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Investigating Dependence in Packet Queues
with the Index of Dispersion for Work

Kerry W. Fendick, Vikram R. Saksena, Senior Member, IEEE, and Ward Whitt

Abstract— This paper continues an investigation of the way
diverse traffic from different data applications affects the per-
formance of packet queues. This traffic often exhibits significant
dependence among successive interarrival times, among succes-
sive service times, and between interarrival times and service
times, which can cause a significant degradation of performance
under heavy loads (and often even under moderate loads). This
dependence and its effect on performance (specifically, the mean
steady-state workload) is partially characterized here by the
cumulative correlations in the total input process of work, which
we refer to as the index of dispersion for work (IDW). This
paper evaluates approximations for the mean steady-state work-
load based on the IDW by making comparisons with computer
simulations. The packet queue model has a single server with
unlimited waiting space and a work-conserving discipline plus
multiple classes of traffic with class-dependent arrival processes
and service requirements, as is appropriate for packet networks
serving different data applications with variable packet lengths.

I. INTRODUCTION

HIS paper is the second part of an investigation into the
way diverse traffic from different applications affects the
performance of packet queues. In [1], we showed that the
traffic to packet queues often exhibits three different kinds of
dependence: 1) among successive interarrival times, 2) among
successive service times, and 3) between interarrival times
and service times (the last two occurring because of variable
packet lengths). We also provided methods for quantifying
and measuring these three kinds of dependence in the traffic,
and predicting how the three kinds of dependence affect the
performance of a heavily loaded queue. (The queue is assumed
to have a single server, unlimited waiting room and the first-
in—first-out service discipline, without any windows or other
flow control mechanisms; the particular performance measure
considered is the mean steady-state workload.) From our
simulation experiments and from previous studies of queues
with arrival process that are not renewal processes [2]-[12],
we know that dependence in the traffic affects performance
much more when a queue is heavily loaded (has a high traffic
intensity) than when it is lightly loaded. An M/G/1 model
(or more general GI/G/1 model plus approximations [13]),
ignoring the three kinds of dependence mentioned above,
may accurately approximate the mean steady-state workload
when the traffic intensity is low, but may underestimate the
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mean steady-state workload (often by a factor of ten or more)
when the traffic intensity is high. Thus, the heavy-traffic
approximations in [1] and previous papers are important to
predict degradation in performance of packet queues resulting
from increased loads.

While the heavy-traffic approximations are useful to un-
derstand system behavior under heavy loads, we typically
want to predict system performance under more realistic
design loads. Unfortunately, it often happens that neither a
light-traffic approximation, which usually counts none of the
correlations in the traffic nor a heavy-traffic approximation,
which usually counts all the correlations in the traffic, provides
an adequate description of performance under realistic design
loads. (The reason that a heavy-traffic approximation counts
all the correlations is explained in [1]).) A major goal of this
study is to determine approximate performance measures for
realistic design loads.

We attack this problem by trying to estimate how much
of the total correlation in the offered traffic actually has
a significant impact on the performance of the queue as a
function of the traffic intensity of the queue. Our method
is described in [14]. It is similar in spirit to the hybrid
approximations based on the stationary-interval and asymp-
totic approximations in [4], [S], [9] and the interpolations
based on light and heavy-traffic limit theorems in [6], [15],
[16], but our method has a somewhat different focus, being
more closely connected to traffic measurements. In particular,
we propose measurements to describe the dependence in the
traffic, and we develop associated approximations based on
these measurements to predict the performance of queues to
which this traffic is offered. We also develop approximations
based on these concepts that depend on model parameters
instead of measurements. As in [1] and [9], we exploit indexes
of dispersion for this purpose. Indexes of dispersion describe
the cumulative correlations in a stochastic process; indexes
of dispersion are also known as variance-time curves; Fourier
transforms of them and their derivatives are known as the
spectral measure and the spectral density; see [14, Section III],
[17, p. 71], and [18]. Of course, these indexes of dispersion are
only partial characterizations of the dependence in the offered
traffic, but we believe useful partial characterizations.

In [1] we proposed a new three-dimensional index of
dispersion for intervals (3-D-IDI) in order to capture the
three kinds of dependence in the traffic mentioned above. In
[14] we proposed yet another index of dispersion, the index
of dispersion for work (IDW), which has the advantage of
being one dimensional. Our purpose now is to investigate
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how well these (and other) indexes of dispersion describe the
offered traffic to packet queues from the perspective of the
mean steady-state workload. By graphically comparing how
the indexes of dispersion and the mean steady-state workload
vary with model parameters, we identify the IDW as the most
promising index of dispersion from this perspective. We then
evaluate the accuracy of approximations from [14] for the
mean workload that use the IDW as the sole description of
dependence in the offered traffic. Our analysis indicates that
the IDW describes much of the effect of the dependence in
the offered traffic on the mean workload of packet queues,
so that the approximations from [14] may suffice for many
engineering purposes. On the other hand, our analysis shows
that we would need to use additional information, beyond the
IDW alone, to achieve a high degree of accuracy. Given the
partial success here of approximations that use only the IDW,
further work on approximations, based on the IDW but not
exclusively so, would appear to be fruitful.

In this paper we focus on only one performance measure
in an idealized model: the mean steady-state workload in
a single-server queue with unlimited waiting space and the
first-in~first-out discipline (or any other work-conserving dis-
cipline) without windows or other flow control mechanisms.
It would be desirable to consider more complicated models,
and in the future we intend to do so. However, to understand
the predictive power of the IDW, it is useful to consider first
a relatively simple model.

The workload at time t is the total remaining service time
of all packets waiting to be served at time ¢, including the
packet in service. (The workload is often called the virtual
waiting time.) The mean workload obviously is not the only
performance measure worth considering; we focus on the mean
workload primarily because it seems to be the measure that we
have the best chance of accurately describing with the IDW.
We find that the IDW is relatively effective for describing
the effect of the dependence on the mean workload, but it
may not capture other effects of the dependence. For example,
Ramaswami [19] describes relatively high probabilities of
successive lost packets from the same source even under
moderate loads in the model of [9], [10].

Besides being of interest in its own right, the mean steady-
state workload is often used as a surrogate for the mean wait
in queue. For systems with Poisson arrival processes, the mean
steady-state workload and the mean steady-state waiting time
coincide at all traffic intensities [20]. Moreover, under very
general conditions [1], [2], the mean steady-state workload and
the mean wait coincide asymptotically as the traffic intensity
of the queue approaches 1. However, for many packet queues
where individual applications offer packets to the queue in
bursts, the mear steady-state workload and the mean wait
differ substantially. Thus, we regard the analysis here as being
primarily for the mean workload. In the future, we intend to
study approximations for the mean wait experienced by each
application.

Without loss of generality, we can express the mean steady-
state workload EZ as

Bz - TP%(p) )

S 2(1-p)
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where 7 is the mean service time, p is the traffic intensity, and
¢%(p) is some function of p, which we regard as a measure of
the variability in the offered traffic relevant at traffic intensity
p see [14, Section I-B]. We call c%(p) the normalized mean
workload. In an M/G/1 queue, cZ(p) = 2 + 1 where c2 is
the squared coefficient of variation (variance divided by the
square of the mean) of the service-time distribution. Thus,
in an M/D/1 queue, c(p) = 1. Consequently, c%(p) =
EZ/E(Z;M/D/1), ie. it is the ratio of the mean workload
in the given model to what it would be in an M/D/1 queue
at the same traffic intensity.

