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 AN INTERPOLATION APPROXIMATION FOR THE MEAN WORKLOAD
 IN A GI/G/1 QUEUE

 WARD WHITT
 AT&T Bell Laboratories, Murray Hill, New Jersey

 (Received April 1988; revision received July 1988; accepted September 1988)

 This paper develops a closed form approximation for the mean steady-state workload or virtual waiting time in a

 GI/G/ 1 queue, using the first two moments of the service-time distribution and the first three moments plus the density

 at the origin of the interarrival-time distribution, with default values provided in case information is unavailable. The

 approximation is based on light and heavy traffic limiting behavior. The essential ideas are exposed by using S.L.

 Brumelle's formula to relate the mean workload to the mean waiting time and K.T. Marshall's formula to relate the

 mean waiting time to the first two moments of the idle period. Both formulas extend to general single server models

 without independence conditions, so this approach provides a basis for extensions, but a convenient exact expression for

 the second order heavy traffic term is evidently not possible even for GI/G/ 1. For the GI/G/ 1 second order heavy traffic

 term, an approximation is proposed, based on the relatively nice expression established for the GI/M/ I case by S. Halfin.
 The interpolation between light and heavy traffic limits, which can be applied to other performance measures and models

 whenever the limits can be determined or approximated, is chosen to satisfy differentiability and monotonicity regularity

 conditions.

 In this paper, we develop a closed form approxima-

 tion for the mean steady-state workload (or virtual

 waiting time) in a GI/G/1 queue, based on the first

 two moments of the service-time distribution and the
 first three moments plus the density at the origin of

 the interarrival-time distribution. The approximation

 formula is obtained by interpolating between light

 traffic and heavy traffic limits (the limiting behavior

 as p -O 0 and p -> 1 where p is the traffic intensity),
 in the spirit of Burman and Smith (1983, 1986) and

 Reiman and Simon (1988, 1989). We first determine

 or approximate the limits; then we determine an
 appropriate interpolation given the limits. This inter-

 polation applies to more general models, provided
 that the light and heavy traffic behavior can be deter-

 mined. Indeed, we apply this interpolation in Fendick
 and Whitt (1989) to approximate the mean workload

 in general single server queues without any independ-

 ence conditions, where exact or approximate light and
 heavy traffic limits are either calculated from model

 parameters or estimated from traffic measurements.
 The approach with measurements applies without

 specifying a detailed probability model. The GI/G/1
 model is a revealing reference case because we can

 determine the limits more precisely and evaluate the

 approximation more easily for the GI/G/ 1 model.
 With respect to the literature on interpolation

 approximations, our major contribution is to incor-

 porate the second order heavy traffic behavior. We
 also discuss how to do the interpolation, and how to

 evaluate the reliability of the fit. With respect to the

 literature on refined heavy traffic approximations

 (notably, Siegmund 1979, Kollerstrom 1981, Halfin

 1985, Asmussen 1984, 1987, and Knessl 1990), our

 major contribution is to apply the results via the

 interpolation, using further approximations. We also

 show how the light traffic and heavy traffic limits can

 be identified easily by applying basic formulas due to
 Brumelle (1971) and Marshall (1968); see (3) and (21)

 below.

 The Normalized Mean Workload in the GI/G/1

 Queue

 Our queue has one server, unlimited waiting space

 and a wtrk-conserving discipline; see p. 418 of
 Heyman and Sobel (1982). Since we focus on the
 workload, the particular work-conserving discipline

 does not matter. As usual, GI/G/1 means that the
 interarrival and service times come from independent

 sequences of independent and identically distributed
 (i.i.d.) random variables. We assume that the interar-
 rival and service times have finite third moments.
 Without loss of generality, let the mean service time

 be 1, so that the arrival rate (the reciprocal of the
 mean interarrival time) coincides with the traffic
 intensity p. We consider a family of GI/G/1 models

 Subject classifications: Queues, approximations: GI/G/1 mean workload. Queues, limit theorems: light-traffic and heavy-traffic interpolation.
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 Approximating the Mean Workload in a GI/G/ 1 Queue / 937

 indexed by p obtained by scaling the arrival process;
 i.e., let Tbe a nonnegative random variable with mean

 1 and let p' T be an interarrival time in the GI/G/ 1

 model with traffic intensity p. Let Zp be the steady-
 state-workload as a function of p, which we assume
 exists. (It suffices to have p < 1 and the interarrival-
 time distribution be nonlattice; see p. 188 of Asmussen
 1987.) We focus on the normalized mean (steady-
 state) workload, defined by

 C =(p 2(1-p) E(Z- ))
 p

 As discussed in Fendick and Whitt, the normalized
 mean workload is convenient to see the effect of the

 variability in the interarrival-time and service-time

 distributions upon the mean workload. The normal-

 ized mean workload is the ratio of E(ZP) for the
 GI/G/ 1 model to what it is in the M/D/I model. (A
 similar normalization is used in Burman and Smith

 1983.) As a consequence, assuming that the interarri-
 val-time distribution has no atom at the origin (for
 light traffic), it is relatively easy to show that c2(p) has
 nondegenerate limiting values as p -O 0 and as p -* 1.
 In particular (see Sections 1 and 2)

 lim C2(p) = C2(0) = 1 + C2

 and (2)

 lim C?(p) = c'(1) = c' + c'

 where c2 and c2 are the squared coefficients of varia-

 tion (variance divided by the square of the mean) of
 the interarrival-time and service-time distributions. Of

 course, for the M/G/1 model c2(p) is constant, with
 c2= 1 in (2).

 Derivatives and Approximations

 The primary goal of this paper is to determine, at least
 approximately, and apply the derivatives c2(0) and
 6 ( 1) at the endpoints as well. In Section 1, we discuss
 the light traffic values c2(0) and c2(0); in Section 2,
 we discuss the heavy traffic values c2( 1) and 02(1).
 These are obtained from results for the steady-state

 waiting Wp using the first-in first-out discipline plus
 Brumelle's formula

 E(ZP) = pE(WPS) + p 2

 =-pE(Wp) (ct + 1) (3)
 2

 where S is the service time of the customer with

 waiting time W,; see pp. 408-412 of Heyman and
 Sobel. (Brumelle's formula stems from the generali-
 zation of L = X W known as H = XG; it is not limited
 to GI/G/1.)

 From (3) it is clear that an expression (exact or

 approximate) for E(Z,) yields an expression for E( WJ)
 and vice versa. Exact expressions for both E( WJ) and
 E(Z,) are known (e.g., Chapter VIII of Asmussen),
 and algorithms for numerical computation are avail-
 able for a large class of interarrival-time and service-
 time distributions (e.g., pp. 216, 239 of Asmussen
 1987, Ramaswami and Latouche 1987 and Tijms
 1986), but relatively simple formulas are nevertheless
 helpful (for example, for understanding, optimization,
 and approximation of larger models such as queueing
 networks, as in Whitt 1983 and Segal and Whitt 1988.)

 A familiar elementary approximation for E( WP) is

 p(c, + c')(4
 E(W P) (4) 2(1 -p)

 e.g., see (8) of Whitt (1982). Combining (1), (3) and
 (4), we obtain the simple linear interpolation of (2) as
 an approximation for the normalized mean workload

 C7 (p) 1 +c+ p (c - 1)

 =pc2(I) + (I1-p)c2(0).(5

 Indeed, a nice way to derive (4) is to apply (1)-(3) and

 (5). A better two-moment approximation for E(WP)
 than (4), and thus for E(ZP) via (3), was developed by
 Kraemer and Langenbach-Belz (1976), but we aim to
 do even better by using the third moment and the
 density at the origin of the interarrival-time distribu-
 tion, which are the additional quantities that appear
 in the light traffic derivative and our approximation
 for the heavy traffic derivative.

 A byproduct of our analysis is additional support
 for the conclusion that, given the first two moments
 of the interarrival-time and service-time distribution,

 E(WP) and E(Z,) depend more on additional infor-
 mation about the interarrival-time distribution than
 the service-time distribution; see Section VII of Whitt
 (1984b). Moreover, for fixed first two arrival and
 service moments, E( Wp) and E(ZP) tend to be increas-
 ing in the interarrival-time density at the origin and
 decreasing in the interarrival time third moment.
 Indeed, this monotonicity in the third moment was
 proved for a large class of GI/G/ 1 queues by Halfin.

 In this paper, we only consider the expected steady-
 state workload, but similar asymptotics can be deter-
 mined for the expectation of other functions of the
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 938 / WHITT

 steady-state workload such as higher moments, for
 example, see (10) in Siegmund (1979), (3.1) and (3.3)

 of Halfin, and pp. 183-185, 272-276, 281-287 of
 Asmussen and Knessl.

