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Large-scale service systems, where many servers respond to high demand, are appealing because they can

provide great economy of scale, producing a high quality of service with high efficiency. Customer waiting

times can be short, with a majority of customers served immediately upon arrival, while server utilizations

remain close to 100%. However, we show that this confluence of quality and efficiency is not achieved without

risk, because there can be severe congestion if the system does not operate as planned. In particular, we

show that the large scale makes the system more vulnerable to service interruptions when (i) most customers

remain waiting until they can be served, and (ii) when many servers are unable to function during the

interruption, as may occur with a system-wide computer failure. Increasing scale leads to higher server

utilizations, which in turn leads to longer recovery times from service interruptions and worse performance

during such events. We quantify the impact of service interruptions with increasing scale by introducing and

analyzing approximating deterministic fluid models. We also show that these fluid models can be obtained

from many-server heavy-traffic limits.
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1. Introduction

A clear trend in call centers and many other service systems is increasing scale. Whereas, formerly,

a large call center might employ hundreds of agents, today a large call center employs thousands

of agents.

1.1. Economy of Scale

As discussed by Gans et al. (2003) and Aksin et al. (2007) in recent surveys of customer contact

centers and their modelling, there is a good reason to see increasing scale, because there is a

significant economy of scale, strongly supported by queueing theory. Whitt (1992) applied queueing
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theory to explain, support and quantify the economy of scale in many-server service systems. This

economy of scale was further exposed in a cost-benefit framework by Borst et al. (2004). Indeed,

from the first study of many-server queueing models by A. K. Erlang a century ago, the advantage

of large scale has been recognized and quantified; see Brockmeyer et al. (1948). Simulations and

mathematical analysis show that performance tends to improve as the number of servers increases

with the utilization per server held fixed. Alternatively, the utilization per server can approach the

upper limit 100% as the number of servers increases with various performance measures held fixed.

Qualitatively, the advantage of large scale is supported by stochastic comparisons in multi-server

queueing models, as in Smith and Whitt (1981). There it is shown that the appropriate overall

measures of performance are improved (the level of congestion is decreased) when two separate

service systems with common service times are combined.

As we will explain in §3, the advantage of large scale is also supported by stochastic-process

limits for many-server queueing models in the quality-and-efficiency-driven (QED) many-server

heavy-traffic limiting regime; e.g., see Halfin and Whitt (1981), Garnett et al. (2002) and Pang et

al. (2007). In the QED regime, the scale – as represented by the arrival rate and the number of

servers – is allowed to increase without bound, where these two measures of scale increase together

appropriately, so that supply matches demand. In that limit, simultaneously, waiting times become

negligible (quality), while server utilizations approach 100% (efficiency).

1.2. Problems Posed By Large Scale

The purpose of this paper is to temper the enthusiasm for large scale. Here we emphasize that

the quality-and-efficiency gains from large scale are achieved at some risk, because there can be

severe congestion if the system does not operate as planned. In particular, here we show that large

scale makes the system more vulnerable to service interruptions when (i) most customers remain

waiting in the system until they can be served, and (ii) many servers are unable to function during

the interruption, as may occur with a system-wide computer failure. Moreover, we show how to

quantify the performance impact of the interruptions in a relatively tractable way, so that the
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tradeoff between efficiency gains and interruption costs associated with increasing scale can be

assessed.

We were motivated to consider this case because of our own personal experience at a large

Department of Motor Vehicles (DMV) office in New York City, where hundreds of people were

waiting to complete various processing tasks. During that visit, there was a system-wide computer

failure that lasted for about 90 minutes, which stopped all service, and yet almost all customers

waited to complete their business. Customer patience in that setting is understandable, because

there was a large invested cost in coming to the DMV office in the first place, and in acquiring

a place in line, and the length of the interruption was uncertain. It was natural to hope that

the difficulty might be resolved any minute. Because of the large scale, hundreds of customers

experienced hours of extra delays. Much more serious consequences could occur in a large hospital,

transportation system or food-distribution system. Clearly, customer delays constitute only one

component of the cost of service interruptions, but they are an important component.

Our results here are consistent with other recent research exposing difficulties associated with

increasing scale. From Whitt (2006a,b) and Bassamboo et al. (2006a,b), we see that large-scale

service systems are vulnerable to uncertainty about the arrival and service rates. Whitt (2006a)

showed that the sensitivity of the principal performance measures to the arrival rate and the service

rate increase with increasing scale. In particular, the arrival-rate and service-rate elasticities of

various performance measures grow proportionally to the square root of the number of servers in

the QED regime. (For example, if E is the arrival-rate elasticity of the delay probability, then a 1%

increase in the arrival rate tends to produce an E% increase in the delay probability.)

We next describe our modelling and analysis approach. At the end of the next section we indicate

how the rest of the paper is organized.

2. Modelling

The congestion impact of a service interruption clearly depends on what happens to the customers

during the interruption: Arrivals may either continue or stop. The customers already in the system

may either remain waiting or they may leave without receiving service.
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2.1. The Pure-Delay Model and the Pure-Loss Model

We will consider a range of cases, but we will primarily focus on two extreme cases: First, arrivals

may continue and all customers may remain waiting; second, new arrivals may refuse to enter and

all customers in the system may leave immediately without receiving service. The first case has

delays but no losses, while the second case has losses but no delays. Consistent with intuition, the

number of customers affected in the pure-delay case tends to be much greater than in the pure-loss

case, because waiting customers not only experience their own delays, but increase the delays of

other customers.

We are primarily concerned with the pure-delay case, which requires more careful analysis. In

the pure-delay case, the congestion impact of service interruptions increases with increasing scale.

As we explain in §3, increasing scale allows the server utilization (or traffic intensity) to be higher,

given standard quality-of-service constraints. (That is the much touted economy of scale in this

context.) As a consequence the recovery rate after the interruption has ended tends to be slower.

Thus, with increasing scale, the recovery time tends to increase and the performance during that

event degrades significantly. The bad performance spreads to customers that arrive long after the

interruption has ended.

In contrast, in the pure-loss case, the congestion impact is much less. Many customers fail to

receive service at all, which naturally may be regarded as a more serious penalty, but there is little

impact on other customers that arrive after the interruption has ended. Even though the impact

of lost service may be great, relatively few customers will be affected if interruptions are rare. In

contrast, with large-scale pure-delay systems, even rare short interruptions can have a dramatic

impact on congestion, because they can produce long recovery times.

2.2. A More General Model

But the two extremes discussed above are not the only cases. In practice, service systems tend to

operate in between these two extremes, often having customer abandonment after some waiting.

Fortunately, abandonment usually tends to make the system behave more like the pure-loss model;

see §6.
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To provide a basis for further systematic analysis, we also consider a more general model that

covers a wide range of intermediate cases, allowing customer abandonment at various rates. When

the system is operating normally, customers will be served and abandon from queue at nominal

rates. In particular, when there is no interruption, we assume that the system behaves as the

Markovian M/M/n + M (Erlang-A or Palm) model with unlimited waiting space, the first-come

first-served (FCFS) service discipline, arrival rate λ, individual service rate µ1 and individual

abandonment rate θ1.

Here is what happens during the service interruptions: First, we assume that arrivals continue

arriving at rate λ, even during the interruption. When an interruption occurs, it lasts for a random

length of time, the down time D. Throughout that interruption, a random number F of the servers

remain functioning, which may range from 0 to n; we think of F as being proportional to n, so

that F/n is the random proportion of functioning servers.

Customers in service at functioning servers continue receiving service, but at a new service rate,

µ2 instead of µ1. That rate µ2 may be slower than µ1, reflecting service degradation caused by

the interruption, or that rate may be faster, because of a special effort to provide exceptional

service during the interruption. Customers in queue continue waiting, but abandon at a new rate,

θ2 instead of θ1. We would expect to have θ2 > θ1, but we treat the general case.

There are several possible assumptions for the customers that are in service at servers that cease

functioning. We assume that these customers remain at these servers, but have high priority (over

customers waiting in queue or new arrivals) for newly available functioning servers when they

become available, which preserves the FCFS order. These customers at non-functioning servers

may also abandon from the system, and do so at a new rate θ3. We would expect to have θ3 > θ1,

but again we treat the general case. We assume that all the service and abandonment times are

independent exponential random variables.

The pure-delay model with a system-wide service interruption is obtained as the special case in

which there are no functioning servers (F = 0) and these abandonment rates - θ1, θ2, and θ3, - are

all zero, while the pure-loss model is obtained as the special case in which again F = 0 but these



Pang and Whitt: Service Interruptions
6 Article submitted to Management Science; manuscript no. MS-00340-2008.R2

abandonment rates are all infinite. We quantify performance, conditional on the pair of random

variables (D,F ), as a function of the 6-tuple of model parameters (λ,µ1, θ1, µ2, θ2, θ3). However, we

especially emphasize the severe performance degradation in the pure-delay case with F = 0 and

θ1 = θ2 = θ3 = 0.

2.3. Models of the Service Interruptions

There are two different ways to look at these service interruptions. First, we can consider a single

service interruption in isolation, starting from the system operating normally in steady state.

Second, we can look at a sequence of successive interruptions, and try to properly account for the

cumulative impact of several successive interruptions, possibly with new interruptions occurring

before the system has fully recovered from the previous service interruption. We primarily focus

on the single-interruption case, because it is much easier to analyze, and because we think that

it already captures the main impact, assuming that the service interruptions are relatively rare

events.

In both cases, we assume that interruptions occur exogenously. By “exogenous,” we mean that

they are not caused by events in the queueing system. As stated before, we are thinking of a

computer failure or an electronic outage. Thus interruptions are specified a priori. That makes the

general model a Markovian many-server queueing model in an exogenous random environment,

with the parameter 6-tuple (λ,µ1, θ1, µ2, θ2, θ3) specified above.

To be concrete, for the case of multiple interruptions over time, we consider an alternating-

renewal-process environment, but that easily can be generalized if there is good reason to do so (e.g.,

if interruptions tend to occur in clusters). Here we assume that there is a sequence of independent

and identically distributed random vectors {(Uk,Dk,Fk) : k≥ 1}, where Uk is the kth up time, Dk

is the kth down time, and Fk is the random number of the n available servers that is functioning

throughout the kth down time. The parameter pair (µ1, θ1) prevails during each up time, while the

parameter triple (µ2, θ2, θ3) prevails during each down time. We assume that the system starts at

time T0 ≡ 0 at the beginning of the first up interval.
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2.4. An Approximating Deterministic Fluid Model

It should be evident that the many-server queueing model in a random environment is quite

complicated, even with all the Markovian assumptions that we have made. Thus we resort to

approximations. In particular, we propose an approximating deterministic fluid model. Such rough

fluid approximations tend to be effective (sufficiently accurate for practical engineering purposes)

when the system can be significantly overloaded; e.g., see Newell (1982), Hall (1991), Chen and

Yao (1992), Choudhury et al. (1997), Whitt (2002, 2004, 2006a,b,c) and references therein. And

that is just what happens with the service interruptions.

The deterministic fluid model is easy to understand. The general idea is to approximate discrete

customers by continuous fluid, because we think of there being many servers, a high arrival rate

and a large number of customers, so that the discrete nature of individual customers should not

be important; the law of large numbers should apply to justify deterministic approximations. We

regard the occurrence of interruptions as a random environment, which we leave unchanged. In

our approximation, we assume that arrivals, service and abandonment occur deterministically at

the specified rates (λ,µ1, θ1, µ2, θ2, θ3), depending on the state of the random environment. Then

we obtain a deterministic fluid model in the alternating-renewal-process random environment.

