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Abstract

We introduce open stochastic fluid networks that can be regarded as continuous analogs or fluid
limits of open networks of infinite-server queues. Random exogenous input may come to any of the
queues. At each queue, a cdf-valued stochastic process governs the proportion of the input processed
by a given time after arrival. The routing may be deterministic (a specified sequence of successive
queue visits) or proportional, i.e., a stochastic transition matrix may govern the proportion of
output routed from one queue to another. This stochastic fluid network with deterministic cdf’s
governing processing at the queues arises as the limit of normalized networks of infinite-server
queues with batch arrival processes where the batch sizes grow. In this limit, one can think of
each particle having an evolution through the network, depending on its time and place of arrival,
but otherwise independent of all other particles. A key property associated with this independence
is the linearity: The workload associated with a superposition of inputs, each possibly having its
own pattern of flow through the network, is simply the sum of the component workloads. Just like
infinite-server queueing models, the tractability makes the linear stochastic fluid network a natural
candidate for approximations.

Keywords: fluid models, stochastic fluid networks, storage networks, linear stochastic fluid
networks, Lévy processes, infinite-server queues, queueing networks, shot noise, multidimensional
shot noise



1. Introduction

This paper is a continuation of our study of stochastic fluid networks begun in Kella and Whitt

[25] and continued in Kella [22, 23, 24], Kella and Whitt [26] and references therein. The basic

stochastic fluid network has random external inputs, but all internal flows are deterministic and

continuous like fluid (occurring at a deterministic rate, conditional on the system state). Stochastic

fluid networks are natural models for stochastic storage networks in which the random fluctuations

within the network occur in a shorter time scale than the random fluctuations in the external

inputs. A possible application is a communication network composed of high-speed switches serving

randomly arriving large messages which are broken up into fixed-length packets or “cells” and sent

from origin to destination. The fluid property of the internal flows provides a simplification that

enables us to say more about model behavior. For example, for certain cases (see [25, 22, 23]) we

derived the steady-state distribution of the contents in a two-buffer stochastic fluid network with

Lévy external input process (which is never product form), as well as the steady state covariance

matrix in the multi-buffer tandem case (see [22]).

In this paper we introduce a new stochastic fluid model that is even more tractable. It is a

linear stochastic fluid model, in which the movement of separate particles, conditional on the time

and place they enter the network, can be thought of as being mutually independent. However, since

there are in general uncountably infinitely many particles under consideration, we do not directly

define stochastic behavior of individual particles. Instead, we specify what happens to deterministic

proportions of the fluid after it arrives.

The buffer content vector [W1(t), . . . ,Wm(t)] associated with a stochastic fluid network having

m queues can be regarded as the limit as n→∞ of the scaled number of busy servers at each queue,

n−1(Q
(n)
1 (t), . . . , Q

(n)
m (t)), in a network of m infinite-server queues with batch arrivals, denoted by

(GX/G/∞)m, where the batch sizes in model n are the batch sizes in model 1 multiplied by n. In

the (GX/G/∞)m queueing model, arrivals in the same batch have i.i.d. stochastic paths through

the network. In contrast, in the limiting fluid model, by virtue of the law of large numbers,

deterministic proportions follow those same routes. Similarly, instead of i.i.d. service times at

a queue governed by a cdf G, a proportion G(t) of all fluid arriving at a given time completes

processing and departs in the interval [0, t] after arrival. (For related limits, see Kurtz [28].) We

actually consider a generalization of the fluid model specified so far, in which the cdf G is allowed

to be a stochastic process (see Section 2).
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Thus the linear stochastic fluid network considered here (with a deterministic cdf G) is a simpli-

fication (limiting form) of a network of infinite-server queues with batch arrivals. For relevant back-

ground on single infinite-server queues with batch arrivals, see Shandbhag [36], Holman, Chaudhry

and Kashyap [18], Chapter 5 of Chaudhry and Templeton [6], Liu, Kashyap and Templeton [29],

Liu and Templeton [30] and references therein. These models in turn are related to shot noise pro-

cesses; see Daley [7], Kluppelberg and Mikosch [27], Rice [34], Vervaat [37] and references therein.

Especially tractable are fluid analogs of a network of MX/M/∞ queues, which we call the Lévy

stochastic fluid network with proportional release rates. In the fluid network the input is assumed

to be an m-dimensional nondecreasing Lévy process (a nondecreasing right-continuous process with

stationary independent increments). For this model, we obtain a relatively tractable expression for

its steady-state distribution (Section 5). For related work when the driving process is a Brownian

motion, see Jacobsen [21].

We are also able to describe the time-dependent mean fluid content of each queue in very

general time-dependent stochastic fluid networks by making connections to previous results for

networks of infinite-server queues with nonhomogeneous Poisson arrival processes (denoted byMt).

In remarkable generality, we show that the mean fluid contents are identical to the mean queue

lengths derived in Massey and Whitt [31] (Sections 2–3).

A key structural property is the linearity (additivity). If W 1 and W 2 are content processes

associated with input processes A1 and A2, then W 1 +W 2 is the content process associated with

the input process A1 +A2. Thus, extensions to multiple-class networks are immediate.

