Improving Service by Informing Customers

About Anticipated Delays

Ward Whitt
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Florham Park, New Jersey 07932-0971

his paper investigates the effect upon performance in a service system, such as a
telephone call center, of giving waiting customers state information. In particular, the
paper studies two M/M/s/r queueing models with balking and reneging. For simplicity, it
is assumed that each customer is willing to wait a fixed time before beginning service.
However, customers differ, so the delay tolerances for successive customers are random. In
particular, it is assumed that the delay tolerance of each customer is zero with probability 8,

~and is exponentially distributed with mean &' conditional on the delay tolerance being

positive. Let N be the number of customers found by an arrival. In Model 1, no state
information is provided, so that if N = s, the customer balks with probability B; if the
customer enters the system, he reneges after an exponentially distributed time with mean o™
if he has not begun service by that time. In Model 2, if N = s + k = s, then the customer is
told the system state k and the remaining service times of all customers in the system, so that
he balks with probability 8 + (1 — 8)(1 — g), where g, = P(T > S;), T is exponentially
distributed with mean ™, S is the sum of k + 1 independent exponential random variables
each with mean (sp) ™", and ™" is the mean service time. In Model 2, all reneging is replaced
by balking. The number of customers in the system for Model 1 is shown to be larger than that
for Model 2 in the likelihood-ratio stochastic ordering. Thus, customers are more likely to be
blocked in Model 1 and are more likely to be served without waiting in Model 2. Algorithms
are also developed for computing important performance measures in these, and more
general, birth-and-death models.

(Service Systems; Telephone Call Centers; Balking; Reneging; Abandonments; Retrials; Birth-and-
Death Processes; Communicating Anticipated Delays)

1. Introduction

In this paper we investigate alternative ways to man-
age a service system. We have in mind a telephone call
center staffed by a group of operators, but there are
other possible applications, e.g., internet access. We
introduce birth-and-death (BD) stochastic process
models that can be used to study the performance of,
and demonstrate the advantage of: (1) allowing wait-
ing before beginning service, and (2) communicating
anticipated delays to customers upon arrival (or pro-
viding state information to allow customers to predict
delays).
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A frame of reference is the classical loss system, in
which there are s servers working in parallel and no
extra waiting space. Allowing waiting helps to avoid
blocking and thus helps to serve more customers.
However, in many loss systems with telephone access,
blocked customers can retry rapidly and easily be-
cause of automatic redialers. When customers can
retry rapidly, and elect to do so, the system without a
provision for waiting tends to behave like the system
with a provision for waiting. In that situation, the
service provider serves many customers and avoids
the cost of maintaining a queue. However, we contend
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that it is usually better for the service provider to
allow for waiting and directly manage it. Retrying
typically imposes costs on both the customers and the
service provider. First, the customer must expend time
and effort retrying. Second, even unsuccessful at-
tempts often consume resources of the service pro-
vider. Typically, some resources are required to pro-
cess each request for service, whether or not it is
successful. Thus, the service provider's processing
capacity may be reduced by having to handle many
unsuccessful attempts. Moreover, with retrials, the
first-come, first-served (FCFS) service discipline is lost.
The ECFS discipline is often strongly preferred by
customers because of its inherent fairness. The ran-
dom order of service associated with retrials also
makes the waiting time before beginning service more
variable, which tends to be detrimental. Thus, there
are several reasons motivating service providers to
allow for waiting,

Given that the service provider does allow for
waiting, there are two alternatives. The service pro-
vider may either communicate anticipated delays to
customers upon arrival or not. We contend that, once
the service provider has decided to allow for waiting,
it is usually better to inform customers about antici-
pated delays, assuming that there is the capability of
doing so, which is more and more becoming the case,
e.g., see Rappaport (1996). The primary reason for
informing customers about anticipated delays is to
increase custbmer satisfaction and, thus, obtain more
repeat business, In the BD models, this advantage
would be reflected by a higher arrival rate. However,
we do not attempt to model how the arrival rate
increases.

We present BD models that enable us to study
system performance in both situations. If the service
provider does communicate anticipated delays, then
the customers are more likely to balk when all servers
are busy (leave immediately upon arrival) than renege
(leave after waiting for some time). We show how the
BD models can be analyzed to describe and compare
these alternatives.

It is common practice to resirict attention to the
special case of the M/M/s/r model, which has s
servers and r extra waiting spaces. Indeed, it is com-
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mon to use only the Erlang B (loss) model (r = 0) or
the Erlang C (delay) model (* = <), but none of these
alternatives account for balking or reneging. How-
ever, it is actually not difficult to account for balking
and reneging in a BD model, and it is often very
important to do so. By having a BD model that
incorporates both possibilities, it is possible to evalu-
ate the alternatives.

The way to calculate the steady-state distribution of
a general BD process is quite well known. We go
beyond that initial step by showing how to compute
the probability that a customer receives service, the
probability that a customer reneges, and the distribu-
tions and first two moments of the conditional re-
sponse time given that service is completed and the
conditional time to renege given that the customer
reneges. These descriptions of the conditional distri-
butions are helpful because the conditional distribu-
tions can differ significantly from the unconditional
distributions.

‘These general BD models also can be used to study
complex networks of service facilities. As in Whitt
(1985), Kelly (1991) and Ross (1995), the BD model can
serve as the fundamental building block for a reduced-
load approximation for a'network of service facilities.
Then the overflows from one facility due to blocking,
reneging or balking can become part of the arrival rate
to other facilities. The overall performance can be
determined by iteratively solving a system of nonlin-
ear equations. The computational method is essen-
tially the same as for the previously studied pure-
blocking systems, but now the approach can be used
for ‘systems with balking and reneging as well as
blocking. We intend to discuss such reduced-load
approximations in a subsequent paper.

The BD model simplicity makes it possible to de-
scribe performance in detail using an elementary
algorithm, but the model requires Markov assump-
tions such 'as exponential service-time distributions
that may well be seriously violated in practice. The
analytical BD model nevertheless can provide impor-
tant insight. However, to actually predict customer
delays in system dp‘eration, it may be better not to use
the BD model; then it is possible to exploit nonexpo-
nential service-time distributions to make better
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predictions; see the companion paper Whitt (1999).
For further discussion about queue management and
what to tell customers, see Hui and Tse (1996), Katz et
al. (1991), Taylor (1994) and references therein.