 The Interpolation

 The interpolation problem is to pick a reasonable real-
 valued function f defined on the unit interval [0, 1]

 that matches specified values f(O) and f(t 1), and deriv-
 atives f'(0) and f'(1). Our solution is a function of
 the form

 f(p) = ao + alp + a2p2 + a3pb3 + a4(l -p)b4

 O p 1 (6)

 where the coefficients ai and the exponents bi de-
 pend on f(O), f(1), f'(0) and f'(1), as described in

 Section 3. Obviously, the fit to (6) is not unique.
 The interpolation problem may seem elementary,

 but we believe that it deserves some care. For example,
 one might consider the unique cubic function ((6)
 with b3 = 3 and a4 = 0) determined by these four

 values. This cubic function often is reasonable, but

 unfortunately, in general, it has undesirable proper-

 ties. First, in some cases, the cubic function takes

 negative values which is clearly unreasonable for C2(p)
 in (1). Second, the cubic function or its derivative

 may fail to be monotone when the four values f(0),

 f(l), f'(0) and f'(1) permit monotonicity. For exam-
 ple, this occurs when we apply the cubic fit to the
 normalized mean workload in the E2/M/1 queue
 (Erlang interarrival times and exponential service

 times). For this model, the exact normalized mean

 workload is monotone with c2(0) = 2.0 > 1.5 =c2(),
 c(0) =-2.0 and z(1) =-0.167 (all exact), so that a
 monotone fit is desirable, but the cubic fit (1.500 +

 0.167p -0.833p2 + 1.367p3) is not monotone. More-
 over, the cubic fit does not constitute a reasonable fit
 compared to what we might do by eye.

 Thus, we develop fitting criteria and find parame-
 ters so that (6) meets these criteria in every case. As a

 minimal condition, we require that f be nonnegative.
 Of course, this always can be achieved by considering

 max I0, f(p)}, but that may make f nondifferentiable,
 which suggests a poor fit. Our approach is to look for
 a nice fit. Of course, all normalized mean workloads
 are not nice; see Section 6. However, we assume that
 for the model of interest, the normalized mean work-

 load is relatively nice, subject to the constraints of the
 four specified values. By nice we mean smooth and

 monotone. We require that f be at least twice differ-
 entiable and that the second derivative f" be contin-

 uous. The most important criterion we call the low

 order derivative monotonicity criterion: First, thefitted
 function f should be monotone whenever possible and,
 second, the lowest order derivative that can be mono-
 tone should be. Whether or not f can be monotone,
 we try to make f ' monotone. If f ' cannot be mono-

 tone, then we try to make f" monotone, and so forth.
 In fact, we can make f" monotone whenever f ' is not
 monotone, so we need go no further. Indeed, f" is
 monotone in all cases of Section 3 except in Case

 1.2.3c and other cases that reduce to this case. (Since
 f' is monotone in this case, the low order derivative
 monotonicity criterion is satisfied.) In fact, for Case
 1 .2.3c, it can be shown that f" cannot always be made

 monotone.

 Of course, the smoothness and monotonicity crite-
 ria do not completely specify the function. We select
 (6), in part, based on the subjective criterion of sim-
 plicity; we want a relatively tractable expression, so
 that the fitting is easy to do and the function is
 relatively easy to apply, for example, in optimization

 applications where the best arrival or service rate is to

 be determined. For such optimization applications, it

 is significant that the parameters ai and bi in (6) are
 independent of p.

 As a consequence of the low order derivative mon-

 otonicity criterion mentioned above, the fitted func-

 tion must lie in a certain bounding polygon, which we
 describe in Section 4. This bounding polygon is useful
 to describe the reliability of the fit, given the fitting
 criteria.

 Numerical Comparisons

 In Section 5, we briefly describe the performance of

 our approximation by making numerical compari-
 sons. Of particular interest are cases with highly vari-
 able interarrival-time distributions such as the

 hyperexponential distribution with c2 = 12, as in
 Table II of Whitt (1984b). Then additional informa-

 tion about the interarrival-time distribution beyond
 the first two moments is essential to obtain a reason-

 able approximation of the mean workload.
 The approximation developed here typically per-

 forms very well, but there are exceptional pathological
 cases. To put the approximation in perspective, we
 describe some of these in Sections 5 and 6.

 Interpolation Approximations for General Single
 Server Queues

 As mentioned at the outset, we are primarily moti-
 vated by the desire to develop an approximation for

 the mean workload in general single server queues,
 which may have dependence among successive
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 Approximating the Mean Workload in a GI/G/1 Queue / 939

 interarrival times, among successive service times, and

 between interarrival and service times. In Fendick and
 Whitt, we develop expressions (exact or approximate)

 for c2(0), c2(0), c'(1) and e'(1) in terms of a function
 that we call the index of dispersion for work (IDW). If
 X(t) represents the total work in service time to enter

 the queue in the interval [0, t], then the IDW is the

 function of time

 Var[X(t)] (7 I"(t) = E(S)E[X(t)]' t 0 (7)

 where E(S) is the mean service time. The proposed

 approximations are

 cM(0) Iw(0) = J"(0)

 e2(0) h(O)I1"(O) = J,(0)J,(0)

 c2(1) I"(oo) J(1) (8)

 and

 c 2j(1) 2wl/maxl l, J,u(Il)

 where JU(p) = I(p/(l - p)), 0 < p S 1, and Iw(t) is
 determined for the case p = 1. (See Fendick and Whitt
 for a discussion of scaling.) From a sample path of
 X(t), we obtain the four values Jw(0), J' (0), Jw(1) and
 J'(1) from estimates of I",(t). For a large class of
 models, such as multiclass queues in which each class
 provides GI/G/ 1 input, we can also calculate JL(0),

 J' (0), J,,( 1) and J' ( 1) analytically in terms of basic
 model building blocks (see Fendick and Whitt, and
 Fendick, Saksena and Whitt 1989b), so that we can
 generate approximations for C2(p) without measure-
 ments. Obviously, the interpolation developed here
 applies equally well with (8). Moreover, it is significant
 that for the special case of the GI/G/1 model the
 general approximations in (8) are closely related to

 the GI/G/1 limits developed here. Indeed, all except
 c(1) coincide; the difference in c(1) is between the
 correction factors in (41) and (44). Thus, the GI/G/1

 analysis here provides theoretical support for the
 approximate description of more complicated models.

 1. LIGHT TRAFFIC

 Brumelle's formula (3) is convenient for reducing the
 light traffic behavior of E(Zp) and C2(p) to the light

 traffic behavior of E(WP); that is, from (1) and (3) it
 follows that

 c2(p) = (I1-p)(1 + c2) + 2(1 -p)E(W,). (9)

 From (9) it is easy to see what c2(0) and c2(O) should
 be. First, assuming that customers arrive one at a

 time, obviously WJ -*> 0 w.p. 1 and E( W,) -> 0, so that
 we obtain the first relation in (2). (A formal proof for

 GI/G/l follows from (2.3) on p. 185 of Asmussen

 (1987); there, S+ -* 0 as p -* 0 for each n, and the
 moment conditions here imply the uniform integra-

 bility to get E(Sn+) -* 0 as p -* 0 for each n.)
 From (9), it is apparent that the derivative can be

 expressed as

 c20 lim [c()- ()

 = -(1 + c2) + 21im p'E(Wp) (10)
 p-yo

 so that c(0) depends on the derivative of E(Wp) at
 p = 0. As in Section 6.8 of Newell (1982), it is easy to

 see, heuristically, what this derivative should be. To

 compute this derivative, we only have to consider the
 interaction of two customers, that is, as p -> 0 we have
 the natural approximation

 E(W Wp) E[(S -p-'T)+] (11)

 where (x)+ = max {x, 0}. (When the arrival process is

 Poisson or can be appropriately constructed in terms

 of a Poisson process, this step can be justified by the
 techniques of Section 1 of Whitt (1986), Reiman and

 Simon (1988, 1989) or Reiman and Weiss (1989).) To
 extract the light traffic limit from (11), we use the
 service time stationary-excess variable Se, where

 E(S)P(S,, > t)

 J P(S> y)dy= P(S>y+ t)dy

 -= fP(S -t > y)dy = E[(S - t)+]. (12)

 Assume that T has a density g(t) that is continuous at

 the origin. Then, under regularity conditions that
 allow us to move limits inside the integral

 lim 2 p-'E( Wp)
 p--o

 lim 2p-'E[(S - p-'T)+]
 p-o

 = lim 2p-' E[(S - t)+]pg(pt)dt (13)

 -2g(O) f E[(S - t)+]dt

 -2g(O)(ES) f P(Se > t)dt

 = 2g(O)E(S)E(Se) = g(O)(cs + 1).
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 940 / WHITT

 Combining (10) and (13), we see that

 c2(0) = (1 + c2)(g(0) - 1). (14)

 As indicated in Newell, and Fendick and Whitt, this

 heuristic argument extends to more general models.
 For GI/G/1, (14) can be rigorously justified by

 applying the results by Daley and Rolski (1984, 1990).
 Let G(t) = P(T - t). For general GI/G/1 models with

 our interarrival-time scaling, they conclude that

 lim p--E(Wp) = E(Sl+a)y/(1 + a) (15)

 for 0 a a < oo and 0 _y < oo if tFG(t) > ast-O
 and E(S2+a) < oo.