Because of the tractable expressions for performance measures, the linear stochastic fluid model

is very promising for applications, just like infinite-server queues. Infinite-server queues are appeal-

ing as approximations for multi-server queues, with an infinite waiting room, a finite waiting room

or no waiting room. See Whitt [38], Massey and Whitt [32], Jennings, Mandelbaum, Massey and

Whitt [19], Jennings and Massey [20], Grier, Massey, McKoy and Whitt [17], Duffield and Whitt

[11] and references therein for a discussion of approximations and applications in the queueing

context. The linear stochastic fluid networks are natural models to consider in the same setting,

when individual customers or jobs are small compared to the total system size.

2. The Gt/Gt/∞ Fluid Model

We start by considering a single linear stochastic fluid queue. Let A(s, t] be the external input

during the time interval (s, t], where −∞ < s < t < ∞; i.e., AB = A(B) ≡ A(ω,B) is modeled
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as a random measure on the real line (ω is a sample point and B is a Borel set). We assume that

P [A(s, t] < ∞] = 1 for each finite interval (s, t]. The t in the subscripts of Gt in Gt/Gt/∞ is to

emphasize the potential time inhomogeneity.

We now specify the service mechanism. Let G = {G(x, t)| (x, t) ∈ <2} be a stochastic process

with 0 ≤ G(·, ·) ≤ 1, such that for every fixed x, G(x, ·) is nondecreasing and right-continuous with

G(x, x−) = 0. We stipulate that a proportion G(x, t) of any input arriving at time x departs by

time t. In general, G(x, ·) need not be proper; i.e., it is allowed that some input may never leave.

Furthermore, it is possible that G(x, x) > 0 or even G(x, x) = 1, i.e. it is allowed that some, or

even all, arriving input may leave as soon as it arrives. In addition, we assume that for each t,

G(·, t) has left-continuous sample paths. As for the input process, the t in the service Gt is to

point out the possibility of time inhomogeneity of the service mechanism. One example of such a

process is G(x, t) = H(t− x) where H is a deterministic cdf with H(0−) = 0. Another example is

G(x, t) = 1−Hc(t)/Hc(x), where Hc(·) = 1−H(·) and H is a deterministic cdf. A generalization

of the second example is G(x, t) = 1− e−
∫ t

x
R(u)du where R is a nonnegative stochastic process. It

is identical to the second example when H has a density h and we take R(t) = h(t)/H c(t).

Letting Gc = 1−G, G̃(x, t) = 1−Gc(x, t)/Gc(x, x), G̃c = 1− G̃, Ã(B) =
∫

B G̃
c(x, x)dA(x) (the

random measure associated with arriving input that does not instantly leave) and denoting the

initial content by W (0) = A{0}Gc(0, 0) = Ã{0} (the remaining net value of a potential batch that

arrived at time zero), we define the workload (buffer content) at time t and the output (departures)

in the interval [0, t] by

W (t) =

∫

[0,t]
Gc(x, t)dA(x) =W (0)G̃c(0, t) +

∫

(0,t]
G̃c(x, t)dÃ(x) , t ≥ 0 , (2.1)

and

D(t) =

∫

[0,t]
G(x, t)dA(x) =

∫

[0,∞)
G(x, t)dA(x) , t ≥ 0 , (2.2)

respectively. From (2.2) and the fact that G is nondecreasing, right-continuous and bounded, it

follows by bounded convergence that D is a right-continuous nondecreasing process (when con-

verging from the right to t, let the integral in (2.2) be on any fixed finite open interval containing

[0, t], so that its A-measure is finite). We understand the stochastic integrals in (2.1) and (2.2) to

be defined for each sample path. Since G(·, t) (hence, Gc(·, t)) is left continuous, (2.1) and (2.2)

are well defined as Riemann-Stieltjes integrals for each sample path; see Chapter 9 of Apostol [1],
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especially p. 200. Thus, the integrals can be represented as limits of finite sums, i.e.,

∫

(0,t]
G(x, t)dA(x) = lim

n→∞

n−1
∑

k=0

G

(

kt

n
, t

)

A

(

kt

n
,
(k + 1)t

n

]

. (2.3)

Note that we have the basic conservation relation

W (t) = A[0, t] −D(t) , t ≥ 0 , (2.4)

as can be seen by adding equations (2.1) and (2.2). Thus,W is a right-continuous bounded-variation

(hence having left limits) process, which from (2.1) is also nonnegative.

When G(x, t) = e−
∫ t

x
R(u)du, the process W (t) in (2.1) is the unique process satisfying

W (t) = A[0, t] −

∫ t

0
R(s)W (s)ds . (2.5)

That is, W is a dam process with a modulated linear release rate. See Sections 3 and 4 of Asmussen

and Kella [3] for more on this case.

Under minor regularity conditions, it is easy to give expressions for mean values.

