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This paper discusses an approximation for single-class departure processes from multi-class
queues: If the arrival rate of one class upon one visit to the queue is a small proportion of the
total arrival rate there, then the departure process for that class from that visit should be nearly
the same as the arrival process for that class for that visit. This can be regarded as a light-traffic
approximation, but only the one class must be in light traffic; the overall traffic intensity of the
queue need not be low. As a consequence, in a queueing network if the routing for one class is
deterministic, and if the light-traffic condition applies at every queue this class visits, then the
arrival and departure processes for this class at each visit to each queue should be nearly the same
as its external arrival process. This approximation is explained in terms of different time scales,
and is justified here by a limit theorem in a special case. There are important implications for
parametric decomposition approximation techniques: the variability parameter partially char-
acterizing the departure process at any visit to any queue of such a low-intensity class should be
nearly the same as the variability parameter partially characterizing the arrival process for that
class at that visit to that queue. The approximation principle in this form was recently proposed
by G. Bitran and D. Tirupati while developing improved parametric-decomposition approximations
for low-variability multi-class queueing networks with deterministic routing, which have important
applications in manufacturing. The approximation principle also has important implications for
data networks, showing how burstiness in originated traffic can pass through heavily shared network
facilities where it has relatively little effect and then reappear at the destination.
(MULTI-CLASS QUEUES; QUEUEING NETWORKS; APPROXIMATIONS: LIGHT
TRAFFIC; DEPARTURE PROCESSES)

1. Introduction and Summary

Many communication, computer and manufacturing systems can be modeled as multi-
class queueing networks. However, realistic models often are very large and complex,
having many queues and many classes. Consequently, it often is very difficult to analyze
these models in detail. Of course, greater computer power and more powerful analytical
techniques will eventually enable us to analyze the performance of more complex models
in microscopic detail. However, just as in statistical mechanics, we should also look for
new statistical regularity emerging from a macroscopic view of the increased complexity;
we may well find useful simple approximations.

1.1 Statistical Regularity Emerging from Increased Complexity

Examples of statistical regularity emerging from increased complexity in queueing are
the ways large closed queueing network models (with many queues or many customers)
behave like more elementary open models as the size increases; see Whitt (1984a). The
statistical regularity often involves a decoupling of the network (the separate queues
become independent), sometimes subject to a relatively simple constraint such as a
system of equations, as occurs with reduced-load or Erlang-fixed-point approximations,
see Kelly (1986), Whitt (1985a) and references there. Macroscopic statistical regularity
is also associated with the many heavy-traffic diffusion approximations, e.g., Iglehart and
Whitt (1970), Reiman (1984 ) and Harrison (1988).
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1334 WARD WHITT

Perhaps the most familiar example of statistical regularity emerging from increased
complexity in queueing occurs with superposition arrival processes, when an arrival
process is composed of many independent streams each of very small intensity. For
example, the overall arrival process of calls at a telephone exchange is composed of the
relatively infrequent requests from many separate subscribers. It is well known that under
very general conditions the overall superposition arrival process can be well approximated
by a simple Poisson process, even if the component streams are not nearly Poisson or
renewal; in fact, the quality of the approximation tends to improve as the complexity
(number of component streams ) increases; see Palm (1943 ), Khintchine (1960 ), Franken
(1963), and Cinlar (1972). (See Albin 1982, 1984, Newell 1984, Whitt 1985b, Sriram
and Whitt 1986, and Fendick, Saksena and Whitt 1988a, b for recent investigations of
the applicability of this approximation in queueing when the number of component
streams is not exceptionally large.)

Another justification for assuming Poisson arrival processes to queues in complex
queueing networks comes from random routing. If each departure from some queue is
routed to another queue with probability p, independently of everything else up to that
time, then the resulting flow from the first queue to the second is approximately Poisson
if p is sufficiently small, under minimal conditions on the departure process from the
first queue. Moreover, the same result holds when the independence is relaxed in various
ways. These Poisson approximations are justified by limit theorems for thinning and
partitioning of point processes; see Serfozo (1977, 1985), Boker and Serfozo (1983) and
references there. (From these theorems, we see that the departure process only needs to
satisfy a weak law of large numbers.)

Consistent with the superposition and thinning limit theorems discussed above, con-
ventional wisdom concludes that it is often reasonable to model complex open queueing
networks by Markovian Jackson queueing network models and their product-form rel-
atives. In particular, it is generally considered reasonable to assume that the steady-state
numbers of customers at the queues are independent, each having the same distribution
as if the arrival process to that queue were a Poisson process. With multiple classes, the
class identity of each arrival can be chosen by independent trials or, equivalently, the
arrival processes of the classes can be regarded as independent Poisson processes. Note
that the superposition and thinning limit theorems help justify independence, in both
the time-dependent behavior, and the product-form steady-state distribution, as well as
the Poisson distribution. With enough random thinning or superposition, the arrival
processes will be nearly Poisson for any service discipline and any service-time distributions
at the queues. Hence, there is a very strong theoretical basis for analyzing large queueing
networks as a collection of independent queues with Poisson arrival processes.