 From (9) and (15), using a = 0, it follows that if

 G(O) = 0 (Thas no atom at 0), then indeed E(Wp) ->
 o as p -> 0, so that c2 (0) = 1 + c2 as in (2). By
 considering the case a = 1, we see that if E(S3) < ??
 (as we have assumed), G(O) = 0 and G(t) has a

 derivative g(O) at 0, then

 lim p-'E(JW') = E(S )g(O) = (1 + c,)g(O) (16)
 P-->o 2 2

 which is consistent with (13), so that we have rigor-

 ously justified ( 14).
 Note that g(O) is the density of the unscaled inter-

 arrival-time T at 0. If T has a density g(t) for all t,

 then p-'7T has density gp(t) = pg(pt), t > 0, so that
 g(O) = p-'gp(0) in (13), (14) and (16). In applications,
 we consider gp(0) for some p; that is, (14) is equivalent
 to

 c(0) = (1 + c2) (-- 1). (17)

 Finally, from (14) or (17) note that

 c2(0) > -c2(0) (18)

 because g(0) > 0.
 From this analysis, we see that the mean workload

 is substantially more robust in light traffic than the
 mean waiting time, so that it should be easier to obtain

 fairly good light traffic approximations for the mean
 workload without considering the fine structure of the

 model, that is, without considering more than c2 and

 g(0). On the other hand, we can expect to obtain
 better approximations, especially for the mean waiting
 time, by exploiting (15) with the precise a yielding a
 nondegenerate limit.

 In applications, the value p-'gp(O) in (17) may be

 unavailable. As a default value, we suggest

 g(0) P- pgp(0)

 C2c/(C2 + 1) C2 > 1 (

 ((2 )4 Ca2

 The default value when c2 > 1 is the exact value for

 an H2 distribution (hyperexponential, a mixture of
 two exponentials) with balanced means, having a
 density

 g(t) = pg1e-1," + (1 - p)g2e -2 t > 0 (20)

 where p/,u, = (1 - P)/I2 = 1/2. For c2 < 1, the default
 value is based on the observation that g(0) is often
 small when c' < 1; for example, for all Ek (Erlang)
 distributions, for which c2 = k-', g(0) = 0, whereas
 g(0) = 1 for an exponential distribution. (The expo-
 nent 4 in (19) is rather arbitrary.)

 2. HEAVY TRAFFIC

 The heavy trafflc limit in (2) is well known, following
 from Kingman's (1962) seminal paper; see p. 196 of
 Asmussen (1987). (The third moment condition here

 implies the uniform integrability assumed there in

 order to get convergence of the moments. Apply (3)

 to go from E(W,) to E(Z,).) The extensive heavy
 traffic literature provides a basis for determining c2(1)
 in much more general models; a general characteriza-

 tion is given in (8). See Fendick, Saksena and
 Whitt (1989a, b) and Fendick and Whitt for further
 discussion.

 In contrast, the heavy traffic derivative c2(1) is not
 so well understood, although there has been a surpris-
 ing amount of work related to the GI/G/1 special
 case, as can be seen from Siegmund (1979),
 Kollerstrom (1981), Chapter X of Siegmund (1985),
 Halfin (1985), Chapter XII of Asmussen (1987) and
 Knessl (1990).

 It is actually easy to see what the derivative c( 1)
 should be by applying Marshall's formula

 E(WP) =E(p('T- S)2 E(I() ?<p< 1 (21)
 2E(p-1T-S) 2(.

 where Ip is the idle period (see p. 76 of Stoyan 1983,
 Halfin or (2.4) on p. 185 of Asmussen 1987) so that

 E(WP) a c+c, + p Ca-cs
 2 (I - p)( 2

 (1 - p) E(I2)
 + 2p 2(p (22)
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 Approximating the Mean Workload in a GI/G/ 1 Queue / 941

 Moreover, an extension of (21) exists for general single

 server queues without any independence conditions,
 see (5.0.21) of Stoyan, but we will have our hands full

 with the standard GI/G/ 1 model.

 Unfortunately, even for GI/G/ 1 the idle period I,
 is rather complicated, so that (22) is not immediately
 informative. However, upon reflection, it is intuitively

 clear that unlike WJ, I, usually converges to a proper
 limit I1 as p -> 1 with E(I') -> E(IP) for k = 1 and 2.
 For example, for any M/G/ 1 queue, Ip has the same
 distribution as an interarrival-time p-'T, which con-
 verges to T as p -> 1. From basic stochastic com-
 parison theory, we can conclude that the ratio

 E(I')/2 E(IP) is bounded below by a term of the order
 - p; that is, since

 E(I2)/2E(Ip) > (1 - p)/2p (23)

 (see (5.5.4) of Stoyan), we have the classical Kingman

 bound, expressed as a one-sided expansion in powers
 of(I - p)

 + +22 2 PC E(WP) - 2"a ') +e " Cs'+ ( )a (24)
 2 (I-p) 22

 (see (5.6.2) of Stoyan). However, we have no tight
 bound on the other side, so (24) does not nearly resolve
 the issue.

 Here we simply assume that E(I2)/2E(Ip) -E(I2)/
 2E(I1) as p -> 1. Under this assumption, we can write

 _c2 + c2 c2 - c2 E(I2)
 E(WP) -a + a . +o() 2(1 p) 2 2 E(I)

 asp -> 1 (25)

 where o(h(p)) is a quiantity that converges to 0
 as p -> 1 after being divided by h( p). Combining (1),
 (3) and (25), we obtain

 2z(p) = (C2 + C2)( -P) (EI )(C2 +1)

 + o(l -p) as p -> (26)

 so that c2(1) = c2 + c2 as in (2) and

 = (E(Ih)- (ca+ 1)) (27)

 Two difficulties remain: First, we need to know

 when (25) is justified (presumably a technical matter
 of little practical concern) and, second, we need to
 express E(h)/2 E(11) in terms of the distributions of
 T and S (obviously a serious issue of great practical
 concern). In fact, both issues have been investigated
 fairly extensively, but neither is completely resolved.
 In support of (25), Kollerstrom proved that under the

 condition of finite fourth moments, E(I')/E(Ip) is
 bounded as p -> 1; see Lemma 2, (60) and (63) there.
 (It appears that only a finite third moment is needed

 for this part of his analysis. The idle period Ip coincides
 with the descending ladder height H7 there.) More-
 over, Halfin, who also starts from Marshall's formula

 (2.1), shows that for any GI/M/ 1 queue Ip converges
 in distribution to II, where, in that case, I, has the
 stationary-excess distribution associated with the

 interarrival-timre T, that is,

 00

 P(I, > t) = (ET)-' P(T > s)ds t > 0 (28)

 so that the mystery termn in (25) and (27) has the very
 simple form

 p-li 2E(I ) 2 2E(II) 3E(T2)

 Further support for (25) and extensions are provided
 by Siegmund (1979), which is further discussed in

 Chapter X of Siegmund (1985) and Chapter XII of
 Asmussen (1987). Siegmund uses a change of measure
 argument (not unlike Reiman and Weiss) in the con-

 text of conjugate distributions (additional assump-
 tions on the distribution of (S - p-'T)) to establish
 the expansion

 E(Wp)

 A-1 _ E(I1) + AP E(I3) _ F E(I2)12\
 p 2E(I) 2 \3E(11) L2E(I1)J /

 + o(AP) as p 1 (30)

 where AP -> 0 as p- 1. Since the convex function 4
 there is asymptotically quadratic as p -- 1 (Taylor
 series), it is possible to show that (30) is in fact
 consistent with (25). Of course, (30) also provides an
 additional third order term.

 As indicated above, the pressing applied problem is
 to characterize E(If)/2E(I1). In fact, much is known
 about the idle period Ip from the general theoiy of
 random walks. For any p, -IP coincides with the weak
 descending ladder height of the random walk with

 steps (S - p' T); see p. 182 of Asmussen (1987) or p.
 53 of Prabhu (1980). The Laplace transform of Ip for
 any p can be obtained from the Wiener-Hopf theory,
 and is given in general in (5.61) on p. 284 and (5.136)
 on p. 304 of Cohen (1982), and for a large class of
 special cases in (5.194) on p. 325 and (5.206) on p.
 331. Moreover, conditions for the moments E(I') to
 be finite have been determined (with some ingenuity
 for the case p = 1). Spitzer (1960) showed that if
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 O < E(T-S)2 < oo, then

 O < E(I1)

 dE(S - T2 F2 11
 - ~ exPj~ n=1 -2 PU )j

 < 00 (31)

 where

 n

 Un =E(S - T,), n :,: 1 (32)
 i=l

 (see p. 282 of Chung 1974 or p. 199 of Spitzer 1964).
 By a similar argument (Problem 6 on p. 232 of Spitzer

 1964), E(I2) < oo provides that E(I S - TI 3) < oo.
 Hence, under our assumptions

 E(I21) 0 < EI < 00 (33)
 E(I1)

 so that the right side of (27) is well defined.
 Higher moments E(IP) were computed by Lai

 (1976), who also showed that under finite third
 moments

 E(I2)

 2 E(11)

 E[(T- S)3]

 6

 2 = (_ 1) n-n E(I Un l)]
 < oo (34)

 where Un is given by (32) and n-'E(I Un l) = 0 for
 n = 0. For numerical calculations, an integral repre-
 sentation is also available (p. 225 of Siegmund 1985

 or p. 276 of Asmussen 1987) in terms of the charac-

 teristic function 0(t) = E[eit(T-S)], namely

 E(N) E[(T- S)3]

 2E(I,) 6

 J t-2 Re log {2[1 -(t)]/t2fdt. (35)
 iro

 In summary, even though there remains a technical

 gap ((30) does not cover all GI/G/ 1 queues), it seems
 reasonable to treat (27) plus (34) or (35) as the correct

 formula. For practical purposes, the real difficulty is

 that, in general, the ratio E(I2)/E(I1) that appears in
 (27) has no simple expression that depends on only a

 few parameters of the interarrival-time and service-
 time distributions. (It is easy to show that (29) does
 not hold for all GI/G/ 1 queues.) Indeed, it is remark-

 able that the simple formula (29) emerges in the

 GI/M/ 1 case.