Lemma 2.1 In the Gt/Gt/∞ fluid model, assume that A and G are independent, that G0(s) ≡

EG(x, x + s) is (functionally) independent of x, and that

EA[0, t] = β +

∫ t

0
α(u)du , t ≥ 0 . (2.6)

Then the mean values are

m(t) ≡ EW (t) = βGc0(t) +

∫ t

0
Gc0(t− u)α(u)du (2.7)

and

ED(t) = βG0(t) +

∫ t

0
G0(t− u)α(u)du . (2.8)

The Laplace transforms of the means are

m̂(s) ≡

∫ ∞

0
e−stm(t)dt = (β + α̂(s))

(1 − ĝ0(s))

s
(2.9)

∫ ∞

0
e−stED(t)dt = (β + α̂(s))

ĝ0(s)

s
, (2.10)

where

ĝ0(s) =

∫

[0,∞)
e−stdG0(t) and α̂(s) =

∫ ∞

0
e−stα(t)dt (2.11)

If, in addition, β = 0, then EW (t) and ED(t) have the same form as the mean queue length at

time t and mean number of departures in the interval [0, t], respectively, in the Mt/GI/∞ queueing

model starting empty at time 0 with arrival rate function α(t) and service-time cdf G0.
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Proof. To obtain (2.7) and (2.8), take expectations in (2.1) and (2.2), exploiting (2.6). For the

Laplace transform, use the property that the transform of a convolution is the product of the

transforms. For the Mt/GI/∞ formulas, see Theorem 1 of Eick et al. [12].

We remark that the Mt/GI/∞ mean formulas do not depend on the Poisson property; see

Remark 2.3 of Massey and Whitt [31]. Lemma 2.1 implies that, under the conditions specified,

previously derived formulas for the means in the Mt/G/∞ queue in Eick et al. [12, 13] and Massey

and Whitt [31] also apply to the means in Gt/Gt/∞ fluid queues. We thus have many explicit mean

formulas for the Gt/Gt/∞ fluid model. Important examples are the cases in which the arrival-rate

function α(t) is polynomial or sinusoidal.

If G0 from Lemma 2.1 is absolutely continuous with density g0, then the departure rate is well

defined, i.e.,

ED(t) =

∫ t

0
δ(s)ds , t ≥ 0 , (2.12)

where

δ(t) = βg0(t) +

∫ t

0
g0(t− x)α(x)dx . (2.13)

We note that for the case where α(t) = α > 0, t ≥ 0 (in particular when the input is a stationary

random measure, i.e., has stationary increments), then

EW (t) = βGc0(t) + α

∫ t

0
Gc0(x)dx→ αm as t→∞ , (2.14)

where m is the mean of the cdf G0 (possibly infinite). Note that when m is finite G
c
0(t) necessarily

vanishes as t→∞.

Now suppose that in addition to the conditions of Lemma 2.1 {A(0, t] : t ≥ 0} has independent

increments, A{0} and G are deterministic (so that necessarily, G(x, t) = G0(t− x) for all x, t), and

V arA(0, t] = V (t) <∞ , t ≥ 0 . (2.15)

Then

V arW (t) =

∫

[0,t]
Gc0(t− x)

2dV (x) (2.16)

and

V arD(t) =

∫

[0,t]
G0(t− x)

2dV (x) , t ≥ 0 , (2.17)

as can be seen from (2.3).

For example, if {A(0, t] : t ≥ 0} is a nonhomogeneous compound Poisson process, i.e., if

A(0, t] =

N(t)
∑

i=1

Xi , t ≥ 0 , (2.18)
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where Xi are i.i.d. and N(t) is a nonhomogeneous Poisson process with intensity function λ(t),

then

V (t) ≡ V arA(t) = E(X2)

∫ t

0
λ(u)du , t ≥ 0 , (2.19)

and

V arW (t) = E(X2)

∫ t

0
Gc0(t− x)λ(x)dx . (2.20)

If in addition λ(t) = λt ≥ 0, then

V arW (t)→ mλE(X2) as t→∞ , (2.21)

where again m is the mean of G0. For the stationary input case, in the limit as t→∞, W (t) then

has mean mλE(X) and variance mλE(X2). Only in the pure Poisson case (X = 1) is the mean

equal to the variance.

Denote Au(B) = A(u+B) and Gu(x, t) = G(x+ u, t+ u), where u+B = {u+ b : b ∈ B}. We

now state the following general result.

Theorem 2.1 Assume that the (joint) distribution of (Gu, Au) is independent of u. Then A{0} = 0

a.s., and if

W ∗(0) =

∫

(−∞,0]
Gc(x, 0)dA(x) (2.22)

is a.s. finite, then

W ∗(t) =

∫

(−∞,t]
Gc(x, t)dA(x) , t ≥ 0 , (2.23)

is a stationary process. Furthermore, W (t) converges in distribution to W ∗(0) and is stochastically

increasing. If G0(·) = EG(0, ·) is a proper cdf (G0(t) → 1 as t → ∞), then changing the initial

condition to a nonnegative a.s. finite random variable (i.e., replacing A(·) in (2.1) by A(·)+ξ1{0}(·)

where P [0 ≤ ξ < ∞] = 1) will not change the limiting distribution. Finally, if in addition A and

G are independent, α = EA(0, 1] < ∞ and G0 has a finite mean m, then EA(s, t] = m(t− s) for

s < t and EW ∗(0) = αm <∞ (hence, W ∗(0) is a.s. finite).

Proof. A random measure can have at most a countable number of fixed atoms (e.g., Prop. 6.3.III,

p. 173 of [8]). If 0 is a fixed atom of A then by stationarity any t is such, which is a contradiction.