The rest of this paper is organized as follows. In §2
we present Model 1, which is intended to represent
the case in which no state information is communi-
cated to customers. Customers only learn whether or
not they can enter service immediately upon arrival.
We regard Model 1 as the traditional BD model to
describe performance when some arrivals balk and
waiting customers renege after an exponential time.
Model 1 can represent both the loss model with rapid
retrials and the delay model for the case in which the
service provider allows waiting, but provides no ad-
ditional state information. With retrials, we do not try
to directly represent the retrials as in Chapter 7 of
Wolff (1989). Instead, assuming that relatively rapid
retries are possible, we consider retrying customers to
be waiting customers. However, we assume the FCFS
service discipline, so that our analysis in §2 does not
capture the random order of service associated with
retrials.

In §3 we introduce Model 2, an alternative BD
model to describe the performance when the service
provider informs customers about anticipated delays
before beginning service or provides state information
so that the arriving customers can make this predic-
tion. We relate the state-dependent balking in this
setting to the reneging rate in §2. The principal change
from §2 to §3 is to replace reneging with balking. In §3
we also introduce a more general BD model that
includes both balking and reneging. For the general
BD model, we develop algorithms to compute the
probabilities of receiving service, blocking, balking
and reneging. We also develop algorithms to compute
the conditional distributions of the time to receive
service and the time to renege given each outcorne.

In §4 we make stochastic comparisons between
Models 1 and 2, assuming common arrival rates,
showing that state-dependent balking instead of re-
neging (at comparable rates) leads to fewer customers
in the system in steady state. In §5 we present some
numerical examples giving explicit comparisons. We
obtain our numerical results by numerically solving
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for the performance measures in the BD models. These
examples show that the performance in the two sce-
narios is often remarkably similar (again, assuming
common arrival rates). The major difference is that,
with balking instead of reneging, customers who do
not receive service do not waste time waiting. We also
use the numerical examples to show the economies of
scale (having fewer groups of larger numbers of
servers instead of more groups of smaller numbers of
servers).

In §86 and 7 we discuss ways to estimate model
parameters and validate the BD models. Finally, in §8
we briefly discuss other possible deviations from the
model assumptions and ways to approximately cope
with them; e.g.,, we discuss ways to approximately
capture the performance impact of occasional extra
long service times. We refer to Boxma and de Waal
(1995) and Falin (1990) for accounts of the literature on
queues with reneging and retrials.

2. When Customers Receive No

Information

In this section we review a reasonably well known BD
model for the case in which the system state is not
communicated to arriving customers, which we call
Model 1; e.g., see Chapter 2 of Gross and Harris (1985)
and Chapter 4 of Heyman and Sobel (1982). If a server
is not immediately available, then the arriving cus-
tomer balks (leaves immediately) with probability B
and waits with probability 1 — 8. If a server is not
immediately available and the customer does not balk,
then he reneges (abandons later) after an exponential
time with mean ', if he has not yet begun service.
We assume that the system state is not known by
customers, so that the parameters « and J cannot
depend directly on the number of customers in the
system (beyond whether the servers are all busy or
not). Once a customer starts service, he stays until
service is completed. (It is easy to modify the BD
model] if this assumption is not reasonable.)

It is useful to consider how individual customer
decision making can lead to the balking and reneging
model above. To support what we do, we make a
simple assumption about customer behavior. We as-
sume that each customer is willing to wait a fixed time
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before beginning service, called the delay threshold.
However, different customers may have different de-
lay thresholds, just as different customers have differ-
ent utility functions, so that we assume that successive
customers are willing to wait random times that are
independent and identically distributed. (Customers
are making their decisions deterministically. The de-
lay thresholds are random because the customers with
different delay thresholds are appearing at random.)
With probability B, a customer is unwilling to wait
any amount of time, and so will balk. Conditional on
the customer being willing to wait at all, we assume
that the customer is willing to wait a random time T.
We assume that T has an exponential disttibution with
mean o . (We need to assume that T has an exponen-
tial distribution in order to obtain the Markov prop-
erty in the BD model.) When no state information is
provided, we assume that the customer waits if nec-
essary until his delay threshold, and then reneges if
service has not yet been provided.

We now specify the rest of the BD model. Let the
arrival process be a Poisson process with constant rate
A. Let there be s servers, a waiting room of size » and
the FCFS discipline. (The total system capacity is thus
s + r.) An atrival finding s + # customers present is
blocked (lost without retrying). Let the service times be
iid. exponential random variables with mean u™.
Then the birth (arrival) and death (departure) rates
defining the BD model are, respectively,

A, O0=k=s5-1,
)‘:{)\(1—6), ssk=ss+r-1, @D
and
ku, 1=k=s-1,
’“Lkz{s,vb—k(k"—s)a, s=k=<s+r. (2.2)

When the system state is k, ie., when there are k
customers in the system, the time until the next event
is exponentially distributed with mean (A, + )7
the event is an arrival with probability A./(Ax + ui);
otherwise it is a departure. When k > s, some
departures are service completions, while others are
abandonmients (reneging) and blocked arrivals. The
long-run constant arrival rate A must be the sum of the
rates of service completion, blocking, balking, and
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reneging. We do not discuss how to analyze this BD
model here because it is a special case of the model
introduced in the next section, which we do analyze.

3. When Customers Receive

Additional Information

In this section we consider the case in which custom-
ers learn the system state upon arrival. The customers
may also receive updates while they are waiting. The
customers might be told the number of customers
ahead of them in line at all times (e.g., by displays on
a monitor with access through a personal computer)
and/or they might receive periodic predictions of
their remaining time to wait before beginning service
(e.g., by telephone announcements with access
through a telephone).

Assuming that customers know their preferences, it
is natural that customers would respond to this addi-
tional information when all servers are busy by replac-
ing reneging after waiting with state-dependent balk-
ing; ie., customers should be able to decide
immediately upon arrival whether or not they are
willing to join the queue and wait to receive service.
Having joined the queue, customers should be much
more likely to remain until they begin service. Reneg-
ing is even less likely if the customer can see that the
remaining time to wait is steadily declining.