As in [14], we intend to approximate the normalized mean
workload using the IDW. The IDW is defined by

Lo(t) = Var X (¢)

—, t2
TEX(t)’ ~~ 0,

@
if EX(t) > 0 and I,,(¢t) = 0if EX(¢) = 0 where X(t)
represents the total input of work in the time interval [0, ¢] and
7 represents the average service time; see [14, Sections II-A,
III-C]. Since the IDW {I,,(¢) : ¢ > 0} is a function of time, we
must relate time ¢ to the traffic intensity p. Roughly speaking,
we think of c3(p) = L,(t(p)) where t(p) is an increasing
function of p. The traffic intensity p should determine the
relevant time scale for the queue, i.e., how much of the
variability measured by the IDW plays a significant role; see
[14, Section I].

The rest of this paper is organized as follows. In Section II,
we describe our multiclass packet queue model, which allows
for diverse characteristics of traffic from different applications.
In Section III, we use simulations of the packet queue model
to see how each index of dispersion partially characterizes the
dependence in the offered traffic and enables us to predict the
mean workload. These experiments support using the IDW as a
basis for approximating the mean workload. In Section IV, we
evaluate four different approximations for the mean workload
from [14] by comparing them to simulations. None of these
four emerges as a clear winner, but all four are far superior
to approximations such as those in QNA [21], [22] that
consider only one of the three kinds of dependence. Finally,
in Section V we draw conclusions. The Appendix contains a
heavy-traffic limit theorem for the workload process which
proves that c%(1) = I,(c0) in considerable generality.

II. THE PACKET QUEUE MODEL

In this section we describe a model of a multiclass packet
queue, which is a special case of the idealized model from [1,
Section VI-C] in which the flow of packets from each virtual
circuit is unconstrained by windows. (As indicated by [14],
the IDW and approximations based on it are not restricted to
this model). Here, k classes, each corresponding to a virtual
circuit carrying a particular kind of data, share a transmission
facility. We assume that the transmission facility has unlimited
waiting room. Packets from each class arrive in batches (e.g.,
messages) with space between successive packets of the same
batch due to constraints on the throughput rate. The space
between packet arrivals within a batch represents the time
between the arrival of the first bit of one packet and the
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arrival of the first bit of the next packet. After the space that
follows the arrival of the last packet of a batch, there is an
idle period before the arrival of the first packet of the next
batch. The idle period is typically much longer than the space
between successive packets within the same batch. For each
class, successive service times, idle periods, batches sizes, and
spaces between packets of the same batch are independent
sequences of i.i.d. (independent and identically distributed)
random variables. This model differs from models in [5] and
[7]-[12]; there all classes share the same parameters and, in
particular, the same mean service times.

Most importantly, the distributions of service times, idle
periods, and spaces are each general and class dependent. For
class i, service times have mean 7; and squared coefficient
of variation c?;; idle periods have mean w; and squared
coefficient of variation cZ;; and spaces between packets of the
same batch have mean &; and squared coefficient of variation
c%,. Batch sizes are also class dependent, but are assumed
to be geometrically distributed, so that the packet arrival
process from each class is a renewal process. (This assumption
is essential to some, but not all, of the approximations in
Section IV.) For class 4, batch sizes have mean m; and
squared coefficient of variation cZ;; because batch sizes are
geometrically distributed, ¢, = (m; — 1)/m;. The packet
interarrival-time distribution is thus a mixture as follows. With
probability (m; — 1)/m;, the interarrival time corresponds to
a single space; with probability 1/m;, the interarrival time is
the sum of a space plus an idle period. The interarrival-time
distribution function for class ¢ is denoted by F;(t) and its
kth moment by px;. Then, ¢2; = uo;/u?; — 1 is the squared
coefficient of variation for a class 4 interarrival time.

Let A be the total arrival rate of batches and let Ap; be the
arrival rate of batches from class : where p; 4+ - - -+ pg = 1.
(Note that A = Zf:l Ap; and Ap; = (w; + &m;)~".) Then
T = Zlepimin/z:c:lpimi is the mean service time for
all packets, A = Zle Ap;m; is the overall packet arrival
rate, and p = )\Zf=1 pim;T; = AT is the traffic intensity. In
addition, ¢; = p;m;/ Zf:l pim; is the proportion of all packet
arrivals that are of class ¢, r; = ; /7 is the normalized service
time for class 4, and 3; = m;&;/(m;{; + w;) is the proportion
of busy time in each busy-idle cycle for class .

We introduce this traffic model as an attempt to capture
the burstiness of the traffic. Of course, other related models
have also been introduced for this purpose, e.g., see Jain
and Routhier [23], Descloux [24], and Li and Mark [25].
We aim to quantify how the clustering of arrivals for each
class affects queue performance, in particular, the steady-state
mean workload. For a given batch arrival rate (Ap;) and a
given batch size m; for each class, we especially want to
describe the behavior of a queue as a function of the mean
idle period w; and mean space between packets within a batch
&, with all other parameters held fixed. In other words, we
want to develop approximations that work well both when
packets from the same batch arrive at nearly the same instant
and when packets from the same batch arrive spaced far
apart. As we demonstrate with simulation results, changes
in spacing between packets of the same batch grearly affect
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TABLE 1
CoMMON PARAMETERS FOR THE FOUR EXAMPLES OF MULTICLASS
PACKET QUEUES. NOTE THAT THE TRAFFIC INTENSITY p IS VARIED
BY CHANGING THE MEAN SERVICE TIME 7; FOR EacH CLASS

class (Api)~! m; =T
1-20 121.904 2.0 1.385p
21-40 121.904 2.0 0.139p
4145 872.727 30.0 2.771p
46-50 872.727 30.0 0.139p

the mean workload, so understanding the relationship between
the clustering of packets and queue performance is important.
(Similar observations are made by Descloux [24], whose
model incorporates finite buffers, but requires all packets to
have the same service time.)

Throughout this paper, we consider examples of packet
queues that share the parameters given in Table I. For all
examples, the idle periods between batches are exponentially
distributed, so that ¢2;, = 1, and packet lengths and spaces for
each class are assumed to be constant, so that 2, = c2;, = 0.
With these parameters, F;(t) = 0 for all t < &. As a
consequence, the density of Fj(t), denoted f;(¢), exists in a
neighborhood of 0, and f;(0) = 0. (This is relevant for the
light-traffic behavior.) Expressing the first three moments of
the interarrival-time distribution in terms of the basic model
parameters, we find that py; = (w; + mi&)/mi, po =
(2w? + 2w + mi€?)/m; and py; = (6w? + 6w2¢; +
3w;E2 + m;€E3)/m;. Classes 1-20 represent virtual circuits
carrying interactive data, while classes 41-45 represent virtual
circuits carrying file transfer data. Classes 21-40, and classes
46-50 represent virtual circuits carrying acknowledgments for
interactive data and file-transfer data, respectively. (As an
approximation, we assume that the acknowledgment classes
are independent of the data classes.)

The examples differ in the way packets arrive within a
batch, i.e., the examples are completely specified except for
the mean spacing between packets within the same batch, &;.
In Example 1, all packets from a batch arrive at the same
instant, i.c., for all 4, §& = 3, = 0 and w; = 1/Ap;. Thus,
Example 1 is a multiclass batch-Poisson (3 (M5:/G;)/1)
queue of [1]. In Example 2, a more realistic example of a
packet queue, packets from the same batch arrive separated
from one another by deterministic, class-dependent spaces,
&1 =-&po =0227 and & = -+ = & = 0.554. For
each class i,w; = (1/Ap;) — m;&;.