Thus P [A{0} = 0] = 1. Note that for every u, t,

W ∗(u+ t) =

∫

(−∞,u+t]
Gc(x, u+ t)dA(x) =

∫

(−∞,t]
Gu,c(x, t)dAu(x) , (2.24)

where Gu,c = 1−Gu, which implies that for every n ≥ 1 and t1 < . . . < tn, (W
∗(t1+u), . . . ,W

∗(tn+

u)) is a functional of (Gu, Au), so that stationarity clearly follows from the conditions of the theorem.
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The fact that W (t) is stochastically increasing and converges in distribution to W ∗(0) is immediate

from

W (t) =

∫

[0,t]
Gc(x, t)dA(x) =

∫

[−t,0]
Gt,c(x, 0)dAt(x) ∼

∫

[−t,0]
Gc(x, 0)dA(x) . (2.25)

Next, we observe that since G(0, t) is bounded above by 1, G0(t) → 1 if and only if G(0, t) → 1

a.s. Thus, for any a.s. finite random variable ξ, Gc(0, t)ξ vanishes a.s. as t → ∞, which gives

the insensitivity to initial conditions. Finally, EA(s, t] = α(t − s) follows from the additivity and

monotonicity of EA(0, ·], and when A and G are independent EW ∗(0) = αm < ∞ follows from

Lemma 2.1 and (2.14).

Note that A in Theorem 2.1 is necessarily a stationary random measure. Two examples for

which the time-stationarity condition of Theorem 2.1 is satisfied are

1. G(x, t) = H(t− x) and H is a stochastic cdf with H(0−) = 0 which is independent of A and

A is a stationary random measure (has stationary increments).

2. G(x, t) = 1 − e
∫ t

x
R(s)ds, where the distribution of (Ru, Au) is independent of u with Ru(t) =

R(u + t). In particular, R is a stationary process and A is a stationary random measure.

This is seen by observing that Gu(x, t) = 1− e
∫ t

x
Ru(s)ds. See [3] for more on this and related

processes.

We now further characterize the steady-state distribution when the input process is compound

Poisson and G(x, t) = G0(t− x) is deterministic.

Theorem 2.2 Let A(0, ·] be a homogeneous compound Poisson process as in (2.18) with Poisson

arrival rate λ and random jump sizes Xi and assume that G(x, t) = G0(t − x) is deterministic.

Let Sn denote the n
th point of the Poisson process to the right of the origin. Then the stationary

workload in (2.23) is distributed as the “shot noise” series

W ∗(0) =
∞
∑

n=1

XnG
c
0(Sn) , (2.26)

which is infinitely divisible with mean mλEX and variance mλEX 2, where m is the mean of G0.

Moreover, taking η(α) = λ(1 − Ee−αX1) = − log(Ee−αA(0,1]), the Laplace-Stieltjes transform of

W ∗(0) is given by

Ee−αW
∗(0) = e−

∫

∞

0
η(Gc0(x))dx . (2.27)
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Proof. The representation (2.26) follows directly from (2.23) and (2.18). The property of being

infinitely divisible is discussed on p. 766 of Vervaat [37]. The rest is straightforward. To show

(2.27), see (5.9) below and the sentence that follows.

In addition to the steady state workload at an arbitrary time, we can consider the steady state

seen by an arrival (not counting the input at that arrival epoch). If the arrival process A is a Lévy

process, then these two notions of steady state coincide (the LASTA property); see Remark 5 on

p. 162 of Melamed and Whitt [33].

3. Extension to Networks

We start our extension to networks by considering m fluid queues in tandem (series) with

external input A to the first queue, denoted by Gt/Gt,1/∞ → Gt,2/∞ → . . . → Gt,m/∞. Let

the service mechanism Gk govern the output from queue k; i.e., a proportion Gk(x, t) of all input

that arrives to queue k at time x departs by time t. Let H0(x, t) = 1[x,∞)(t) and Hk(x, t) =
∫

[x,t]Gk(y, t)Hk−1(x, dy). In particular, H1 = G1 and if Gk(x, t) = G0,k(t−x) (deterministic), then

H0,k(·) ≡ Hk(0, ·) is the k-fold convolution of G0,1, . . . , G0,k. With the above setup, the workload

and output processes for the kth queue are

Wk(t) =

∫

[0,t]
[Hk−1(x, t)−Hk(x, t)]dA(x) , (3.1)

and

Dk(t) =

∫

[0,t]
Hk(x, t)dA(x) , t ≥ 0 . (3.2)

To see this, note that with D0 = A we have that Dk(t) =
∫

[0,t]Gk(x, t)dDk−1(x) and Wk(t) =
∫

[0,t]G
c
k(x, t)dDk−1(x) for all 1 ≤ k ≤ m.

Paralleling Theorem 2.1, when the distribution of (Gu1 , . . . , G
u
m, A

u) is independent of u (so that

in particular A is a stationary random measure, hence A{0} = 0 a.s.) it is easy to check that the

distribution of (Hu1 , . . . ,H
u
m, A

u) is independent of u, where Huk (x, t) = Hk(u + x, u + t). In this

case we can construct a stationary version of {(W1(t), . . . ,Wm(t)) : t ≥ 0}, i.e.,

W ∗
k (t) =

∫

(−∞,t]
[Hk−1(x, t) −Hk(x, t)]dA(x) , t ≥ 0 , (3.3)

provided that W ∗
k (0) is a.s. finite for all k. Suppose that Gk(x, t) = G0,k(t − x) and A{0} are

deterministic and that A(0, ·] has independent increments, with (2.15) holding. Then the workload

variances are

V arWk(t) =

∫

[0,t]
[H0,k−1(t− x)−H0,k(t− x)]

2dV (x) . (3.4)
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Moreover, the covariance between workloads (possibly at different times) have the form

Cov(Wj(t1),Wk(t2)) =

∫

[0,t1∧t2]
[(H0,j−1(t1−x)−H0,j(t1−x))(H0,k(t2−x)−H0,k(t2−x)]dV (x) (3.5)

where t1 ∧ t2 = min(t1, t2).