A primary purpose of this paper is to point out an important limitation to this con-
ventional wisdom for queueing networks when the routing is deterministic instead of
random. By deterministic routing, we mean that the customer classes follow specified
routes through the network; i.e., the customers from each class visit a specified sequence
of queues. In a route for one class, queues can appear in this sequence more than once
or not at all. The customers from one class all enter the network at the first queue on
their route and leave the network after completing service at the last queue on their
route. In many applications the routing is indeed primarily deterministic. In many data
networks, the data travel over virtual circuits. In manufacturing, individual products
usually have a well defined sequence of operations.

1.2 A Light-Traffic Approximation for Networks with Deterministic Routing

In this paper, we examine queueing networks with deterministic routing. As with the
thinning associated with random routing, we assume that the proportion p of customers
served at each queue that belong to the designated class is very small, and we focus on
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the departure process associated with this individual class. With deterministic routing,
it turns out that this thinned flow is 7ot in general nearly Poisson, but as before there is
useful statistical regularity emerging from the increased complexity. The new statistical
regularity is based on a light-traffic limit theorem for the departure processes of individual
classes. However, unlike many recent light-traffic results, light traffic here does not mean
that the overall traffic intensity is becoming negligible, but that the contribution of one
class to the whole is becoming negligible.

One version of the approximation principle can be stated in rough general terms as
follows:

Light-Traffic Approximation Principle for Single-Class Departure Processes from Multi-
Class Queues. If the arrival rate of one class upon one visit to some queue is a small
proportion of the total arrival rate there, then the departure process for that class from
that visit to that queue tends to be nearly the same as the arrival process for that class for
that visit to that queue.

This approximation principle for single-class departure processes from individual multi-
class queues in turn yields an associated approximation principle for multi-class queueing
networks with deterministic routing:

Light-Traffic Approximation Principle for Multi-Class Queueing Networks with De-
terministic Routing. Consider a class that follows a fixed deterministic route through
the network. If the contribution to the arrival rate by this class at each visit to each queue
is a small proportion of the total arrival rate at that queue, then the departure process of
that class from each visit to each queue, and thus from the entire network, is nearly the
same as the external arrival process of this class to the network.

The network approximation principle also applies to sojourns in subnetworks, because
the network under discussion could be a subnetwork of a larger network.

The two approximation principles have been stated without carefully defining the
conclusions, i.e., without explaining what is meant by the departure process being nearly
the same as the arrival process. In fact, we mean in the strongest possible sense: sample
path by sample path, i.e., with probability one (w.p.1). As a consequence, of course, this
implies that the distribution of the entire departure process (as a stochastic process) is
nearly the same as the distribution of the entire arrival process. As a further consequence,
it means that the stationary distribution of the interdeparture times is nearly the same
as the stationary distribution of the interarrival times. However, the w.p.1 conclusion is
much stronger; ¢.g., each exceptionally long interarrival time occurring by chance in one
sample path of the arrival process will tend to have a counterpart in the corresponding
departure process sample path.

The two approximation principles have also been stated without specifying conditions
on the numbers of servers, the waiting space, the service disciplines, the service-time
distributions or even much about the arrival processes. Of course, some conditions are
needed, but in fact the conditions are very general, so that the statements above without
these extra conditions capture the spirit of the truth. There is one important condition
worth mentioning, however. Both the arrival rate and the offered load (arrival rate times
the mean service time) for the class of interest must be small. This is achieved by simply
letting the arrival rate get small, but the service time cannot be allowed to grow at the
same time; the offered load of this class must also be small.

In fact, we do not rigorously establish these light-traffic approximations in their full
generality. We obtain a fairly nice result with simple sufficient conditions (Proposition
3) only for the case of a single queue without feedback, i.e., with exogenous arrival
processes.

1 ——
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1336 WARD WHITT

1.3 An Explanation: Different Time Scales

Upon reflection, the approximation principles are easily understood, and soon seem
quite trivial. Nevertheless, we contend that they are worth expressing carefully because
they are vital theoretical reference points for understanding the behavior of complex
queueing networks.