It is significant that the deterministic fluid model, for either an isolated interruption or an

alternating-renewal-process random environment, arises as the limit of a sequence of queueing

models in a many-server heavy-traffic limit, not only as a direct approximation; see §3. Indeed, the

fluid model with interruptions arises in the same many-server limit used to justify the economy of

scale. Thus, the problems posed by large scale can be deduced by essentially the same reasoning used

to demonstrate the economy of scale, by going further to realistically include service interruptions

in the model. The details are given in the e-companion.

2.5. The Rest of the Paper

We start in §3 by reviewing the three many-server heavy-traffic limiting regimes and discussing

the mathematical basis for the economy of scale, which leads to increasing server utilizations as
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scale increases. Then in §4 we consider the pure-delay model in the presence of an isolated service

interruption. We show that the performance during an interruption and the following recovery

period degrades significantly as the scale increases, when QED scaling is used, as is dictated by

the asymptotic analysis discussed in §3. Next in §5 we describe the much milder consequence of a

service interruption for the pure-loss model. In §6 we consider the intermediate case with customer

abandonment, and show that the system then tends to be more like the pure-loss model, provided

the abandonment rates are not too low. In §7 we develop simple approximations for the steady-state

performance of the pure-delay fluid model in the alternating-renewal-process random environment,

drawing on Kella and Whitt (1992). We see even worse consequences of the interruptions for the

pure-delay model with increasing scale when the interruptions can overlap.

We present additional supporting material in the e-companion. In §8 we briefly describe these

results. In §EC.1 we analyze the more realistic multiple-interruption model in §2.2. Then in §EC.2

we establish a theorem showing that the approximating deterministic fluid model in a random

environment arises as the heavy-traffic limit of properly normalized queueing processes. In §EC.2.2

we contrast our many-server heavy-traffic limit theorem with the earlier single-server analog, estab-

lished by Kella and Whitt (1990), and extended to networks of queues by Chen and Whitt (1993);

see §14.7 of Whitt (2002). There are similarities, but also striking differences. For other work on

service interruptions or server vacations, see Zhang and Tian (2003), Altman and Uri (2006) and

the references therein.

Finally, in §9 we draw conclusions. We summarize the difficulties uncovered and briefly discuss

what might be done to address them. We also discuss remaining research problems.

We establish additional related asymptotic results in another paper, Pang and Whitt (2008).

There we establish a many-server heavy-traffic stochastic-process limits for the number in system in

the G/M/n+M model, with more general non-Poisson arrival process, in an alternating-renewal-

process random environment, with both fluid scaling (dividing by n) and diffusion scaling (dividing

by
√

n after centering). The limit in the QED regime is based on assuming that the down times

are asymptotically negligible, of order O(1/
√

n) as n →∞. Even though these down times are
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asymptotically negligible, they produce upward jumps in the limit process, showing from another

perspective that even short (in fact, asymptotically negligible) service interruptions can have a

dramatic impact in the pure-delay system with many servers not functioning during the interrup-

tion.

3. The Many-Server Heavy-Traffic Limiting Regimes

In a many-server service system there is the classical tradeoff between service quality (captured

by low congestion, e.g., delays) and efficiency (low operational cost). Roughly, the operational

cost for given demand (arrival rate λ) may be taken to be an increasing positive linear function

C1(n) ≡ a1 + a2n of the number of servers, n, while the congestion cost may be taken to be the

expectation of a function of the steady-state customer delay, which typically is a decreasing positive

convex function C2(n) of n. As a consequence, the overall operational-plus-congestion cost C(n)≡

C1(n) + C2(n) as a function of the staffing level n tends to be a convex function that increases as

n becomes either large or small; e.g., see Borst et al. (2004). Hence, there is an overall optimal

staffing level n∗ ≡ n∗(λ) that should be sought.

However, these costs are affected by scale, which we can represent simply by either the arrival rate

λ or the number of servers n. The commonly accepted way to represent increasing scale (without

considering service interruptions) is to consider a sequence of many-server queueing models indexed

by the number of servers, n, and let n →∞. In doing so, it is understood that the associated

sequence of arrival rates λn should increase as n increases.

To review that framework, we consider a sequence of Markovian M/M/n + M models, as in

Garnett et al. (2002). (That is our model without the interruptions.) We assume that the service-

time and abandonment-time distributions remain unchanged with n, being exponential with rates µ

and θ, respectively. Of course, the increasing number of servers should be in response to increasing

demand, as quantified by the customer arrival rate. We assume that the arrival rate in model n is

λn, where

λn

n
→ λ̄ as n→∞ where 0 < λ̄ <∞. (1)
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The important point is that we need to pay careful attention to the way λn grows, being more

precise than in (1). It is now well known (Halfin and Whitt 1981, Garnett et al. 2002, Borst et al.

2004, Zeltyn and Mandelbaum 2005) that there are three different limiting regimes in this many-

server heavy-traffic setting, depending on what we assume for the traffic intensities ρn ≡ λn/nµ.

To define these regimes, we impose a further regularity condition: We assume that

(1− ρn)
√

n→ β as n→∞ where −∞≤ β ≤∞. (2)

Without customer abandonment, we obtain the quality-driven (QD) regime, the quality-and-

efficiency-driven (QED) regime (or Halfin-Whitt regime), and the efficiency-driven (ED), respec-

tively, when β = +∞, 0 < β < +∞ and β = 0. With customer abandonment, the QD regime is the

same, but the QED and ED regimes change; the QED regime has −∞< β < +∞, while the ED

regimes has β =−∞.

Without customer abandonment, we need to require that ρn < 1 for all n to have stability (a

proper steady state), which leads to β ≥ 0. However, customer abandonment (θ > 0) keeps the

system stable for all ρ <∞.

From a practical perspective, the ED regime with customer abandonment and the QD regime

generally can correspond to fixed traffic intensities, with ρn = ρ > 1 for all n with ED, and ρn = ρ < 1

for all n with ED. That is achieved by having λn = λ̄n for all n, where λ̄ > µ for ED, and λ̄ < µ for

QD. Henceforth we assume fixed traffic intensities for the ED and QD regimes when we consider

them. That makes β =−∞ in ED and β =∞ in QD.

The importance of the intermediate QED regime is highlighted by the QED-delay-probability

theorem: Halfin and Whitt (1981) showed that the steady-state delay probability in the M/M/n

model (without customer abandonment) converges to a non-trivial limit, strictly between 0 and 1,

in the many-server heavy-traffic setting if and only if the system is in the QED regime. The same

result holds for the many-server queue with abandonments; see Garnett et al. (2002) and Zeltyn

and Mandelbaum (2005). Thus, everything else being equal (e.g., disregarding the possibility of
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uncertain arrival rates or service interruptions), the QED-delay-probability theorem implies that

a many-server service system should be staffed to be in the QED regime.

We will focus on the more restrictive definition of the QED regime, in which (2) holds with

0 < β <∞, which applies both with and without abandonment. Finite positive β in (2) implies the

celebrated square-root-staffing (SRS) rule: Starting with any given total arrival rate λ∗, which we

let grow, the required number of servers is

n≡ n(λ∗)≡ λ∗

µ
+β

√
λ∗

µ
+ o (λ∗) as λ∗→∞, (3)

where o(t) as t→∞ means a function h(t) such that h(t)/t→ 0 as t→∞; see Proposition 2.1 of

Whitt (1992). Fundamentally, the SRS staffing in (3) is a consequence of the central limit theorem.

To appreciate the consequences of being in each of the three regimes, it is helpful to see how the

standard steady-state performance measures scale in each regime. The results are summarized in

Table 1; see Garnett et al. (2002) and Zeltyn and Mandelbaum (2005). In Table 1, f(n)∼ g(n) as

n→∞ means that f(n)/g(n)→ 1 as n→∞.

regime Quality-Driven (QD) Quality&Efficiency-Driven (QED) Efficiency-Driven (ED)
perf. meas.

staffing n = (λ/µ)(1+ ε) n = (λ/µ)+β
√

λ/µ n = (λ/µ)(1− ε)

waiting prob. P (W > 0)∼ c1e−c2n
√

n
P (W > 0)→ α≡ α(β,µ/θ) P (W = 0)∼ c3e−c4n

√
n

aban. prob. P (Ab|W > 0)∼ c5
n

P (Ab|W > 0)∼ ξ√
n
≡ ξ(β,µ/θ)√

n
P (Ab)→ ρ−1

ρ
> 0

exp. wait E[W |W > 0]∼ c5
θn

E[W |W > 0]∼ ξ
θ
√

n
E[W |served]→w∗ > 0

Table 1 How key performance measures scale in the three many-server heavy-traffic limiting regimes, for the

model including customer abandonment. The quantities α, ξ, c1, . . . , c5 are positive functions of the model

parameters (independent of n) with explicit expressions; ρ≡ λ/nµ is the traffic intensity. The remaining

parameter β specifies the quality of service, as in (3).

Note that performance is impressively (even excessively) good in the QD regime for large n.

The probability of having to wait before starting service is not only converging to 0 as n increases,
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but is becoming exponentially small. Moreover, even in that rare event that a customer must wait

before starting service, the conditional expected waiting time and the conditional abandonment

probability, given that a customer must wait, are both asymptotically negligible, being of order

1/n.

In fact, the performance can be remarkably good in the QED regime. In the QED regime, the

probability of having to wait approaches a constant α, with 0 < α < 1, which can be made as small

as we wish by choosing the parameter β in (2) suitably large. Moreover, just as in the QD regime,

the conditional expected waiting time and the conditional abandonment probability, given that a

customer must wait, are both asymptotically negligible, being of order 1/
√

n. As a consequence,

the performance might even be judged to be excessively good in the QED regime.

Depending on the criterion, asymptotically as n→∞, the optimal staffing with customer aban-

donment might actually put the system in the ED regime, as studied in Whitt (2004). Table 1

shows that the performance can be good in the ED regime (with customer abandonment), pro-

vided that ρ is not much greater than 1 and the abandonment rate is not too low. We can set the

staffing level so that ρ is only slightly larger than 1, so that the abandonment rate (ρ− 1)/ρ and

the common fixed waiting time w∗ are both suitably small. Indeed, even though all customers must

wait before starting service in the ED limit, it is possible for only a small proportion to abandon

and the waiting times of all served customers to be short.

In summary, the asymptotic behavior in the many-server heavy-traffic regimes provides strong

motivation for having increasing scale and operating a large service system in the QED regime or

even the ED regime. When we consider interruptions, we will do so with the QED scaling in mind;

e.g., see Theorem 1.

4. An Isolated Interruption in the Pure-Delay System

To appreciate the possible problems caused by system-wide service interruptions with large scale,

it is revealing to focus on the pure-delay fluid model in the presence of a single isolated interrup-

tion. Clearly, we will see essentially the same behavior in the general model when the quantities
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Fk, θ1, θ2, θ3 are sufficiently small. Here we consider a single interruption and let F = θ1 = θ2 = θ3 =

0. We also let µ2 = µ. (Since F = 0, µ2 plays no role here.) Since there is no customer abandon-

ment in the pure-delay model, we will also assume that λ < nµ to ensure that the model without

interruptions is stable.

When there is no interruption, the total fluid content X(t) evolves according to the nonlinear

ODE

Ẋ(t) = ψ1(X(t))≡ λ− (X(t)∧n)µ, t≥ 0, (4)

where a∧ b≡min{a, b}. Since we have assumed that λ < nµ, we will have X(t) < n for all t > 0 if

X(0)≤ n. In that case, X will evolve according to the linear ODE

Ẋ(t) = λ−µX(t), t≥ 0. (5)

We solve this linear ODE and others later in this paper by applying the following elementary (well

known) lemma:

Lemma 1. The first-order linear ordinary differential equation (ODE)

ẋ(t) = a− bx(t), t≥ 0,

with initial value x(0), where a and b are real numbers, has the unique solution

(
x(0)− a

b

)
e−bt +

a

b
, t≥ 0.