We now consider general networks with deterministic routes. For any deterministic route, we

can initially treat revisits to the same queue as visits to different queues by relabeling every revisited

queue as a distinct queue. Then we can apply the tandem queue results above. Afterwards we can

add over those instances where a queue is repeated. For a tandem model, we can recursively apply

the results of Section 2. There we showed that the mean workload at one queue and mean output

from that queue have the same form as the mean number of busy servers and the mean number of

departures in the Mt/G/∞ queue. Hence, we can proceed recursively to successive queues in the

tandem model. Finally suppose that there is proportional routing; i.e., a probability matrix P such

that a proportion Pij of the output from node i goes next to node j. Then there are countably

many deterministic routes through the entire network, each of which can be apportioned its portion

of each originating flow.

We now construct the workload processes, using a minor modification of the construction on

p. 220 of Massey and Whitt [31]. In general, we have a countable collection T of possible routes r.

Associated with each route r is an initial queue q1(r). Associated with each input at queue q1(r),

a proportion of that input p(r) follows route r. Let S̄rk be a random variable with a cdf equal to

the convolution of the first k cdf’s on route r. Let r−1(k) be the set of sites on route r that are

queue k.

Now assume in addition that for the j th input Aj along the route

EAj(s, t] =

∫ t

s
αj(s)ds , t ≥ 0 , (3.6)

so that the intensity of input following route r is αr(t) = p(r)αq1(r)(t). We now show that the mean

workload at queue k has the same form as in (5.4) and the proof of Theorem 5.3 of Massey and

Whitt [31].

Theorem 3.1 Under (3.6) the mean workload at queue k starting empty in the distant past is

EWk(t) =
∑

r∈R

∑

i∈r−1(k)

∫ t

−∞
(S̄ri−1 < t− s ≤ Sri )α

r(s)ds . (3.7)
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Proof. Following p. 220 of Massey and Whitt [31], we can define the workload at queue k starting

empty in the distant past by the stochastic integral

Wk(t) =
∑

r∈R

∑

i∈r−1(k)

p(r)

∫ t

−∞
P (S̄ri−1 < t− s ≤ S̄ri )dAq1(r)(s) , (3.8)

from which (3.7) is an elementary consequence. Since we are calculating means, the dependence

among input processes Aj need not be considered.

As a consequence of the reasoning above, we can treat the cases in which the time-dependent

intensity function for each route is a polynomial or sinusoidal function; see Theorems 6.2 and 6.3

of Massey and Whitt [31].

Unfortunately, we cannot proceed beyond the means with the argument above. We can exploit

(3.8) to characterize the vector workload process, but its full distribution will not be the same as

for the vector queue-length distribution in the Mt/G/∞ queueing networks.

4. Stochastic Fluid Networks with Proportional Release Rates

An alternative fluid model has state-dependent release rates. Let f ≡ (f1, . . . , fm) be a vector of

nonnegative measurable real-valued functions on [0,∞). When queue k has content x, the output

rate is fk(x). Let P be a substochastic transition matrix with P
n → 0 as n → ∞. Thus P has

spectral radius less than 1, I − P is nonsingular and (I − P )−1 =
∑∞
n=0 P

n. We interpret Pij as

the proportion of output from queue i that goes next to queue j. (In the setting of Sections 3 and

4, Pij = 1 or 0 for all i and j.) With this framework, the workload processes can be defined by

Wk(t) =Wk(0) +Ak(0, t] +
m
∑

j=1

Pjk

∫ t

0
fj(Wj(s))ds−

∫ t

0
fk(Wk(s))ds , (4.1)

1 ≤ k ≤ m, where A ≡ (A1(·), . . . , Am(·)), 1 ≤ k ≤ m} is the vector of inputs (random measures),

assuming that the integrals are finite.

We will focus on the special case in which fk(x) = rkx, x ≥ 0; i.e., the output rate is proportional

to the current content. Our model is thus a natural generalization of a dam (single buffer) with

proportional release rule; e.g., see Chapter XIII of Asmussen [2]. In this case of proportional release

rate, we will show that the model is a linear stochastic fluid network with exponential processing

time cdf’s; i.e., in the setting of Sections 2–3, the deterministic service mechanism Gk at queue k

is Gk(x, t) = 1− e
−rk(t−x), t ≥ 0. In other words, the proportion of fluid departing by time t after

arrival to queue k is Gk(0, t). We can think of each particle having an independent exponential

holding time at each queue.
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Remark 4.1 We have noted that the proportional routing with proportions rk correspond to the

exponential cdf’s. If we actually wish to use non-exponential cdf’s, then we can often still exploit

the same structure, because if a queue has a phase-type cdf, then we can represent it equivalently

as a network where each queue has an exponential cdf. To illustrate, a mixture of two exponential

cdf’s could be represented by routing proportions of the input to each of two queues with the

component exponential cdf’s.