Fig. 1 displays results for the normalized mean work-
load, ¢%(p), for Examples 1 and 2. [Recall that c(p) =
2(1 — p)EZ/7p by (1).] For these examples, and all others
introduced later, we vary the traffic intensity by varying the
mean service time for all classes by a common proportion. In
this way, we observe how the performance of a queue with a
fixed set of arrival characteristics changes as a function of the
traffic intensity. For ease of exposition, we normalize all arrival
and service parameters so that the overall packet arrival rate
A is equal to 1, and the overall mean packet service time 7 is
equal to the traffic intensity, p. It is important to note that when
we consider model behavior as a function of p we are simply
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Fig. 1. The normalized mean workload for Examples 1 and 2.

multiplying all service times for the case p = 1 by p, i.e.,
the arrival process remains unchanged as we change p. This
is not a restrictive assumption, but a convenient convention
(see [14, Sections I-E, II-D, III-D]), but it is different from
what is done in most performance analysis studies; typically
we increase the load by adding sources and, thus, altering the
arrival process, while leaving the service times unchanged.

For Example 1 (the batch-Poisson case), we compute the
exact value EZ as given in [1, eq. (2)] and obtain

Z(p) =ch +c% —2c4s =799 forall p

3

where ¢, c%, and c% 4 are the asymptotic variability parame-
ters discussed in [1, Section V-B] and [14, Section III].) For
Example 2 (with spaces), we use estimates Z(p) for EZ
obtained for several values of p via computer simulation to
obtain the estimates

&p) = 2(1 = p)Z(p)/7p. )

Each simulation estimate Z(p) is the average of 545000
samples of the workload. The space between samples was
exponentially distributed with a mean approximately equal to
6.93 packet interarrival times. Thus, each simulation estimate
was based on more than 3750000 packet arrivals. A 95%
confidence interval for each estimate with a relative width of
about 10% was found by dividing the simulation run into 40
intervals of equal length and assuming that the averages for
the 40 intervals were distributed according to a t distribution.
For each example, the values at p = 0 and p = 1 represent
the exact asymptotic limits for c¢%(p), as described in [14,
Section IV].

For Example 2, (4) represents what c¢%(p) must be to match
simulation results. In Fig. 1, we also give the corresponding
results for an M/G/1 queue with the same squared coefficient
of variation for a packet service time as in the two packet
queue examples, i.e., we let cZ(p) = 1+c2, where 2 = 7%, =
0.96 is the exact squared coefficient of variation of a service
time computed via (10) of [1], which does not represent any
dependence. For the M/G/1 model, c%(p) does not depend
on p.

Fig. 1 dramatically depicts the problem we are facing. Ex-
cept at very low traffic intensities, a simple M/G/1 model
seriously underestimates the normalized mean workload in Ex-
ample 2. The heavy-traffic limit for Example 2 and the batch-
Poisson model in Example 1 both describe the normalized
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mean workload in Example 2 well at high-traffic intensities,
but certainly not at lower traffic intensities where the M/G/1
model is more appropriate. Assuming that the batch-Poisson
model provides an upper bound for the normalized mean
workload, the function {c%(p): 0 < p < 1} representing
the normalized mean workload as a function of p for the
packet-queue examples (all with the common parameters in
Table I) satisfies 0 < c%(p) < 79.9 for all p. However, the
precise form of the function depends on the relative sizes of
& and w;. What we would like to do is obtain an estimate
for the function ¢%(p) directly from the model parameters that
matches the rising curve in Fig. 1. From our experiments, we
conclude that the indexes of dispersion can serve as the basis
for such estimates.

III. THE INDEXES OF DISPERSION FOR EXAMPLES 1 AND 2

In this section we use simulation to estimate the different
indexes of dispersion for Examples 1 and 2. (In some cases, we
could also calculate these indexes of dispersion analytically,
e.g., by Laplace transform inversion; see [14, Section III-G}.)
The indexes of dispersion are dimensionless functions of time
or the customer index that describe the cumulative correlations
in the traffic process; see [17, p. 71], [9], [1, Section V-A -B]
and [14, Section III]. The first two moments (as a function
of time or the customer index) appearing in the indexes of
dispersion are estimated from the simulated offered traffic
by sample means. We give more details about the estimation
procedures in Section III-B below.

A. Comparing the Indexes of Dispersion to the Normalized
Mean Workload

Fig. 2 displays the IDI’s (index of dispersion for intervals,
see {9, eq. (1)] or [14, eq. (45)], estimated from simulation,
for the arrival processes in the two examples from Section II.
The two IDI’s are similar and thus do not provide immediate
insight into the differing behavior of the normalized mean
workload for the two examples, as shown in Fig. 1. We note
that the full IDI is more closely related to packet waiting-
times than the workload because the IDI and the waiting time
are functions of the customer index as opposed to time. To
see the limitations of the IDI, consider a single-server, single-
class batch-Poisson queue with fixed arrival rate. Then the
distribution of the number of packets in a batch completely
determines the queue’s IDI, while the total amount of work
arriving in a batch determines the distribution of the queue’s
workload; see [1, Section IV]).

Fig. 3 displays the IDC’s (index of dispersion for counts,
see [9, eq. (3) ] or [14, eq. (46) ], for the same arrival processes
and examples (exact for Example 1 and simulation estimate for
Example 2). Unlike the IDI’s there is a strong correspondence
for each example between the shape of the IDC and the shape
of ¢%(p) in Fig. 1. First, the 3 (M P /G;) /1 queue, which has
a constant normalized mean steady-state workload ¢ (p), see
[1, eq. (2)], also has a constant IDC. (This follows because the
arrival process of packets to this queue is a compound-Poisson
process, so that there is a zero covariance between the number
of packets arriving in disjoint intervals.) Second, the shapes
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Fig. 2. The one-dimensional index of dispersion for intervals (IDI) for the
arrival processes of Examples 1 and 2, estimated by simulation.
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Fig. 3. The index of dispersion for counts (IDC) for the arrival processes
of Examples 1 and 2.

of the curves for Example 2 are also similar. Figs. 1 and 3
together strongly suggest that the IDC provides information
for Examples 1 and 2 not only about the total correlation in
the arrival process, but also about how much of this total
correlation is relevant at a given traffic intensity. However,
note that the values of I.(t) in Fig. 3 are substantially less
than the values of c%(p) in Fig. 1. From [1], we know that
this is because the IDC captures only one of the three kinds
of dependence.

Perhaps the main contribution of [1] was to point out the
importance of treating the interarrival times and service times
together in multiclass queues with class-dependent service
times and non-Poisson arrival processes. In [1] we focused
on the three-dimensional index of dispersion for intervals
(3-D-IDI), which is the sequence {(73,,,7%,,C4.): 1 < n <
oo} where ¢4, is the ordinary IDI for the interarrival times,
€&, is the corresponding IDI for the service times, and 72,
is an analogous sequence for the interarrival times and service
times together (with ¢} = ¢ _,c% = ¢ and %5 = A 500)-
Fig. 4 displays the composite sequence {¢2,, + 7%, — 204.,
estimated from simulation for each of the two examples. We
know that the limit of this sequence represents the relevant
variability for the queue in heavy traffic. Each of the sequences
{4, 1, {€%,}, and {¢%,,} contributes significantly to the
composite sequence: for the 3 (M5B:/G;)/1 queue, ¢4 =
22.3,c%__ = 40.19, and 4500 = —8.8, while for the queue
with spaces ¢4, = 21.5, c&_ = 38.7, and %5 = —8.4.
Thus, the IDI and IDC which capture only the correlations in
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Fig. 5. The index of dispersion for work (IDW) for Examples 1 and 2.

the arrival process, do not describe the total correlation for
these queues well. The 3-D-IDI, on the other hand suffers
from the same limitations as the 1-D-IDI in describing the
workload under light loads. Fig. 4 shows that the composite
sequences for the two examples are similar, so that they do
not explain the markedly different behavior of the two queues
under light loads seen in Fig. 1.