When X(0)≤ n, we can apply Lemma 1 to obtain

X(t) =
(

X(0)− λ

µ

)
e−µt +

λ

µ
, t≥ 0, (6)

On the other hand, if X(0) > n, then we will have X(τ) = n for some τ and X(t) < n for all

t > τ , so that

X(t) =
(

n− λ

µ

)
e−µ(t−τ) +

λ

µ
, t≥ τ, (7)

In either case, the steady-state limiting value is λ/µ.
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During a service interruption of length D after the system has been in steady state at ρn =

λ/µ, X(t) simply increases at rate λ until it reaches the value X(D) = ρn + λD. After the single

interruption, X(t) again evolves as the ODE (4). Assuming that ρ is close to 1 and the down time

D is not too small, we will have X(D) > n. As long as X(t) > n, X(t) evolves as the linear ODE

Ẋ(t) = λ−nµ, t≥ 0, (8)

so that X(τ̄) = n for τ̄ ≡ (X(D)−n)/(nµ−λ). After time τ̄ , X(t)≤ n and X(t) evolves according

to the linear ODE (5), so that

X(t) =
(

n− λ

µ

)
e−µ(t−τ̄) +

λ

µ
, t > τ̄ , (9)

which implies that X(t) gradually approaches its steady-state value ρn = λ/µ, but never quite

reaches it in finite time.

In addition to the processes X(t) and Q(t)≡ (X(t)− n)+, where (a)+ ≡max{a,0}, describing

the number in system and the queue length, we also want to describe the (virtual) waiting-time

process {W (t) : t≥ 0}; W (t) depicts the time a potential arrival at time t would have to wait before

starting service. When X(t) < n during an up period U , W (t) = 0. At the beginning of a down

period of length D, W (t) = D. In the middle of that down period, at time t after the down period

of length D began, the virtual waiting time is

W (t) = (D− t)+Q(t)/µn. (10)

In order to obtain simple revealing formulas, it is convenient to make further approximations.

In order to have a stable system without interruptions, we needed to assume that ρ≡ λ/nµ < 1.

However, since we are thinking of large scale, ρ should be close to 1. Hence, we propose simplifying

the behavior when ρn≤X(t)≤ n by assuming that X(t) decreases linearly throughout the region

X(t)≥ ρn. That makes X(t), not only increase linearly during the down period, but also decrease

linearly during the following up period, until time τ̂ ≡ (X(D)− ρn)/(nµ− λ). At time τ̂ , X(t)

reaches the steady-state value ρn and stays there afterwards. We call that period of linear decrease
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immediately after the down time the recovery time and denote it by the random variable R; R is a

deterministic function of the random variable D. (Note that R would be infinite without this last

approximation step.) We depict the processes X(t) and W (t) during a typical down time D and

the following recovery time in Figure 1.

isolated service interruption without losses

n

n

D R

)( n

X(t)

Xmax

0

D R

W(t)

not actually linear

D D

U U U

Figure 1 Sample paths of the approximating number in system, X(t), and the associated waiting-time process,

W(t), in the pure-delay system experiencing an isolated exogenous service interruption.

Using the same simplification for Q(t) during an interruption, we can approximate the waiting

time during an interruption by

W (t)≈D− t+
λt

µn
= D− t+ ρt = D− (1− ρ)t, (11)

which decreases linearly to ρD at the end of the down period. During the recovery period, the

waiting time is approximately W (t)≈Q(t)/µn, which decreases linearly to 0 at the time the queue

empties, which is shortly before the end of the recovery period.

Now we want to make another simplifying assumption, again exploiting the fact that the traffic

intensity ρ should be close to 1 because of the large scale. In our formulas, we will ignore the
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region where ρn≤X(t)≤ n, and act as if the two horizontal dotted lines at n and ρn in Figure 1

coincide. But we leave the rate of linear decrease during the recovery period unchanged. It should

be evident that this additional approximation will produce only a minor change in the formulas,

but the formulas become more transparent.

performance measure notation delay model loss model
CAPACITY REQUIREMENTS

maximum queue length Qmax λD 0

DURATIONS PER INCIDENT
recovery time R ρD

1−ρ
≈ 4µ−1

incident duration D +R D
1−ρ

D +4µ−1

maximum waiting time Wmax D 0

average waiting time W̄ D/2 0

TOTAL IMPACT PER INCIDENT
number of affected arrivals: Ntot

delayed in the pure-delay model Nd
tot ≡ λ(D +R) λD

1−ρ
0

lost in the pure-loss model N l
tot ≡ λD 0 λD

total waiting time Wtot ≡NtotW̄
λD2

2(1−ρ)
0

Table 2 Approximate performance measures in the pure-delay and pure-loss models associated with an isolated

service interruption of random duration D.

Table 2 summarizes the main performance measures of interest for the pure delay model experi-

encing an isolated service interruption, exploiting the two approximations above. (Corresponding

results for the pure-loss model, discussed in the next section, also appear there.) These perfor-

mance measures are functions of the down time D and are thus themselves random variables. For

example, W̄ ≡ W̄ (D) represents the average waiting time (before starting service for new arrivals)

during the incident, i.e., over the random time interval D +R. We make a simplifying assumption

here. From Figure 1, it is evident that W̄ = (D(1+ρ−ρ2))/2≈D/2, assuming that ρ is close to 1.

Particularly significant is the total number of new arrivals delayed, say Nd
tot, and the total waiting

time of all arrivals during the incident (during D +R), Wtot. Clearly,
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Nd
tot = λ(D +R) =

λD

1− ρ
and Wtotal = NtotW̄ =

λD2

1− ρ
. (12)

Note that Nd
tot counts only new arrivals. It does not count the extra delays experienced by the ρn

customers in service at the beginning of the interruption.

The corresponding expected total waiting time per incident (with down time D) is

E[Wtotal] =
λ(E[D])2(c2

d +1)
1− ρ

, (13)

which is directly proportional to the product of λ, 1/(1− ρ), (E[D])2 and c2
d + 1, where c2

d is the

squared coefficient of variation (SCV, variance divided by the square of the mean) of the down

time. The SCV c2
d shows the importance of the variability of the down time beyond its mean.

At this point, it is insightful to consider the QED many-server heavy-traffic scaling, specified by

(2) with 0 < β <∞. (Indeed, combining Table 2 with the QED scaling is the main innovation in

this paper.) As a consequence, λ/µn→ 1 as n→∞, so that λ is proportional to n while (1− ρ)−1

is proportional to
√

n as n→∞.

Theorem 1. (QED scaling of the performance measures) Consider the performance measures

for the pure-delay fluid model experiencing one isolated service interruption of random duration

D, starting in steady state, as depicted in Table 2. If the scale is increased with QED scaling, while

the duration of the down time D remaining unchanged, then the performance degrades as follows:

(a) The expected recovery time for one isolated incident, E[R], and the expected duration of

one isolated incident, E[D + R], are inversely proportional to 1− ρ, and thus are asymptotically

proportional to
√

n as n→∞.

(b) The expected number of customers delayed per incident, E[Nd
tot], and the expected total wait-

ing time per incident, E[Wtot], are proportional to the product of n and 1/(1 − ρ), and so are

proportional to n3/2 as n→∞.

The conclusions in Theorem 1 remain unchanged if we also consider the customers initially in

service when the interruption first occurs. That number ρn is asymptotically negligible compared

to E[Nd
tot], which is of order n3/2.
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Theorem 1 also has important implications for multiple interruptions occurring over time accord-

ing to the random environment process {(Uk,Dk) : k≥ 1}. We treat multiple interruptions in §7.

There is even a significant consequence if the down times become asymptotically negligible

as n increases. Given that the maximum waiting time for any one customer is Wmax = D, the

maximum waiting time for any one customer also becomes negligible if D becomes negligible, but

the cumulative impact over all customers can remain significant. If the down time D decreases

with n more slowly than by 1/
√

n, then all those other performance measures will still diverge to

infinity as n→∞. Even if D is of order 1/
√

n, there may be a significant impact; see Pang and

Whitt (2008) for more on this.

5. The Pure-Loss System

We see very different performance if we assume that all customers in service are lost when a

service interruption occurs, and arrivals do not join the system when the system is down. Then

the number in system X(t) is always below its steady-state value ρn instead of always above. By

those assumptions, the pure-loss system completely empties at the beginning of each down time

and does not start receiving new arrivals until the down time is over. Thus, the transient behavior

after a down period (in each up period after the first down period) is governed by the linear ODE

in (5) with initial condition X(0) = 0 at the end of the down period, which implies that

X(t) = ρn
(
1− e−µt

)
, t≥ 0, (14)

where t = 0 is the end of the down time, with validity of (14) holding until the next down time.

Figure 2 shows the sample path of the number in system in the pure-loss system, with the same

up and down times as for the pure-delay system in Figure 1. The only difference is that customers

in service and new arrivals are lost during each down time. After the down time is over, the system

needs to ramp up to its steady-state level, but it never quite reaches steady state when the next

interruption occurs. Clearly, though, the system regenerates at the beginning of each down time.

There can be no overlapping of service interruptions. We give a corresponding figure for the more

general model with abandonments in the e-companion.
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isolated service interruptions with losses

n

n

D R D R

X(t)

0

)1(
t

en

U U U

Figure 2 The number in system, X(t), in the pure-loss fluid model with alternating up and down times

distributed as U and D.

It is significant that the recovery time in the loss model is much less than in the delay model,

provided that we use good engineering judgment in what we mean by recovery. In the loss model,

recovery occurs according to the ODE in (5). From that ODE, we see that the system never

completely recovers in finite time, but the practical recovery time (often called the relaxation time)

is some multiple of 1/µ. In time t/µ, the system has reached a proportion 1−e−t of its steady state

value. As a rough estimate we take 4/µ as our definition of the recover time. The loss model has

reached a proportion 1− e−4 = 0.982 of its steady-state value by time 4/µ. Clearly this recovery

time does not change with increasing scale.

The primary performance issue with this loss model is the lost throughput. For that, we should

consider multiple interruptions, i.e., the pure-loss model in the random environment {(Uk,Dk) : k≥

1}. The long-run proportion of time during which customers are turned away is clearly the long-run

proportion of time that the system is down, δ = E[D]/(E[D] + E[U ]). However, the proportion of

customers lost is greater, because all ρn customers in service at the beginning of the down period
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are lost as well. The loss probability is

P (loss) =
ρn+λE[D]
λ(E[D +U ])

= δ

(
1+

1
µE[D]

)
.

6. Customer Abandonment

In practice, service systems are rarely pure-delay systems or pure loss systems. Typically, customers

will abandon after waiting too long. Clearly, high customer abandonment usually is a sign of poor

service, and so is to be avoided. However, even a low level of customer abandonment tends to

dramatically shorten the recovery period after a service interruption, making the performance more

like in the pure-loss system. Of course, as we observed before, we can obtain a continuum of solutions

between the pure-delay model and the pure-loss model by choosing appropriate abandonment

parameters. Thus, this conclusion necessarily depends on the abandonment parameters we use.

In this section we will show that typical abandonment rates tend to greatly reduce the impact of

the interruptions. Just as in §§4 and 5, we consider a single service interruption in isolation and we

assume that all servers cease functioning during the interruption (F = 0). Moreover, to highlight

the main features with simple formulas, we assume that the many-server system is critically loaded:

ρ≡ λ/µn = 1. As noted by Feldmann et al. (2008), the case ρ = 1 (β = 0 in (2)) should be regarded

as a common case with customer abandonments. It also can be regarded as a worst case: If we are

able to show that an interruption has limited impact with ρ = 1, then it follows that it will have

limited impact for all ρ≤ 1 (by a sample-path comparison).