Hence in this section we consider an alternative BD
model to represent state-dependent balking instead of
time-dependent reneging. Since there may still be
some reneging in this new situation with additional
state information (e.g., because customers change their
minds or because progress in the line is slower than
antlclpated) we also include reneging in the model.
However, we are especially interested in the compar-
ison between Model 1 in §2 with reneging and the
special case of the general BD model in this section in
which the reneging is replaced entirely by state-
dependent balking, which we call Model 2. We make
stochastic comparisons between Models 1 and 2 in §4.

As before, there is a Poisson arrival process with
rate A and s servers, each with exponential service
times having mean p ™. There is a waiting room of size
r and the FCFS service discipline. An arrival encoun-
tering a full system is blocked.
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We now want to specify how customers respond
to the additional state information when all servers
are busy. This is a difficult modeling step, because
there are several different kinds of state information
that might be provided and, for any one, we must
discern the human response. We shall first consider
the case in which the new customer learns upon
arrival what will be his required waiting time. In
that situation, we assume that the customer balks if
the required waiting time exceeds his (random)
threshold; otherwise he stays to receive service. As
in §2, the customer is unwilling to wait with prob-
ability B8 and, given that he is willing to wait, has a
delay threshold T which is exponentially distrib-
uted with mean a”'. If the number seen by the
arrival (not including the arrival) is less than or
equal to s — 1, then the new arrival enters service
immediately. If the number seen by the arrivalis s +
k for 0 = k = r — 1, then the arrival may elect to
balk (leave immediately) or join the queue. Parallel-
ing §2, each customer finding all servers busy balks
with probability 8. However, the customer may also

elect to balk depending on the system state. To be

concrete, we suppose that the arriving customer
learns k and the remaining service time of each
customer in the system, and that the arriving cus-
tomer acts as if all these customers will remain until
they receive service; i.e., no allowance is made for
reneging of customers ahead of the new customer.
Then, the customer will join if his random delay
threshold T exceeds the, now known, time until he
is scheduled to begin service, assuming no reneging
ahead of him. Thus, we stipulate that the customer
joins with the probability that a server becomes free
before he would abandon. Let S, be the time re-
quired from arrival until a server first becomes
available for this customer, as a function of k,
assuming that departures occur only by service
completions (not considering reneging by customers
in queue ahead of the current customer). Then the
arrival finding s + k customers in the system upon
arrival (not counting himself) joins with probability

G=P(T>8S), 0=k=r-1. (3.1)

Even though the customer will learn the remain-
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ing service times, what the customer will learn is
unknown in advance, so that 5; in (3.1) is random.
To make (3.1) a feasible computation, we assume
that the balking decisions of successive customers
are independent. In fact, this is not correct if cus-
tomers learn remaining service times. However, the
independence seems to be a reasonable approxima-
tion.

Alternatively, we can assume that customers learn
only the system state k. Then we can just directly
assume that (3.1) represents the balking behavior.
Since T is exponential with mean o, the state-
dependent balking closely parallels the reneging in
Model 1.

Since (i) Sy and T are independent, (ii) Sy has the
distribution of the sum of k + 1 exponentials each
with mean (sp)™', and (iii) T has an exponential
distribution with mean o', we can exploit Laplace
transforms to calculate g, in (3.1) explicitly. For this
purpose, let g,(t) denote the probability density of S;.
Then

sp \F
Su+a) - (3.2)

0 = J e g (t)dt = Ee % = (
0

We also indicate several alternatives to (3.1) and
(3.2). The first alternative is intended to represent the
case in which the service provider communicates the
expected delay when there are s + k customers in the
system. Then we would replace S, in (3.1) by its mean,
i.e., we would use

G, =P(T>ES) =e «®tlise =0, (3.3)

Formula (3.3) is exact if we stipulate that the customer
acts as if the mean ES; were the actual delay, which
may be a reasonable approximation.

RemMarK. Note that when k is large, 5, will tend to
be relatively close to ES; by the law of large numbers,
so that (3.2) and (3.3) should not differ greatly. Di-
rectly, we can see that, if k and s are suitably large,
then (3.2) will be close to (3.3), i.e., using the approx-
imation (1 — (x,/n))" ~ e~ (which is asymptotically
correct as n — o if x, = x as n — ),
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e k+1 (4 o )k+1
su+ o su+ o

_ k+ Da )k“
—( T (k+ Disp + @)

e p "Wt Da/bnta) o o~k Da/sp

(3.4)
In general, §, = q,. O

The analysis leading to (3.2) and (3.3) suggests that
the probability a customer joins the queue (does not
balk) when he finds s + k in system should be of the
general form ¢n' for parameters £and 7 withl=¢£=<1
and 0 = 1 =< 1. In practice the balking probablhty as a
function of k needs to be estimated. This balking
probability should depend on the information sup-
plied to the customer.

We now define a general BD model representing
state-dependent balking. Since there may still be some
reneging, we include state-dependent reneging as
well. Let a customer with j — 1 customers ahead of
him in queue renege at a rate 8. Then the total
reneging rate when there are s + k customers in the
system is

(3.5)

The birth (arrival) and death (departure) rates for
the general BD model are, respectively,

A, 0=k=s-1, ‘
M= {)‘(1“3)%9, ssk=s+r-1, (3.6)
and
k“/ l=k=s,
Mkz{SP«'FSk_S, s+l<k=<s+r ©7)

In (3.7) we have allowed general state-dependent
reneging rate for each waiting customer, i, but we
will usually consider the special case in which &
= k&'. Then 8-, = (k — $)8’. Model 2 is the special
case of (3.6) and (3.7) with 8, = 0. In Model 2, the
customer delay parameter o enters in via g, as defined
in (3.2). In contrast, Model 1 has 4, = 1 and 8, = k&’
with & = a (the same « as for Model 2).

We now indicate how to numerically solve for the
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steady-state probabilities p, associated with the gen-
eral BD model. Since the larger probabilities should be
near s (assuming that s is reasonably well chosen), it is
convenient to solve for the steady-state distribution
recursively starting at s. Let x, = 1,

x - )‘s+kxs+k
s Mstr+1
)\(1 - B)qus+k
—W, O=sk=r-1, (3.8)
and
gy = kR (3.9)
k-1 /\k~1 I\ ’ = A =0 .
Then, let
s+7
y=2 % (3.10)
k=0
and
=%y, 0<k<s+r. (3.11)

So far the results have been quite standard, but now
we go on to compute the probability of completing
service and the mean, variance and full distribution of
the conditional response time (time to complete ser-
vice) given that service is completed. We also compute
the probability that a customer reneges and the mean,
variance, and full distribution of the conditional time
to renege given that the customer reneges.

