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Abstract

We consider the standard GI/G/1 queue with unlimited waiting room and the first-in first-out

service discipline. We investigate the steady-state waiting-time tail probabilities P(W > x) when

the service-time distribution has a long-tail distribution, i.e., when the service-time distribution

fails to have a finite moment generating function. We have developed algorithms for computing

the waiting-time distribution by Laplace transform inversion when the Laplace transforms of the

interarrival-time and service-time distributions are known. One algorithm, exploiting Pollaczek’s

classical contour-integral representation of the Laplace transform, does not require that either of

these transforms be rational. To facilitate such calculations, we introduce a convenient two-

parameter family of long-tail distributions on the positive half line with explicit Laplace

transforms. This family is a Pareto mixture of exponential (PME) distributions. These PME

distributions have monotone densities and Pareto-like tails, i.e., are of order x − r for r > 1. We

use this family of long-tail distributions to investigate the quality of approximations based on

asymptotics for P(W > x) as x → ∞. We show that the asymptotic approximations with these

long-tail service-time distributions can be remarkably inaccurate for typical x values of interest.

We also derive multi-term asymptotic expansions for the waiting-time tail probabilities in the

M/G/1 queue. Even three terms of this expansion can be remarkably inaccurate for typical x

values of interest. Thus, we evidently must rely on numerical algorithms for determining the

waiting-time tail probabilities in this case. When working with service-time data, we suggest

using empirical Laplace transforms.

Key words: long-tail distributions; GI/G/1 queue; waiting time; tail probabilities; numerical

transform inversion; computational probability; Pollaczek contour integrals; Pareto

distributions; asymptotics.
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1. Introduction and Summary

In recent work we have focused on approximations for the steady-state waiting-time tail

probabilities in a single-server queue based on exponential asymptotics; i.e.,

P(W > x) ∼ αe − ηx as x → ∞ , (1.1)

where W is the steady-state waiting time, η is a positive constant called the asymptotic decay rate,

α is a positive constant called the asymptotic constant, and f (x) ∼ g(x) as x → ∞ means that

f (x)/ g(x) → 1 as x → ∞; e.g., see Abate, Choudhury and Whitt [1,2]. When (1.1) holds, it can

serve as the basis for remarkably good approximations. We can approximate P(W > x) directly

by αe − ηx or we can obtain further approximations by approximating α and η. We can also use

(1.1) as a basis for more refined approximations.

Our concern here is with the case in which (1.1) does not hold. Overall, it seems useful to

identify three cases: The first case is when (1.1) holds. The second case is when W has a finite

moment generating function, i.e., when Ee sW < ∞ for some positive s, but (1.1) does not hold.

The third case is when W fails to have a finite moment generating function, i.e., when Ee sW = ∞

for all s > 0.

The second case may seem closely related to the first case, because the waiting-time tail

probabilities are dominated by an exponential for large t, but we contend that the second case is

actually closer to the third; see Section 5 for more discussion. It may come as a surprise that

there even is a second case. The second case is part of established theory in Borovkov [9] and

Pakes [25]; it is illustrated by the M/G/1 model in Example 5 of [1] for suitably small traffic

intensities.

Here we primarily focus on the third case in which W does not have a finite moment

generating function. We consider the GI/G/1 model; i.e., a single-server queue with unlimited

waiting space, the first-in first-out (FIFO) service discipline and i.i.d. (independent and identically
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distributed) service times that are independent of i.i.d. interarrival times. In the GI/G/1 model we

get the third case for W by having a long-tail service-time distribution, i.e., if we have a service

time V for which Ee sV = ∞ for all s > 0. We are interested in this case because we believe that

(i) long-tail service-time distributions can occur in applications, (ii) they might not be recognized,

and (iii) they can have a great impact on queueing performance. It appears that long-tail

distributions arise naturally when we encounter mixtures of distributions in very different time

scales. For example, Duffy, McIntosh, Rosenstein and Willinger [16,17] report that statistical

analysis of holding times of ordinary telephone calls has revealed a long-tail distribution,

consistent with a Pareto-like tail, i.e., P(V > x) ∼ α r x − r as x → ∞ for r near 1. This is

understandable when we recall that there now are modems for data traffic connected for many

hours together with ordinary voice calls of average duration only a few minutes.

Meier-Hellstern, Wirth, Yan and Hoeflin [24] also found that the distribution of interarrival

times in one state of an ISDN traffic model also has a long-tail distribution. Our analysis

indicates that long-tail interarrival times have much less impact upon waiting-time tail

probabilities than long-tail service times. However, as pointed out in [24], there are important

practical consequences of long-tail interarrival-time distributions; e.g., sample moments can

become poor descriptors.

A long-tail service-time distribution suggests that it might be better to use a different service

discipline than FIFO, such as processor sharing. It also suggests that transient analysis may be

more appropriate than steady-state analysis, because steady-state may be approached slowly.

Nevertheless, in this paper we focus on the impact of a long-tail service-time distribution upon

the distribution of the steady-state waiting time in the standard GI/G/1 model with the FIFO

discipline.