The critically loaded assumption implies that the initial steady-state fluid approximation, before

the interruption, is X(0) = n; i.e., all servers are busy, but there is no queue. Let the interruption

begin at time 0. Then the queue length Q(t) ≡ (X(t) − n)+ evolves as the linear ODE Q̇(t) =

λ− θ2Q(t), t ≥ 0, with Q(0) = 0, just as in the fluid approximation for the queue length in the

M/M/∞ queue with arrival rate λ and service rate θ2 (the abandonment rate from the queue

during the interruption). Thus, we obtain the explicit formula

Q(t) =
λ

θ2

(
1− e−θ2t

)
, 0≤ t≤D, (15)
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where D is the random down time. From (15), we see that Q(t) increases toward the finite limit

λ/θ2 as t→∞. Significantly, that limit is independent of the random down time D. Of course,

this limiting queue length can be large if θ2 is small, but otherwise it is controlled. Roughly, the

maximum queue length is of the same order O(n) as in the pure-delay model, where it is λD,

because λ = µn.

There also are the n customers in service at the start of the interruption, who abandon at rate

θ3. The number of busy servers at time t satisfies the linear ODE Ḃ(t) =−θ3B(t), t≥ 0, so that

B(t) = ne−θ3t, 0≤ t≤D. (16)

In the worst case, θ3 = 0, so that all these customers remain in the system. Then the number of

customers in the system at the end of the interruption is

X(D) = n+
λ

θ2

(
1− e−θ2D

)≤ n+
λ

θ2

= n

(
1+

µ

θ2

)
. (17)

We are now ready to consider the following recovery period after time D. Here the situation is

very different from the pure-delay model. Since ρ = 1, the fluid approximation is X(t) = n + Q(t),

where Q̇(t) = −θ1Q(t), t ≥ D, and Q(D) ≤ λ/θ2. Thus, Q(t) = Q(D)e−θ1(t−D), t ≥ D. In other

words, Q(t) decreases exponentially fast toward 0 at rate θ1. As a consequence, the duration of the

recovery time is approximately R≡R(D)≈ 4/θ1, where the constant 4 is chosen just as in §5 to be

within 2% (of the initial queue length) from the target. The main point is that the recovery period

is of order O(1) as n→∞ with critical loading. Indeed, if θ1 is not too small, then the recovery

period is quite short.

The situation is even more favorable if θ3 is not negligible. A key reference point is θ3 = µ1 = µ2.

Then the system output is unchanged during the interruption. Then we have abandonment during

the interruption at the same rate as service is performed before the interruption. Then we get

X(t) = n for all t, independent of the interruption. Then R = 0. More generally, we will have

X(t)≥ n for all t if θ3 ≤ µ2 = µ1, but we will have X(t)≤ n for all t if θ3 ≥ µ2 = µ1.
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In summary, we see that the recovery period does not explode as n→∞ when there is waiting

with customer abandonment. The performance problems in §4 stem from the fact that all customers

remain waiting until they can be served in the pure-delay system. However, so far we have only

considered a single service interruption in isolation. We consider multiple interruptions next.

7. Steady State for the Pure-Delay Model with Multiple Interruptions

We now turn to the more general pure-delay model with multiple interruptions. Now we want

to understand the further degradation in performance caused by having new interruptions occur

before the system has recovered from the previous interruption.

Fortunately, it is not too difficult to develop a good approximation for the steady-state behavior

of the fluid content process {X(t) : t≥ 0} for the pure-delay fluid model in the alternating-renewal-

process random environment. To obtain a simple approximation, we again make the simplifying

assumptions in §4, acting as if the process decreases linearly in the up periods, with a reflecting

lower barrier at ρn, where ρn≈ n. (Then the content process coincides with ρn + Q(t).) For the

resulting model with linear decrease during the recovery period, a full analysis has already been

done in Kella and Whitt (1992) and the other related references cited there. There it is shown that

the full process X(t) and various embedded processes of interest can be analyzed by relating this

simplified model to the classical GI/GI/1 queue.

If, in addition, we assume that the up times have an exponential distribution, which is very

reasonable if we think of the common case in which U >> D and exogenous service interruptions

occur according to a Poisson process, then the model is related to the more elementary M/GI/1

queue, so that we obtain simple explicit steady-state formulas. In order to understand the impact

of overlapping service interruptions, it is helpful to look at these formulas.

In addition to the nominal server utilization ρ ≡ λ/µ before considering the interruptions, we

have the fluid-model traffic intensity within each up-down cycle,

ρ̂≡ λE[D]
(nµ−λ)E[U ]

=
ρE[D]

(1− ρ)E[U ]
=

(
ρ

1− ρ

)(
δ

1− δ

)
, (18)
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where δ ≡ E[D]/(E[D] + E[U ]) is the long-run proportion of down time. Theorem 3 of Kella

and Whitt (1992) concludes that steady state exists for this fluid model in a two-state random

environment if and only if ρ̂ < 1. From (18), we see that condition holds if and only if δ < 1−ρ or,

equivalently, ρ < 1− δ. For given δ, this places an upper bound on ρ.

Theorem 2. (QED scaling with repeated interruptions) For any given long-run proportion of

down time δ > 0, the system is unstable if 1− ρ < δ, in which case X(t)⇒∞ as t→∞. If the

scale is increased with QED scaling, with fixed random environment {(Uk,Dk,Fk) : k≥ 1}, then the

system becomes unstable when n is large enough.

The analysis based on Kella and Whitt (1992) exploits the linear decrease during the recovery

period, but recall that in §4 we have exploited an approximation when X(t) falls in the interval

[ρn,n]. Since the approximation we use produces a lower bound on X(t), elementary comparison

arguments show that the conclusion of Theorem 2 remains valid for the exact fluid model too.

Evidently, the conclusion holds for the stochastic queueing model as well for all sufficiently large

n, by virtue of the heavy-traffic limit theorem in §EC.2, but there is a limit-interchange argument

that we have not yet performed.

We can also do more to describe what happens for lower traffic intensities. To do so, henceforth

we assume that ρ̂ < 1, which guarantees stability. The issue now is to describe the overall steady-

state distribution, and calculate associated performance measures. Fortunately, we can perform a

more detailed analysis to obtain useful performance measures for the pure-delay model.

From Theorem 3 of Kella and Whitt (1992), we can conclude that

X(Tk)− ρn⇒Ze as k→∞, (19)

where Ze has the structure of the steady-state waiting time in the GI/GI/1 queue (is a random

walk with one reflecting barrier). Since we also assume that U has an exponential distribution, this

becomes the M/GI/1 queue, so that we obtain the approximations

P (Ze > 0) = ρ̂ and E[Ze|Ze > 0] =
λE[D](c2

d +1)
2(1− ρ̂)

. (20)
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Thus, in order to justify ignoring overlapping interruptions, we need ρ̂ suitably small. As we

have stated before, the isolated-interruption assumption only makes sense if δ is very small or,

equivalently, if E[U ] >> E[D].

The more subtle part of the analysis in Kella and Whitt (1992) is to determine the steady-state

distributions of the process X(t) at an arbitrary time t, both unconditioned and conditioned on

being in either an up time or a down time. Limits for these require assuming that the distributions

of D and U are non-lattice. We conclude this section by stating one such result under that condition:

X(t)− ρn⇒Z as t→∞, (21)

where

P (Z > 0) = δ +(1− δ)ρ̂ =
δ

1− ρ
(22)

and

E[Z|Z > 0] =
λE[D](c2

d +1)
2(1− ρ̂)

>
λE[D](c2

d +1)
2(1− ρ)

= E[Q(∞)|Q(∞) > 0], (23)

where we take the formula for E[Q(∞)] from Table 2. We needed δ < 1− ρ in order to have ρ̂ < 1;

that guarantees that P (Z > 0) < 1, but P (Z > 0) need not be small. We need δ very small in order

to have P (Z > 0) small. That again is achieved if E[U ] >> E[D]. Formula (23) implies that

E[Z|Z > 0]
E[Q(∞)|Q(∞) > 0]

=
1− ρ

1− ρ̂
> 1. (24)

That ratio approaches 1 as δ ↓ 0.

8. Generalizing and Formalizing

So far, we have considered only relatively simple models, using a simple direct deterministic fluid

approximation. However, we can also generalize and formalize. First, we generalize to the more

realistic model in §2.2. Second, we formalize (and further justify) by establishing a many-server

heavy-traffic limit. Both steps are carried out in the e-companion; here we discuss the significance.

In EC.1 we consider the more realistic model in §2.2. When we do so, we are no longer able

to obtain simple explicit expressions for the relevant performance measures, which are so help-

ful for providing insight. However, we do give explicit (somewhat complex) expressions for the
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(deterministic) system content X(t), conditional on a realization of the random environment pro-

cess {(Uk,Dk,Fk) : k ≥ 1}. That in turn provides the basis for an efficient simulation algorithm

to calculate all desired performance measures. It is only necessary to generate an initial segment

of the sequence {(Uk,Dk,Fk) : k ≥ 1} of i.i.d random vectors in R3 and perform straightforward

calculations, using the formulas derived in §EC.1.

From a practical perspective, such more careful analysis might well be very important. The

analysis in §§4-6 provides important insight, but it is limited to a single interruption in isolation.

We started to consider multiple interruptions over time in §7, but our analysis there was limited to

the pure-delay model. In both §4 and §7, we see that there are serious problems with interruptions

and increasing scale for the pure-delay model, but many service systems are not pure-delay models.

The more detailed analysis with the more general model in 2.2 having both multiple interruptions

and customer abandonment may well be needed to better understand specific service systems.

It is important to note that our approach to simulation offers a great advantage compared to

direct simulation of the original stochastic model when the interruptions are rare events, which is

presumably the common case. (See Chapter VI of Asmussen and Glynn (2007) for background on

rare-event simulation.) Our approach replaces the simulation of individual events in the queueing

system (arrivals, service completions and abandonments) with deterministic formulas. The stochas-

tic part of our simulation is limited to the interruption process {(Uk,Dk,Fk) : k≥ 1}, which tends

to operate in a much longer time scale. Thus, our approach provides an effective way to perform

rare-event simulation in this context, albeit for an approximate model.

Finally, we add theoretical support for our approximating model: the deterministic fluid process

in a random environment. In §EC.2 we show that it arises naturally as the many-server heavy-

traffic limit for the Markovian queueing systems, which serve as our base system model. The

many-server heavy-traffic fluid limit is valid simultaneously in all three regimes: QD, QED and

ED. In §EC.2.2 we contrast the many-server-heavy-traffic limit theorem here with the single-server

analog established in Kella and Whitt (1990); there are similarities, but also striking differences

because of the different scaling. We prove the limit theorem in §EC.2.3.
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9. Conclusions

In this paper we have studied the impact of exogenous service interruptions upon multiple-server

service systems when the scale (number of servers) increases. The starting point is the widely

accepted principle, reviewed in §3, that the quality-efficiency tradeoff supports increasing scale,

with ρn ↑ 1 as n→∞. We have used many-server queueing models to study system performance. To

obtain tractable results, we have used approximations by deterministic fluid models, and justified

them by establishing a many-server heavy-traffic limit; see §EC.2.