Our approach is to condition on the state seen by
artivals and then average over all the possibilities.
Since the arrival process is Poisson, the state seen by
arrivals is the same as at an arbitrary time by the
Pmsson—Arnvals—See-Tlme—Average (PASTA) proper-
ty; see §5.16 of Wolff (1989). Conditional on the arrival
seeing s + k customers in the system upon arrival, it
suffices to consider a pure-death process starting at
level s + k + 1, ignoring all future arrivals. The times
until successive deaths in the pure-death process are
exponential with state-dependent parameters.

Let y; be the probability that the kth'customer in
line abandons in the next departure event and let m;,
be the mean time to the next departure event, in both
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cases considering only the first s + k customers in the
system; i.e.,

8%

Y= T, 3.12)

and mk:S——[.L+ 5.

Then the probability that customer s + k eventually
receives service is

=1 =y = yen). . (1= 1)

for v, in (3.12). Then the probability that a new arrival
eventually completes service, is

(3.13)

P(S) =

s—1 r—=1
z pk) + z ps+k(1 - B)rik+1~ (3'14)

k=0 k=0

Let C be the response time. (We let C be 0 when
service is not completed.) Then, using properties of
the exponential distribution, we obtain

s—1 1 r—1 1 k+1
EC={2p] =+ 2 pourll = BVglpsa| =+ 2 m;
k=0 M 12

k=0 j=1
(3.15)
and
s—1
2
EC*= Z Pk) —2
(k=0 K
r—1
+ 2 Pl = BgTear(Vies + ML) (3.16)
k=0
where
1 k+1
Vi =3+ 2 m] (3.17)
j=1
and
k+1
M = % > m,. (3.18)

j=1

Then the first and second moments of the conditional
time to complete service given that service is com-
pleted are
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E(C|S) = EC/P(S) and E(C¥S) = EC?/P(S).
(3.19)

The conditional variance and standard deviation are
then

Var(C|S) = E(C?S) — (E(C|S))? (3.20)
and
SD(C|S) = /Var(C|S). (3.21)

Now let &(z) = Ee™* be the Laplace transform of C
(Laplace-Stieltjes Transform of its cdf). Paralleling
(3.15), we have

o (i)

r—1

+ 2 Ps+k(1 - B)qkrkﬂakﬂ(z)/

k=0

(3.22)

where

k+1 -1
Bpa(z) = (Mﬁ Z) H (ml-‘ml] — Z) . (323)

j=1

We can now easily calculate P(C > t) for any desired
t by numerically inverting its Laplace transform
(1 = 2(2))/z, e.g., by using the Fourier-series method
described in Abate and Whitt (1995). The associated
conditional response-time distribution is

P(C > t|S) = P(C > t)/P(S). (3.24)

Let R be the event that an arrival eventually
reneges and let A be the time to renege. (Let A = 0
when the customer does not renege.) Let A, be the
time to abandon for a customer who starts in
position k in queue. Then, by essentially the same
reasoning,

P(R) =2 pors(1 = Bl — Thu),  (3.25)
k=0
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r—~1
EA =D, pou(l = BgiEAwsy, (3.26)
k=0
and
r=1
A2= 3 po(1— BgEAL,, (3.27)
k=0
where

EA; = yamy + (1 = y)ye1(my + myy)
(1 = y)(1 = Yieor) Yooty + My + my_y)
+...+(1—'}/k)...(1 +m1)

(3.28)

— ) vilmy +

and
EA? = y2m}?

+ (1 = yviea(mi + mi_y + (my + myp)?

o+ 0=yl = g (1= )
X ymb ..+ m2+ (me+ ... +my)?).
(3.29)
The associated conditional moments are
E(A|R) =EA/P(R) and E(A*R)=EA*/P(R).
(3.30)

for P(R) in (3.25). Finally, the conditional variance and
standard deviation are

Var(A|R) = E(A%R) — (E(A|R))*  (331)

and
SD(A|R) = Var(AJR). (3.32)
Now let 4(z) = Ee ™ be the Laplace transform of A,

Paralleling (3.26), we have

r-1

A(z) = 2 ps+k(1 - B)qiﬁkn(z)/ (3.33)
k=0
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where
k-1

my
az) = (m‘l-l-z) ‘

7
My
'[(1' “)( +zﬂ (3.34)

Paralleling P(C > t) above, we can compute P(A
> t) by numerically inverting its Laplace transform
(1 — 4(z))/z. Then the conditional distribution of
the time to renege given reneging is

P(A>t|R) = P(A> 1)/ P(R). (3.35)

Finally, the probability of blocking is p,.,, so that the
probability of balking is
P(balking) =1 — P(S)

- P(R) = Ps+r (336)

4. Stochastic Comparisons

The consequences of informing customers about an-
ticipated delays are not entirely clear. We believe that
customers should prefer this additional information
and that the greatest benefit will stem from improved
customer satisfaction. The improved customer satis-
faction should in turn benefit the service provider by
producing an increased arrival rate; better service
should mean more business. Alternatively, those ser-
vice providers that displease customers may experi-
ence decreasing arrival rate and ultimately go out of
business. An increased arrival rate may mean that the
service provider should increase the number of serv-
ers. Overall, the response is complicated, depending
on the nature of the service and the competition.

We do not attempt to predict how the basic param-
eters A and s will change in response to improved
customer satisfaction. Instead, to help place that issue
in perspective, in this section we make comparisons
assuming that the basic parameters remain un-
changed. In particular, we consider Models 1 and 2
with A, p, s, 7, B and o fixed.

Intuitively, it seems that balking upon arrival in-
stead of joining the queue and later reneging should
lead to fewer customers in the systerr, provided that
the chance of balking relates appropriately to the
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chance of reneging, as in the construction in §3, in
particular, assuming (3.2). We now show that a strong
comparison is possible. In particular, we establish
likelihood ratio (LR) ordering. See Chapter 1 of Shaked
and Shanthikumar (1994) for background on stochas-
tic orderings.