It is significant that the long-tail phenomenon can easily be missed, e.g., if we consider only
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the first two moments of the distribution. Moreover, if we are interested in small steady-state

waiting-time tail probabilities P(W > x), then we might seriously underestimate them if we

actually have a long-tail service-time distribution. To quickly illustrate, we display the steady-

state waiting-time tail probabilities P(W > x) for two M/G/1 models in Table 1. (Asymptotic

approximations also are displayed; they will be discussed later.) The exact values are computed

Insert Table 1 here.

using numerical transform inversion, as described in Abate and Whitt [4]. The arrival rate (and

traffic intensity) is ρ = 0. 8. Both models have two-parameter service-time distributions which

we specify by stipulating that the first two moments are m 1 = 1. 0 and m 2 = 2. 67. One has a

gamma service-time distribution, while the second has a long-tail distribution, in particular, the

distribution in (2.5) below with parameter r = 3. 0; also see (2.14). Its third and higher moments

are infinite. From Table 1, we see striking differences in the tail probabilities P(W > x) for the

two service distributions for x values typically of interest, e.g., from x = 10 to x = 100.

The presence of long-tail distributions has other significant side effects. For example, if the

service times fail to have a finite fourth moment, then the sequence of waiting times will have

long-range dependence in the sense that

n Var (W
_ _

n ) → ∞ as n → ∞ ,

where W
_ _

n is the sample mean of the first n waiting times and Var is the variance, e.g., see §3 of

Whitt [30] and references cited there. This long-range dependence can have a number of

consequences, one of which is that it invalidates standard (normal-theory based) procedures of

statistical analysis, e.g., confidence intervals. Indeed, the steady-state mean might not even be

finite. In applications, this phenomenon is manifested by erratic unreliable estimates, and sample

means growing as the size of the data set increases when the mean is infinite. Of course, when
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the possibility of long-tail service-time distributions is recognized, appropriate statistical

procedures can be devised. See [16,17] for further discussion.

We have recently developed algorithms for calculating the waiting-time tail probabilities in a

large class of single-server queues. For the M/G/1 queue, we use direct numerical transform

inversion, as described in Abate and Whitt [4]. For the GI/G/1 queue, we again use numerical

transform inversion as in [4], after obtaining the transform values by numerically integrating the

classical Pollaczek [27,28] contour integrals; see Abate, Choudhury and Whitt [3]. For

BMAP/G/1 queues with batch Markovian arrival processes (BMAPs), we combine matrix

analytical methods with numerical transform inversion, as described in Abate, Choudhury and

Whitt [1,2] and Choudhury, Lucantoni and Whitt [11,12]. Hence, we can compute the waiting-

time tail probabilities provided that we can compute values of the Laplace transform of the

service-time distribution.

An alternative to detailed computation is to exploit asymptotics, as in (1.1). For the GI/G/1

queue, asymptotics for this long-tail case is given in Cohen [14], Theorem 1 of Pakes [25] and

Theorem 12 on p. 132 of Borovkov [9]. To state one such result, let U and V be generic

interarrival and service times, and let G a (x) = P(U ≤ x) and G s (x) = P(V ≤ x), x ≥ 0, be

their cdf’s (cumulative distribution functions). For any cdf F with finite mean m let the

complementary cdf be F c (x) = 1 − F(x) and let the associated stationary-excess cdf (or

equilibrium residual-lifetime cdf) be

F e (x) =
m
1_ __∫

x

∞
F c (y) dy , x ≥ 0 . (1.2)

Throughout this paper we will assume that EV = 1 < EU < ∞, so that ρ ≡ EV / EU < 1.

We also need a technical regularity condition on the service-time cdf (consistent with Ee sV = ∞

for all s > 0). Following Pakes [25], we assume that G s is a subexponential cdf; i.e., if G s2 (x)

is the convolution of G s (x) with itself, then
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Gs2
c (x)/ Gs

c (x) → 2 as x → ∞ . (1.3)

For practical purposes, the subexponential property can be regarded as equivalent to Ee sV = ∞

for all s > 0. The subexponential property implies that Ee sV = ∞; see Appendix 4 of Bingham,

Goldie and Teugels [8].

Theorem 1 (Pakes). Consider a a GI/G/1 queue, where ρ < 1 , EV = 1, Ee sV = ∞ for all

s > 0 and G s (x) has the subexponential property. Then

P(W > x) ∼
1 − ρ

ρ_ ____ Gse
c (x) ≡

1 − ρ
ρ_ ____ ∫

x

∞
Gs

c (y) dy as x → ∞ . (1.4)

Given the great success with (1.1) as an approximation in the first case, it is natural to

consider (1.4) as a basis for simple approximations in the third case. For further simplification,

we exploit the following lemma; see p. 18 of Erde ́ lyi [17].

Lemma 1. If f (x) ∼g(x) as x → ∞, then ∫
x

∞
f (y) dy∼∫

x

∞
g(y) dy as x → ∞.

Lemma 1 implies that we can obtain the asymptotics for the service-time stationary-excess cdf

G se in (1.4) directly from the asymptotics for the service-time cdf G s itself. We can also go one

step further and start with the density if that is convenient.