 An extremely important insight from this analysis,

 applying with even more force than Daley and Rolski's

 observation about the light traffic limit (15), is the

 fact that a simple exact expression for e2(1) for any
 GI/G/ 1 queue is evidently not possible, so that addi-

 tional approximation is necessary in order to obtain

 the kind of elementary formula we want. This insight
 is confirmed by Knessl who identifies terms in an

 expansion for the distribution of Z, in powers of
 (1 - p), assuming that such an expansion is valid, us-

 ing the theory of matched asymptotic expansions ap-

 plied to the forward Kolmogorov (Takacs) equation.

 Knessl's analysis is very different from the other ap-
 proaches, all of which are based on random walk

 theory. It seems to have the potential for making

 the higher order heavy traffic terms more numerical-
 ly accessible, but for general GI/G/ 1 systems the sec-

 ond order term seems to require the solution of a

 Wiener-Hopf problem.

 Kollerstrom suggests simulating I, to estimate
 E(IJ)/2 E(I). This closely parallel's Minh and Sorli's

 (1983) method for estimating E(WP) by simulating
 E(IJ2)/2 E(Ip) and applying (21). Simulation of I, is
 not straightforward, however, because the mean length

 of the busy cycle containing the idle period is infinite

 when p = 1. As an approximation, one might use Ip
 for p = 0.9, but long busy cycles remain a problem.

 For practical purposes, however, it appears that little

 will be lost by simulating successive busy cycles to

 estimate E(IP) and terminating all runs that fail to
 complete a busy cycle by a prescribed time. We, thus,

 fail to sample in a region with small probability, but
 this does not seem too harmful because the condi-

 tional expectations of I' given a long busy period are
 not too large.

 We believe that useful approximations for C2(p) can
 be obtained by interpolating using approximations for
 the derivative e2( 1). This idea is supported by Halfin,
 who suggests converting (21) into an approximation

 by approximating the idle period distribution by the
 stationary-excess interarrival-time distribution, so that
 we obtain

 E(Ip2) E( p -I T)2 E(T 3)- (36)
 2E(Ip) 3E(p-1T2) 3pE(T2)

 which is, of course, supported by (29). Based on (21)

 and (36), Halfin proposed the general approximation

 E(Wp) - - tE(p-'T - S) E(T 3) (37)
 2(~ 2E(p'T - S) 3 3pE(T 2) (7
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 which he notes is not good (e.g., negative) when E(T3)

 becomes large. (He also develops refinements.) Of

 course, this same difficulty applies to (30), (34) and

 (35), even with three terms. To avoid this difficulty,
 we suggest applying (36) only to estimate the derivative

 cze(1). In particular, we suggest as an initial approxi-
 mation to (27)

 e2(l) 2E(T -(c +3) 2
 3E(T2) / ~~~~~~(38)

 (2E(T3) )(2 +

 We also suggest a way to refine (38), which should

 have many other applications. We suggest using nu-

 merical values for high traffic intensities to estimate

 cz( 1). In particular, we refined (38) by using numerical
 estimates of the derivative c2( 1) based on algorithmi-

 cally generated values in the tables of Seelen, Tijms

 and van Hoorn ( 1985). (In fact E(Zp) does not appear

 in the tables; it is obtained from the mean queue

 length there via L = X W and (3).) The tabled values

 for the case p 0.98 were used to estimate e2(l) via

 c2(1 ) ~ c2(1) -c (0.98)
 z ~~0.02 (9

 which should be pretty reliable because (1 - p)2 =
 0.0004 << 0.02 = (1 - p); we can safely neglect higher

 order terms. Based on the tabled values for p = 0.98,

 we propose the approximation

 z(l) X(c2, ca ) (3C2 .+ a)-(c2 + 1)) (40)
 where

 X(c2, C2) ( 1-s ( s a <1 s2
 | ( C2) C2) 1.s 1+ Csc2>l,c2~
 4

 =-q 4 (41)

 | 1 ~~~~~~c2>< 1, 'C,2 > 1.

 l 2 l --(A a Z 5

 If the third moment E(T3) is unavailable, then we

 suggest the default value

 E(T3) E(T 3)
 (ET)3

 {3C2(C + 1) c2 >
 1(C2 + I C2c + 1) C2 (42)

 as on p. 2804 of Whitt (1983), which is based on the
 exact results for the H2 distribution with balanced
 means in (20) when c2 > 1 and the Ek distribution
 whenc 1.

 Note that (41) yields X(c2, 1) = 1, so that (40) agrees
 with (38) for GI/M/1. The adjustment factor X(c2,
 c2) in (40) has the disadvantage of not being contin-
 uous in c2 at 1, but in the case of an exponential
 interarrival-time distribution with c2 = 1, E(T3)-
 6 = 3(c2 + 1)2/2, so that the other term in (40) becomes
 0; i.e., for an M/G/1 queue, c(1) = 0.

 Since the tables in Seelen et al. only include distri-
 butions characterized by their first two moments, only
 c2 and C2 could reasonably enter into (41). Our idea is
 that the third interarrival-time moment should be
 pretty well captured by (38) and that the third service-

 time moment should not matter too much for E( WO)
 and E(Zp). There is certainly room for further refine-
 ment, but even (38) seems to be pretty good.

 The first general approximation for c2( 1) developed
 in Fendick and Whitt was e2(1) - 2 J'(1)/Jw(1), as in
 (8) without the maximum adjustment in the denom-
 inator. For GI/G/ 1, this initial approximation reduces
 to (40) with

 Xa~ c) -C2 + 1 (43)
 Ca s

 instead of (41). (The general approximation for .(0)
 agrees with (17).) From numerical comparisons (e.g.,
 Section 5), we find that (40) performs well for typical
 distributions with all three adjustment factors (41),
 (42) and X = 1 as in (38)). Indeed, even though X can
 vary significantly, the values of C2( p) do not change
 dramatically. Evidently c?(p) is not very sensitive to
 changes in 2 ( 1); for example, a 50% change in X
 produces a 50% change in e2(1), but typically less than
 a 5% change in C2(p) for any p. This robustness
 obviously provides strong support for the general pro-
 cedure (6) and (8). The robustness does not mean that
 z( 1) does not matter at all; it obviously matters
 whether e2(1) is much less than, nearly the same as,
 or much greater than C( 1)- C(0).

 Even though the three adjustments do not differ
 greatly, (41) seems best overall. For example, for the
 E2/D/1 model, (38) and (41) produce maximum (over
 all p) relative errors of about 5.0% and 1.7%, respec-
 tively. Adjustment (43) is similar to (41) except when
 c2 + C2 is very small, as in E1o/D/1; then (41) is much
 better. This sug-gests that (43) be replaced by

 2+
 X(C2' C) Ca_1 X(C, C) -max I1, a~ + Cs 44
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 which led us to introduce the maximum adjustment
 in the denominator of e'(1) in (8).

 3. THE INTERPOLATION FUNCTION

 In this section, we determine the coefficients ai and
 exponents bi of the function f(p) in (6) in order to
 match the four given valuesf(O), f'(O),f( 1) and f '( 1),
 and satisfy the positivity and low order derivative
 monotonicity criteria. From (6), we see that

 f(O) = aO + a4

 f(l) = aO + a, + a2 + a3

 f'(O) = a, - a4b4 (45)

 and

 f'(1) = a, + 2a2 + a3b3

 provided that b3 $ 1 and b4 $ 1. The final parameters

 are chosen to satisfy the regularity criteria. By (2), we
 can assume that f(O) and f(1) are strictly positive and
 finite, but we make no such assumption for the deriv-

 atives. If f'(0) or f'(1) is +oo(-oo), then we replace it
 with a large positive (negative) value.

 We consider three cases: 1)f(0) < f(1), 2)f(O) >
 f(1) and 3)f(O) = f(1), each with several subcases.

 Case 1. f(O) < f(1)

 We try to make f strictly increasing; we get two
 subcases depending on whether or not this is possible.

 Case 1.1. Increasing fit: f'(O) , 0 and f'(1) : 0

 In this case, we can make f strictly increasing, and do.
 Next, we try to make the derivative f' constant and,
 if that is not possible, monotone. In all five subcases
 f" is monotone.

 Case 1.1.1. Linear fit:

 f(O) = f'(1)=[ f (1)-f (0)]

 Let ao = f(O), a, = f(1)-f(O), and a2= a3= a4 =0.