We have derived simple descriptions of performance for a single service interruption in isolation

when no servers can function during the interruption. We concentrated on two extreme cases -

a pure-delay model and a pure-loss model - but we also considered the intermediate case with

customer abandonment; see §§4-6. The simple stories are summarized in Figures 1 and 2. Our main

contribution is to look at the performance of many-server service systems with service interruptions

through the lens of the QED scaling, specified in (2) and (3). That evidently has not been done

before.

We showed that the performance degradation increases with scale dramatically with QED scaling

for the pure-delay model, but not in the other two cases. The difficulty with system-wide service

interruptions and increasing scale seems to be confined primarily to systems where most customers

wait until they are served. Clearly, that is not always the case, but it is a common case in some

applications. In some cases, as with congestion caused by an accident on a highway, the customers

are held captive, having no option to leave. In other cases, such as the DMV example mentioned in

§1, there may be a large setup cost in seeking service, which will be wasted and repeated at a later

time if the customer elects to leave. Finally, the service may be urgent, as in a hospital emergency

room or a technical-support call center, so that the customer does not want to abandon. In those

cases, our analysis of interruptions in pure-delay systems is relevant.

The performance problem with service interruptions is serious for pure-delay systems. The

quality-efficiency tradeoff provides strong motivation for increasing scale, because as the scale

increases, it is possible to meet specified quality-of-service constraints with higher server utilization.
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The higher utilizations in turn make the recovery periods longer when there is a service interrup-

tion. For any given interruption, the performance degrades as scale increases with QED scaling.

Theorems 1 and 2 show the consequences.

However, if customer abandonment is an easy option, then service interruptions may not cause

major new problems with increasing scale. Additional analysis is warranted, though, if there are

multiple interruptions occurring with some frequency. For such problematic cases, we have provided

a basis for doing further analysis with the model introduced in §2.2. The formulas in §EC.1 provide

the basis for an efficient simulation algorithm.

9.1. What Can Be Done About It?

Having seen the severe service degradation that can occur from system-wide service interruptions

in large service systems where (i) most customers wait until they start service and (ii) management

aims to achieve both high quality of service and high efficiency by operating in the QED regime,

it is natural to ask: What can be done about it?

One possible answer is to avoid large scale, but as discussed in Mitchell (2001), large scale has

many advantages, going well beyond what is described by queueing models. Thus, abandoning

large scale is unlikely to be acceptable. Thus, we would rephrase the question as: Given that there

will be increasing scale, what can be done to mitigate the performance problems that might arise

from service interruptions?

Our analysis suggests several possible answers:

(i) The first suggestion is to plan for failures, by which we simply mean anticipate that any

service system is likely to encounter service interruptions, and then prepare for them. We have

shown that the performance impact of interruptions can be more significant with increasing scale.

Thus the importance may be even greater now and in the future than before.

(ii) The second suggestion is to operate the service system in the QD regime instead of the QED

regime when the scale gets sufficiently large. Section 4 shows that the performance degradation

is significantly reduced if we do not try to extract the last bit of efficiency, and instead keep ρ
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bounded away from the critical value 1. Even though we are in the QD regime, we may still have

very high server utilizations, e.g., above 95%, so that not much efficiency need be sacrificed.

(iii) The third suggestion is to take actions to encourage waiting customers to leave and potential

new arrivals not to join the system when an interruption occurs, so that the system will behave

more like the loss model than the delay model. Of course, the cost of lost service must be assessed

in each application. Sections 4–6 show that the impact upon other customers is much less when

customers may leave before receiving service. Customers might be encouraged to not arrive or

abandon after entrance by making delay announcements, as studied in Armony et al. (2008) and

Ibrahim and Whitt (2008). Indeed, such announcements are already being made in many settings,

e.g., the posted warnings about congestion incidents on highways.

(iv) The fourth suggestion is to take extra measures in order to reduce the frequency of service

interruptions; i.e., reduce δ as defined in §7. We have provided formulas that quantify the benefit,

such as (18)-(23). But note that the performance during any one interruption may still be bad.

(v) The fifth suggestion is related to the second, but different: The idea is to take measures to

reduce both the mean and the variance of the down times. Again, our results can be used to quantify

the benefit, e.g., see Table 2 and (13). This suggestion acknowledges that service interruptions are

not completely avoidable, and thus suggests acting to reduce their consequence.

(vi) The sixth suggestion amplifies the third in planning to cope with the interruptions when

they occur. The idea is to do things differently, so that the predicted bad behavior can be avoided.

For example, we suggest taking measures to have assistance available when a service interruption

occurs. For example, a provision may be made to acquire assistance from other operating service

facilities, perhaps using sharing mechanisms as discussed in Perry and Whitt (2008). Since other

service facilities are likely to be heavily loaded as well, it would be even better to have access to

unused service capacity (e.g., agents in a call center) on short notice, as studied by Bhandari et

al. (2008). For example, for call centers, agents at home might be activated upon short notice.
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More generally, this means to seek greater flexibility and adaptability to respond to exceptional

circumstances. We have shown that the performance impact of interruptions may provide strong

motivation for such actions.

(vii) The seventh and final suggestion (going beyond our paper), from a broad societal point

of view, is to broadly examine, and possibly redesign, the incentive system in the service system.

The idea is to carefully consider who bears the costs of a service interruption. Given that service

interruptions may indeed have serious consequences, system managers are likely to be more moti-

vated to properly manage (prevent, mitigate, etc.) service interruptions if they themselves bear a

significant portion of the costs, even if indirectly. The most effective measure may be to ensure

that reasonable incentive systems are in place.

9.2. Remaining Problems

Many open problems remain. Perhaps the most compelling direction is to follow up with empirical

research. The theory presented here can be viewed as a collection of hypotheses that can be tested

empirically. Here are a few candidate hypotheses:

H1: The scale of service systems is increasing over time. And at what rate?

H2: As the scale of service systems increases (given H1), they tend to operate in the QED

regime. Or do they, instead, operate in the QD regime, or somewhere in between, perhaps to hedge

against risks, reflecting an understanding of the issues we have modelled?

H3: The impact of exogenous service interruptions (as measured by frequency, duration, recovery

time, or total waiting time per incident, etc.) is increasing over time. And at what rate?

Much additional work remains to be done along the lines of this paper. For example, it remains

to consider service interruptions in more complex service systems, such as multi-class multi-pool

call centers with skill-based routing. For these systems, Wallace and Whitt (2005) and Gurvich

and Whitt (2007) showed that it suffices to have only minimal cross-training, with each pool only

able to serve only two classes (with appropriate network connectivity via chaining); i.e., “a little
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flexibility goes a long way.” (Those results are consistent with earlier work by Jordan and Graves

(1995) and others, and more recent work by Bassamboo et al. (2008) and others, in the traditional

manufacturing setting.) However, it is evident that service interruptions for some pools can break

the connectivity, making it desirable to have additional cross-training. It remains to investigate the

impact of service interruptions and model-parameter uncertainty on the benefits of flexibility. The

analysis here leads us to anticipate that the need for greater flexibility will make it worthwhile to

sacrifice some efficiency in operations.
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e-Companion

This is an e-companion to Service Interruptions in Large Scale Service Systems by Guodong

Pang and Ward Whitt. As indicated in §8, we elaborate upon the general model in §2.2 and we

establish a many-server heavy-traffic limit, which supports our approximation of the number in

system by the deterministic fluid process in a random environment.

We start in §EC.1 by giving an explicit recursive expression for the fluid content X(t), conditional

on a realization of the random environment process {(Uk,Dk,Fk) : k ≥ 1}. We next establish the

many-server heavy-traffic limit theorem in §EC.2. We first state the result in §EC.2.1. In §EC.2.2

we contrast the many-server heavy-traffic limit with service interruptions with the corresponding

single-server heavy-traffic limit with service interruptions established by Kella and Whitt (1990).

In §EC.2.3 we prove the theorem.

EC.1. The General Fluid Model in the Random Environment

We now consider the general deterministic fluid model in the alternating-renewal-process random

environment {(Uk,Dk,Fk) : k≥ 1}, as introduced in §§2.2-2.4. The system starts at time T0 ≡ 0 at

the beginning of the first up interval U1. There are n servers. Conditional upon the environment

state, the system evolves deterministically according to the parameter 6-tuple (λ,µ1, θ1, µ2, θ2, θ3).

In this section we assume that these parameters are all positive and finite (which rules out the

pure-delay and pure-loss models). Recall that the customers that were being served by servers that

cease functioning remain at those non-functioning servers, but are given high priority for receiving

service from newly available functioning servers, ahead of all customers initially in queue and new

arrivals.

Our goal is to describe X(t), the total fluid content in the system at time t for all t ≥ 0. Let

B(t) be the fluid content in service being served, let Q(t) be the fluid content waiting in queue,

let Y (t)≡B(t)+Q(t), and let I(t) be the fluid content at non-functioning servers (which can only

be positive during an interruption), all at time t. Clearly, X(t) = Y (t) + I(t). Note that, Q(t) and

I(t) decrease when customers either abandon or enter service.
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We can calculate the values of the process X conditional upon the sequence {(Uk,Dk,Fk) : k≥ 1}

by repeated (recursive) application of Lemma 1. We can apply Lemma 1, because the system

evolution behaves as a linear ODE in each of finitely many regions. There is a change from one

linear ODE to another at boundary levels. All change times have the form

τ
(i)
k ≡ − loge (1/(1+ γ

(i)
k ))

ν(i)
(EC.1)

for appropriate constants ν(i) (a rate) and γ
(i)
k . We now describe the evolution of X(t).

EC.1.1. System Evolution During an Up Interval

We now specify the system evolution (the process (X(t),Q(t),B(t))) conditional upon a realization

of the random environment process {(Uk,Dk,Fk) : k≥ 1}). During the kth up interval [Tk−1, Tk−1 +

Uk), k≥ 1, the total system content X(t) evolves according to the nonlinear ODE

Ẋ(t) = ψ2(X(t))≡ λ−µ1(X(t)∧n)− θ1(X(t)−n)+, Tk−1 ≤ t≤ Tk−1 +Uk, (EC.2)

starting from X(Tk−1−). This ODE can be characterized via two linear ODE’s in each of two

regions: If X(t)≤ n, then

Ḃ(t) = λ−µ1B(t), Tk−1 ≤ t≤ Tk−1 +Uk and X(t) = B(t). (EC.3)

If X(t) > n, then

Q̇(t) = λ−µ1n− θ1Q(t), Tk−1 ≤ t≤ Tk−1 +Uk and X(t) = n+Q(t). (EC.4)

During each up interval, the process X(t) can cross over the level n at most once. It can go down

below n from above only if λ < nµ1; it does so at time Tk−1 + τ
(1)
k for τ

(1)
k in (EC.1); it can go

up above n from below only if λ > nµ1; it does so at time Tk−1 + τ
(2)
k for τ

(2)
k in (EC.1), where

Xu
k−1 ≡X(Tk−1) = X(Tk−1−),

ν(1) ≡ θ1, γ
(1)
k ≡ θ1(Xu

k−1−n)
n(µ1 + θ1)−λ

, ν(2) ≡ µ1 and γ
(2)
k ≡ µ1(n−Xu

k−1)
λ−nµ1

. (EC.5)

The full solution is given in Table EC.1.
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formula for X(Tk−1 + t) for t≤Uk

During an Up Time: 6 Cases with Xu
k−1 ≡X(Tk−1)

1. λ
µ1
≤ n, Xu

k−1 ≤ n
(
Xu

k−1− λ
µ1

)
e−µ1t + λ

µ1

2. λ
µ1
≤ n, Xu

k−1 > n, t≤ τ
(1)
k

(
Xu

k−1 + nµ1−λ
θ1

)
e−θ1t−

(
nµ1−λ

θ1

)

3. λ
µ1
≤ n, Xu

k−1 > n, t > τ
(1)
k

(
n− λ

µ1

)
e−µ1(t−τ

(1)
k

) + λ
µ1

4. λ
µ1

> n, Xu
k−1 ≥ n n+

(
Xu

k−1−n− λ−µ1n
θ1

)
e−µ1t +

(
λ−µ1n

θ1

)

5. λ
µ1

> n, Xu
k−1 < n, t≤ τ

(2)
k

(
Xu

k − λ
µ1

)
e−µ1t +

(
λ
µ1

)

6. λ
µ1

> n, Xu
k−1 < n, t > τ

(2)
k n+

(
λ−µ1n

θ1

)(
1− e−θ1(t−τ

(2)
k

)
)

Table EC.1 The formulas for the time-dependent content process X(t) within the kth up interval starting at

Xu
k−1 ≡X(Tk−1) for the six cases that arise.