With proportional rates, we can rewrite (4.1) in matrix notation

W (t) =W (0) +A(0, t] −Q′
∫ t

0
W (s)ds , (4.2)

where Q = Dr(I − P ), Dr = diag(r) for r = (r1, . . . , rm), M
′ denotes the transpose of M and

∫ t
0 W (s)ds is a vector with components

∫ t
0 Wk(s)ds.

We now show that the vector workload process is the natural generalization of (2.1) with

e−Q
′(t−x) replacing Gc(x, t).

Theorem 4.1 For every input A, the unique solution to (4.2) is

W (t) = e−Q
′tW (0) +

∫

(0,t]
e−Q

′(t−s)dA(s) , (4.3)

i.e.,

Wk(t) =
m
∑

j=1

([e−Q
′t]kjWj(0) +

∫

(0,t]
[e−Q

′(t−s)]kjdAj(s)) , (4.4)

1 ≤ k ≤ m.

Proof. It is straightforward to see thatW (t) in (4.3) satisfies (4.2); calculate Q ′
∫ t
0 W (s)ds, changing

the order of integration. To see that (4.3) is the unique solution, let W 1 and W 2 be two candidate

solutions. Then there difference ∆W =W 2 −W 1 satisfies

∆W (t) = −Q′
∫ t

0
∆W (s)ds

with ∆W = 0. This implies that ∆W is continuous and differentiable. Thus it satisfies

d∆W (t)

dt
= −Q′∆W (t)

with ∆W (0) = 0, which implies that ∆W (t) = 0 for all t (a standard results about differential

equations).

Remark 4.2 Note that (4.2) is the continuous-time analog of the stochastic difference equation

Wn+1 −Wn = An+1 −An −Q
′Wn (4.5)
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or

Wn+1 = Bn +CnWn , (4.6)

where Bn = An+1 −An and Cn = I −Q
′. For background on such stochastic difference equations,

where Cn as well as Bn may be random, see Vervaat [37], Brandt [5] and Chapter 7 of Glasserman

and Yao [15]. These in turn are related to the discrete-time production models of Denardo and

Tang [10] and Denardo and Lee [9].

We now consider the limiting distribution of W (t) as t→∞.

Theorem 4.2 Let W 0(t) be W (t) with W (0) = 0, i.e.,

W 0(t) =

∫

(0,t]
e−Q

′(t−s)dA(s) , t ≥ 0 . (4.7)

There exists ε > 0 such that eεt||W (t) −W 0(t)|| → 0 as t → ∞. Consequently, if W (t) converges

to a proper limit as t → ∞ for some initial condition, then it converges to the same limit for any

a.s. finite initial condition.

Proof. First recall that for a square matrix M the matrix exponential is

eMt =
∞
∑

k=0

Mktk

k!
. (4.8)

It is well known and easy to check (applying a Jordan decomposition of M) that the entries of eMt

are finite linear combinations (possibly with complex coefficients) of functions of the form eλttk,

where λ is a (possibly complex) eigenvalue of the matrix M and k is less than the dimension of the

matrix. Hence, if the real parts of all eigenvalues of M are strictly negative, then there exists a

positive ε such that eεteMt → 0 as t→∞. The proof is completed by noting that all eigenvalues of

−Q′ have negative real parts, and applying Theorem 4.1. To substantiate the required property of

−Q′, note that P−I is the (sub) generator of a Markov process, which is terminating when the chain

corresponding to P is, but we have assumed that P is substochastic with P n → 0. The Markov

process with subgenerator Dr(P − I) is also terminating, since it is just a time transformation of

the other Markov process. Hence its state probability matrix eDr(P−I)t = e−Qt converges to zero,

which in turn implies the eigenvalue property.

As in Section 2, it is now interesting to consider some additional assumptions which will insure

that W 0(t) converges in distribution to some proper limit or, alternatively, that there exists some

choice of initial condition which will make the process stationary. In the latter case the stationary
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version will trivially have a limiting distribution and thus with any a.s. finite initial condition, we

will get the same limiting distribution. With this in mind, we have the following result.

Theorem 4.3 Assume that A is a stationary random measure (on <m), and that EAi(0, 1] = αi <

∞ for all i = 1, ...,m. Then, for every t ≥ 0, W 0(t) in (4.7) and
∫

(−t,0] e
Q′sdA(s) are identically

distributed, so that {W 0(t)|t ≥ 0} is stochastically increasing. Furthermore, let

W ∗(0) ≡

∫

(−∞,0]
eQ
′sdA(s) (4.9)

and let W ∗ be the solution of

W ∗(t) =W ∗(0) +A(0, t] −Q′
∫ t

0
W ∗(s)ds . (4.10)

Then the mean vector of W ∗(0) is finite and is given by

EW ∗(0) = (Q′)−1α , (4.11)

where α = (αi). Moreover, W
∗ is a stationary process and, for any a.s. finite initial condition,

W (t) converges in distribution to W ∗(0) as t→∞.