 Case 1.1.2. Convex fit:

 o <' f'(O) c [ f(1) f (O)] < f'(1)
 In this case we make f and f' increasing, and all
 higher derivatives monotone. Let

 ao = f(O), al = f'(0), a2= a4 = 0

 a3 = f(1)- f(O) - f'(0) > 0

 and (46)

 b - f'(1) - f'(O)
 a3

 Case 1.1.3. Concave fit:

 0 < f'(1) < [f(1) - f(O)] < f'(O)

 We use the same fit as in Case 1.1.2; here a3 < 0 and
 b3 > 1, so that f ' is decreasing instead of increasing.

 Case 1.1.4. Increasing f" fit:
 f '(O) > [ f (1) - f (0)]
 and f '(1) > t f (1) -f (0)]

 The case of two equalities is covered by Case 1.1.1, so
 we assume that one inequality is strict. In this case,
 we cannot imake f' monotone, but we make both f
 and f" increasing. Let al = a2 = 0

 f(0) + f(l)
 aO= 2

 = f(1) - f(O) = a3 2=--a4

 = 2f '(1) >2(7
 b3 = f ( -f (0) 2 2

 and

 2f '(0)
 b4 = :,:-2.
 f(l) -f(O)

 Case 1.1.5. Decreasing f" fit:
 f'(O) < [f(1) - f(0)]
 and f '(1) < [ f (1) -f (0)]

 Again, the case of two equalities is covered by
 Case 1.1.1, so we assume that one inequality is strict.
 As in Case 1.1.4, we cannot make f ' monotone, but
 we make both f and f" monotone. In this case, we
 do a simple cubic fit, i.e., let b3 = 3 and a4 = 0. In
 addition, let aO = f(O), a, = f'(0)

 a2 = -f'(1) - 2f'(0) + 3[f(1) - f1()] > 0 (48)

 a3 = f'(1) + f'(0) - 2[f(1) - f(0)] < 0.

 Since a2 ? -a3, f is indeed increasing.

 Case 12. Nonmonotone fit:
 f '(O) < 0 or f'(1) < 0

 We cannot fit a monotone f, because f '(0) < 0 or
 f'(1) < 0. We try to make f ' monotone and, if not
 f ', then f". We make f" monotone in every subcase,
 except Case 1.2.3c below, where f' is monotone.
 When f'(0) < 0, we have f(p) < J(0) for some p, so
 that we must also ensure that f( p) > 0 for all p.

This content downloaded from 
������������128.59.222.107 on Sat, 08 Jan 2022 17:28:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 Approximating the Mean Workload in a GI/G/ 1 Queue / 945

 Case 1.2.1 Concave fit:

 f'(1) < 0 < [f(1) - f(O)] < f'(O)

 Let a4 = 0, ao = f(O) and al = f'(0).

 a. If [f(l) - f(O)] < f'(0) < 2[f(l) - f(O)], then let

 -(f'(0) - [f(1) - f(O)]) a2 = a3=2

 and (49)

 b3 f(l) -f(0) -f((l) 1.
 -a3

 b. If f'(O) > 2[f(l) - f(O)], then let

 a2 = f(O) - f(l)

 a3 = -(f'(0) - 2[f(1) - f(O)]) (50)

 and

 a3 + f'(1)
 a3

 Case 1.2.2. Decreasing f " fit:

 f'(1) < 0 < f'(0) f [f(1) - f(0)]

 Use the cubic fit in Case 1.1.5.

 Case 1.2.3. Positive convex fit:

 f'(O) < < [ f (1)-f (0)] < f'(1)

 We consider three subcases.

 a. If-f'(0) < 2f(0) and -f'(0) < 2(f'(1) - [f(1) -
 f(0)]), then let ao = f(0), a, = f'(0), a2 =-f '(O)/2,
 a3 = f(1) - f(0) - f'(0)/2, a4 = 0 and

 2f '(1) (51) =2[f(1) - f(0)] - f'(0)>1.()

 Note that al < 0, but

 (ao + alp + a2p2) (52)

 =f' + f'()p f 2'(0) p2 f '(0) p)2
 2 2

 b. If f(O) > f '(O)/2 > f '(1) -[ f() - f(O)], then
 let aO = f(O) -a4, a = a2= 0, a3= f(l) -f(O) + a4

 b f '(l) = -f '(O)
 f(l) -f(O) + a4' a4 (53)

 a4 = f'() [ f() -f(O)] - z > O

 where

 z = minf '(1) - [f(l) - (O)] 0.48f'(1)}

 > 0. (54)

 Since 1 < b3 < 2 and b4 > 2, both f' and f" are
 monotone.

 c. The remaining subcase occurs when -f '(0) >
 2f(O). This subcase cannot arise directly in our appli-

 cation, because f '(0) >-f(O), as noted in ( 18), but it
 can arise indirectly via Cases 2 and 3.3. For this case,
 proceed just as in b, except let

 a4 =mint f '(1) - [ f(1) - A(0)] - z, f(O)} (55)

 which implies that b3 > 1 and b4 > 2. When b3 > 2

 and b4> 2, f" need not be monotone. Indeed, for this

 subcase we cannot guarantee that f" is monotone.

 Case 1.2.4. Positive with decreasing f" fit:

 f'(O) < 0 < f '(1) < [ f (1) -f (0)]

 Let ao = a3= 0, a, = 2f(1) -f'(1), a2 = f'(1) -f(l),
 a4 = f(O) and

 b4 = [2f(1) - f'(1) - f'(0)]/f(0) > 2. (56)

 Case 1.2.5. Positive with two-zero f' fit:

 f'(O) < 0 and f'(1) < 0

 Not only cannot f and f ' be monotone, but f ' must
 have two zeros in the interval (0, 1). Let f be defined
 as in Case 1.2.4.

 Case 2. f (O) > f (1)

 We reduce this to Case 1 by considering the time
 reversed function

 h(p) = f(l - p), 0 <_ p <_ 1. (57)

 Obviously, h(O) = f(l) < f(O) = h(l), so that h is
 covered by Case 1, with h'(0) = -f'(1) and h'(1) =
 -f '(0). Applying Case 1 to h, we obtain

 h(p) = ao + aIp + a2P

 + a3p3 + a4(1 - p)b4 (58)

 so that

 f(p) h(l p)

 = aO + ai(l - p) + a2( - p)2

 + a3(l - p)b3 + a4p4 (59)

 which is transformed into (6) by setting

 ao = aO + a', + a2

 al= -(+2a2), a2=a2

 a3 = a4, a4 = a3 (60)
 b3 =6

 and

 b4= b3.
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 Case 3. f (O) = f (1).

 This case is not really needed, because we could

 perturb f(O) or f(1) slightly to obtain Case 1 or 2, but
 if f'(0) and f'(1) are nearly equal, it may be preferable
 to treat them as equal and apply this case.

 Case 3.1. Constant fit: f'(O) = f'(1) = 0.

 Let ao = f(O) and al = a2 = a3 = a4 = 0.

 Case 3.2. Concave fit: f'(1) < 0 < f'(O)

 Let

 ao = f(O) - a4, al = a2 = O

 a3 = a4 = -min{f'(0), -f'(1)}

 b3 f ( 1) : 2 (61)
 a3

 and

 b4=- f '( 2.
 a3

 Case 3.3. Positive convex fit: f'(O) < 0 < f'(1)

 We apply Case 1.2.3 to the function

 h(p) = f(p) + Cp -f(),O < p < 1 (62) 2'

 where 2c = minIf(O), -f'(0)}. Since

 B(0) f(O) h(O)= <( B +c=h(l)
 2 2

 h'(0) = f'(0) + c < 0 < h(l) - h(O) (63)

 = c <f'(1) + c = h'(1)

 h belongs to Case 1.2.3. Given h(p) as in (58)
 based on Case 1.2.3, we obtain f(p) in (6) by letting
 ao = ao + f(O)/2, a, = a, - c, and a, = a'i plus
 b = bbi for i - 2.

 Case 3.4. Positive with decreasing f" fit:
 f'(O) s 0 and f'(1) - 0

 Apply Case 1.2.4.

 Case 3.5. Positive with increasing f" fit:

 f'(O) > 0 and V'(1) > 0

 Paralleling Case 2, we obtain this from Case 3.4 by
 considering the time reversed function h in (57). We
 apply Case 3.4, and thus Case 1.2.4, to determine h
 in (58). We obtain f itself from (59) and (60).

 4. BOUNDING POLYGONS

 Through the low order derivative monotonicity crite-

 rion, we have ensured that f or f' is concave or

 convex in every case of Section 3. As a consequence,

 we conclude that in every case the fitted function lies

 in a bounded polygon determined by (some of) the

 six lines

 fi(p) = 0, f2(P) = f(O)

 fi(p) = f(l), fi(p) = f(O) + pf'(0) (64)

 f5(p) = f(l) - ( - p)f'(l),

 f6(P) - f(O) + p[ f(1) - f(0)], 0 <pP 1

 and the two vertical lines that correspond to p = 0
 and p = 1. Table I shows the line indices that form

 edges of the polygon in each case. Figure 1 depicts the
 bounding polygons for each of the ten subcases of
 Case 1.

 The bounding polygon gives some idea about the

 range of possible fits consistent with the fitting data.

 Of course, we have no guarantee that an unknown
 function lies in the bounded polygon, but it will if it
 satisfies the fitting criteria. Thus, in graphical displays,
 it is helpful to display the bounding polygon as well

 as the fitted function.