Consider two random variables X, and X, with
values in the state space {0, 1, ..., n}, 1 = n = =, that
have probability mass functions (pmf’s) that are pos-
itive for all states. We say that X is less than or equal
to X, in the likelihood ratio (LR) ordering and write
X, =, X, if

P(X;=k)

P(X,=k+1)

L =0 O0<k=n-1.

(41)

We say that X is stochastically less than or equal to X,
and write X, =, X, if

P(X,=k)=P(X,=k), 4.2)

The LR order implies stochastic order. Indeed, the LR
order is equivalent to stochastic order holding under
conditioning for all intervals; i.e., X; =, X, ifand only
if

O=k=n.

Kla=X,=b) =4 (Xla=X,=b)  (43)

for all 2 and b with 2 < b; see p. 29 of Shaked and
Shanthikumar (1994).

We now present a sufficient condition for the
steady-state distributions of BD processes to be or-
dered in the LR ordering. This result is a special case
of Theorem 5 of Smith and Whitt (1981) (which applies
to more general processes).

TreoreM 4.1. Consider two BD processes with com-
mon state space {0, 1, ..., n}, birth rates AD . death rates
ui), and steady-state random variables Ny, i = 1, 2. If

ADA@
mzm for0=k=n-1, (4.4
then
Ny =, N,.

We now compare the processes in Models 1 and 2.
Recall that Model 2 is the special case of the general
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BD model in §3 with no reneging; i.e., with 8, = 0. Let
AP, w, N, and 8; denote the birth rates, death rates,
steady-state number of customers present and
throughput in Model .

TureoreM 4.2. Consider the BD processes in Models 1
and 2 with common parameters A, w, &, B, s and v, using
(3.2). Then

N1 =, Ng and 61 = 62.

Proor. By Theorem 4.1, it suffices to establish (4.4).
For0=k=s—-1,A" =A% = xand p{¥, = u@,
=(k + Dp. Fork =0,

A _ A1 - B) A _ Al - B)gy
pea spt k4 De’ n8n N Si ’
so that it suffices to show that
A& su \ Sp e
m=qk5(m) SSM+(k+1)a= 1
(4.5)

for 0 = k =< r — 1. However, (4.5) holds because, by
the binomial theorem, (1 + x)* = 1 + kx forall x >
0 and all positive integers k. The ordering for 6;
follows since

8= >, P(N,=k)(kns). O

k=1

(4.6)

Model 1 produces higher throughput but at the
expense of having some customers wait without even-
tually receiving service. As a consequence of the
stochastic order N; =, N,, Model 1 has higher
blocking. Also, Model 2 has a higher probability of a
customer receiving service without having to wait.
Having higher throughput might make Model 1 pref-
erable to Model 2 for the service provider, but recall
that the arrival rates are assumed equal in Theorem
4.2. From the perspective of throughput, Theorem 4.2
shows that the benefit to the service provider from
Model 2 (informing customers about anticipated de-
lays) must stem from a subsequent increase in the
arrival rate A (or other basic parameter change).

The stochastic comparison we have made between
the two models in Theorem 4.2 assumes that the basic
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parameter tuple (A, 1, , B, s, v} is the same for both
models. However, if we change the way the system
operates, then these parameters may change too, lead-
ing to more complex comparisons. We can describe
how each system separately responds to changes in
the parameters, though. For simplicity, let 8, = k&' in
§3, then the model there depends on the parameter
tuple (A, p, a, B, &', s, 7).

Taeorem 4.3. Consider the general BD model in §3
with two candidate parameter tuples (A7, p®, a®, B©,
89 s, 7),i=12IF A0 < A®, u® = u®, o¥ = o®,
BY = P and 'V = &', then

N® =, N®,

PrOOF. It is easy to see that A{’ = A and ui

> u® forallk,0 =k =<s +r — 1, so that (4.4) holds.
Hence, we can apply Theorem 4.1. O

From Theorem 4.3 it is not evident how the long-run
balking and reneging rates respond to increases in the
parameters o, § and 8. It is intuitively clear that the
long-run rates should increase, but if we increase B,
then the steady-state distribution decreases, so that
there is less opportunity for balking. Nevertheless, we
can establish the desired comparison by exploiting a
sample-path comparison.

TuroreM 4.4. Consider Models 1 and 2.

(a) If o increases, then the long-run service-completion
rate decreases and the long-run reneging rate (Model 1) or
balking rate (Model 2) increases.

(b) If B increases, then the long-run service-completion
rate decreases and the long-run balking rate increases.

(c) For Model 2, if &' increases, then the long-run
service-completion rate decreases and the long-run reneging
rate increases. ‘

(d) Under condition (a), (b) or (c), the steady-state
distribution of N decreases in stochastic order.

Proor. We only consider part (a) for Model 1,
because the reasoning is the same in the other cases.
Let N¥(#) be the number of customers in system i as
a function of time. As in Whitt:(1981), it is possible
to construct the two systems on the same sample
space so that the sample paths of N¥(t) and N®(#)
are ordered (a coupling). Let the two systems be
indexed by i, where ™ < a®. Let the two systems

MANAGEMENT SCIENCE/Vol. 45, No. 2, February 1999

both start out empty. We can generate all events
from a common Poisson process with a constant rate

= A + sy + ra®®. Then we determine the nature
of the events according to the birth and death rates.
For example, if the state is k < s, then with
probability ki /vy, the event is a service completion,
with probability A/vy, the event is an external ar-
rival; while with probability (y — A — ku/y the
event is a fictitious event, leading to no state change.
Whenever the two sample paths coincide with s + k
customers present for k = 1, let service completions
be the same in both systems and let there be
reneging in the system with parameter «®, where
a? > a®, whenever there is reneging in the system
with parameter o, However, there may be addi-
tional reneging in system 2, making N®(t) < N(#).
Whenever N®(t) = N™(f), the service completion
rates are greater for system 1. Hence, let there be a
service completion in system 1 whenever there is
one in system 2. This allows extra service comple-
tions in system 1. Also, let there be a balking or
blocking event in system 1 whenever there is a
balking event in system 2. With this construction, a
gap N(t) — NP(#) can only be created and grow
by excess reneging in system 2. This gap may be
reduced in several ways, including by subsequent
reneging in system 1, but the cumulative number of
customers reneging always stays ahead for system
2. Whenever the gap closes to 0, couple N¥(¢) and
N®(t) again so that the ordering N¥(t) = N®(t)
and the ordering on cumulative numbers of custom-
ers to have reneged are maintained. Since the sam-
ple paths are ordered N () = N®(t) for all t with
this special construction, first the finite-dimensional
distributions and, second, the steady-state distribu-
tions are stochastically ordered. O