EC.1.2. System Evolution During a Down Interval

We next consider the kth down interval, beginning at time Tk−1 + Uk. The initial number of cus-

tomers at non-functioning servers is

I(Tk−1 +Uk)≡ (X((Tk−1 +Uk)−)∧n)− ((X(Tk−1 +Uk)−)∧Fk) .

The initial number of customers in queue or functioning servers is Y (Tk−1 + Uk) ≡ X((Tk−1 +

Uk)−)− I(Tk−1 +Uk).

There are two main cases here, depending on whether or not the number of customers in service

at the beginning of the down interval exceeds the number of functioning servers. The case in which

the number exceeds the number of functioning servers divides into two further subcases: (i) only

I(t) decreasing, and (ii) after I(t) = 0. We consider these three cases in turn:

EC.1.2.1. Case 1. First suppose that X((Tk−1 + Uk)−) ≤ Fk, so that at the beginning of

the down interval there is no queue and all customers that were in service are being served by

functioning servers. Then the total system content X(t) evolves according to the nonlinear ODE
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Ẋ(t) = ψ3(X(t))≡ λ−µ2(X(t)∧Fk)− θ2(X(t)−Fk)+, Tk−1 +Uk ≤ t≤ Tk, (EC.6)

starting from X((Tk−1 + Uk)−). If λ > µ2Fk, then there are two further subcases: The queue may

remain empty or it may not; let Tk−1 + Uk + τ
(3)
k be the time that the queue becomes full if that

can happen. The time τ
(3)
k has the form in (EC.1) with Xd

k ≡X(Tk−1 +Uk),

ν(3) ≡ µ2 and γ
(3)
k ≡ µ2(Fk−Xd

k))
λ−µ2Fk

. (EC.7)

If either λ≤ µ2Fk or both λ > µ2Fk and t < τ
(3)
k , then X(t) = B(t), which is governed by the linear

ODE

Ḃ(t) = λ−µ2B(t), Tk−1 +Uk ≤ t≤ (Tk−1 +Uk + τ
(3)
k )∧Tk. (EC.8)

If λ > µ2Fk and t≥ τ
(3)
k , then X(Tk−1 + Uk + t) = Fk + Q(Tk−1 + Uk + t) > Fk, where the queue

length Q(t) evolves according to the linear ODE

Q̇(t) = λ−µ2Fk− θ2Q(t), (Tk−1 +Uk + τ
(3)
k )∧Tk ≤ t≤ Tk. (EC.9)

EC.1.2.2. Case 2. Next suppose that X((Tk−1 + Uk)−) > Fk, with Fk < n, so that some

customers that were being served before the interruption can no longer be served at the beginning

of the down interval. Hence, I(Tk−1 + Uk) > 0. Since these customers have priority for entering

service, I(t) decreases steadily over time, until it reaches 0 at the time Tk−1 +Uk + τ
(4)
k , according

to the linear ODE

İ(t) =−µ2Fk− θ3I(t), Tk−1 +Uk ≤ t≤ (Tk−1 +Uk + τ
(4)
k )∧Tk, (EC.10)

where τ
(4)
k has the form in (EC.1) with

ν(4) ≡ θ3 and γ
(4)
k ≡ θ3I(Tk−1 +Uk)

µ2Fk

. (EC.11)

During the interval [Tk−1 +Uk, Tk−1 +Uk + τ
(4)
k ], B(t) remains unchanged, so that the evolution of

Y (t)≡X(t)− I(t) is determined by the linear ODE for Q:

Q̇(t) = λ− θ2Q(t). (EC.12)
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EC.1.2.3. Case 3. It remains to describe what happens after time Tk−1 + Uk + τ
(4)
k when

X((Tk−1+Uk)−) > Fk. Then the total system content again evolves according to the nonlinear ODE

in (EC.6). In this case, we start with Q(Tk−1+Uk +τ
(4)
k ) > 0. If λ≥ µ2Fk, then the queue will remain

positive. If λ < µ2Fk, then the queue can disappear; that will occur at time Tk−1 +Uk + τ
(4)
k + τ

(5)
k ,

where τ
(5)
k has the form in (EC.1) with

ν(5) ≡ θ2 and γ
(5)
k ≡ θ2(X(Tk−1 +Uk + τ

(4)
k )−n)+

µ2Fk−λ
. (EC.13)

If either λ≥ µ2Fk or both λ < µ2Fk and t≤ τ
(4)
k +τ

(5)
k , then the queue is nonempty and Q(t) evolves

according to the linear ODE (EC.9). On the other hand, if λ < µ2Fk and t > τ
(4)
k + τ

(5)
k , then the

queue has become empty, so that X(t) = B(t) evolves according to the linear ODE in (EC.8). The

full solution is given in Table EC.2.

formula for X(Tk−1 +Uk + t) for t≤Dk

During a Down Time: 5 Cases with Xd
k ≡X(Tk−1 +Uk)

1. For Xd
k ≤Fk and either λ≤ µ2Fk

(
Xd

k − λ
µ2

)
e−µ2t + λ

µ2
[Q(t) = I(t) = 0 here]

or both λ > µ2Fk and t < τ
(3)
k , [X(Tk−1 +Uk + τ

(3)
k ) = Fk]

2. For Xd
k ≤Fk, λ > µ2Fk, t > τ

(3)
k , Fk +

(
λ−µ2Fk

θ2

)(
1− e−θ2(t−τ

(3)
k

)
)

[Q(t) > 0, I(t) = 0]

3. For Xd
k > Fk, t≤ τ

(4)
k , Fk +

(
(Xd

k −n)+− λ
θ2

)
e−θ2t + λ

θ2

+
(
(Xd

k ∧n)− (Xd
k ∧Fk)+ µ2Fk

θ3

)
e−θ3t− µ2Fk

θ3

[I(Tk−1 +Uk + τ
(4)
k ) = 0] [Here I(t) > 0 and X(t)− I(t) > 0]

4. For Xd
k > Fk, t > τ

(4)
k , Fk +

(
X(Tk−1 +Uk + τ

(4)
k )−Fk− λ−µ2Fk

θ2

)
e−θ2(t−τ

(4)
k

)

and either λ≥ µ2Fk or both +
(

λ−µ2Fk
θ2

)

λ < µ2Fk and t≤ τ
(4)
k + τ

(5)
k [I(t) = 0 and X(t) > Fk]

5. For Xd
k > Fk, λ < µ2Fk,

(
Fk− λ

µ2

)
e−µ2(t−τ

(4)
k
−τ

(5)
k

) + λ
µ2

t > τ
(4)
k + τ

(5)
k , [I(t) = 0 and X(t)≤Fk]

Table EC.2 The formulas for the time-dependent content process X(t) within the kth down interval starting at

Xd
k ≡X(Tk−1 + Uk) for the five cases that arise.
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EC.1.3. Overall Performance

It is evident that the stochastic processes {Xu
k ≡ X(Tk) : k ≥ 0} and {Xd

k ≡ X(Tk + Uk) : k ≥ 1}

are discrete-time Markov processes (DTMP’s) with stationary transition probabilities for both the

original Markovian queueing model and the approximating deterministic fluid model, in the same

random environment. In both cases, {X(t) : t ≥ 0} is a regenerative stochastic process. For the

fluid model, the transition probabilities of the DTMP given (Xu
k−1,Uk,Dk) or (Xd

k ,Uk+1,Dk+1) are

easily obtained from the distribution of (Uk,Dk,Fk) by combining the results in Tables EC.1 and

EC.2.

As indicated in §8, the expressions we have derived in this section can serve as the basis for an

efficient simulation algorithm. The long-run behavior of X(t) can be calculated numerically by: (i)

generating a long initial segment of the sequence {(Uk,Dk,Fk) : k ≥ 1}, (ii) applying the explicit

formulas above, and (iii) computing averages such as

1
t

∫ t

0

1{X(s)>y} ds and
1
t

∫ t

0

1{X(s)>y,U(s)=1} ds (EC.14)

for large values of t, where U(t) records the state of the environment at time t, being 1 if the

system is up and being 0 if the system is down; i.e.,

U(t) = 1 if Tk−1 ≤ t < Tk−1 +Uk, k≥ 1, (EC.15)

and U(t) = 0 otherwise.

EC.1.4. The Impact of Different Abandonment Rates

We close this section by giving a figure showing the fluid content in the model with customer

abandonment. We assume that P (F = 0) = 1. It is to be contrasted with Figures 1 and 2, showing

the fluid content in the pure-delay and pure-loss models. Abandonment makes the fluid content

lie below the fluid content in the pure-delay model, but above the fluid content in the pure-loss

model. Possible intermediate cases are shown in Figure EC.1.

As noted in §6, the fluid content is the same as if there is no interruption at all when F = 0 and

θ3 = µ1. Then, during the interruption, the fluid content remains constant at the steady-state value
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D R
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not actually linear

isolated service interruptions with abandonment

Figure EC.1 Sample paths of the fluid content, X(t), in the system experiencing an isolated exogenous service

interruption, when there is customer abandonment at various rates with F = 0.

of ρn. During the interruption, customers leave by abandonment instead of by service completion,

at precisely the same rate. There is no recovery period at all, because the system content has never

changed. That case of constant fluid content also applies with F > 0 provided that θ3 = µ2 = µ1.

The fluid content curves will be above the horizontal line at ρn when θ3 < µ1 and lie below

when θ3 > µ1. The fluid content will rise more above the level n when θ2 and θ1 are smaller. If θ2

and θ1 are very high, but θ3 and µ2 are very small, then the fluid content will tend to be near n

during the interruption. The model in §EC.1 can be used to compute what happens in an isolated

interruption with general parameters. At the beginning of the down period, the fluid content starts

at its steady-state value ρn. Given an interruption with F = 0, we start in Case 3 of Table EC.2

and continue with Case 4. Given the length of the down time, we can compute the fluid content at

the end of the down period. We then can compute the behavior in the recovery period by applying

Table EC.1.
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EC.2. The Many-Server Heavy-Traffic Limit

In this section we establish the many-server heavy-traffic limit theorem for the Markovian queueing

model in the random environment {(Uk,Dk,Fn,k) : k≥ 1} model, which supports the approximation

in §EC.1 as well as the previous approximations.

EC.2.1. Theorem Statement

Let Xn(t) represent the number of customers in model n at time t and let X̄n(t) ≡ n−1Xn(t),

t ≥ 0. With this framework, we can establish a fluid limit that is valid in all three many-server

heavy-traffic limiting regimes: QD, QED and ED. It can be regarded as a functional weak law

of large numbers (FWLLN), for which there will be a functional central limit theorem (FCLT)

refinement, which we do not consider. The FCLT extension has centering by the scaled fluid limit

nX̄(t) and then division by
√

n. The following is proved in the e-companion. As usual, let⇒ denote

convergence in distribution and let D[0,∞) denote the function space of possible sample paths

(real-valued functions on the interval [0,∞)); e.g., see Whitt (2002).