 In Section 3 we have specified a fit for every case,

 but the cases differ greatly with regard to the reliability

 of the fit. For example, suppose that f(l) = f(O) + 1.
 If f'(0) = 2 and f'(1) = l/2 (Case 1.1.3), then the
 concave increasing fit is fairly reliable. However, if

 Table I

 Indices of the Lines in (64) That Form Edges of

 the Bounding Polygon in Each Case of the
 Interpolation (Depicted in Figure 1)

 Case Line Indices

 1.1.1 6 (= 4 = 5)

 1.1.2 4, 5, 6

 1.1.3 4,5,6

 1.1.4 2,3,4,5

 1.1.5 4, 5

 1.2.1 4, 5, 6

 1.2.2 4, 5

 1.2.3 1,4,5,6

 1.2.4 1, 4, 5

 1.2.5 1,4,5

 3.1 6(=2= 3=4=5)
 3.2 4,5,6

 3.3 1,4,5,6

 3.4 1,4,5

 3.5 1,4,5
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 instead f'(0) = f'(l) = 0.01 (Case 1.1.5), then the
 monotone fit with nonmonotone derivative is less

 reliable. If f'(0) < 0 and f'(l) < 0 (Case 1.2.5),
 then the resulting nonmonotone fit will be even less

 reliable.

 MONOTONE FITS

 f (4 f f (t1)

 g(0) f(0) f - )
 0 L 1

 1.i.1 LINEAR 4.1.2 CONVEX 1.1.3 CONCAVE

 f (1) f (0)

 0 0
 i.4.4 4.4.5

 NON-MONOTONE FITS

 I.2.1 CONCAVE 1.Z.2 12a3 CONVEX

 ..(. . .. . -.-. - 0))W f (0) f(O
 4. . CNCVEi.2. i.22 3COVE

 Figure 1. The bounding polygons for the ten subcases

 of Case l .

 To provide some guidance about the reliability of

 the fit we suggest two fitting reliability measures. The
 first is the area of the bounding polygon and the

 second is the length of the p-section of the bounding

 polygon as a function of p; i.e., if 3P is the polygon in

 R2, then the p-section of 3P is

 L(p) = {f(p):(p, f(p)) E 3P 0 < p < 1. (65)

 5. NUMERICAL COMPARISONS

 In this section, we present a few numerical compan-

 sons between the approximation for the normalized
 mean workload c2(p) in (1) and exact values. The

 approximation is (6) with c2(0) and c2(I) in (2), cz(0)
 in (17), and c(l) in (40) with the adjustment factor
 X(c, c2) in (41). First, comparisons for E2/G/ 1 and

 E1o/G/l queues are displayed in Tables II and III.
 Four different service-time distributions are consid-

 ered: D, Ek, M and H2 with balanced means as in
 (20). The exact values come from Seelen et al. Their

 exact values for the mean queue length (excluding the

 customer in service) are transformed into c2(p) via

 L = X W, (1) and (3). From Tables II and III, it is evi-
 dent that the accuracy of the approximations in these

 cases is very good (beyond what is typically needed in

 practice), even though neither the light traffic nor the

 heavy traffic behavior is pinned down precisely. In

 light traffic, g(0) = 0, so that we do not fully exploit

 (15).

 Table II

 A Comparison of Approximations for the Normalized Mean Workload c2(p) in (1) With Exact Values
 for Four E2/G/I Queues from Seelen, Tij ms and van Hoorn. (The H2 Distribution has Balanced Means

 as in (20).)

 Service-Time Distribution

 Traffic D, c2 = 0.0 E2, C= 005 M, C2 = 1.0 H2, 2= 4.0
 Intensity ,

 p Exact Approx. Exact Approx. Exact Approx. Exact Approx.

 1.00 0.500 0.500 1.000 1.000 L1500 1.500 4.500 4.500
 0.98 0.506 0.506 1.004 1.004 1.503 1.503 4.504 4.503
 0.95 0.514 0.515 1.011 1.010 1.508 1.508 4.507 4.508
 0.90 0.529 0.530 1.022 1.021 1.518 1.517 4.513 4.517
 0.80 0.561 0.559 1.046 1.042 1.538 1.533 4.531 4.533
 0.70 0.596 0.591 1.073 1.064 1.560 1.550 4.549 4.550
 0.60 0.634 0.626 1.105 1.088 1.587 1.569 4.570 4.567
 0.50 0.678 0.666 1.140 1.118 1.618 1.591 4.594 4.583
 0.40 0.724 0.712 1.183 1.155 1.657 1.620 4.623 4.600
 0.30 0.777 0.766 1.233 1.206 1.703 1.664 4.660 4.619
 0.20 0.838 0.831 1.297 1.275 1.766 1.731 4.710 4.646
 0.10 0.911 0.908 1.381 1.374 1.854 1.837 4.788 4.722
 0.00 1.000 1.000 1.500 1.500 2.000 2.000 5.000 5.000

 Max

 (over p) - 1.8 - 2.4 - 2.3 - 1.4
 % error
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 Table III

 A Comparison of Approximations for the Normalized Mean Workload c2(p) in (1) With Exact Values

 in Four EjO/G/1 Queues from Seelen, Tijms and van Hoorn. (The H2 Distribution has Balanced Means
 as in (20).)

 Service-Time Distribution

 Traffic D, c2 = 0.0 E3, c2 0.333 M, c2 = 1.0 H2, c2 = 4.0
 Intensity - -

 p Exact Approx. Exact Approx. Exact Approx. Exact Approx.

 1.00 0.100 0.100 0.433 0.433 1.100 1.100 4.100 4.100
 0.98 0.113 0.113 0.443 0.442 1.106 1.106 4.105 4.106

 0.95 0.134 0.135 0.456 0.456 1.116 1.115 4.113 4.115
 0.90 0.169 0.172 0.482 0.481 1.132 1.131 4.127 4.130
 0.80 0.244 0.254 0.535 0.540 1.169 1.166 4.157 4.160
 0.70 0.325 0.339 0.600 0.608 1.212 1.210 4.191 4.190

 0.60 0.412 0.427 0.661 0.685 1.260 1.265 4.232 4.220
 0.50 0.505 0.518 0.745 0.771 1.325 1.334 4.279 4.253
 0.40 0.601 0.611 0.838 0.867 1.401 1.421 4.336 4.291
 0.30 0.700 0.706 0.946 0.971 1.500 1.528 4.407 4.347
 0.20 0.800 0.803 1.068 1.083 1630 1.658 4.501 4.444
 0.10 0.900 0.901 1.200 1.204 1.802 1.815 4.644 4.633
 0.00 1.000 1.000 1.333 1.333 2.000 2.000 5.000 5.000

 Max

 (over p) - 4.3 3.6 1.7 1.4
 % error

 Next, comparisons between the approximation for

 c2(p) and exact values for H2/M/1 queues with c2 =

 2.0 and c2 = 12.0 are displayed in Tables IV and V.

 Here different cases are obtained by allowing the third

 moment of the interarrival time to vary. In contrast

 to Tables IL and III, a dramatic improvement over
 two moment approximations is evident in Tables IV

 and V. The exact values here come from Tables I and

 II of Whitt (1984b). Again, the mean queue length

 (including the custorner in service) is transformed into

 C2(p) via L = XW, (1) and (3). The accuracy of the
 approximation in these cases is usually very good, but

 not uniformly so, even though e'(1) is exact by (29)

 and c2(0) uses the full force of (15) because 0 <

 f(O) < oo. The accuracy degrades significantly when
 p and E(T3) are both small or large. However, this

 is to be expected, because c2(O) J 0 and e'(1) T oo
 as E(T3) T oo, while c2(0) T mo and e(1) l 0 as ET3) 1
 1 .5 (E(T2))2, the lower bound for E(T3). The reliability
 measures in Section 4 clearly depict the problem. The

 very large errors in these extreme cases obviously
 reveal limitations in the approximation here or the
 general procedure in (8), but the performance in these
 extreme cases can be interpreted more positively. The
 approximate function is actually reasonably close to
 the exact function {c2(p): 0 < p 1 }; that is, the shape

 Table IV

 A Comparison of Approximations of the Normalized Mean Workload c2(p) in
 (1) With Exact Values for the H2/M/ 1 Queue With C2 = 2.0 and Different Third

 Moments (From Table I, p. 170, of Whitt 1984b)

 Arrival p-0.3 p =0.7 p 0.9
 Third Moment

 E( T3) Exact Approx. Exact Approx. Exact Approx.

 13.5 3.000 3.000 3.000 3.000 3.000 3.000

 14.6 2.604 2.512 2.902 2.875 2.974 2.970
 16.2 2.357 2.333 2.781 2.756 2.936 2.932
 18.0 2.244 2.251 2.675 2.679 2.897 2.897
 20.9 2.156 2.170 2.546 2.567 2.838 2.842
 32.1 2.067 2.051 2.302 2.268 2.659 2.654
 167.9 2.007 2.006 2.044 2.014 2.159 2.042
 00 2.000 2.000 2.000 2.000 2.000 2.000
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 Table V

 A Comparison of Approximations for the Normalized Mean Workload c2(p) in
 (1) With Exact Values for the H2/M/1 Queue With c2 = 12.0 and Different Third

 Moments (From Table II, p. 170, of Whitt 1 984b).