Proof. The fact that W 0(t) and
∫

(−t,0] e
−Q′sdA(s) are identically distributed holds since

W 0(t) =

∫

(0,t]
e−Q

′(t−s)dA(s) =

∫

(−t,0]
eQ
′sdAt(s) ∼

∫

(−t,0]
eQ
′sdA(s) (4.12)

where At(B) = A(t + B). Stochastic monotonicity is now implied by the nonnegativity of the

matrix eQ
′s for s ≤ 0. To proceed, we first note that since EAi(0, ·] is additive and monotone, then

EAi(t) = αit. In order to show that EW
∗(0) <∞, by the proof of Theorem 4.2, it suffices to show

that for any ε > 0 and any i = 1, . . . , n we have that E
∫

(−∞,0] e
εsdAi(s) <∞. Integration by parts

gives

E
∫

(t,0] e
εsdAi(s) = E

(

−eεtAi(0, t] + ε
∫ t
0 e
εsAi(0, s]ds

)

= −eεtαi + ε
∫ t
0 e
εsαisds = αi

∫ 0
t e
εsds .

(4.13)

By monotone convergence, this implies that E
∫

(−∞,0] e
εsdAi(s) = αi/ε < ∞. To show that W

∗ is

a stationary process, we apply (4.3) to give

W ∗(t) =

∫

(−∞,t]
e−Q

′(t−s)dA(s) =

∫

(−∞,0]
eQ
′sdAt(s) , (4.14)

where the stationarity of the right hand side is given by the stationarity of A. The fact that

convergence in distribution holds for any initial condition follows from Theorem 6.2. Finally, (4.11)

can be shown either directly from (4.9) or a bit more simply from (4.10). In particular, in the

latter, taking expectations, applying stationarity and subtracting EW ∗(0) = EW ∗(t) from both

sides, one obtains 0 = αt−Q′EW ∗(0)t, which gives (4.11).
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5. Lévy Stochastic Fluid Networks with Proportional Release Rates

As in the last section, we consider the linear stochastic fluid network governed by proportional

release rate vector r and proportional routing matrix P , but now we assume in addition that

the right-continuous nondecreasing process A(0, ·] is a Lévy process. That is, it has stationary

independent increments. Let η(β) ≡ − log(Ee−β
′A(0,1] be its exponent (0 ≤ β ∈ <m).

The prototype nondecreasing Lévy process is a compound Poisson process with a possible vector

valued drift c ≥ 0, i.e., let {N(t) : t ≥ 0} be a Poisson process with rate λ and let Xi, i ≥ 1, be

i.i.d. nonnegative random vectors with Laplace transform

ψ(β) ≡ Ee−β
′X1 ≡ Ee

−
∑m

j=1
βjX1j . (5.1)

Then

A(0, t] = ct+

N(t)
∑

i=1

Xi (5.2)

and for this special case the exponent is

η(β) = β′c+ λ(1− ψ(β)) . (5.3)

Any nondecreasing Lévy process is actually a limit of such compound Poisson processes with non-

negative jumps and nonnegative drifts.

The Lévy structure enables us to obtain very attractive explicit results for the steady-state

distribution.

Theorem 5.1 If, in addition to the conditions of Theorem 4.3, A(0, ·] is a multivariate Lévy process

with exponent η(β) = − logEe−β
′A(0,1], which is independent of W (0), then W (t) is distributed as

e−Q
′tW (0) +

∫

(0,t]
e−Q

′sdA(s) , (5.4)

Thus

W̃ (β, t) ≡ Ee−β
′W (t) = W̃ (e−Qtβ, 0)e−

∫ t

0
η(e−Qsβ)ds (5.5)

→ W̃ ∗(β) ≡ Ee−β
′W ∗(0) = e−

∫

∞

0
η(e−Qsβ)ds (5.6)

as t→∞. In particular, W ∗(0) has an infinitely divisible distribution and if βλ is a right eigenvector

of Q with respect to some eigenvalue λ, then

W̃ ∗(βλ) = e
−
∫ 1

0

η(xβλ)

λx
dx (5.7)
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Moreover, W̃ ∗(β) solves the following differential equation

β′Q′∇ log W̃ ∗(β) = −η(β) . (5.8)

Proof. The fact that (5.4) holds follows from (4.3) via an obvious change of variable (s := t− s)

recalling the fact that, since A(0, . . .] is Lévy, {A(0, s]|0 ≤ s ≤ t} and {A(t − s, t]|0 ≤ s ≤ t} are

identically distributed processes. Next, we observe that for any function h : < → <n which is a.s.

continuous (w.r.t. Lebesgue measure) and bounded on finite intervals,

Ee−
∫ t

0
h(s)′dA(s) = e−

∫ t

0
η(h(s))ds . (5.9)

From the stationary independent increments property, it is easy to show that it holds for (vector

valued) step functions and thus also for functions which are a.s. continuous and bounded (i.e., h

and any continuous function of h is Riemann integrable) on finite intervals. In particular this holds

for h(s) = e−Qsβ, which together with (5.4) gives (5.5). Infinite divisibility of W ∗(0) follows from

(4.9) and the fact that, for every n, the sum of n i.i.d. Lévy processes each with exponent η/n is

a Lévy process with exponent η. Now, (5.7) follows from (5.5) by the fact that e−Qsβλ = e−λsβλ

and the change of variables x := e−λs. As for (5.8) we first observe that

∇ log W̃ ∗(β) = −

∫ ∞

0
e−Q

′s∇η(e−Qsβ)ds . (5.10)

Since e−Qt → 0 as t→∞,

−

∫ ∞

0
β′Q′e−Q

′s∇η(e−Qsβ)ds = η(e−Qsβ)

∣

∣

∣

∣

∞

0
= −η(β) , (5.11)

which implies (5.8).