A proper understanding of this light-traffic approximation follows from focusing on
the relevant time scales. The light-traffic condition amounts to assuming that the time
scale for arrivals and departures from the designated class is much longer than the time
scale for the aggregate of other classes at the queue. Arrivals and departures occur much
more slowly for customers of the designated class than arrivals and departures occur for
the aggregate of all classes at the queue. For example, interarrival times for the designated
class might be in seconds, while interarrival times and service times at the queue are in
milliseconds. The service times for the designated class are also much shorter than the
interarrival times for the class. Therefore, the delay and service time experienced by a
customer from the designated class are in the short time scale, so that they are negligible
compared to the interarrival times. Thus, in the time scale of the arrival epochs of the
designated class, the departure epochs are nearly the same as the arrival epochs. This is
what we meant by trivial: The low-intensity assumption is tantamount to assuming that
the service times and delays are negligible compared to the interarrival times. When a
slow arrival process comes to a fast service facility, it is indeed obvious that the departure
process is nearly the same as the arrival process. From the perspective of the individual
class, it is almost as if the service facility were not there.

Once this low-intensity approximation principle 1s understood, it is natural to ask if
it could possibly be practically meaningful. In fact, the principle becomes more and more
meaningful as the size and complexity of physical systems grow. For example, in data
communication the speed of switching and transmission is growing rapidly. Already it
is common to have great sharing of resources and great differences in time scales. Char-
acters often are transmitted from individual terminals in the time scale of seconds, while
packets arrive and are processed in a packet network facility in the time scale of milli-
seconds. (We give an example in §3.) Even greater differences in time scales will be
common in the data communication in the near future.

Similarly, manufacturing systems are increasing in size and complexity. Today it is
common to have manufacturing lines producing hundreds of products, each with their
own sequence of operations. The low runners (less frequently produced products) might
be started once or twice a month, while the interarrival times and processing times on
individual machines are in minutes. Thus, in the time scale of the low runners ( weeks
or months), the product completion times are nearly the same as the product start times.
Moreover, even when the time scales are not exceptionally far apart, this extreme case
helps provide insight into the behavior of queueing networks. For further discussion
about different time scales in queueing, see pp. 536, 543 of Whitt (1984b) and pp. 835,
842 of Sriram and Whitt (1986).

It is of course obvious that the deterministic routing considered here violates the con-
ditions of the random thinning and partitioning theorems in Serfozo (1985) and its
references, so that we should perhaps not be surprised that the system behavior is quite
different. On the other hand, on pp. 281-282 of Serfozo (1985), communications networks
and manufacturing lines are cited as examples of potential applications of the theorems,
without any caveat that the actual behavior of these systems might be radically different
than the theory predicts because of the deterministic routing. A primary purpose of this
paper is to make this caveat.

It is important to realize that indeed deterministic routing can make a great difference.
Of course, if the external single-class arrival process is nearly Poisson, then the result is

1
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essentially the same as with random routing, (Experience with such systems in the past
may be the cause of current misperceptions.) However, if the external single-class arrival
process is not nearly Poisson, neither will be the single-class departure process. The
practical importance of the light-traffic approximation principle, then, stems from the
fact that in many applications the single-class external arrival processes are indeed not
nearly Poisson. As Bitran and Tirupati (1988) observe, in manufacturing the single-
product external arrival processes are often substantially less variable than Poisson. In
packet communications networks the single-source packet arrival processes are often
substantially more variable than Poisson; see Sriram and Whitt (1986), Fendick et al.
(1988a, b) and §3 here.

1.4 Implications for Parametric-Decomposition Approximations

The light-traffic approximation principle above has important implications for para-
metric-decomposition approximation methods, such as are used in the Queueing Network
Analyzer (Whitt 1983, 1987b and Segal and Whitt 1988). In that context, it specifically
suggests that (under the assumptions above) the variability parameter partially charac-
terizing the single-class departure process should be nearly the same as the variability
parameter partially characterizing the external arrival process of that class. The approx-
imation principle in this more restricted form was suggested by Bitran and Tirupati
(1988), in the process of developing an improved parametric-decomposition approxi-
mation for multi-class open queueing networks with deterministic routing. Bitran and
Tirupati show that parametric-decomposition combined with aggregation as in Whitt
(1983) can perform quite poorly with deterministic routing, so that improvement is
needed. Moreover, if a multi-class open queueing network has a very large number of
classes, each with relatively small arrival rate at every queue, then the light-traffic de-
composition principle indicates that for the variability parameters we can completely
ignore the dependence among the queues and analyze the individual queues separately.
For such networks, we can determine both the net arrival rates and variability parameters
at the queues without solving any system of equations, as in §§4.1 and 4.2 of Whitt
(1983). In these cases the resulting approximation is obtained with great ease and there
is virtually no constraint on the size of the model that can be analyzed. As with the other
approximations emerging from increasing complexity, these should perform better as
the model grows and becomes more complex.

Further work on parametric-decomposition approximations is contained in Albin
(1984, 1986), Albin and Kai (1986), Fendick et al. (1988a, b), Holtzman (1982), Whitt
(1987a, b) and references there.