 Arrival p =0.3 p 0.7 p 0.9
 Third Moment

 E( T3) Exact Approx. Exact Approx. Exact Approx.

 253.5 13.00 13.00 13.00 13.00 13.00 13.00

 254.0 9.23 12.38 12.94
 280.7 9.93 6.00 12.41 10.96 12.84 12.64

 312.6 7.02 5.09 11.73 10.57 12.66 12.50
 351.6 4.85 4.60 10.92 10.12 12.45 12.32
 401.2 3.63 4.26 9.93 9.67 12.17 12.10

 468.0 2.99 3.93 8.71 9.11 11.80 11.82
 565.1 2.62 3.45 7.17 8.56 11.27 11.44
 722.7 2.38 2.89 5.36 7.08 10.44 10.74

 1031.7 2.22 2.25 3.70 5.40 8.93 9.52
 1946.0 2.10 2.07 2.61 2.77 5.64 6.82
 18287.0 2.01 2.01 2.01 2.01 2.20 2.02
 Xo 2.00 2.00 2.00 2.00 2.00 2.00

 is essentially the same in these cases. The discrepancies
 are primarily due to the curves being very steep at one
 end.

 Table VI compares four different approximations

 for c2 (p) with exact values in the H2/D/ 1 queue,

 where the I112 distribution has balanced means as in
 (2) with c2 = 2.0. The exact values come from Seelen
 et al. The first three approximations are (40) with the

 correction factor X = 1 as in (38), (41) and (44). The
 fourth approximation is the simple linear interpola-

 tion in (5). The three refined approximations do sig-
 nificantly better than the simple interpolation for

 p < 0.6 because they reflect the light traffic derivative
 c2(0) = 0.333. The refinement (41) comes closest to
 matching the exact values in heavy traffic, e.g., at

 p = 0.95 and 0.98, but approximation (41) does not
 perform exceptionally well overall, even though

 <( 1) is close and z(0) is exact and uses the full force
 of (15). In part, this can be explained by the fact
 that the interpolation produces an increasing convex
 fit (Case 1. 1.2 in Section 3), while the actual function
 c2(p) is not convex, as can be seen from the exact
 values at 0.98 and 0.8; c2(p) is necessarily decreasing

 for some p above 0.8. In this case, a simple cubic fit
 as in Case 1.1.5 of Section 3 actually performs better.
 Evidently, the deterministic service times interact with
 the H2 interarrival times in a rather strange way.
 (See Whitt 1984c for further evidence.) The maxi-
 mum relative error using (41) with (40) is 8.3% for
 H2/D/1, but only 0.4% for H2/M/1 (see Table 1 of
 Fendick and Whitt). Table VI is one of the worst cases
 for (4 1).

 Finally, comparisons between the approximation

 for c ( p) and the exact values for H2/H2 /1 queues are

 displayed in Table VII. Here the third moments of

 both the interarrival and service times are allowed to

 vary. As noted in Whitt (1 984b), from which the exact

 values are obtained, c 2(p) does not change much as

 the third moment of the service time changes, justi-
 fying having the approximation depend more on the

 interarrival-time distribution than the service-time

 distribution, beyond the first two moments. Note that

 c2z(p) is constant when E(T3) is at its lower or upper
 bound; see Whitt (1982, 1984) for further discussion.

 6. HOW BAD CAN THE APPROXIMATION BE?

 In Tables IV and V we saw how poorly the approxi-

 mation can perform in H2/M/1 queues when the third
 interarrival-time moment E(T3) and p are either both

 small or large, but this can be predicted because the

 derivatives cz(0) and e2( 1) do not permit a reliable fit.
 As observed in Section 5, the curves are actually quite

 close in that example. In general, the situation can be
 much worse, as we show in this section.

 First, we show that the interarrival-time density at
 the origin, g(O), actually provides no rigorous control

 on c,(p). Given any service-time distribution with
 o < cS2 <c, any finite interarrival-time density g(t)
 with 0 < c2 < oo and any positive E1 and E2, it iS pOS-
 sible to modify g(t) in the interval [0, 3] for suffi-
 ciently small 5 so that g(O) assumes any value we wish,
 while C2(p) changes by at most c1 for any p in the
 interval [E2, 1]. This is an elementary consequence of
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 Table VI

 A Comparison of Four Approximations for the Normalized Mean Workload c2(p) in (1) With Exact
 Values for the H2/D/1 Queue With c2 = 2.0. (The H2 Distribution Has Balanced Means as in (20).)

 Approximation (40) With Adjustments Linear
 X = 1 GI/G/1 General Interp.

 Traffic Intensity p Exact as in (38) (41) (44) (5)

 1.00 2.000 2.000 2.000 2.000 2.000
 0.98 1.973 1.980 1.975 1.970 1.980
 0.95 1.931 1.948 1.938 1.926 1.950
 0.90 1.859 1.894 1.877 1.854 1.900
 0.80 1.712 1.779 1.757 1.718 1.800
 0.70 1.567 1.658 1.642 1.590 1.700
 0.60 1.433 1.536 1.530 1.473 1.600
 0.50 1.316 1.417 1.424 1.365 1.500
 0.40 1.221 1.304 1.322 1.267 1.400
 0.30 1.145 1.202 1.227 1.181 1.300
 0.20 1.085 1.115 1.140 1.107 1.200
 0.10 1.037 1.046 1.061 1.045 1.100
 0.00 1.000 1.000 1.000 1.000 1.000

 c2(0) 1.000 1.000 1.000 1.000
 e?(0) 0.333 0.333 0.333 0.333

 c2(1) 2.000 2.000 2.000 2.000
 C2( 1) ~ 1.350 1.000 1.250 1.500

 Fitting case 1.1.5 1.1.2 1.1.2
 (Sec. 3) Cubic Convex Convex

 Max. (over p) - 6.8 8.3 3.8 14.7
 % error

 continuity or stability results for the GI/G/ I queue;
 e.g., p. 194 of Asmussen (1987). Hence, g(0) is useful
 only to the extent that it genuinely represents the
 interarrival-time distribution for nonnegligible small
 values. When this is in doubt, better approximations
 may be obtained by using C1G(t) for small t (e.g., t =
 0. 1 or 0.2) instead of g(0) in the formula for e'(0), but
 the full cdf is less likely to be available. The main
 point is that the light traffic limit simply does not
 rigorously control the behavior of c2(p).

 It remains to determine how well the first two
 moments of the service-time distribution and the first

 three moments of the interarrival-time distribution
 rigorously control c2(p). For the special case of an

 exponential service-time distribution, which is the

 only case in which we have a nice exact expression for

 c'(1), this issue was addressed by Whitt (1 984a, b) and
 Klincewicz and Whitt (1984); see especially Section
 IV of Whitt (1984a). There it was found that three

 interarrival-time moments do substantially limit the

 Table VII

 A Comparison of Approximations for the Normalized Mean Workload With Exact Values for Several
 H2/H2/1 Queues With p = 0.7 and c2 = C2= 2.0 (from Table III of Whitt 1984b). The Third Moments of

 Both the Interarrival Time and Service Time are Allowed to Vary.

 Exact Values Approximations

 Arrival H2 Service-Time Distribution Third Moments (40) With Linear
 Third Moment Interp.

 E(T3) 13.6 14.6 18.0 32.1 167.9 X= 1 (41) (44) (5)

 13.5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.70
 14.6 3.93 3.93 3.91 3.91 3.90 3.88 3.89 3.89 3.70
 18.0 3.75 3.74 3.72 3.69 3.60 3.70 3.71 3.74 3.70
 32.1 3.39 3.39 3.38 3.35 3.32 3.29 3.31 3.37 3.70
 00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.70
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 possible values of E(Zp) and thus c2(p), with three

 moments doing much better than two. Moreover, for
 any p, the smallest and largest possible values of c2( p)
 are attained by special two-point extremal distribu-

 tions, so that we can easily calculate the set of possible
 C2(p) values in any case. This analysis of g(O) and
 E(T3) supports the notion that the heavy traffic deriv-

 ative is typically more useful than the light traffic
 derivative for determining c2( p).

 For the GI/G/ 1 model in general, it remains to

 determine how much E( Wp) and c2( p) are constrained
 by the first few moments of S and T or even of
 (S - p-' T). To see the possibilities, we conclude with

 a somewhat pathological example. We use a two-point
 service-time distribution

 P(S= 0) = 0.1 = 1 - P(S=1o/9) (66)

 so that E(S) = 1 and c' = 1/9. We use a three-point
 interarrival-time distribution

 P(T = 100) = 0.000 1,

 P(T = 1) = 0.99, (67)

 P(T = 0) = 0.0099

 so that E(T) = 1, c2 = 0.99, E(T3) = 100.99,

 c2(0) 10/9 = c'(1) + 0.1, and e'(0) = +oo. Since
 P(S- p-1T< 0)= 0.9901 forp < 0.9, E(WP) - 0 and
 C2(p) - 10(1 - p)/9 for p S 0.9, but E(Wp) increases
 dramatically for p > 0.9, with c'(1) - 1.0. The inter-
 polation approximation certainly does not describe
 C2(p) well for p < 0.9. Since c2(0) - c'(1) - 1.0, we
 might think that this model behaves like an M/D/1
 queue, which is not nearly the case. Of course, the

 derivatives e'(0) and e'(1) suggest otherwise, but in
 this case only the heavy traffic derivative e'(1), which
 we do not know exactly, provides useful information.

