n(x− Ak)|A(x)]]

= E[(
∫ x

0
F cn(x− y)dy/x)A(x)]

= exp(λx(
∫ x

0
F cn(x− y)dy/x− 1))

= exp(−λ
∫ x

0
Fn(y)dy) .

�
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Under the assumptions, we can exploit a refined CLT, Theorem 3 on p. 541 of Feller [7],

to obtain

Fn(nm+ σz
√
n) = Φ(z) +

E(V −m)3
6σ3
√
n
(1− z2)φ(z)

+
R4(z)φ(z)

n
+ o(n−1) as n→∞ (2.1)

uniformly in z, where R4 is a polynomial.

From (1.15) and (2.1), we obtain

P (Tn − nm > xσ
√
n) = exp(−

∫ nm−xσ√n

0
Fn(y)dy)

= exp(−σ
√
n
∫ −x

−(m/σ)√n
Fn(nm+ zσ

√
n)dz) , (2.2)

where

√
n
∫ −x

−(m/σ)√n
Fn(nm+ σz

√
n)dz =

√
n
∫ −x

−(m/σ)√n
Φ(z)dz

+
E[(V −m)3]
6σ3

∫ −x

−(m/σ)√n
(1− z)2φ(z)dz

+ n−1/2
∫ −x

−(m/σ)√n
R4(z)φ(z)dz + o(n

−1/2)(m
√
n− x) as n→∞ . (2.3)

Since
∫ −x

−(m/σ)√n
|R4(z)|φ(z)dz = O(1) as n→∞ , (2.4)

we obtain the desired conclusion.

To establish the asymptotic relation in (1.23), note that

∫ −x

−∞
Φ(z)dz =

∫ ∞

x
Φc(z)dz

=
∫ ∞

x
(y − x)φ(y)dy = φ(x)− xΦc(x) ∼ φ(x)/x2 as x→∞ .

Finally, Theorem 5 follows by first a change of variables given the mean, i.e.,

∫ nm+σx2
√
n

nm+σx1
√
n
Fn(y)dy = σ

√
n
∫ x2

x1
Fn(nm+ yσ

√
n)dy ,

10



and then the CLT, i.e.,

Fn(nm+ xσ
√
n)→ Φ(x) as n→∞ .

3. Proof of Theorem 3

We use stochastic bounds on the renewal counting function. Let ≤st denote stochastic
order on

� k or
� ∞ with the usual order: x ≤ y if xk ≤ yk for all k. Stochastic order X ≤st Y

holds if Eh(X) ≤ Eh(Y ) for all nondecreasing real-valued h for which the expectations are

well defined; e.g., see Chapter IV of Lindvall [13].

Lemma 2. For c > 0,

{A(ck)− A(c(k − 1)) : k ≥ 1} ≤st {1 + Ak(c) : k ≥ 1}

where Ak, k ≥ 1, are i.i.d. copies of A.

Proof. We apply Theorem 5.8 of Lindvall [13]. For each k, A(ck)−A(c(k−1)) is less than
or equal to 1 plus the number of points after the first point in the interval (c(k − 1), ck],
which in turn is stochastically less than 1 + Ak(c), regardless of the history of A before the

left endpoint c(k − 1). Inductively, we can choose Ak independent of A1, . . . , Ak−1. Hence,
the conditions of Theorem 5.8 of [13] are satisfied.

�

Let x ∧ y = min{x, y}.

Lemma 3. If G defined by (1.19) is a proper cdf, i.e., if Gc(t)→ 0 as t→∞, then

{A(ck)− A(c(k − 1) : k ≥ 1} ≥st {Ak(c− (Xk ∧ c)) : k ≥ 1} ,

where {Ak} and {Xk} are independent i.i.d. sequences with Ak distributed as A and Xk
having cdf G in (1.19).

11



Proof. Again we apply Theorem 5.8 of Lindvall [13]. Proceeding inductively, consider the

interval (c(k − 1), ck]. Conditioned on A before c(k − 1), the first point to the right of
c(k − 1) is stochastically less than Xk, by virtue of (1.19). Hence

A(ck)− A(c(k − 1)) ≥st Ak(c− (Xk ∧ c))

where Xk and Ak are chosen independently of X1, . . . , Xk−1 and A1, . . . , Ak−1. Hence, the

conditions of Theorem 5.8 of [13] are satisfied.
�

We exploit a basic relation for the tail probability for any arrival process.

Lemma 4. For any arrival process,

P (Tn > x) = E exp(
∫ x

0
log(F cn(x− y))A(dy)) . (3.1)

Proof. Note that

P (Tn > x) = E[Π∞k=1F
c
n(x− Ak)]

= E exp(
∞
∑

k=1

log(F cn(x− Ak))

= E exp(
∫ x

0
log(F cn(x− y))A(dy)) .

�

We exploit the moment condition EV 4 to obtain an inequality on the tail probability of

Fn.

Lemma 5. If EV 4 <∞, then

Fn(nm− xσn1/2 − σn3/4) ≤M/n

for some constant M.