1.5 Connections to the Superposition Approximation

At first glance, it may seem as if the new approximations for the congestion at the
queues should be covered by the Poisson approximation associated with the previously
discussed superposition limit theorem, but this is not the case. Note that only the class
of interest must have relatively small arrival rates; other classes might have nonnegligible
arrival rates; e.g., there might be only one other class. Then the overall superposition
process need not be remotely close to Poisson.

Even when there are many classes at the queue and all classes have small arrival rates,
the new approximation principle has something important to say. Of course, in this case
the overall arrival process at the queue can be approximated by a Poisson process. More-
over, since the arrival rate of the class of interest is very small, that class can be regarded
as outside observers that do not interact significantly with the system. Thus this class
tends to see time averages just as if it were a Poisson arrival process, see Wolff (1982).
(See §II1.C of Sriram and Whitt (1986) for related discussion.) Therefore, from the point
of view of that queue, we can approximate the arrival processes of all classes by Poisson
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processes. Indeed, if such small arrival rates prevailed for all classes at all queues, then
the arrival processes at every queue can be approximated by Poisson process ( which is
an important observation). Note that this property does not require exponential service-
time distributions.

However, the present approximation principle still applies to the departure processes
of individual classes. If at some other queue the conditions for the full Poisson approx-
imation are not applicable, i.e., if the number of classes is no longer large or if not all
classes have very small rates there, then the full Poisson approximation is not appropriate
there. For example, suppose that the different classes are routed to separate queues with
much slower service rates after completing service at the multi-class queue. To be more
concrete, think of a packet communication network with traffic traveling over virtual
circuits from one terminal to another. The packets from one source pass through some
switches and then go to the destination terminals. The full Poisson approximation might
be appropriate at the heavily shared switches but not at the separate destinations. De-
pendence in the originating packet arrival processes would thus pass through the switch,
without being apparent there, and reappear at the destination. Obviously such dependence
effects could not be captured by naive decomposition approximation methods.

The results here imply that if the departure process of one class satisfying the assump-
tions is routed to a separate queue from all other classes that the congestion at this second
queue will be nearly the same as if the arrival process at this last queue were the original
external arrival process of that class at its first queue. This follows from the results here
plus continuity theorems for queues; see Chapter 3 of Franken et al. (1981).

The light-traffic approximation principles above lead to approximate characterizations
of arrival processes of individual classes. However, when there are multiple classes at a
queue, then the congestion experienced by the class of interest still depends on the arrival
processes of the other classes. The congestion experienced by an arbitrary customer might
still be approximated by the methods in Albin (1984), Fendick et al. (1988a, b), and
Whitt (1983, 1987b). Moreover, if all the classes do not have identical arrival processes,
then the congestion experienced by the different classes is typically different. To address
this complication, one can use approximations such as those proposed by Holtzman
(1982) and Albin (1986). We do not address this issue here.

We now proceed to a theoretical justification of the approximation principles above.
In §3 we describe a simulation experiment.

2. Supporting Light-Traffic Limits

From the discussion in §1.3, it should be clear that the light-traffic approximation is
valid in great generality, provided that the difference in time scales is indeed sufficiently
great. We provide theoretical justification in this section.

Let T} be the arrival epoch of customer from the designated class at some queue; let
D, be the departure epoch of this customer; and let S; be its sojourn time (the time spent
by customer k in the system). These variables are obviously related by

D,=T,+ S, k> 1, (N

regardless of the nature of the queue and the other classes.

Now we formalize what we mean by our light-traffic limit. We consider a sequence of
systems indexed by n with variables D, T, and S, defined as above. Obviously D,
= T + Sp for each n as well as for each k. It is natural to assume that 7,y = oo as
n — oo for each k in order to let the arrival rate of the designated class get small, while
having S, = Sy as n — oo for each k to reflect the rest of the system being unchanged,
but we want to focus on the arrival and departure process of the designated class in their
time scale. Hence, instead we assume that

e ,
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lim T = T} w.p.1 for all & (2)
n—+aoo
and assume that otherwise the time scale for the queue is speeded up as n = oo. For
the designated class, then, what matters is how the sojourn times change with #. The
general case is covered by the following elementary proposition.

PROPOSITION 1. If T,y = T and Sy —> 0 as n = oo w.p.1 (in probability) for each
k, then [Dyy, ..., Dy} = [T, ..., Th] inR* as n > oo w.p.1 (in probability) for
each k.

Of course, it remains to verify the conditions of Proposition 1. To be more concrete,
we focus on a special case. We consider an s-server queue (1 < s < co) with unlimited
waiting room and some work-conserving queue discipline. (No servers are free when a
customer is waiting in queue; the service time and interarrival times are unaffected by
the discipline; examples are first-come first-served (FCFS), last-come first-served (LCFS),
random order of service (ROS) and nonpreemptive priority.) For simplicity, we also
assume that each customer stays in service until departure once service has begun.