Remark. For Model 1, the proof of Theorem 4.4
shows that the lonig-run service-completion and balk-
ing rates both decrease when « increases. When « and
B both increase, we can deduce that the long-run
service-completion rate decreases, but not how the
long-run reneging and balking rates are affected,
because customer loss can take several forms, namely,
blocking, balking, or reneging.
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5. Numerical Examples

We now illustrate how the BD models can be used by
considering a few numerical examples. In Theorem
4.2, we established an ordering between Models 1 and
2 with common parameter tuples (A, u, «, B, s, 7).
However in numerical examples we have found that
in many respects the two systems with common
parameter tuples behave very similarly. The main
difference is that, for Model 1, some customers who do
not eventually receive service spend time waiting
before reneging. This wasted customer effort is elim-
inated by predicting delays, if the prediction leads to
Model 2. Throughout this section we use Defini-
tion (3.2).

ExamrLE 5.1. Economies of Scale. In addition to
comparing Models 1 and 2 with common parameter
tuples, our first example illustrates the economies of
scale. In particular, we consider both systems with
s=4X10"fork =0, 1, 2 and 3. In each case, we let
A=5s,u=10a=10and B =02 Wechooser to
be sufficiently large so that blocking is negligible. With
this parameter choice, the system with s = 4 X 10*
corresponds to the combination of 10 identical systems
with s = 4 X 10"™". We have resource sharing in the
sense of Smith and Whitt (1981).

Numerical results for these cases are presented in
Table 1. Since (x)* = max{x, 0}, the expression
E(N — s)” in Table 1 represents the expected number
of customers waiting. Table 1 shows that the two
systems do not differ much, with the difference de-
creasing as s increases. In all cases, the values of the
probability that an arrival is eventually served are
very close for the two systems. Table 1 also shows that
all measures of performance improve as s increases,
thus quantifying the economies of scale.

It is interesting to contrast Models 1 and 2 with the
pure-loss model, which otherwise has the same pa-
rameters. The probability of eventually being served
in the associated M /M /s/0 loss model is 0.639, 0.884,
0.961 and 0.9875 fors = 4 X 10fand k = 0, 1, 2 and
3. The difference is substantial for smaller s, but
negligible for larger s. For larger s, the balking acts
like blocking. When A = 4000 and 8 = 0.2, the arrival
rate drops to 3200 when all servers are busy. In that
case, s acts much like an upper barrier. Indeed, in that
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Table 1 A Comparison Between Models 1 and 2 as a Function of
System Size, s = 4 X 10"for k = 1,2, 3 and 4.
$ =4 s = 40
Performance
Measures Mode! 1 Mode! 2 Model 1 Mode! 2
PN = g 0.501 0.493 0.335 0.333
EN - 87 0.498 0.445 0.816 0.796
EN 3.60 3.53 37.3 37.3
SD(N) 1.74 1.67 4,86 483
P(renege) 0.124 0 0.020 0
P(served) 0.775 0.772 0.913 0.912
EC)S) 1.115 1.144 1.021 1.022
SD(C)9S) 1.026 1.046 1.001 1.001
EAR 0.282 — 0.069 —
s = 400 s = 4000
Model 1 Model 2 Model 1 Model 2
PN = 9 0.162 0.162 0.0593 0.0593
EN - 957 0.589 0.589 0.234 0.234
EN 387.0 387.0 3953. 3953.
SO(N) 13.1 131 38.9 38.9
P(renege) 0.0015 0 0.00006 0
P(served) 0.966 0.966 0.9881 0.9881
E(C|S) 1.0015 1.0015 1.0000 1.0000
$D(C|S) 1.0000 1.0000 1.0000 1.0000
EAR) 0.110 — 0.0012 —

NoteInallcases A = 8w = o« = 1and B = 0.2. The variable N is
the steady-state number of customers in the system, C is the time to complete
service and A is the time to abandon.

case, the conditional mean queue length given all
servers are busy is only E(N — s5)*/P(N = s) = 3.95.

ExampLE 5.2. Heavy Loads. Models 1 and 2 do not
differ when all servers are not busy. Thus, the differ-
ence should increase as the load increases. We next
illustrate the larger differences that are possible with
higher loads. For this example, we lets = 10, . = 1.0,
a = 1.0 and r = 50. We consider two cases: In the first
case, we let A = 20 and 8 = 0.2; in the second case we
let A = 40 and B = 0.5. With the conventional
definition of traffic intensity p = A/sp, p = 2.0 and
4.0 in the two cases. Numerical results for these two
cases are displayed in Table 2.

In Table 2 the differences between Models 1 and 2
are greater than in Table 1, but still not large. The

MANAGEMENT ScIENCE/ Vol. 45, No. 2, February 1999

Copyright © 1999. All rights reserved.



WHITT
Improving Service

Tahle 2 A Comparison Between Models 1 and 2 Under Heavy
Loadings

A= 20, = 1.0, A =40, u = 1.0,

a=10,p = 0.2, a = 10,8 = 0.5,

s = 10,7 = 50, $=10,r = 50
Performance
Measures Model 1 Madei 2 Model 1 Model 2
PN = ) 0.970 0.958 0.9981 0.9955
EN — 87 6.17 4,66 10.04 6.84
EN 16.1 146 20.0 16.8
) 3.90 3.09 4.43 3.16
P(renege) 0.308 0 0.251 0
P(served) 0.438 0.497 0.250 0.250
ECiS) 144 147 1.65 1.68
SD(C]5) 1.04 1.085 1.045 1.080
EAR) 0.293 — 0.356 —

probability of being eventually served and the mean
and standard deviation of the conditional time to be
served are very close. The greatest differences are in
EN and SD(N), the mean and standard deviation of
the steady-state number of customers in the system.