Theorem EC.1. (many-server heavy-traffic fluid limit with unscaled interruptions) Consider

the sequence of Markovian queueing models in a fixed random environment {(Uk,Dk) : k ≥ 1} in

one of the many-server heavy-traffic limiting regimes: QD, QED or ED. Assume that Fn,k/n⇒ F̄k

as n→∞ for each k. If there exists a random variable X̄(0) such that X̄n(0)⇒ X̄(0) as n→∞,

then the fluid-scaled number-in-system process converges in distribution, i.e.,

X̄n ⇒ X̄ in D[0,∞) as n→∞, (EC.16)

where the limiting stochastic process X̄ ≡ {X̄(t) : t≥ 0} has continuous sample paths, evolving as

an ODE in the random environment {(Uk,Dk, F̄k) : k≥ 1}. The evolution of nX̄(t), conditional on

a possible realization of {(Uk,Dk,Fk) : k≥ 1} is given in §EC.1, where Fk = nF̄k.

EC.2.2. Contrast with Conventional Heavy Traffic

Theorem EC.1 here parallels a conventional heavy-traffic stochastic-process limit for single-server

queues with exogenous service interruptions in Kella and Whitt (1990). In the conventional heavy-

traffic limits, both the up times and down times were required to grow in the heavy-traffic scaling,
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whereas here in Theorem EC.1 the up and down times remain fixed. This difference follows naturally

from the very different scaling that is used in the two settings.

With only one server (or any fixed finite number of servers), we contract time by the factor

1/(1− ρ)2 and we scale space by multiplying by 1− ρ, where ρ is the traffic intensity, which is

increasing toward 1. That means we are describing the behavior of the original system over long

time intervals. Consequently, with one server, the up times and down times are required to grow

in the limit as ρ ↑ 1, with the up times being of order O(1/(1 − ρ)2) as ρ ↑ 1, while the down

times were either of order O(1/(1 − ρ)2) or O(1/(1 − ρ)). The time scaling for the up times is

reasonable to represent infrequent interruptions, which would hopefully reflect the actual situation.

The scaling of the down times means that the approximations are only appropriate for relatively

long interruptions. Short service interruptions can often be modelled by simply adjusting the

distribution of individual service times. In the single-server setting, the performance impact of

short service interruptions can usually be captured in models by the increased variance in these

individual service times.

In contrast, for the many-server heavy-traffic limits, there is no need to consider large time

intervals, because we increase the arrival rate. Thus, we do not scale time at all, but the number

of customers waiting still grows, so that we scale space by dividing by n for the fluid limit, as

in Theorem EC.1. Since we do not scale time with many servers, the up and down times need

not change as n →∞. Thus, in the many-server heavy-traffic regimes the length of the service

interruptions need not be long in order to produce noticeable impact. Indeed, even short service

interruptions can have a dramatic impact, as discussed after Theorem 1 in §4. In Pang and Whitt

(2008), we obtain a diffusion limit in the QED regime when the down times are assumed to be

asymptotically negligible, being of order O(1/
√

n) as n→∞. Even these asymptotically negligible

down times have an impact through jumps up in the limit process.

EC.2.3. Proof of Theorem EC.1

As in Kella and Whitt (1990), it is convenient to do the proof recursively, considering the successive

up and down interval in turn, conditioning upon a realization of the random environment {(Uk,Dk) :
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k≥ 1}. The limit for the final values over one interval becomes the limit for the initial values in the

next interval. On each separate interval, we have the transient behavior of a Markovian queue in a

stationary deterministic environment. Thus, on each separate interval, we can apply the martingale

argument, using random-time-changed rate-1 Poisson processes, as in the review paper by Pang

et al. (2007). The proof below actually applies to general non-Poisson arrival processes, provided

that they satisfy a FWLLN; see §7.3 of Pang et al. (2007).

First, during the kth up time interval [Tk−1, Tk−1 + Uk), k ≥ 1, the total system content Xn(t)

evolves according to the dynamics,

Xn(t) = Xn(Tk−1−)+An(t)−An(Tk−1−)−S1,k

(
µ1

∫ t

Tk−1

(Xn(s)∧n)ds
)

−L1,k

(
θ1

∫ t

Tk−1

(Xn(s)−n)+ds
)
, (EC.17)

for t ∈ [Tk−1, Tk−1 + Uk), where Xn(Tk−1) = Xn(Tk−1−), and {S1,k(t) : t ≥ 0} and {L1,k(t) : t ≥ 0}

are independent Poisson processes with unit rate.

Next, we consider the kth down time interval [Tk−1 + Uk, Tk). The initial number of customers

at non-functioning servers is In(Tk−1 +Uk) = (Xn((Tk−1 +Uk)−)∧n)− (Xn((Tk−1 +Uk)−)∧Fn,k),

and the initial number of customers in queue or functioning servers is Yn(Tk−1 +Uk) = Xn((Tk−1 +

Uk)−)− In(Tk−1 +Uk). We have two cases: Xn((Tk−1 +Uk)−)≤Fn,k and Xn((Tk−1 +Uk)−) > Fn,k.

In the first case when Xn((Tk−1 + Uk)−)≤ Fn,k, In(Tk−1 + Uk) = 0, so the evolution of the total

system content Xn(t) is the same as that for many-server queues with Fn,k servers, starting from

Xn((Tk−1 +Uk)−), so the process Xn(t) satisfies the dynamics

Xn(t) = Xn((Tk−1 +Uk)−)+An(t)−An((Tk−1 +Uk)−)−S2,k

(
µ2

∫ t

Tk−1+Uk

(Xn(s)∧Fn,k)ds
)

−L2,k

(
θ2

∫ t

Tk−1+Uk

(Xn(s)−Fn,k)+ds
)
, (EC.18)

for t∈ [Tk−1 +Uk, Tk), where Xn(Tk−1 +Uk) = Xn((Tk−1 +Uk)−), and {S2,k(t) : t≥ 0} and {L2,k(t) :

t≥ 0} are independent Poisson processes with unit rate, and also independent of S1,k and L1,k.
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In the second case, when Xn((Tk−1 + Uk)−) > Fn,k, the number of customers at the non-

functioning servers at the beginning of this down time is positive, i.e., In(Tk−1 + Uk) > 0. Since

these customers have priority for service, In(t) decreases according to the following dynamics

In(t) = In(Tk−1 +Uk)−S2,k

(
µ2Fn,k(t∧ τn,k− (Tk−1 +Uk))

)

−L3,k

(
θ3

∫ t∧τn,k

Tk−1+Uk

In(s)ds
)

(EC.19)

for t ∈ [Tk−1 + Uk, τn,k), where τn,k ≡ inf{t ∈ [Tk−1 + Uk, Tk) : In(t) = 0} ∧ Tk with the convention

that inf{∅}=∞, and {L3,k(t) : t≥ 0} is a Poisson process with unit rate, independent of S2,k. The

rate-1 Poisson processes Si,k’s and Lj,k’s (i = 1,2, j = 1,2,3, k = 1,2,3, . . .) are also assumed to be

mutually independent. To explain (EC.19), note that these customers that were at non-functioning

servers, enter service at functioning servers at rate µ2Fn,k as long as there are any such kind of

customers in the systems because any customer that completes service by a functioning server will

be replaced by customers from the originally interrupted customers; i.e., the rate into service from

the customers at the non-functioning servers equals the rate out of service by service completions,

until eventually I(t) = 0. The remaining system content Yn(t)≡Xn(t)−In(t) up to time τn,k evolves

according to the dynamics

Yn(t) = Yn((Tk−1 +Uk)−)+An(t)−An((Tk−1 +Uk)−)

−L2,k

(
θ2

∫ t

Tk−1+Uk

(Yn(s)−Fk)+ds
)
, (EC.20)

for t∈ [Tk−1 +Uk, τn,k), where

Yn(Tk−1 +Uk) = Yn((Tk−1 +Uk)−)≡Xn((Tk−1 +Uk)−)− In(Tk−1 +Uk).

We next describe the system evolution after the time τn,k, at which there are no more customers

at non-functioning servers. From time τn,k to the end of this down time Tk, the total system content

Xn(t) will evolve according to the dynamics

Xn(t) = Xn(τn,k)+An(t)−An(τn,k−)−S2,k

(
µ2

∫ t

τn,k

(Xn(s)∧Fn,k)ds
)
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−L2,k

(
θ2

∫ t

τn,k

(Xn(s)−Fn,k)+ds
)
, (EC.21)

for t∈ [τn,k, Tk), starting from Xn(τn,k) = Yn(τn,k).

It can be shown that the integral equations in (EC.17)-(EC.21) provide a valid characterization

of the corresponding processes, as in Lemma 2.1 of Pang et al. (2007). We can then obtain the

corresponding integral equations for associated fluid-scaled processes. For that purpose, define the

associated fluid-scaled process X̄n ≡ {X̄n(t) : t≥ 0} by letting X̄n(t)≡ n−1Xn(t), t≥ 0, and let the

other processes be scaled similarly.

From (EC.17), we directly obtain the integral equation for X̄n in the kth up time interval

[Tk−1, Tk−1 +Uk)

X̄n(t) = X̄n(Tk−1−)+ Ān(t)− Ān(Tk−1−)− S̄n,1,k(t)− L̄n,2,k(t)

−µ1

∫ t

Tk−1

(X̄n(s)∧ 1)ds− θ1

∫ t

Tk−1

(X̄n(s)− 1)+ds, (EC.22)

for t∈ [Tk−1, Tk−1 +Uk), where X̄n(Tk−1)≡ X̄n(Tk−1−), and

S̄n,1,k(t)≡ 1
n

(
S1,k

(
µ1

∫ t

Tk−1

(Xn(s)∧n)ds
)
−µ1

∫ t

Tk−1

(Xn(s)∧n)ds
)
, (EC.23)

and

L̄n,1,k(t)≡ 1
n

(
L1,k

(
θ1

∫ t

Tk−1

(Xn(s)∧n)ds
)
− θ1

∫ t

Tk−1

(Xn(s)∧n)ds
)
. (EC.24)

The key observation for the martingale argument is that the processes Ŝn,1,k and L̂n,1,k are

square-integrable martingales, where

Ŝn,1,k ≡
√

nS̄n,1,k and L̂n,1,k ≡
√

nL̄n,1,k, (EC.25)

with S̄n,1,k and L̄n,2,k defined in (EC.23) and (EC.24). The associated predictable quadratic vari-

ation processes are 〈Ŝn,1,k〉 ≡ {〈Ŝn,1,k〉(t) : t ∈ [Tk−1, Tk−1 + Uk)} and 〈L̂n,1,k〉 ≡ {〈L̂n,1,k〉(t) : t ∈

[Tk−1, Tk−1 +Uk)}, where

〈Ŝn,1,k〉(t)≡ µ1

∫ t

Tk−1

(X̄n(s)∧ 1)ds, and 〈L̂n,1,k〉(t)≡ θ1

∫ t

Tk−1

(X̄n(s)− 1)+ds.
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As usual, we must specify the filtration Fu
n,k ≡ {Fu

n,k(t) : t ∈ [Tk−1, Tk−1 + Uk)}. The idea is to

condition on the entire arrival process An, exogenous service interruption process {(Ui,Di) : i≥ 1},

and the functioning servers {Fn,i : i≥ 1} so that we put the entire sample paths of these stochastic

process into the filtration. That is how we achieve conditioning upon the random environment. At

the same time, we allow the treatment of general arrival processes.