Two classes of customers arrive at this multi-server queue. Let class 1 be the class of
interest with arrival epochs Ty, departure epochs D and sojourn times S;,. We make no
assumptions about the joint distributions [ 77, ..., Tx]; e.g., we do not assume inde-
pendence or identical distributions for the interarrival times. Let the associated sequence
of class 1 service times be { v;x: k = 1 }. Let C;(0) be the initial (finite) number of
customers in the system at time 0 and let W, (0) be the initial (finite) amount of class-
1 work in remaining service time of these customers. Let class 2 represent the remaining
customers, which will typically be the aggregate of several other classes. We construct
the sequence of models indexed by 7 by leaving the class-1 arrival epochs unchanged,
i.e., by assuming that T, = Ty for all » and k. Assuming that class-1 arrival epochs are
independent of 7 is tantamount to having the class-1 arrival process be an exogenous
input to the queue, so that the following analysis only applies to an external arrival
process. (Of course, the concrete result in this case supports the approximation more
generally, but more supporting theorems are still needed.)

At the same time we set T, = Ty, we also speed up time by 7. Hence, the new class-
1 variables are vy, = n” 'V, C1,(0) = C;(0)and W,,(0) = n~'W,(0). This construction
for the class-1 variables v, C1,(0) and W,,(0) is tantamount to assuming that they
are also independent of class 2. Let N,,(t) represent the number of servers busy serving
class-2 customers at time ¢ in the nth model. We now show that the condition of Prop-
osition 1 is satisfied under a condition on N,,(¢), which is usually satisfied because of
the time scaling.

PROPOSITION 2.  For this special case involving an exogenous class-1 arrival process,
if (i) s = oo or (ii) if s < 00 and [y Nau(u)du = p,st as n = oo w.p.1 for all t where 02
< 1, then Sy = 0 as n = oo w.p.1, as required for Proposition 1.

PROOF. First pick k and condition on (7,. .., Tx) = (£, ..., &). In the nth system,
the sum of the initial work plus the first k service times for class 1 is n~'[ W,(0) + v,,
+ «++ + vi], which converges to 0 as n = . Hence, for any ¢ > 0, the arrival at
epoch f; will depart before 1, + ¢, 1 < i < k, for all sufficiently large # provided there is
sufficient spare service capacity in the time interval (¢, ; + ¢€). By the condition in (ii),

Lite

Now(u)du = pise as n—> o w.p.l,
i

when s < oo, so that there is indeed at least es(1 — p,) spare capacity in (t;, ¢; + €). For
all n sufficiently large, n ' [ W, (0) + v, + + + + + il <es(l —p3). W
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We now add further detail about class 2 in order to provide easily verifiable sufficient
conditions for the condition of Proposition 2. Obviously it suffices to restrict attention
to the case s < o0 . The idea is to exploit L = AW arguments, as in Franken et al. (1981),
Glynn and Whitt (1986) and Stidham (1974), with the system being the servers (excluding
the waiting room ) in order to establish convergence of the integral of the number of busy
servers.

We begin by specifying class 2 in more detail before constructing the sequence of
models indexed by n. Let {A4,(1): t = 0} be the original counting process governing
class-2 arrivals and let { vy:: k = 1} be the sequence of successive class-2 service times.
Let C5(0) be the initial (finite) number of class-2 customers in the system at time 0, and
let W>(0) be the initial (finite) amount of class-2 work in service time of these customers.
Our basic assumption for class 2 is that certain averages obey strong laws of large numbers
(SLLNs) with stable limits; i.e., we assume that

t7'4,(0) = w.p.1 as t—> o and 3)
m
m' > v, w.p.1 as m—> o where 4)
i=1
p25>\27'2/5<1. (5)
We assume that each server works at rate 1, so that the system is stable for class 2 alone

by (5).

Next we assume that classes 1 and 2 are independent, in the sense that ({ (T, vi):
k= 1}, C(0), W,(0)) is independent of ( {A2(8): 120}, {vp: k= 1 }, C(0),
W>(0)), and that these variables are independent of the past state of the system. This
independence for class 2 can be circumvented by assuming appropriate uniform con-
vergence as n = oo, but then the conditions become harder to verify.