We now give an expression for the covariance matrix under extra regularity conditions. See

Theorem 2.12 of Jacobsen [21] for a similar result for the case A(0, t] is a Brownian motion.

Theorem 5.2 If, in addition to the conditions of Theorem 5.1, A(0, 1] has finite second moments

with covariance matrix Σ = −∇2η(0) = (σij), then the covariance matrix Σ
∗ = (σ∗ij) of W

∗(0) is

given by

Σ∗ =

∫ ∞

0
e−Q

′sΣe−Qsds (5.12)

and is the unique solution of

Q′Σ∗ +Σ∗Q = Σ . (5.13)
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In particular, for the two dimensional case,

σ∗12 =
σ11p12 + σ22p21 + 2σ12
2(r1 + r2)(1 − p12p21)

σ∗11 =
σ11
2r1
+
r2p21
r1

σ∗12 (5.14)

σ∗22 =
σ22
2r2
+
r1p12
r2

σ∗12

Proof. From (5.5) we have that

∇2 log W̃ ∗(β) =
∇2W̃ ∗(β)

W̃ ∗(β)
−
∇W̃ ∗(β)∇W̃ ∗(β)′

W̃ ∗(β)2

(5.15)

= −

∫ ∞

0
e−Q

′s∇2η(e−Qsβ)e−Qsds

so that (5.12) is obtained by letting β → 0. To show (5.13) we observe that

−
d

dt
e−Q

′tΣe−Qt = Q′e−Q
′tΣe−Qt + e−Q

′tΣe−QtQ (5.16)

and the result is obtained by integrating both sides and recalling that e−Qt → 0 as t→∞. To show

that the solution of (5.13) is unique, we first observe that the difference between any two solutions

is some symmetric matrix S which satisfies Q′S + SQ = 0. This implies that (Q′)nS = S(−Q)n

and, by multiplying by tn/n! and summing, that eQ
′tS = Se−Qt. Thus, S = e−Q

′tSe−Qt which

vanishes as t → ∞. Therefore, S = 0 and the solution is unique. Finally, (5.14) is obtained by

explicitly solving the linear system of three equation in three unknowns dictated by (5.13). We

note that σ∗12 on the right hand side of the bottom two equations is not an error.

6. Concluding Remarks

We conclude with some remarks about applications to control and heavy-traffic limit theorems.

Centralized and Distributed Control

The linear stochastic fluid model provides a way to combine centralized and distributed control.

The central controller might choose the proportions P ≡ (Pij) and/or r ≡ (rj). Then a local

controller at queue k might take actions throughout time to achieve processing at rate rkx whenever

his workload is x. Moreover, he can route his output according to the specified proportions Pkj ,

1 ≤ j ≤ m.
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Given projected input according to the input A with intensity vector α, the controller might

aim to minimize his expected work in process, which is given by Q′−1α in (4.11). If P is given,

then the mean total workload is

EW =
m
∑

i=1

λi/ri , (6.1)

where the net input rates λi are obtained by solving the traffic rate equations

λi = αi +
m
∑

j=1

αjPij , 1 ≤ i ≤ m . (6.2)

The central controller might choose to minimize EW over possible rate vectors r subject to a

constraint on costs associated with the rates

m
∑

i=1

rici ≤ C . (6.3)

Clearly the mean is reduced by increasing ri, so that it suffices to consider an equality constraint

in (6.3). The elementary solution to this problem is

ri =
C
√

λi/ci
∑m
j=1

√

λj/cj
, 1 ≤ i ≤ m . (6.4)

Heavy-Traffic Limit Theorems

Paralleling the heavy-traffic limits for infinite-server queues in Glynn and Whitt [16], we can

obtain heavy-traffic limits for linear stochastic fluid networks. Indeed, we can apply the previous

theorems because the previous theorems did not depend on the input processes being integer valued.

Those theorems depend on the service-time distribution being a finite mixture of atoms. However,

here, if the processing-time cdf G is associated with finitely many atoms, i.e., if

G(t) =
k
∑

i=1

pi1[0,xi](t) , t ≥ 0 , (6.5)

then we understand a deterministic proportion pi of the arrivals to require xi units of processing

time. Hence, the workload at time t is

W (t) =
k
∑

i=1

piA(t− xi, t] , (6.6)

i.e., in the setting of Glynn and Whitt [16], N i = piN . We can thus apply the theorems there to

get limits as n→∞ for normalized processes such as

nγ(n−1W (nt)−m(t)) , t ≥ 0 , (6.7)

17



The arrival rate grows by assuming that

nγ(n−1A(0, nt] − λt)⇒ Z(t) as n→∞ , (6.8)

as in (2.3) of Glynn and Whitt [16]. Under regularity conditions, these limits support Gaussian

approximations with the exact means and covariances when the input rate is relatively high.
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