Note that the most serious detrimental effect of the
heavy loads is the low proportion of customers
served. The delays experienced by those customers
served are not especially large. These results show that
a focus on the delays experienced by served custom-
ers, while ignoring the customers lost to balking or
reneging, can seriously overestimate the quality of
service provided.

Also note that the performance is quite different
from the M/M/s/r model without balking or reneg-
ing. Then the steady-state number N is closeto s + 7,
which in Table 2 would be 60. The probability of being
served is about the same, however. In the setting of
Table 2 the blocking is negligible. The high blocking in
M/M/s/r is replaced by balking and reneging in
these cases. [

At first glance, it might be thought that in the setting
of §2 the reneging rate o’ might be reasonably well
estimated by the reciprocal E( A|R), the expected time
to renege given that reneging occurs. However, it can
be much less. Note that we consistently have

E(AIR) = a”V. (.1)
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This must occur because the sequence of reneging
times is censored. (Many customers are served before
they have a chance to renege.)

6. Estimating the Balking

Parameters
In this section we consider how to estimate the balking
parameters o and § in §3 assuming (3.2), and how to
validate the model. For background on standard pro-
cedures for estimating parameters in BD models, see
Basawa and Prakasa Rao (1980) and references cited
there.

For 0 = k = r = 1, let At) be the number of
arrivals finding s + k customers in the system upon
arrival and let [,(t) be the number of these arrivals to
join the queue in an operation of the system over a
time interval [0, ¢]. (The number balking is thus A,(t)
— J#).) Under the BD model assumptions, it is
possible to establish laws of large numbers and central
limit theorems for these estimators. As a consequence,
ast —> «, the ratio will converge as the sampling
period grows, ie., .

Ju(#)

S|
sp+ «o

Ri(t) =

~—

k+1
) as t — o,

%nE(l—B)(

(6.1)

so that

s
~ log Ry_1(t) » —log (1 ~ B) — k log (s“ i a)

asf — oo,

(6.2)

Moreover, under the model assumptions, conditional
on A(t), Ji(t) has a binomial distribution with param-
eters 7 = A,(t) and p = 7 in (6.1). Hence, we propose
estimating the parameters o and B by performing a
linear regression with the variables — log Re_(#),
k =1, ie., we find the best linear fit

- log Rk»l(t) = dl + ﬁgk (63)

We then estimate o and 8 by & and 8, where
—log(1-B)=4, and ~—log (s;u, T a) =, (6.4)
203
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so that

B=1-¢™"™ (6.5)

and

& =sule™—1). (6.6)

By (6.2), these estimators of « and § are consistent
(converge as t — ). The degree to which a linear fit
in (6.3) is appropriate also indicates the quality of the
model fit. If we were to assume (3.3) instead of (3.2),
then we would obtain & = sud, instead of (6.6).

When the fit in (6.3) is not good, we should question
whether (3.2) and (6.1) hold, i.e., whether T has an
exponential cdf. Instead of (3.1) or (3.3) we could work
with the probability g5 = P(T > ES,) = 1 — H(ES)),
where H is the (now general) cdf of T, and then
estimate it by

gF=Ry(t), O0=sk=r-1 6.7)

A disadvantage of (6.7) for prediction is that it yields
t parameters instead of only 2. However, from (6.7) we
obtain an estimate of the cdf H at 7 points, because g;
= H(k + 1)/sp), 0=k =<r—1.

However, if the cdf of T is not nearly exponential,
then the overall BD model is not valid. Another
approach is to test for the BD model and estimate the
parameters A, and u directly. These estimates in turn
can be used to estimate the parameters 8, 4, and J; in
(3.6) and (3.7). The successive holding times in state k
should be iid. exponential random variables with
mean (A, + w) . The successive transitions from
level k should be i.i.d. Bernoulli random variables, up
1 to level k + 1 with probability A/(Ax + uy) and
down 1 to level k — 1 with probability w,/(A¢ + 4.

It is also natural to consider other two-parameter or
three-parameter models for nonbalking. For example,
instead of (1 — B)¥y"*' in (6.1), we might consider
(1 - B)k + 1)7". If we do estimate the balking
probabilities in state s + k for each k, then it is natural
to impose a monotonicity condition, exploiting the
condition that the balking probability should be in-
creasing in k. See Barlow et al. (1972) for appropriate
statistical methods.
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7. Estimating the Reneging Rate

In this section we consider how to estimate the reneg-
ing rate @ in §2 or & (assuming &, = k3’) in §3. As
noted at the end of §5, the average conditional time to
abandon E(A|R) for the model in §2 is often substan-
tially less than a™, the reciprocal of the reneging rate.
As an estimator & for «, we propose that value of a,
with the other elements of the parameter tuple (A, g,
a, B, s, r) that yields the observed estimate for the
mean E(A|R); ie., we directly estimate E(A|R) by
looking at the sample mean of the reneging times and
then we apply the BD model to find that value of «
that yields the estimate. The most important point is
not to confuse E(A|R) with o™

By Theorem 4.4, the long-run reneging rate is al-
ways increasing in a, so that the search is not difficult
to perform, e.g., by bisection search. This estimation
procedure can also be used when there is reneging
even when delays are predicted.

When the service provider announces delay predic-
tions to each arrival, it is possible that the reneging
behavior depends on the initial state. To confirm the
delay predictions and to understand the reneging
behavior, it is good to monitor the outcomes starting
with each initial state s + k for k = 0. Reneging events
well before the anticipated waiting time (k + 1)/su
represent an unwillingness to wait for the predicted
time. Reneging events after the anticipated waiting
time (k + 1)/sp represent a failure to accurately
predict the delay and associated customer dissatisfac-
tion.

8. Coping with Other Model

Deviations
We conclude by briefly discussing possible deviations
from the basic BD model and how they might be
coped with. Serious investigations of these procedures
represent topics for future research.

Time Dependence. Perhaps the most common dif-
ficulty is that the arrival process can be nonstationary.
In many applications a reasonable model for the
arrival process is a nonhomogenedus Poisson process
with deterministic arrival-rate function A(#) that varies
over time; e.g., see Chapter 6 of Hall (1991). The
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service-time distribution may be time-dependent as
well. One approach to this complication is to apply
numerical methods to solve the time-dependent BD
process, obtained by working with A(¢) and wu(f)
instead of A and p. A specific algorithm based on a
discrete-time approximation is given in Davis et al.
(1995). References are also cited there to sources
applying the related Runge-Kutta methods to numer-
ically solve the ordinary differential equations.