Fig. 5 displays the IDW’s for Examples 1 and 2. The IDW
for the 3~ (MP:/G;)/1 queue is constant because the total
input process of work is a compound Poisson process and thus
has a zero covariance between the work arriving in disjoint
intervals; see [14, Section IV-C]. The IDW for Example 2 is
estimated from simulation. The general shape of each IDW
is similar to that of the corresponding IDC in Fig. 3, and,
as with the IDC, corresponds to the shape of the normalized
workload c%(p) in Fig. 1. However, unlike the IDC in Fig. 3,
the numerical values in Figs. 1and 5 are very close. Indeed,
for the 3 (M®//G,) /1 queue, the constant value of the IDW
is equal to the constant value of c%(p); see [14, eq. (123)].
Moreover, from {14, eqgs. (8), (12), and Section IV], we know
that in great generality ¢%(1) = I,,(c0) and c2(0) = 1,,(0).
The Appendix here contains the supporting heavy-traffic limit
theorem cited in [14, Section I[V-B1].

After comparing the various indexes of dispersion in
Figs. 2-5 to the normalized mean workload in Fig. 1, we
conclude that the IDW is most promising for developing
approximations for the mean workload; see [14] for further
discussion. However, the other indexes of dispersion may be
useful for other purposes.
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B. The Estimation Procedure

Methods for estimating the indexes of dispersion are dis-
cussed in [17]. Here, we briefly describe what we did. For the
IDI in Fig. 2, we estimated the first two moments as a function
of the customer index n by using samples based on disjoint
subsets of interarrival times (for a given n), i.e., the estimate
for moment k is

m=—1 n k
Me(n) =m™! z Zumﬂ (5)
i=0 |j=1
An attractive alternative to (5) is
. k
mn |[i=j4+n—1
g(n) = (mn)" Y LY w (6)
Jj=1 i=j

which uses overlapping interarrival times. The estimate (6) is
typically more reliable (has lower variance) than (5) for large
n using the same number (mn) of interarrival times. However,
it should be noted that the estimate (6) based on overlapping
interarrival times produces highly correlated estimates of the
values of the IDI at successive customer indexes, so that
the estimated curves can be smooth even when the statistical
precision is not great.

For the indexes of dispersion in Fig. 3—5, we used methods
in [17] based on overlapping interarrival times for the IDI and
overlapping intervals for the IDC. One method for estimating
the IDI in [17] involves estimating, for each ¢, the covariance
C; between two interarrival times separated by i — 1 other
interarrival times (see [17, Section 5.2, eq. (11)] and then
estimating the full IDI (see [17, Section 4.4, egs. (10), (11} ].
We estimated the 3-D—IDI in Fig. 4 in this way, after replacing
the interarrival times in the equations by the values dy, equal
to the difference between the nth service time, normalized by
its expected value, and the nth interarrival time, normalized
by its expected value; see [1, Section VII-B].

We estimated the IDC in Fig. 3 as in [17, Section 5.4,
egs. (3), (12)] and [17, Section 4.5, eq. (3)]. This requires
dividing the time axis into disjoint time intervals of length 6
and estimating, for each ¢, the covariance C;(6) between the
numbers of arrivals in two intervals separated by ¢ — 1 other
intervals. As suggested in [17], we chose the interval 6 equal to
less than one half the smallest time value for which we want an
estimate of the IDC. The smallest time value we considered
was about 1.5 mean service times; subsequent values were
about 4 mean services times apart, so that there were 250 data
points in Table III.

Finally, we estimated the IDW in Fig. 5 in essentially the
same way as the IDC, replacing arriving customers per interval
in the equations with arriving work per interval.

IV. APPROXIMATIONS FOR THE MEAN WORKLOAD

In [14, Sections I-D, and V] we proposed four ways to
approximate the normalized mean workload c%(p) based on
the IDW 1,,(t). Our purpose here is to see how these approxi-
mations work for packet queues. The first two approximations
are based on the asymptotic behavior of [, (t) as t — 0 and
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t — oo, including the derivatives as well as the limits, which
can be expressed directly in terms of the packet queue model
parameters. The first procedure is a GI/G/1 model approxi-
mation, obtained by finding a GI/G/1 model with an IDW
that matches the asymptotic behavior of the given IDW, see
[14, Section V-C]. For packet queues, this procedure typically
yields an Hy/G/1 queue (hyperexponential interarrival times,
a mixture of two exponentials), which can easily be solved
exactly by solving for a root of an equation; [26, p. 329].
(In fact, here it yields an Hy/M/1 queue.) In Section IV-C
below, we show that the GI/G/1 model approximation yields
a remarkably good fit to the IDW’s. Its approximation for
the normalized mean workload c%(p) is reasonably good, but
not spectacular. Thus, these examples show limitations in the
extent to which I,,(¢) determines c%(p).

The second procedure is the light-traffic and heavy-traffic
interpolation approximation from [16] based on the limits
c%(0) and ¢%(1) and the derivatives ¢%(0) and ¢%(1), which
are determined or approximated by the asymptotic behavior of
L, (t); see [14, eqs. (17), (18), and Section V-B]. The inter-
polation approximation seems to work as well as any of the
other approximations, suggesting that it may not be worthwhile
determining the full approximating GI/G/1 model or the full
IDW.

The third and fourth approximations require the full IDW.
They are both based on the idea that ¢%(p) can be approxi-
mated by a time-transformation of I,.(t), i.e.,

cZ(p) = L(t(p)), 0<p<i

0

where t(p) is an increasing function of p with ¢#(0) = 0 and
t(p) — oo as p — 1. The third approximation is (7) with
pluw(oc)
2(1-p)*

the fourth is (7) with #(p) being the fixed point solution of
the equation

tp) =

0<p<1; (8)

)= 2t

see [14, Sections I-C, D, V-A].