Let Q,(#) be the number of class-2 customers that would be in the queue (waiting
before beginning service) at time ¢ under the assumption that class-1 customers were not
present. In addition, we assume that

17'Q () > 0 w.p.1 as = 0. (6)

Recall that we have assumed that a customer stays in service until departure once service
has begun. Let B,(t) be the number of class-2 customers that would begin service in
[0, ¢], if no class 1 customers were present. Obviously By (1) = A,(1) + Co(0) — Ou(2).
By (3) and (6),

tTIB (1) > X, w.p.1 as t—> . @)

Let D,(t) be the number of class-2 departures in [0, ¢] under the assumption that class-
1 customers were not present. Since B;(7) — s < D,(t) < B,(1) for all t,

7Dy (1) = A, w.p.1 as t—> . (8)

Given (3)-(5), the limits (6), (7) and (8) are obviously equivalent. We have not yet
determined when these limits can be deduced directly from (3)-(5). For the case of a
single-server queue, this implication is established in Theorem 4.2 of Gelenbe and

For the models indexed by n, we treat class 2 by scaling time by n; i.e., the new
quantities are: 4,,(1) = Ax(nt), v, = n vy, Q2.(1) = Qa(nt), By,(t) = B,(nt) and
D,,(1) = Dy(nt). (Note that n appears in the final representations only in the time
scaling. For A4,,(t) and v,,;, we use the independence assumption above, for Q,,(¢),
B;,(1) and D,,(t), we use the fact that these processes do not count the class 1 customers;
we have not defined the corresponding quantities when class [ is included.)

e e
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PROPOSITION 3. If Ty = o as k = oo w.p.l and (3)-(6) hold with the class inde-
pendence condition specified above, then fé Nop(u)du ~—> pyst as n = oo w.p.1 for each
t, S0 that the conditions and conclusions of Propositions | and 2 are satisfied.

PROOF. For any ¢ given, choose k so that # < ¢ < #,,,, which is possible by the first
condition above. By standard inequalities (related to the proof of L = AW),

Dou(t—-n~12Z) t Azn(t)
2 Uy = J(;Nz,,(u)du = E Vo + n_'Z (9)
i= i=1
where Z = W;(0) + W,2(0) + 2%, v,;. Note that D5,(t) and A,,(¢) in the bounds are
class-2 processes that are independent of class 1; they count class-2 events without class
1 present. Equivalently, by the normalization, (9) can be expressed as
Dy(ni—Z) Ay(nt)

1
n! z Uz,‘SLNz,,(u)dUSn_l z v2,~+n_'Z.
i=1 i=1

By (3), (4) and (8), the two bounds converge to p,st w.p.1. B

Results about the class-2 work seen by a class-1 arrival also follow easily from the
proof of Proposition 3. Let V,,(¢) (V2(¢)) be the amount of class-2 work in service time
in the nth system (the original system without class 1) at time ¢ with the scaling previously
specified for n. Let = denote convergence in distribution (weak convergence), as in
Billingsley (1968).

PROPOSITION 4. (a) If, in addition to the assumptions of Proposition 3, V(1) = V,
ast—> oo, then nV,,(Ty) = V, as n - oo for each k.

(b) If, in addition, V,(t + s) and V,(t) are asymptotically independent as s > co for
each t, then

(nVol(Ty), ..., nVou(T) 1= [Xy, ..., Xk] inRi as n—> for all k

where X,, ..., Xy are i.i.d. (independent and identically distributed) random variables
with distribution V.

Proposition 4 draws the relatively obvious conclusion that in the limit class-1 customers
act like independent outside observers that do not interact with the system. Like Poisson
arrivals, they see time averages (Wolff 1982).

3. A Simulation Experiment

To test the light-traffic approximation for single-class departure processes from multi-
class queues, we consider a packet-queue model from Fendick et al. (1988a, b). For each
class 7, service times are i.i.d. with mean 7; and squared coefficient of variation cf, (the
packets are not of fixed length); arrivals are generated in i.i.d. batches of size having
mean m; and squared coefficient of variation cb,, the arrivals within a batch are separated
by i.i.d. spacings having mean £; and squared coefficient of variation cx,, the interval
between the last arrival of one batch and the first arrival of the next batch is the sum of
one spacing and an idle period; the successive idle times are i.i.d. with mean #;, and
squared coefficient of variation ¢l vi; and the service times, batch sizes, spacings and idle
periods for all classes are mutually independent. The overall arrival process is a super-
position of these independent streams. Customers are served in the order of their arrival
by a single server with unlimited waiting space.

In particular for this test we assume that all service times and s 2pacmgs are deterministic,
so that cs, = 2 =0; all ldle periods are exponential, so that ¢j; = 1; and all batch sizes
are geometnc so that cb, = (m; — 1)/m;. As a consequence, the arrival process of in-
dividual customers of each class is a renewal process with arrival rate

A= mi/ (mi& + ) (10)
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ie., the interarrival times are i.i.d. with mean A;'. An interarrival time of class i has
squared coefficient of variation (variance divided by the square of the mean)

cai = mi(1 = y)2(chi + 1) = 2my — 1)(1 — ;)2 (11)

where v; = m;&;/ (m;£; + n;), the proportion of time the class-i source is active (not in
an idle period). The overall model can be referred to as a 3 (GI;/D;)/1 queue. In
particular, because of this structure, it is easy to verify the conditions of Proposition 3
for a sequence of models indexed by 7. The following is an easy consequence of Proposi-
tion 3.