 In summary, Sections 5 and 6 support the conclusion

 drawn in Whitt (1984a, c) and Klincewicz and Whitt
 that relatively simple approximations should perform
 well provided that the distributions are not too strange.

 ACKNOWLEDGMENT

 I am very grateful to Kerry Fendick for preparing the
 interpolation program and collaborating on the re-
 search that motivated this paper.

 REFERENCES

 ASMUSSEN, S. 1984. Approximations for the Probability
 of Ruin Within Finite Time. Scand. Act. J. 31-57.

 ASMUSSEN, S. 1987. Applied Probability and Queues.
 John Wiley & Sons, New York.

 BRUMELLE, S. L. 1971. On the Relation Between Cus-

 tomer and Time Averages in Queues. J. Appl. Prob.
 8, 508-520.

 BURMAN, D. Y., AND D. R. SMITH. 1983. Asymptotic
 Analysis of a Queueing Model With Bursty Traffic.
 Bell Syst. Tech. J. 62, 1433-1453.

 BURMAN, D. Y., AND D. R. SMITH. 1986. An Asymptotic
 Analysis of a Queueing System With Markov-
 Modulated Arrivals. Opns. Res. 34, 105-119.

 CHUNG, K. L. 1974. A Course in Probability Theory, 2nd
 ed. Academic Press, New York.

 COHEN, J. W. 1982. The Single Server Queue, 2nd ed.
 North-Holland, Amsterdam.

 DALEY, D. J., AND T. ROLSKI. 1984. Light Traffic Ap-

 proximation for a Single-Server Queue. Math. Opns.
 Res. 9, 624-628.

 DALEY, D. J., AND T. ROLSKI. 1990. Light Traffic Ap-

 proximations in Queues. Math. Opns. Res. 15 (to
 appear).

 FENDICK, K. W., V. R. SAKSENA AND W. WHITT. 1989a.

 Dependence in Packet Queues. IEEE Trans.
 Commun. 37 (to appear).

 FENDICK, K. W., V. R. SAKSENA AND W. WHITT. 1989b.

 Investigating Dependence in Packet Queues With
 the Index of Dispersion for Work. (Submitted for
 publication).

 FENDICK, K. W., AND W. WHITT. 1989. Measurements
 and Approximations to Describe the Offered Traffic
 and Predict the Average Workload in a Single-Server
 Queue. Proc. IEEE 77, 171-194.

 HALFIN, S. 1985. Delays In Queues, Properties and Ap-
 proximations. In Teletraffic Issues in an Advanced
 Information Society, ITC-11, M. Akiyama (ed.).
 Elsevier, Amsterdam, 47-52.

 HEYMAN, D. P., AND M. J. SOBEL, 1982. Stochastic

 Models in Operations Research, Vol. I. McGraw-
 Hill, New York.

 KINGMAN, J. F. C. 1962. On Queues in Heavy Traffic.
 J. Roy. Statist. Soc. B24, 383-392.

 KLINCEWICZ, J. G., AND W. WHITT. 1984. On Approxi-

 mations for Queues, II: Shape Constraints. AT&T
 Bell Lab. Tech. J. 63, 139-162.

 KNESSL, C. 1990. Refinements to Heavy Traffic Limit
 Theorems in Queueing Theory. Opns. Res. 38 (to
 appear).

 KOLLERSTROM, J. 1981. A Second-Order Heavy Traffic
 Approximation for the Queue GI/G/1. Adv. Appl.
 Prob. 13, 167-185.

 KRAEMER, W., AND M. LANGENBACH-BELZ. 1976. Ap-
 proximate Formulae for the Delay in the Queueing
 System GI/G/1. Proc. 8th Int. Teletraffic Cong.,
 Melbourne, pp. 235-1-8.

 LAI, T. L. 1976. Asymptotic Moments of Random Walks
 With Application to Ladder Variables and Renewal
 Theory. Ann. Prob. 4, 51-66.

This content downloaded from 
������������128.59.222.107 on Sat, 08 Jan 2022 17:28:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 952 / WHITT

 MARSHALL, K. T. 1968. Some Inequalities in Queueing.
 Opns. Res. 16, 651-665.

 MINH, D. L., AND R. H. SORLI. 1983. Simulating the
 GI/G/1 Queue in Heavy Traffic. Opns. Res. 31,
 966-971.

 NEWELL, G. F. 1982. Applications of Queueing Theory,
 2nd ed. Chapman & Hall, London.

 PRABHU, N. U. 1980. Stochastic Storage Processes.
 Springer-Verlag, New York.

 RAMASWAMI, V., AND G. LATOUCHE. 1987. An Experi-
 mental Evaluation of the Matrix-Geometric Method
 for the GI/PH/1 Queue. Bell Communications
 Research, Morristown, N.J.

 REIMAN, M. I., AND B. SIMON. 1988. An Interpolation
 Approximation for Queueing Systems With Poisson
 Input. Opns. Res., 36, 454-469.

 REIMAN, M. I., AND B. SIMON. 1989. Open Queueing
 Systems in Light Traffic. Math. Opns. Res. 14,
 26-59.

 REIMAN, M. I., AND A. WEISS. 1989. Light Traffic Deriv-

 atives via Likelihood Ratios. IEEE Trans. Inf Thy.
 35, 648-654.

 SEELEN, L. P., H. C. TIJMS AND M. H. VAN HOORN. 1985.
 Tables for Multi-Server Queues. North-Holland,
 Amsterdam.

 SEGAL, M., AND W. WHITT. 1988. A Queueing Network
 Analyzer for Manufacturing. In Teletraffic Science
 for New Cost-Effective Systems, Networks and Serv-
 ices, ITC-12, M. Bonatti (ed.). Elsevier, Amsterdam,
 1146-1152.

 SIEGMUND, D. 1979. Corrected Diffusion Approxima-
 tions in Certain Random Walk Problems. Adv. Appl.
 Prob. 11, 701-719.

 SIEGMUND, D. 1985. Sequential Analysis. Springer-
 Verlag, New York.

 SPITZER, F. 1960. A Tauberian Theorem and Its Proba-
 bility Interpretation. Trans. Am. Math. Soc. 94,
 150-169.

 SPITZER, F. 1964. Principles of Random Walk. Van
 Nostrand, Princeton, N.J.

 STOYAN, D. 1983. Comparison Methods for Queues and
 Other Stochastic Models. D. J. Daley, (ed.) John
 Wiley & Sons, New York.

 TIJMs, H. C. 1986. Stochastic Modelling and Analysis.
 John Wiley & Sons, New York.

 WHITT, W. 1982. The Marshall and Stoyan Bounds for
 IMRL/G/1 Queues are Tight. Opns. Res. Letters 1,
 209-213.

 WHITT, W. 1983. The Queueing Network Analyzer. Bell
 System Tech. J. 62, 2779-2815.

 WHITT, W. 1984a. On Approximations for Queues, I;
 Extremal Distributions. AT&T Bell Lab. Tech. J.
 63, 115-138.

 WHITT, W. 1984b. On Approximations for Queues, III:
 Mixtures of Exponential Distributions. AT&T Bell
 Lab. Tech. J. 63, 163-175.

 WHITT, W. 1984c. Minimizing Delays in the GI/G/1
 Queue. Opns. Res. 32, 41-51.

 WHITT, W. 1986. Deciding Which Queue to Join: Some
 Counterexamples. Opns. Res. 34, 55-62.

This content downloaded from 
������������128.59.222.107 on Sat, 08 Jan 2022 17:28:54 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17

	Issue Table of Contents
	Operations Research, Vol. 37, No. 6 (Nov. - Dec., 1989), pp. 849-1006
	Volume Information [pp. 993-1006]
	Front Matter [pp. 849-849]
	In This Issue [pp. 850-852]
	OR Practice
	An Efficient Decision Support System for Academic Course Scheduling [pp. 853-864]

	Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning [pp. 865-892]
	Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem [pp. 893-901]
	APROS: Algorithmic Development Methodology for Discrete-Continuous Optimization Problems [pp. 902-915]
	Fast, Effective Algorithms for Simple Assembly Line Balancing Problems [pp. 916-924]
	Sequencing in an Assembly Line with Blocking to Minimize Cycle Time [pp. 925-935]
	An Interpolation Approximation for the Mean Workload in a GI/G/1 Queue [pp. 936-952]
	Monotonicity of the Throughput of a Closed Queueing Network in the Number of Jobs [pp. 953-957]
	A Dynamic Nash Game Model of Oil Market Disruption and Strategic Stockpiling [pp. 958-971]
	Axiomatic Characterizations of the Raiffa and the Kalai-Smorodinsky Solutions to the Bargaining Problem [pp. 972-980]
	Technical Note
	Single Machine Scheduling with Controllable Processing Times and Number of Jobs Tardy [pp. 981-984]

	OR Forum
	Perspectives on Parallel Computing [pp. 985-990]

	Back Matter [pp. 991-992]