0y

<l ®

A. The Four Packet-Queue Examples

In this section we introduce two new examples in addition to
the two in Section II. All four examples share the parameters
in Table I. For all four examples, the idle periods between
batches are exponentially distributed, so that ¢?, = 1, and
packet lengths and spaces for each class are assumed constant,
so that ¢2, = 0 and ¢, = 0. Hence, the four examples
differ only by the size &; of the space between the arrival of
successive packets in the same batch and the resulting mean
idle periods w; = (/\pi)71 — m;&;. The space parameters
for the four examples are given in Table II. In each case,
the spaces are twice as long for the file transfer packets as
for the interactive packets. The spaces are increased in each
succeeding example, so that each succeeding example becomes
less bursty.
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TABLE 11
THE SPACE BETWEEN PACKETS IN THE SAME BATCH £;; THE PROPORTION OF THE TOTAL PACKET ARRIVAL RATE DUE TO CLASS i, qi;
THE PROPORTION OF BUSY TiME PER BUsy CYCLE FOR CLASS ¢, 3;; AND THE ASYMPTOTIC ARRIVAL-PROCESS VARIABILITY PARAMETER
C?«xz‘ FOR CLASS 2 IN THE FOUR PACKET-QUEUE EXAMPLES. ALSO GIVEN ARE THE OVERALL ASYMPTOTIC VARIABILITY PARAMETERS
Variable Class Example 1 Example 2 Example 3 Example 4
1-20 0.0 0.277 0.831 6.926
& 21-40 0.0 0.277 0.831 6.926
41-45 0.0 0.554 1.662 13.853
46-50 0.0 0.554 1.662 13.853
1-20 0.0164 0.0164 0.0164 0.0164
) 21-40 0.0164 0.0164 0.0164 0.0164
4 41-45 0.0343 0.0343 0.0343 0.0343
46-50 0.0343 0.0343 0.0343 0.0343
1-20 0.0 0.0045 0.0136 0.114
) 21-40 0.0 0.0045 0.0136 0.114
B 41-45 0.0 0.0190 0.0571 0.476
46-50 0.0 0.0190 0.0571 0.476
1-20 3.0 297 2.92 2.35
5 21-40 3.0 297 2.92 2.35
Cai 41-45 59.0 56.8 52.5 16.2
46-50 59.0 56.8 52.5 16.2
ch 222 21.4 19.9 7.1
c% 40.0 38.6 35.7 11.4
s —8.8 -85 -7.8 —-22
2 (1) 79.9 77.0 71.2 22.9
Also given in Table II are associated variables calculated 7ip:i Var X;(t) k Tipi
from the basic parameter four-tuples (Ap;, m;,7:,&;): in par- = Z et Z - Li(t)  (10)
i=1 i=1

ticular, the proportion of the total packet arrival rate due
to class i, ¢; = p;m;/ 21-521 pim;; the proportion of busy
time per class-i busy cycle, 3; = m;&/(m:& +w;); and
the asymptotic arrival process variability parameter for class
i,c4; = (1—8:)%@2mi—1), which is obtained from [,
eq. (26)]. (There, ¢; = (m; — 1)/my,c%, = land ¢3; =
0.) Moreover, the overall asymptotic variability parameters
¢k, s, and §(1) = & + ¢k — 2¢45 are given, as
obtained from [1, egs. (17) and (2)] using c?; above.

B. The IDW in the Packet Queue Model

Now we develop expressions for our IDW and its asymp-
totic behavior as t — 0 and ¢ — oo for the packet queue
model, drawing on [14]. The expressions also are valid for
the more general packet-queue model in [1, Section IT] where
the distributions (for each class) of the space between packets
and the idle period between batches are both general. When
comparing this analysis to [14], note that in the definition of
the IDW here the total arrival rate is fixed at 1, whereas in
[14] the total service rate is fixed at 1. Thus, in [14] there
appears an extra time scaling of the IDW.

We assume equilibrium conditions, i.e., that the arrival
counting process for each class, denoted by A4;(t), and thus
also the total input process for each class, denoted by X;(t),
has stationary increments, so that EX;(t) = p;t,t > 0. Since
different classes in the packet-queue model have independent
total input processes of work, from (2) we obtain

k
L(t) = Lr L%fi(t)]

where I,,;(t) is the IDW for class i alone. For each class,
service times are i.i.d. random variables that are independent
of arrival times, so by [14, eq. (59)],

Loi(t) = ¢ + La(t) a1

where I ;(t) is the index of dispersion for counts (IDC) for
class i alone, defined by I ;(t) = Var A;(t)/EA(t), t > 0.
Equations (10) and (11) together show that the service-time
distribution for each class enters into the IDW only through the
dimensionless variability parameter ¢, and the dimensionless
ratios (7;/7) and (p; /p). This implies that the IDW is invariant
under changes in the overall mean service rate (assuming that
the different class rates are changed proportionately). Hence,
when we vary the traffic intensity in each of our examples
by changing the mean service rates for each class, the IDW
remains unchanged.

As noted in Section II, the packet arrival process for each
class is a renewal process. This allows us to calculate V;(t) =
Var A;(t) for each i, which characterizes the IDC because
I.;(t) = usVi(t)/t where p; is the mean interarrival time for
class 1. If Ho;(t) is the renewal function for class i arrivals,
i.e., the mean number of arrivals in the interval (0,¢] given
that a new interarrival time begins at ¢ = 0, then

(12)

t

2 U 1

Vit :—‘/[H*u ——+—:|du;
( ) Hi 01( > Hi 2

see [14, eq. (62)]. We can find the renewal function Ho;(t)

by inverting its Laplace transform,

ﬁOi(S) = /e*stHOi(t) dt = fz(sA)

! (i)
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where f(s) = I~ e7stdF;(t) is the Laplace—Stieltjes trans-
form of the interarrival-time distribution for class i. If we
cannot obtain a closed-form expression for Hy,(t) from (13),
we may find V;(¢) by numerically inverting its Laplace trans-
form, Vi(s) = [ e~*'V;(t) dt, which is (see [14, eq. (62)]

2 1 1
T s s 25}'
Hence, the IDC, and thus the IDW too by (11), can be
computed analytically for our packet queue model.

We now describe the asymptotic behavior of the IDW. First,
by [14, eq. (92)]

Vi(s)

{ffm(s) - (14)

k
1,(0) :;Z? (Z+1)=c+1. (15)
Second, by [14, eq. (99)]
L0 = hoi(0) - = = () - = (1)

1 (2

where ho;(0) is the density of the renewal function and fi(0)
is the density of the stationary interarrival-time distribution at
0. Of course, for Examples 2-4, £;(0) = 0 so that I,(0) <0
for these examples.

We can also characterize the large-time behavior of I(t)
in simple terms, again using the fact that the arrival process
for class 4 is renewal. If u1; = 7, /p;, p2i, and ft3; are the first
three moments of a class 7 interarrival time, respectively, and
chi = (u2i/u3;) — 1, then,
_qﬂH@,
t L3 1

Li(t) = & - 1q@+wJ

+ Ol:—:—} as t — oo; 17
see [14, eq. (115)]. Hence,
B
Iw(t)zA—T-i-o[%} as t — oo (18)

where A = ¢4 + ¢ — 2c45 = ¢%(1) and

ES
o
2
=
=
—
=
@

S 15(c + 1)2]; (19)
see [14, eq. (116)].

C. The GI/G/1 Model Approximation

The standard GI/G /1 queue is a special case of our general
packet queue model in which there is one class with m; = 1
and ¢j; = & = c2; = 0, so that the asymptotics above also
apply to the GI/G/1 model. Hence, for the GI/G/1 queue,

I,00)=cl+1 and "I,(0) = f(0) - 1 (20)
by (15) and (16), and (18) holds with
A=T,(c0)=c2+¢?> and B= [us — 1.5(c2 + 1)2]/3
(21)
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where 1, (cg + 1) and p3 are the first three moments of an
interarrival time and c2 is the squared coefficient of variation
of a service time.