PROPOSITION 5. Consider the multi-class packet queue model above. In the nth system,
let all service times be divided by n; let the class-1 arrival process be unchanged;, let the
spacings and idle periods of all other classes be divided by n. Then the conditions of
Propositions 3 and 4 are satisfied; e.g., the class-1 departure process converges w.p.1 as
n = oo to the class-1 arrival process.

However, it remains to see what happens for any given n. We consider a fairly realistic
case containing 50 classes. There are 25 classes representing originating traffic and 25
classes representing acknowledgments. These streams are not tightly coupled because
transmission is full duplex; i.e., there are separate lines going in each direction. In any
case, for the simulation, we assume that the 50 arrival processes are independent. Of the
25 originating classes, 20 are “interactive” with parameters m; =2, 7, = 400, ¢ = 1000
and »n; = 86,000; and 5 are “‘batch”™ with parameters m; = 30, 7; = 800, & = 2000 and »;
= 570,000. (Time is measured in milliseconds (ms.).) The acknowledgments are assumed
to be of the same mix: There are 20 “interactive acks” with parameters m; = 2, 1; = 40,
& = 1000 and 7; = 86,000; and 5 “batch acks” with parameters m; = 30, r; = 40, &
= 2000 and »n; = 570,000. The acknowledgment streams are just like the originating
traffic streams, except the service times are shorter, because the acknowledgment packets
are shorter.

For this model, the average service time is 288.75 ms., the total arrival rate is 0.001385
pkts./ms., and the total traffic intensity is p = 0.4. The case of p = 0.8 is also considered
by multiplying all service times by 2.

Simulation estimates of the squared coefficient of variation of a stationary interval
between departures for each class are displayed in Table | together with the squared
coefficient of variation of an interarrival time in the renewal arrival process of each class,
computed via (11). As indicated above, there are four kinds of classes, but each of the
50 classes is treated separately.

The results strongly support the simple light-traffic approximation principle for single-
class departure processes from multi-class queues. Even though the number of classes is
not exceptionally large, the departure process variability parameter of each class is quite
close to the corresponding (exact) arrival process variability parameter, so that simple
“back-of-the-envelope™ calculations based on this principle seem Jjustified.

It is intuitively obvious that the simple approximation ought to perform better as the
total traffic intensity decreases, with everything else held fixed, and the results support
this principle: The approximation performs better at p = 0.4 than at p=0.8.

The deviations observed at p = 0.8 naturally suggest looking for more accurate refined
approximations, but that is not our purpose here. Such refined approximations are de-
veloped in Bitran and Tirupati (1988) and Whitt (1987a). In contrast to the light-traffic
analysis here, this approximation is based on a heavy-traffic limit. In particular, the
suggested approximation for class 7, (13) in Whitt (1987a), is

50
= (I = 2pip + Pf)Cii +pich+ Di 2 sz'(l/l)j)(ci; + C?j), (12)

J=1
J#i

T —————
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TABLE !

A Comparison of Simulation Estimates of ¢, the Squared Coefficient of Variation of a Stationary Interval
between Departures of Class i with the Corresponding Exact Squared Coefficient of Variation
of an Interarrival Time from (11).

Simulation Estimate
of ¢
Squared Coefficient of Variation -
Customer Class of Single-Class Arrival Process ¢2; o =04 =08
L. . 2.856 3.081
Originating Interactive (20) 2.865 (+0.019) (+0.021)
. 48.0 44.5
Originating Batch (5) 48.3 (£1.69) (+0.36)
. 2.8653 3.137
Interactive Acknowledgments (20) 2.865 (+0.015) (+0.013)
47.4 48.1
Batch Acknowledgments (5) 48.3 (+0.50) (+0.86)

Note. 95% confidence intervals are given below the simulation estimates in parentheses.

where p; is the traffic intensity of class j alone and p; = A,/ \ is the proportion of the
total arrival rate due to class j. Since cs, =0 for all /, (12) is equivalent to

2 2
(1~ 2p;p + Pi)Cii + p; Z pi(l/pj)ctzzj

Cai =
j=1
J#1
2 0, 2
=1-pq(2-g)]cai+p*3 q;(pi/pj)cy, (13)

J=1
J#1
where g; = p;/p is the proportion of the total trafﬁc intensity due to class j. From (12),
we see that the approximation is of the form cd, = a,c,z,, + B;. The coefficients «; and 8;
for this experiment are given in Table 2. The approximations based on (12) and (13)
are compared with the simulation results for this example in Table 3.