Proof. Note that

Fn(nm− xσn1/2 − σn3/4) = P (
n
∑

j=1

V1j ≤ nm− xσ1/2 − σn3/4)

= P

(
∑n
j=1 V1j − nm
σ
√
n

≤ −x− n1/4
)

≤ E

(
∑n
j=1 V1j − nm
σ
√
n

)4
1

(x + n1/4)4
≤ M

n

12



for some M .
�

Let O(n−1) be a deterministic quantity of order n−1. We now apply Lemmas 4 and 5 to

obtain

P (Tn > nm− xσ
√
n) = E exp(

∫ nm

0
log(F cn(nm− xσ

√
n− y))A(dy))

= E exp(
∫ σn3/4

0
log(F cn(nm− xσ

√
n− y))A(dy)

+
∫ nm

σn3/4
log(1− O(n−1))A(dy))

= E exp(
∫ σn3/4

0
log(F cn(nm− xσ

√
nn− y))A(dy))

+O(n−1)(A(nm)− A(σn3/4))) . (3.2)

We now construct upper and lower bounds for (3.2). Let bxc be the greatest integer less
than or equal to x. First, we apply (2.1) and Lemma 2 to construct a lower bound. In

particular,

P (Tn > nm− xσ
√
n) ≥

E exp(
bn1/4hc
∑

k=0

log(F cn(nm− xσ
√
n− (1 + k)hσ

√
n))(A((k + 1)hσ

√
n)

− A(khσ
√
n))) + O(n−1)(A(nm)− A(σn3/4)))

= E exp(
bn1/4hc
∑

k=0

log(Φc(−x− (1 + k)h) +O(n−1/2)))(A(k + 1)hσ
√
n)

− A(khσ
√
n)) +O(n−1)(A(nm)− A(σn3/4)))

≥ E exp(
bn1/4c
∑

k=0

log(Φc(−x− (k + 1)h) +O(n−1/2))(1 + Ak(hσ
√
n))

13



+O(n−1)(1 + A0(nm)) , (3.3)

where Ak, k ≥ 0, are i.i.d. versions of the renewal process A.
Turning to the upper bound, we apply (2.1) and Lemma 3 to get, for some integer M ,

P (Tn > nm− xσ
√
n) ≤

E exp(
bM/hc
∑

k=0

log(F cn(nm− xσ
√
n− khσ

√
n)(A((k + 1)hσ

√
n)− A(khσ

√
n))

+O(n−1)(A(nm)− A(σn3/4))

≤ E exp(
bM/hc
∑

k=0

(log(Φc(−x− kh)) +O(N−1/2))Ak(hσ
√
n−Xk ∧ hσ

√
n)

+O(N−1)(A0(nm) . (3.4)

Next, we take logarithms and divide by
√
n in (3.3) and (3.4), and then let n → ∞ using

(1.17), to get

∞
∑

k=0

hσψA(log(Φ
c(−x− (k + 1)h))) ≤ limn→∞n−1/2 logP (Tn > nm− xσ

√
n)

≤ limn→∞n−1/2 logP (Tn > nm− xσ
√
n) ≤

bM/hc
∑

k=0

hσψA(log Φ
c(−x− kh))) . (3.5)

Finally, we let h ↓ 0 in (3.5) to obtain (1.20). The direct Riemann integrability follows partly
from (1.14) for ψA. In addition to (1.14), integrability of ψA(log(Φ

c(−x−y))) holds, because

log(Φc(−y)) ∼ log(1− φ(y)/y) ∼ −φ(y)/y as y →∞ ,

so that

ψA(log(Φ
c(−y))) ∼ −ψ′A(0)φ(y)/y as y →∞ .

14



4. Proof of Theorem 2

Using the basic identity in Lemma 4 and Theorem 1 on p. 549 of Feller [7] (for the third

line below), we have for any ε > 0

P (Tn > nm− σ(1− ε)
√

n log n)

= E exp(
∫ nm

0
log(F cn(nm− σ(1− ε)

√

n log n− y))A(dy))

≤ E exp(
∫ σ
√
n

0
log(F cn(nm− σ(1− ε)

√
n log n− σ

√
n))A(dy))

= E exp(
∫ σ
√
n

0
log(Φc(−(1− ε)

√

log n− 1)(1 + o(1))A(dy))

= E exp(−Φ(−(1− ε)
√

logn− 1)(1 + o(1))A(σ
√
n)) ,

but

√
nΦ(−(1− ε)

√

logn− 1) ∼
√
n exp[(−(1− ε)

√

log n+ 1)2/2]/
√

2π(1− ε) logn

≈ n(1/2−(1−ε)
2/2)

√

2π(1− ε) logn
→∞ as n→∞ .

Also, by the SLLN assumption, A(σ
√
n)/
√
n → 1/EU1 ≡ 1 as n → ∞. Hence, by the

bounded convergence theorem,

P (Tn > nm− σ(1− ε)
√

n log n)→ 0 as n→∞ (4.1)

for each ε > 0.