Given the parameters I,,(0), A and B, we thus fita GI/G/1
queue by letting

= I,(0)—1,

8

Cg = Iw(oo) - Cg = Iw(oo) - IW(O) +1,
pa =3B +15(c2 +1)° = 3B + 1.5(L,(00) — L, (0) + 2)°.
(22)

By [14, eqs. (8) and (12)] a GI/G/1 queue with these
parameter will share common values for ¢%(0) and ¢%(1) with
the packet queue in addition to a similar correlation structure,
as captured by the asymptotics of the IDW. We do not use
our knowledge of I7,(0) for the packet-queue model in fitting
the GI/G/1 models here, primarily because we succeed in
getting a good fit of the IDW without it.

The commonly studied distributions for interarrival times
and service times of GI/G/1 queues have limits on the
range of values assumed by their first three moments. To
fit GI/G/1 queues to the packet-queue examples, we must
use particular qualities of the packet queues in choosing
appropriate distributions for the GI/G/1 model. We may
then apply methods given in [4, Section 3] for fitting these
distributions to the moments. For all examples in this paper,
¢ = 096 ~ 1.0, so we use an exponential service-time
distribution for the GI/G/1 model. (Our procedure does not
require this, however.) Although the examples cover a broad
range of values for w; and &;, the parameter B in (19) is
positive and I,,(c0) > I,,(0) for all examples (except the
> (M?/G;)/1 multiclass batch-Poisson example). Thus, it
is sufficient to select an interarrival-time distribution for the
GI/G/1 queue that can satisfy (22) whenever ¢2 > 1 and
s > 1.5(c2 + 1) Conveniently, the conditions 2 > 1
and pz > 1.5(c + l)2 together are sufficient (as well as
necessary) for a hyperexponential (H;) distribution to exist
with these moments; see [4, p. 136]. The density of an H,
distribution is given by

f(&) = pAre ™t 4 (1 — p)Aye~>2t,

The first three moments of the interarrival-time distribution
uniquely determine p, A;, and A,.

An H, distribution for interarrival times has two qualities
important for our analysis. First, a simple expression exists
for the mean steady-state waiting time for the H, /G/1 queue
(although evaluating this expression includes numerically find-
ing a root of an equation; see [26, p. 329]. Using the mean
steady-state waiting time, we can thus find the mean steady-
state workload by applying Brimelle’s formula [27], in which
we make the substitution E(vW) = (Ev)(EW) since in a
GI/G/1 queue the waiting time W and service time v of
each customer are independent. Second, we can calculate the
IDW for an H,/G/1 queue analytically. By [14, eq. (65)],
the IDC for an Hy arrival process is given by
2n 2—776__Yt

—_ + R
¥t ot

>0 (23)

I.(t) = 2 - t20 (24



FENDICK et al.: INVESTIGATING DEPENDENCE IN PACKET QUEUES

1239

TABLE III
A CoMPARISON OF THE FOUR APPROXIMATIONS PLUS QNA [21] WITH SIMULATION ESTIMATES OF THE NORMALIZED MEAN WORKLOAD IN EXAMPLES 2—4

traffic fixed-point simple time
intensity simulation Hy/M/1 equation transformation QNA
example p estimate model fit interpolation (7 +(9) (7) + (8) [21]
0.0 2.0 2.0 2.0 2.0 2.0 2.0
0.2 15.4 4.6 227 4.0 242 2.0
0.3 39.5 133 32.7 14.0 37.6 2.1
04 51.7 31.8 419 41.0 50.7 21
2 0.5 58.9 46.2 499 57.0 61.4 22
0.6 67.3 56.3 572 65.5 68.6 2.4
0.7 70.7 63.6 63.5 71.0 72.9 29
0.8 71.1 69.2 68.9 74.0 75.4 4.1
1.0 77.0 77.0 77.0 77.0 77.0 22.4
0.0 20 2.0 2.0 2.0 2.0 2.0
0.2 1.4 25 105 20 9.6 2.0
0.3 — 29 16.4 2.0 16.0 21
0.4 14.4 3.9 23.0 3.0 24.6 21
3 0.5 — 6.6 30.1 6.0 35.8 22
0.6 41.0 16.8 37.6 21.1 48.5 2.4
0.7 - 339 45.5 422 59.6 2.8
0.8 61.5 50.0 53.8 56.0 66.7 3.9
1.0 71.2 71.2 71.2 71.2 71.2 29.9
0.0 2.0 2.0 2.0 2.0 2.0 2.0
0.2 1.2 1.8 2.0 2.0 1.8 2.0
0.3 - 2.0 2.0 2.0 16 2.0
0.4 13 2.1 2.0 2. 1.7 2.0
4 0.5 - 2.1 2.0 1.8 23 2.1
0.6 1.4 2.2 2.0 1.8 33 21
0.7 - 22 2.0 1.7 5.4 23
0.8 5.4 2.5 23 1.7 9.8 2.6
1.0 229 229 229 229 229 8.1
where v = (1 —p)A1 +pA and 7 = p(1 ~ p)(A1 — A2)* /42 ® G
From (11) and (24), we can calculate the IDW’s for H2/G/1 HMI
models to find how closely they match the IDW’s of the 60
packet-queue examples.
Figs. 6-8 show the IDW’s for Examples 2—4 (estimated W 40
from simulation) and the IDW’s of the Hs/M/1 queues
selected to satisfy (22). The plotted IDW’s of the H,/M/1 "
model and the packet-queue model are very close to one
another in each case. Figs. 9-11 and Table III show the
normalized mean workload for each example along with that % T R R R
of the corresponding H,/M/1 queue, as well as the other et
approximations to be discussed below. To show the importance  Fig. 6. The H2/M/1 fit for the IDW of Example 2, based on asymptotics

of capturing dependence caused by class-dependent service
times in these example, Table III also includes a QNA approxi-
mation for the normalized mean workload from [21, eqs. (29),
(33)] and [14, eq. (7)]. (Note that the QNA approximation
characterizes variability due to service times only through the
squared coefficient of variation c? for all classes together.) The
IDW and normalized mean workload values for the packet
queue examples are estimated from simulation, while the
values for the H»/M /1 queue are calculated analytically. The
95% confidence intervals for Examples 3 and 4 were calculated
in the same way as for Example 2. The relative width of the
confidence intervals was again approximately 10%.

For each example, we conclude that there is a strong
correspondence between the curves describing the normalized
workload for the packet-queue example and for the Ha/M/1
fit. The steady-state mean workloads for a packet queue and
the corresponding Hy/M/1 queue have similar qualitative
behavior as a function of p (in addition to identical light-traffic

in Section IV-C.

60
HyMI

50 EXAMPLE 3

40
Iy(t} 30

20

L L L L
0 50 100 150 200 250
TIME, t

Fig. 7. The H2/M/1 fit for the IDW of Example 3, based on asymptotics

in Section IV-C.

and heavy-traffic limits). For any given example, however, the
relative error in an IDW-based GI/G/1 approximation can
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H2/M/?

EXAMPLE 4

ol ! { L 1 L L
0.0 69.3 1385 207.8 277.1 346.3 415.6 484.9
TIME. t

Fig. 8. The Hy/M/1 fit of the IDW of Example 4, based on asymptotics
in Section IV-C.
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Fig. 9. A comparison of the four approximations with simulation estimates
of the normalized mean workload in packet-queue Example 2.

be quite large. Indeed, Example 4 has a maximum relative
error of nearly 62%, which occurs at p = 0.4. However, the
value of IDW-based approximations becomes evident when
we consider the wide range of behavior that results from
varying the burstiness parameters (w; and ¢;) for each class,
while holding all other parameters fixed. While the normalized
mean workload for the GI/G/1 approximation differs from
that of Example 4 by 62% at p = 0.4, the workloads for the
GI/G/1 model and Example 4 appear close together when
compared to that of the Y (MB:/G;)/1 queue (Example 1),
which shares all the parameters in Table [ with Example 4 and
differs only in the relative sizes of w; and &; for each class i.
The approximations successfully capture the large changes in
the mean steady-state workload from example to example due
to changes in the burstiness parameters w; and &;.