The approximations obviously are consistent with the light-traffic approximation prin-
ciple and correctly predict, at least qualitatively, the effect of i increasing p. However, only
in some cases does the reﬁnement in (13) provide a truly significant improvement over
the simple approximation cd, ~ cf,, Relatively, the refinement in (13 ) seems to do better

TABLE 2
The Coefficients a; and B; in the Linear Approximation c% = agc? + 8, in (12) and (13).
p=04 p=0.38
Customer Class % o Bi a; Bi
Originating Interactive (20) 2.87 0.9928 0.172 0.9712 0.688
Originating Batch (5) 48.3 0.9710 0.298 0.8838 1.192
Interactive Acknowledgments (20) 2.87 0.9993 0.172 0.9971 0.688
Batch Acknowledgments (5) 48.3 0.9985 0.352 0.9939 1.408

1 V . .
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TABLE 3

A Comparison of the Heuristic Heavy-traffic Approximation for c% in (12) and (13)
with the Simulation Estimates from Table 1.

Model Parameters p=04 p =038
Approx. Approx.
Customer Class ¢k N p; g=plp | (13) Sim. 13) Sim.
Originating 287 | 227 X 1075 | 0.0164 | 0.0227 302 | 286| 348 | 3.08

Interactive (20)

Originating Batch

) 48.3 4.76 X 107° | 0.0344 | 0.0953 47.2 48.0 439 44.5

Interactive
Acknowledgments | 2.87 | 2.27 X 107° | 0.0164 | 0.00227 3.04 2.87 3.55 3.14
(20)

Batch
Acknowledgments | 48.3 4.76 X 1075 | 0.0344 | 0.00476 48.6 48.7 49.4 48.1
(5)

predicting the variability of the more highly variable batch processes than the interactive
sources. The noisy batch processes may distort the interactive processes.

Table 1 only displays the squared coefficients of variation of single interdeparture
times. However, simulation results also show that the entire single-class departure process

TABLE 4

A Comparison of Histograms for the Interarrival-Time Distribution (Exact) and the Interdeparture-Time
Distribution (Simulated with Sample Size 50,000) for Originating Traffic from an Interactive Source
(Mean Interarrival Time = 44 Seconds).

Interdeparture-Time
Distribution
Lower Limit of Histogram Interval Interarrival-Time (Simulated)
In Units of Mean Distribution
In Seconds Interarrival Times (Exact) p=04 p=08
0.0 0.0 0.5433 0.5468 0.5525
8.8 0.2 0.0444 0.0443 0.0505
17.6 0.4 0.0401 0.0392 0.0422
26.4 0.6 0.0362 0.0358 0.0364
35.2 0.8 0.0327 0.0327 0.0309
44.0 1.0 0.0295 0.0297 0.0273
52.8 1.2 0.0266 0.0263 0.0248
61.6 1.4 0.0240 0.0248 0.0220
70.4 1.6 0.0217 0.0206 0.0193
79.2 1.8 0.0196 0.0199 0.0179
88.0 2.0 0.0177 0.0173 0.0161
96.8 2.2 0.0160 0.0156 0.0153
105.6 2.4 0.0144 0.0141 0.0124
114.4 2.6 0.0130 0.0123 0.0128
123.2 2.8 0.0117 0.0118 0.0112
132.0 3.0 0.0106 0.0106 0.0097
140.8 32 0.0096 0.0090 0.0083
149.6 34 0.0086 0.0091 0.0081
158.4 3.6 0.0078 0.0075 0.0074
167.2 3.8 0.0070 0.0072 0.0073
176.0 4.0 0.0654 0.0653 0.0675

P I T B —— e
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tends to be close to the corresponding single-class arrival process, as predicted by Prop-
osition 5. For example, Table 4 compares histograms of the exact interarrival-time dis-
tribution for an interactive source with the estimated interdeparture-time distribution
for this class obtained by simulation with sample size 50,000. The histogram has 40
intervals with the width of each interval being 8.8 seconds, which is 0.2 times a mean
interarrival time for this class (apply (10)). These histogram intervals were chosen to be
in the time scale of this single-class arrival process, where the mean interarrival time is
44 seconds. In a shorter time scale, e.g., in the order of the overall mean service time
(0.289 secs.), differences between the single-class arrival process and the corresponding
single-class departure process are readily apparent. Note that the spacings between packets
within a batch of this class are 1 sec., so that they too are in the shorter time scale. In
the time scale of the single-class arrival process (in tens of seconds), the distinction
between the given process and a pure-batch process (without any spacing) is small.

Finally, individual sample paths of successive single-class departure epochs and arrival
epochs also match up well in the time scale of the single-class arrival process, thus providing
empirical verification for the light-traffic approximations principle in its strongest form.
(Typical sample paths of 400 successive customers from the middle of the simulation
runs appear in an unpublished appendix available from the author.) The overall accuracy
of the approximation thus seems to be reasonably well described by Table 1.!

' I am grateful to Kerry Fendick for conducting the simulation in §3 and for many helpful discussions about
multi-class queues.
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