On the other hand, for ε > 0, we have

P (Tn > nm− σ(1 + ε)
√

n logn)

= E exp(
∫ nm

0
log(F cn(nm− σ(1 + ε)

√

n logn− y)A(dy))

= E[exp(
∫ σn(1+ε)/2

0
log(F cn(nm− σ(1 + ε)

√

n logn− y)A(dy)
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exp(
∫ nm

σn(1+ε)/2
log(F cn(nm− σ(1 + ε)

√

n log n− y)A(dy))] .

First,

∫ σn(1+ε)/2

0
log(F cn(nm− σ(1 + ε)

√

n logn− y)A(dy)

≥ log(F cn(nm− σ(1 + ε)
√

n logn)A(σn(1+ε)/2)

= −(1 + o(1))Φ(−(1 + ε)
√

logn)A(σn(1+ε)/2)→ 0 as n→∞ ,

because σ−1n−(1+ε)/2A(σn(1+ε)/2)→ 1 as n→∞ by the SLLN assumption, and

n(1+ε)/2Φ(−(1 + ε)
√

log n) ∼ n(1+ε)/2
exp(−(1 + ε)2 logn)
(1 + ε)

√
2π log n

∼ n−ε/2−ε
2/2

(1 + ε)
√
2π log n

→ 0 as n→∞ .

Next, for the other term, we invoke the assumption that V has a finite moment generating

function. For appropriate θ and for y ≤ σn(1+ε)/2,

Fn(nm− σ(1 + ε)
√

n logn− y)

≤ P ([
n
∑

i=1

Vi − nm]/σ
√
n ≤ −(1 + ε)

√

log n− nε/2)

≤ E exp(θ

∣

∣

∣

∣

∣

n
∑

i=1

Vi − nm
∣

∣

∣

∣

∣

/σ
√
n) exp(−θ(nε/2 + (1 + ε)

√

log n))

∼ E exp(θ|N(0, 1)|) exp(−θ(nε/2 + (1 + ε)
√

logn)) .

Hence,

∫ nm

σn(1+ε)/2
log(F cn(nm− σ(1 + ε)

√

n log n− y))A(dy))

≥ (1 + o(1))E exp(θ|N(0, 1)|) exp(−θnε/2)A(nm) → 0 as n→∞ .
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Hence, by the bounded convergence theorem again,

P (Tn > nm− σ(1 + ε)
√

n logn)→ 1 asn→∞ . (4.2)

Since ε was arbitrary, combining (4.1) and (4.2) yields the desired result.

5. Proof of Theorem 1

Just as in the proof of Theorem 2, apply Theorem 1 on p. 549 of Feller [7]. For the first

statement, note that

P (Tn > nm− (1 + ε)σ
√

2βn logn) = 1− F cn(nm− (1 + ε)σ
√

2βn logn)αn
β

= 1− (1− Fn(nm− (1 + ε)σ
√

2βn logn)αn
β

,(5.1)

where

Fn(nm− (1 + ε)σ
√

2βn logn) ∼ Φ(−(1 + ε)
√

2β logn)

∼ n−β(1+ε)
2

(2π(1 + ε)2β log n)−1/2 as n→∞ . (5.2)

Since (1+ cn/n)
n → ec as n→∞ if cn → c as n→∞, the tail probability in (5.1) converges

to 0 for any ε < 0 and 1 for any ε > 0. If there are instead α
√

nβ log n suitors initially, then

the same argument leads to the nondegenerate limit in (1.6).

6. Proof of Theorem 6

There exists c1 > 0 and c2 > 0 such that P (c1 < U1 < c2) > 0. To establish a lower

bound, it suffices to consider a single suitor. Note that

P (Tn ≤ n(m− ε)) ≥ P



A1 +
n
∑

j=1

V1j ≤ n(m− ε)




≥ P





n
∑

j=1

V1j ≤ n(m− ε)− A1, A1 < c2





≥ P (U1 < c2)P





n
∑

j=1

V1j ≤ n(m− ε)− c2




≥ P (U1 ≤ c2)P





n
∑

j=1

V1j ≤ n(m− η)



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for η > ε and n sufficiently large. Taking logarithms, dividing by n, sending n to ∞, and
then letting η decrease to ε yields the desired lower bound.

Turning to the upper bound, it suffices to consider n2 suitors. In particular, note that

P (Tn ≤ n(m− ε) = P



 min
1≤i≤A(n(m−ε))







Ai +
n
∑

j=1

Vij







≤ n(m− ε)




≤ P



 min
1≤i≤A(n(m−ε))







n
∑

j=1

Vij







≤ n(m− ε)




≤ P



 min
1≤i≤n2







n
∑

j=1

Vij







≤ n(m− ε)


+ P (A(n(m− ε)) > n2)

≤ n2P





n
∑

j=1

V1j ≤ n(m− ε)


+ P (A(nm) > n2) ,

but

P (A(nm) ≥ n2) = P (An2 ≤ nm)

≤ P





n2
∑

i=1

c1I(Ui > c1) ≤ nm



 = P (Binomial (n2, p) ≤ rn) ,

where p = P (Ui > c1) and r = m/c1. It is easily see that

n−1 logP (Binomial (n2, p) ≤ rn)→ −∞ as n→∞ ,

from which the upper bound follows.
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