Thus the filtration is

Fu
n,k(t) ≡ σ

(
Xn(Tk−1−), S1,k

(
µ1

∫ t

Tk−1

(Xn(s)∧n)ds
)
,L1,k

(
θ1

∫ t

Tk−1

(Xn(s)∧n)ds
)

∨σ
({(Ui,Di) : i = 1,2, ...},{Fn,i : i≥ 1})∨σ

(
An(s) : s≥ 0

)
∨N

where N contains all the null sets. This step of the argument follows the proof of Theorem 7.2

in §7.1 of Pang et al. (2007), given that we have conditioned on the entire the exogenous service-

interruption process.

Moreover, by Lemmas 3.3, 5.8 and 6.2 of Pang et al. (2007), the sequence of processes

{(Ŝn,1,k, L̂n,1,k) : n≥ 1} defined in equations (EC.25), (EC.23) and (EC.24) is stochastically bounded

in the space D2, i.e., for all ε > 0 and T > Tk−1 + Uk > 0, there exists a constant positive K such

that

P (||(Ŝn,1,k, L̂n,1,k)||T,k > K) > 1− ε, for all n≥ 1,

where ‖(x,y)‖T,k ≡max{‖x‖T,k,‖y‖T,k} and ‖x‖T,k ≡ supt∈[0,T ]∩[Tk−1,Tk−1+Uk) {|x(t)|}. Thus we can

apply the FWLLN for stochastic bounded sequences of processes taking values in D2 established

in Lemma 5.9 in Pang et al. (2007) to obtain

(S̄n,1,k, L̄n,1,k)⇒ (η, η) in (D,J1) as n→∞, (EC.26)

where η(t)≡ 0 for all t≥ 0 and the space D is restricted to the time interval [Tk−1, Tk−1 +Uk).

By the FWLLN in (EC.26) and the assumptions on the arrivals and initial conditions, and the

recursive proof procedure, we obtain the joint convergence

(X̄n(Tk−), Ān, S̄n,1,k, L̄n,1,k)⇒ (X̄(Tk−), λe, η, η) in R×D3, as n→∞, (EC.27)
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where the space D3 is endowed with the Skorohod J1 topology and restricted to the time interval

[Tk−1, Tk−1 + Uk), and e(t) ≡ t for all t ≥ 0. Since the limit is a continuous function, the mode

of convergence is uniform convergence on bounded subintervals. Given that the total interval

[Tk−1, Tk−1 +Uk] is bounded, the mode of convergence is uniform over this interval.

We complete the recursive proof for the time interval [Tk−1, Tk−1+Uk) by applying the continuous

mapping theorem. To do so, consider the deterministic function x ≡ ψ(b, y) determined by the

integral representation

x(t) = b+ y(t)+
∫ t

Tk−1

h(x(s))ds, t∈ [Tk−1, Tk−1 +Uk), (EC.28)

where the function h : R→ R is Lipschitz continuous. By Theorem 4.1 of Pang et al. (2007), the

mapping ψ specified by (EC.28) is well defined and continuous when the space D restricted to the

time interval [Tk−1, Tk−1 +Uk) is endowed with Skorohod J1 topology. Moreover, if y is continuous,

then so is x.

The integral representation for X̄n in (EC.22) corresponds to (EC.28) with functions h(x) =

−µ1(x∧ 1)− θ1(x− 1)+ for all x ∈R. By conditioning on the random environment {(Uk,Dk) : k ≥

1}, we can apply continuous mapping theorem with the addition operation and the mapping ψ

together with the convergence of the processes (X̄n(Tk−1−), Ān, S̄n,1,k, L̄n,1,k) in (EC.27) to obtain

the weak convergence of the processes X̄n in (EC.22) to the process X̄ in the kth up time interval

[Tk−1, Tk−1 +Uk), where the process X̄ is given by

X̄(t) = X̄(Tk−1)+λ(t−Tk−1)−µ1

∫ t

Tk−1

(X̄(s)∧ 1)ds− θ1

∫ t

Tk−1

(X̄(s)− 1)+ds, (EC.29)

for t ∈ [Tk−1, Tk−1 + Uk). Clearly, the integral representation in (EC.29) is equivalent to the ODE

in (EC.2) except for the scaling: X(t) = nX̄(t), where X is the content process in §EC.1.

We can now proceed to do essentially the same argument in the down intervals. Thus consider

the kth down time interval [Tk−1 +Uk, Tk) and suppose that Xn((Tk−1 +Uk)−)≤Fn,k, from (EC.18),

we obtain the following integral equation for the fluid-scaled process X̄n:

X̄n(t) = X̄n((Tk−1 +Uk)−)+ Ān(t)− Ān((Tk−1 +Uk)−)− S̄n,2,k(t)− L̄n,2,k(t)
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−µ2

∫ t

Tk−1+Uk

(
X̄n(s)∧ Fn,k

n

)
ds− θ2

∫ t

Tk−1+Uk

(
X̄n(s)− Fn,k

n

)+

ds, (EC.30)

for t∈ [Tk−1 +Uk, Tk), where X̄n(Tk−1 +Uk) = X̄n((Tk−1 +Uk)−), and

S̄n,2,k(t) =
1
n

(
S2,k

(
µ2

∫ t

Tk−1+Uk

(Xn(s)∧Fn,k)ds
)
−µ2

∫ t

Tk−1+Uk

(Xn(s)∧Fn,k)ds
)
, (EC.31)

and

L̄n,2,k(t) =
1
n

(
L2,k

(
θ2

∫ t

Tk−1+Uk

(Xn(s)−Fn,k)+ds
)
− θ2

∫ t

Tk−1+Uk

(Xn(s)−Fn,k)+ds
)
, (EC.32)

for t∈ [Tk−1 +Uk, Tk). Recall that we assume that the functioning servers at each interruption grow

according to the scale, i.e., Fn,k/n⇒ F̄k as n→∞.

By an analogous proof to the proof of convergence X̄n to X̄ in the kth up time interval

[Tk−1, Tk−1 +Uk), we obtain the weak convergence of the processes X̄n in (EC.30) to the process X̄

in kth down time interval [Tk−1 +Uk, Tk) when X̄(Tk−1 +Uk)≤ F̄k, where the process X̄ is defined

by

X̄(t) = X̄(Tk−1 +Uk)+λ(t− (Tk−1 +Uk))−µ2

∫ t

Tk−1+Uk

(
X̄(s)∧ F̄k

)
ds

−θ2

∫ t

Tk−1+Uk

(
X̄(s)− F̄k

)+
ds (EC.33)

for t ∈ [Tk−1 + Uk, Tk). The limit in (EC.33) is equivalent to the ODE in (EC.6). When we apply

the continuous mapping theorem, we need to consider the deterministic function x ≡ φ(b, y, z)

determined by the integral representation

x(t) = b+ y(t)+
∫ t

Tk−1+Uk

g(x(s), z)ds, t∈ [Tk−1 +Uk, Tk), (EC.34)

where the function g :R2 →R is Lipschitz continuous. It is straightforward to generalize the proof

of Theorem 4.1 of Pang et al. (2007) to prove that the mapping φ specified by (EC.34) is well

defined and continuous when the space D restricted to the time interval [Tk−1 +Uk, Tk) is endowed

with Skorohod J1 topology. Moreover, if y is continuous, then so is x. The integral representation

for X̄n in (EC.30) corresponds to (EC.34) with functions g(x, z) =−µ2(x∧ z)− θ2(x− z)+ for all

x, z ∈R.
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We now consider the remaining case: Again consider the kth down time interval [Tk−1 + Uk, Tk)

but now suppose that Xn((Tk−1 + Uk)−) > Fn,k. From (EC.19), (EC.20) and (EC.21), we obtain

the following integral equations for the fluid-scaled processes Īn, Ȳn and X̄n

Īn(t) = Īn(Tk−1 +Uk)− S̄n,2,k(t∧ τn,k)− L̄n,3,k(t∧ τn,k)−µ2

Fn,k

n
(t∧ τn,k

−(Tk−1 +Uk))− θ3

∫ t∧τn,k

Tk−1+Uk

Īn(s)ds,

Ȳn(t) = Ȳn((Tk−1 +Uk)−)+ Ān(t∧ τn,k)− Ān((Tk−1 +Uk)−)

−L̄n,2,k(t)− θ2

∫ t∧τn,k

Tk−1+Uk

(
Ȳn(s)− Fk

n

)+

ds, (EC.35)

for t∈ [Tk−1 +Uk, τn,k), where Īn(Tk−1 +Uk) = (X̄n((Tk−1 +Uk)−)∧1)− (X̄n((Tk−1 +Uk)−)∧ Fn,k

n
),

Ȳn(Tk−1 + Uk) = X̄n((Tk−1 + Uk)−) − Īn(Tk + Uk), S̄n,2,k and L̄n,2,k are defined in (EC.31) and

(EC.32), respectively, and L̄n,3,k is defined by

L̄n,3,k(t) =
1
n

(
L3,k

(
θ3

∫ t

Tk−1+Uk

In(s)ds
)
− θ3

∫ t

Tk−1+Uk

In(s)ds
)

for t∈ [Tk−1 +Uk, Tk), and

X̄n(t) = X̄n(τn,k)+ Ān(t)− Ān(τn,k−)− (S̄n,2,k(t)− S̄n,2,k(τn,k))− (L̄n,2,k(t)− L̄n,2,k(τn,k))

−µ2

∫ t

τn,k

(
X̄n(s)∧ Fn,k

n

)
ds− θ2

∫ t

τn,k

(
X̄n(s)− Fn,k

n

)+

ds, (EC.36)

for t ∈ [τn,k, Tk), where X̄n(τn,k) = Ȳn(τn,k). Recall that τn,k is the first time at which In(t) = 0.

Since the limit I(t) is strictly decreasing and continuous, we have

τn,k ⇒ τk as n→∞, (EC.37)

by virtue of the continuous mapping theorem and the first passage function. We have used different

notation in §EC.1. We have τk = Tk−1 +Uk + τ
(4)
k for τ

(4)
k in (EC.11).

We can again apply essential the same argument to establish the weak convergence of the pro-

cesses (Īn, Ȳn, X̄n) in (EC.35) and (EC.36) to (Ī , Ȳ , X̄) in the kth down time interval [Tk−1 +Uk, Tk),

where the processes (Ī , Ȳ , X̄) are defined by

Ī(t) = Ī(Tk−1 +Uk)−µ2F̄k(t∧ τk− (Tk−1 +Uk))− θ3

∫ t∧τk

Tk−1+Uk

Ī(s)ds, (EC.38)
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Ȳ (t) = Ȳ (Tk−1 +Uk)+λ(t− (Tk−1 +Uk))− θ2

∫ t

Tk−1+Uk

(Ȳ (s)− F̄k)+ds, (EC.39)

for t∈ [Tk−1 +Uk, τk), where Ī(Tk−1 +Uk) = (X̄(Tk−1 +Uk)∧ 1)− (X̄(Tk +Uk)∧ F̄k), Ȳ (Tk +Uk) =

X̄(Tk +Uk)− Ī(Tk−1 +Uk) and

X̄(t) = X̄(τk)+λ(t− τk)−µ2

∫ t

τk

(X̄(s)∧ F̄k)ds− θ2

∫ t

τk

(X̄(s)− F̄k)+ds, (EC.40)

for t ∈ [τk, Tk), where X̄(τk) = Ȳ (τk). As noted above, τk = Tk−1 + Uk + τ
(4)
k for τ

(4)
k in (EC.11), in

the case of only I(t) decreasing during a down interval in §EC.1. That completes the proof.