The tendency of the normalized mean workload in these
examples to increase suddenly at some traffic intensity from
values near the light-traffic limit to values near the heavy-
traffic limit make these examples difficult to approximate
accurately. Evén if an approximation matches the packet-queue
model reasonably well overall, significant errors result if the
traffic intensity at which the approximation suddenly increases
does not correspond precisely to the traffic intensity at which
the packet-queue model suddenly increases. Considering the
difficulties inherent in approximating the workload of these
examples, the H /M /1 approximations seem to do pretty well.
As Table III shows, the H5/M/1 fit based on the IDW is
strikingly more accurate in predicting the normalized mean
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Fig. 10. A comparison of the four approximations with simulation estimates
of the normalized mean workload in packet-queue Example 3.
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Fig. 11. A comparison of the four approximations with simulation estimates
of the normalized mean workload in packet-queue Example 4.

workload in Examples 2—4 than QNA [21], which captures
only the dependence among interarrival times.

D. The Interpolation Approximation

In Section IV-C above, we fit GI/G /1 queues to the packet-
queue examples by using the asymptotics of the IDW. We
were then able to show graphically that the entire IDW’s
of the approximating GI/G/1 queues matched those of the
packet queue examples, even over regions where the asymp-
totics does not apply. We could have generated the GI/G/1
approximation in the same way without having the complete
IDW of the packet-queue model for comparison, but we would
not have known whether the fit of the IDW was good at
intermediate time values. Such an approximation, though, is
not without justification. Assuming that for the packet-queue
mode] the small- (large-) time behavior of the IDW primarily
determines the light- (heavy-) traffic behavior of the mean
normalized workload, such GI/G/1 approximations would
implicitly interpolate between light- and heavy-traffic regions
where the approximations are justified on the basis of the
matching asymptotics of the IDW’s,

A simple way to achieve comparable results is to apply the
closed-form approximations from [16] that are obtained by
explicitly interpolating between light- and heavy-traffic limits.
These approximations use the endpoints, ¢%(0) and c%(1),
as well as the derivative ¢%(0) and ¢%(1). By, [14, egs. (8),
(12)] we naturally set ¢%(0) = I,,(0) and ¢%(1) = I,(c0) in
the approximations to obtain the exact endpoints. We obtain
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TABLE IV
THE LIGHT- AND HEAVY-TRAFFIC ENDPOINTS, ¢%(0) AND c%(1), AND
DERIVATIVES, ¢%(0) AND ¢%(1), FOR THE PACKET-QUEUE EXAMPLES

Example <2 (0) ¢%(0) c% (1) ¢3(1)
1 79.9 0 79.9 0
2 1.96 —0.013 77.0 313
3 1.96 —0.013 71.2 90.1
4 1.96 —0.013 229 400.7

approximations for ¢%(0) and ¢%(1) from simple GI/G/1
models that we relate to the packet-queue examples through
the asymptotics of their IDW’s.

From [14, egs. (104), (138) ], we obtain the approximation

&(0) = I,(0)I,(0) (25)

From (14, egs. (114), (116), (135)], we obtain the approxi-
mation

2B

21y~ = 26
CZ( ) A ( )
for A and B in (18) and (19).

The function used for interpolation in [16] is of the form

cZ(p) = ag + a1p + azp? + asph

+as(1-p), 0<p<1 @7

where the constants a; and b; depend on ¢%(0), c%(1),¢%(0),
and ¢%(1), but not p. To endow (27) with intuitively appealing
characteristics, the interpolation recipe in [16] selects the
constants in (27) to make the lowest order derivative monotone
that can be made monotone, including c%(p) (the zeroth-order
derivative). For all packet-queue examples in this paper, A > 0
and B > 0. This, together with (26) implies that, for the
interpolation approximation, we have ¢%(1) > 0. Furthermore,
1,,(0) > 0 and I/, (0) < O for all packet-queue examples, so
that, by (25), ¢4(0) < 0 for the interpolation approximation.
Clearly, it is not possible to select a monotone function c%(p)
with these asymptotic properties. Indeed, the lowest order
derivative that we can make monotone is the second derivative,
and we do so by applying the methods in [16]. Table IV gives
the values c%(0),¢%(0),c%(1), and ¢%(1) for Examples 1-4.
For Example 2, we have ¢%(1) < [cZ(1) — ¢%(0)], so we
choose the coefficients in (27) to make ¢%(p) a decreasing
function of p as in [16, case 1.2.4]:
ag = ag = b3 = 07 a; = QCQZ(I) — C2Z(1),
az = éz(1) — ¢z (1), ag = c3(0),
by = [2¢5(1) = é(1) — éZ(0)] /cZ(0). (28)

For Examples 3 and 4, we have [c%(1)—c%(0)] <
B1),-2(0) < 23(0), ad 30) < A1) -
[cZ(1) — c%(0)]), so a convex fit is achieved by choosing
coefficients in (27) as in [16, case 1.2.6a]:

. éZ (0
ag = cZZ(O), a; = CZZ(O), ay = — 22( ),
(0
a5 =51 - 30 - 22 0 =b =0,
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2¢5(1)

b= A - 20 - B0

29

Table III and Figs. 9—11 show the results of these in-
terpolation approximations for Examples 2-4, along with
the results of the Hy/M/1 approximations. Relative to the
Hy/M /1 approximations, the interpolation approximations are
at least as accurate, more easily applied, and more easily
extended using the methods in [16], e.g., to packet queues
with [,,(00) < I,(0). Indeed, overall, the curves from the
interpolation approximation are closer to the corresponding
curves from the packet-queue simulation than are the curves
from the Hy/M/1 approximation. At first glance, this seems
paradoxical because, for the Hy/M/1 approximation, the
entire Hy/M/1 IDW was close to the IDW of the packet-
queue examples, whereas the interpolation approximations are
based only on the asymptotics of the IDW.

A possible explanation for the interpolation approximation
being more accurate is as follows. By having a polynomial-
like form and by satisfying the monotonicity criterion for
the lowest order derivative possible, the curves from the
interpolation approximation tend to rise gradually from the
light-traffic limit to the heavy-traffic limit without having
the sudden increases that are exhibited by the packet-queue
and Hy/M/1 models. Thus, the interpolation approximation
tends to overestimate the workload in the region before the
packet queue’s steep increase and underestimate the workload
in the region after the increase, but its shape tends to limit
the size of the maximum relative error. In other words, the
interpolation approximation may serve quantitatively as a
better approximation than the H,/M/1 queue because it is
qualitatively a worse approximation.

E. The Other Approximations

Finally, Table III and Figs. 9-11 also include the time-
transformation approximations (7) plus (8) and (7) plus (9).
These approximations have the disadvantage that they require
the full IDW, but they have the advantage that they apply to an
arbitrary single-server queue, i.e., they are not restricted to the
packet-queue model. Of course, the first two approximations
can also be applied to arbitrary single server queues, but we
will not always have simple expressions in terms of model
parameters. If we cannot calculate the asymptotic behavior
of the IDW from model parameters, then we must estimate
the asymptotic behavior of the IDW from the IDW function
estimated from data.