A simple approximation for the time-dependent
distribution of the time-dependent BD process is the
pointwise stationary approximation (PSA), which is
the steady-state distribution of the BD process calcu-
lated in terms.of the arrival-rate and service-rate
functions A(f) and u(t) as a function of time t. If A(#)
varies significantly over time, then the PSA is often a
far better description than the BD model with the
long-run average arrival and:service rates; e.g., see
Green and Kolesar (1991). The PSA is also asymptot-
ically correct as the arrival and service rates increase
which corresponds to the rates changing more slowly;
see Whitt (1991). In other words; the steady-state
analysis here is directly applicable as a reasonable
approximation when the arrival and service rates
fluctuate if it is applied over suitable subintervals over
which these functions do not change much. The esti-
mated rates are then averages over these subintervals.

A complication when time-dependence is recog-
nized is that it becomes necessary to estimate the
functions A(f) and w(t) instead of the single parame-
ters A and u. Appropriate data smoothing is thus often
required.

Nonexponential Service-Time Distributions. Non-
exponential service-time distributions will tend to
invalidate the BD model predictions. The congestion is
likely to be greater (less) if the service-time distribu-
tion is more (less) variable than exponential. The
impact of a nonexponential service-time distribution
can be at least roughly estimated by examining its
impact on the related M/G/s/% pure-delay model;
e.g., see Whitt (1993) and references cited there for
simple approximations.

The impact of a nonexponential service-time distri-
bution should be negligible if the arrival process is
Poisson and the probability that all servers are busy is

MANAGEMENT SCIENCE/ Vol. 45, No. 2, February 1999

small, because the M/G/s/0 and M/G/« models
have the insensitivity property. However, the steady-
state behavior conditional on all servers being busy
should be significantly affected by the service-time
distribution beyond its mean.

Below we propose a way to study the impact of a
few exceptionally long service times. If the service-
time distribution can be regarded as approximately
exponential after removing such exceptionally long
service times, then the modified BD analysis should be
successful.

Similarly, if there is an excess of customers with
very short service times, then they could be ignored.
The resulting lower- arrival rate and higher mean
service time of the remaining customers may yield
more accurate ‘descriptions, assuming a BD model
based on the approximate exponential distribution.

Occasional Extra Long Service Times. The BD
model requires that the service times have an expo-
nential distribution. This property might fail badly
because some customers have exceptionally long ser-
vice times; ie., the service-time distribution might
have a heavy tail. Thus, we now propose sotne simple
methods to describe the impact of occasional extra
long service times. We are primarily concerned with
modifications to the model in §3 to produce appropri-
ate approximate modified performance predmtmns
Our idea is to represent the special service times as
server vacations or server interruptions. Since these
service times are postulated to be unusually long, we
can consider them to occur in a longer time scale.
Thus, it is natural to represent these service times as
special high-priority customers that occasionally re-
quire servers. Moreover, since the special service times
are unusually long, it should be reasonable, at least as
a rough approximation, to first determine the distri-
bution of the number of long-service-time customers
and then reduce the number of servers available to the
regular customers by this random number; i.e., we use
the approach of nearly decomposable Markov chains,
as in Courtois (1977):.

Hence, we first model the long service times by an
M/G/ model. The steady-state number of servers
occupied with- these special customers thus has a
Poisson distribution with mean equal to m, = A,/ g,
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where A; is the arrival rate and u;’ is the mean of
these special long service times. We are assuming that
the total offered load of these special customers, m,, is
sufficiently small that the chance that all servers are
busy serving only them is negligible. Because of the
insensitivity of the M/G/%* model, the service-time
distribution beyond the mean plays no role at this
point.

We can then consider the original model, where the
number of servers is random (but fixed for all time)
having the value s — N, where N; has a Poisson
distribution with mean m;. That is, we consider the
BD model in §3, where the number of serversiss — k
for various values of k. (The arrival rate A and mean

service time p™" in this new model must be appropri-

ately reduced to account for the removal of the espe-
cially long service times.) For each reasonably likely k,
we compute the steady-state distributions for the BD
model with s — k servers. The upper limit might be
the mean plus a few standard deviations, ie., k < m;
+ 3Vm;. The performance measures for the models
with s — k servers can then be averaged with regard
to the Poisson probabilities of k servers being busy
serving the long service times. However, it may be
more revealing to look at the conditional performance
measures for fixed k, given those k whose likelihood is
considered sufficiently large. Tables and plots of both
the probability of k servers being used by the long-
service-time customers and the conditional perfor-
mance measures for the remaining customers given
s — k servers, as a function of k, should provide useful
insight.

Non-Poisson Arrival Processes. In many settings,
the Poisson arrival process (possibly nonhomogeneous)
is natural, representing the result of many different
customers making independent decisions. However, if
the Poisson property is not nearly realistic, then the BD
predictions can be far off. Non-Poisson processes arise
naturally when the arrival process is itself an overflow
process from another group of servers.

One way to approximately cope with non-Poisson
stationary arrival processes is to substitute time-de-
pendence or state-dependence for the stochastic de-
pendence in the actual arrival process. The use “of
time-dependence is to reverse the approximation pro-
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cedure discussed in Massey and Whitt (1996). In our
setting with balking and reneging, the time-dependent
birth-and-death process may be substantially easier to
analyze than the stationary model with a non-Poisson
arrival process.

Alternatively, we can try to approximately repre-
sent stochastic variability by a state-dependent arrival
rate. In particular, we could use the Bernoulli-Poisson-
Pascal (BPP) model in which the arrival rate A is
replaced by the linear function A, = « + Bk for k = 0;
see Delbrouck (1981) and Choudhury et al. (1995). The
less bursty binomial case corresponds to < 0, while
the more busty Pascal case corresponds to 8 > 0.

All these analytical approximations can be substan-
tiated by computer simulation."

1 thank Avishai Mandelbaum for helpful pointers to the literature
and Rhonda Righter for helpful comments.
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