Overall, all four approximations have comparable accuracy
for Examples 2—4 and of course all four are exact for Ex-
ample 1.

V. CONCLUSION

The obvious initial conclusion, which is consistent with
previous work, is that packet queues can exhibit complex
stochastic behavior due to the burstiness of the offered traffic.
For describing standard performance measures such as the
mean steady-state workload, simple models such as M/G/1
often are far off the mark.
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In this paper we continued to develop the idea that the
performance of queues with complicated offered traffic can
be analyzed by focusing on the covariance structure of the
offered traffic. In Section III, we presented evidence suggest-
ing that the IDW should be better than previous indexes
of dispersion for developing approximations for the mean
steady-state workload. Using simulations, we showed that the
IDW better matches the shape and values of the normal-
ized mean workload for packet queue models. Four different
approximations from [14] were evaluated in Section IV by
making comparisons to simulations. The performance of these
approximations seems good enough to justify their use for
many typical engineering purposes, but the approximations
achieve only a moderate degree of accuracy. As indicated in
[14, Section 6.1] and Section IV-C here, matching the entire
IDW very closely does not guarantee an exceptionally close
approximation for the mean workload. Indeed, the light- and
heavy-traffic interpolation approximation performed as well
as the other more involved procedures. However, we feel
that the central hypothesis of this work—that the normalized
mean workload in (1) is primarily determined by the IDW in
(2)—is supported by the numerical comparisons. Hopefully,
even better approximations can be obtained by applying the
IDW together with other model parameters.

An important direction for future research is to incorporate
other relevant features into the packet queue model, such as
finite buffers, windows and other flow control mechanisms.
From [9, Section IV] and [28], we anticipate that such features
will often significantly reduce the degradation of performance
caused by dependence in the offered traffic. Nevertheless,
significant dependence in the traffic secems to be an impor-
tant phenomenon, which can be effectively studied using the
indexes of dispersion.

APPENDIX
THE HEAVY-TRAFFIC LIMIT FOR THE WORKLOAD PROCESS

The purpose of this Appendix is to provide additional
theoretical support for the conclusion that the IDW in (2)
characterizes the normalized mean workload in (1) exactly
in heavy traffic, i, in great generality cZ(1) = Iy (00).
We justify this by establishing central limit theorems for both
the total input of work and the workload process. The main
ideas are outlined in [14, Section IV-B1)], here we provide
the details. The result here is closely related to [1, Theorem
1], which establishes a heavy-traffic limit theorem for the
waiting times in a general G/G/1 queue. Here we show that
essentially the same limit holds for the workload process.
Along the way we also treat the total input of work. See [1]
and references cited there for additional background.

As in [1, Section VI-A], we consider a sequence of G/G/1
queueing systems indexed by n (without any direct indepen-
dence or stationarity assumptions). The nth queueing system
is specified by the sequence of interarrival times and serv1ce
times {(wnk, ¥nk): k > 1} with finite long-run averages A,
and 7, for each n. For each n, let (U,,V,) be a random
element of the function space D x D where D is the function
space D|0, o), defined by
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[Tn(t), Va(t)]
= [n_l/Q[Un’[m] - nt/\gl],n_l/z[Vn,[m] - ntTn]], t>0,
(A1)
where

and
k>1,

Un,k:un1+ e
Vnk:an+

Unk
+ Unk,

and [z] is the greatest integer less than or equal to z. For each
n, let An, X"7 Yn, and Z, be the random elements induced
by the arrival counting process {A,(t) : ¢t > 0}, the total
input of work process {X,,(t): t > 0}, the net input process

{Ya(t): t > 0} and the workload process {Z,(t): t > 0}
with initial workload Z,,(0) = 0, defined as follows:

An(t) = n7Y2[4, (nt) = ntA,],

Xa(t) = n~V2[ X, (nt) — ntpy),

Yn(t) = n_l/zyn(nt)v

Zn(t) =n~Y2Z,(nt), t>0 (A2)

where p, = A,7, < 1; see [14, egs. (21)—(24)] for more
discussion. Let f: D — D be the function corresponding to
the impenetrable reflecting barrier at the origin, i.e.,

f(@)(#) = z(t) —inf{z(s): 0<s<t}, ¢t>0.

(A3)

Let e(t) = t,t > 0, and let B(t) be standard Brownian motion
with zero drift and unit variance.

Theorem A.1: a) If (U, V;,) = (U, V) in D x D where
U has continuous paths w.p.1, A, — A\,0 < A < oo, and
Tn — 7,0 < 7 < 00, as n — o0, then

(Un,Vn,An,X'n) = (U,V,fi,f() in D* asn — o0

where

A= X2 and X:AI/ZV-#-TA:/\I/Z(V—pU).

b) If in addition, n1/2(1 — p,) — 1,0 <
[jointly with the other processes in a)]

(Yn,Z) = (V,2) in D2

© < oo, then

as n — 00
where

V=X—pe= M2V -U)-—pe and Z= ).

¢) If, in addition, the limit (U/,V) is two-dimensional
Brownian motion without drift and with covariance matrix
elements 0,02, and o}, = o2, then U,V A, and X
are one-dimensional Brownian motions without drift, X has
variance coefficient A(o%; + 02, — 207,), and Z = f(¥) is
regulated or reflecting Brownian motion (RBM) with drift —
and variance coefficients A(of; + 03, — 20%,) which has an
exponential steady-state distribution with mean

Aoty + 03, — 20%,)

EZ(x) = o

(A4)

Proof: To successively treat A,,, X, f’n, and Z, in a) and
b), apply [29, Theorems 7.3, 5.1, 4.1, and 6.4]. For c), first
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note that Vn — Un is one-dimensional Brownian motion with
zero drift and variance (0%, + 02, —20%,), so that A/2(V —T/)
has zero drift and variance coefficient A(0?; + 02, — 20%,).
The added term pe in ¥ and Z gives them drift —p. ]
It is easy to connect Theorem A.lc) to the indexes of
dispersion. Let ¢ (n),c%(n), and ¢4 4(n) be the asymptotic
variability parameters for the nth model. For each n,

2 2 ~
CA(n) ~ /\nafl’ Cg(n) = Th 2032’

and ci5(n) = \,7; ok, (A5)

Since A, —» A\, 7, — 7, and p, = A\, — 1 a8 n — 00,
2 2
022
and cig(n) — s =7"202, asn— oo. (A.6)

An)— = szafl, ctn) - c&=1"

To generate an approximation, let ;1 = 1, so that n and p,, are
related by n'/2(1 — p,) = 1,i.e.,1 — pn = n"'/2. Then the
steady-state approximation becomes Z,(o0) =~ Z(o0) or

(1= pn)!/?Zn(o0) = Z(o0) (A7)
and
N EZ(0)
EZy(o00) ~ T
_ Aoty + 03 —20%) (A + 5 —2%g)
B 2(1 = pn) 2(1 - pn)

(A8)

In Theorem A.1, we have also obtained the limit for
the normalized version of total input of work X, in (A2).
Together with uniform integrability to get convergence of
moments, this establishes that Iy (00) = ¢ + ¢% — 2¢% 5 so
that indeed ¢ (1) = Iy (co) under the general assumptions of
Theorem A.1. The conditions of Theorem A.1 are satisfied by
the packet queue model, as discussed in [1, Sections VI-B, -C].
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