We shall focus on the case in which P(V > x) ∼ α r x − r as x → ∞ for r > 1. This is a case in

which the departure from (1.1) is dramatic (e.g., in contrast to P(V > x) ∼ e − axb

as x → ∞ for b

less than but near 1, as with some Weibull distributions). From Theorem 1 and Lemma 1 we

obtain the following result.

Corollary. If EV = 1 and P(V > x) ∼ α r x − r as x → ∞ for r > 1, then

P(W > x) ∼


 1 − ρ

ρ_ ____






 r − 1

α r_ ____




x − (r − 1 ) as x → ∞ . (1.5)

A remarkable feature of (1.4) and (1.5) is that, unlike (1.1), the asymptotic behavior depends

on the interarrival-time distribution only through its mean. However, we know that, with case-1
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service-time distributions, the waiting-time tail probabilities depend strongly on the interarrival-

time distribution beyond its mean (e.g., on the second moment or, equivalently, the SCV (squared

coefficient of variation), which we denote by ca
2); e.g., for the GI/M/1 queue, see Whitt [29].

Hence, from the outset, we should be highly suspicious of (1.4) and (1.5) as approximations.

Indeed, we show that (1.4) and (1.5) can be very poor approximations for typical x values of

interest. In fact, our experience indicates that the approximation provided by (1.1) is typically

good, while the approximation provided by (1.5) is typically bad. Moreover, we show that the

approximation for P(W > x) provided by (1.5) can be too small, so that it is not conservative.

This is illustrated by Table 1. The asymptotic approximation based on (1.1) with the gamma

service-time distribution is not displayed, because it is exact in the stated four-digit precision,

whereas the asymptotic approximation based on (1.5) is not yet very close by x = 100.

Moreover, as stated above, the approximation based on (1.5) underestimates the exact value.

One approach to this difficulty with the asymptotics in this case is to develop refined

asymptotics with more terms, as has been done for the M/G/1 queue by Willekens and

Teugels [31]. Indeed, we show that such refined asymptotics for the M/G/1 queue can also be

developed using Laplace transforms. Unfortunately, however, we also show that even three terms

can be remarkably inaccurate for typical x values of interest. Hence, it appears that it is preferable

to directly calculate the tail probabilities.

In order to compute the steady-state waiting-time tail probabilities with a long-tail service-

time distribution by our algorithms, we need to be able to compute the Laplace transform values

for the service-time distribution. Unfortunately, however, explicit Laplace transforms do not

seem available for familiar long-tail distributions, such as lognormal, Pareto or Weibull, see

Chapters 14, 19 and 30 of Johnson and Kotz [23]. This motivated us to introduce (what appears

to be) a new family of long-tail distributions with explicit Laplace transforms. These are Pareto
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mixtures of exponential (PME) distributions. We believe that this family can be useful for

queueing applications, and perhaps elsewhere as well.

We also suggest an alternative approach. Given any service-time distribution, we suggest

constructing an approximating distribution with finite support, and then directly calculating its

Laplace transform. For example, given any cdf G on [ 0 ,∞) and any n points x i , 0 ≤ i ≤ n with

x 0 = 0, x i < x i + 1 and x n = ∞, we can construct probability mass functions p l ,p m and p u

defined by

p l (x i ) = G(x i + 1 ) − G(x i ) , 0 ≤ i ≤ n − 1 , (1.6)

p m ( (x i + x i + 1 )/2 ) = G(x i + 1 ) − G(x i ) , 0 ≤ i ≤ n − 2

p m (x n − 1 ) = 1 − G(x n − 1 ) (1.7)

p u (x i ) = G(x i ) − G(x i − 1 ) , 1 ≤ i ≤ n − 2

p u (x n − 1 ) = 1 − G(x n − 2 ) . (1.8)

Note that the cdf G l associated with p l in (1.6) is a stochastic lower bound for G, i.e.,

Gl
c (x) ≤ G c (x) for all x, while the cdf G u is almost a stochastic upper bound for G. (It would be

except for the upper tail above x n − 1 . If we consider successive refinements of the set of points

{x i }, then these three cdf’s G l , G m and G u will all converge to the original cdf G, while the

cdf’s G l will converge from below (in stochastic order) to the cdf G. The associated waiting-time

cdf’s will also converge to the true waiting time cdf (provided that G has a finite mean), and also

from below for G l; see §§11, 21, 24 of Borovkov [9].

Given a probability mass function with finite support {y i : 1 ≤ i ≤ n}, we can directly

calculate the Laplace transform as

i = 1
Σ
n

p(y i ) e − sy i . (1.9)
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Given data, e.g., a sample of n service times {y i }, we can directly construct the empirical

Laplace transform, which is also given by (1.9). This approach is related to Gaver and

Jacobs [20], but they assume and exploit (1.1). With data, we might choose to do some

smoothing or approximate further to reduce the number of points.

We show that this finite approximation scheme is effective by applying it with the long-tail

distributions for which we have explicit Laplace transforms. From our analysis with finite

approximations, we infer that it is also possible to suitably approximate long-tail distributions

with other classes of distributions, such as phase-type distributions. The important point is to

match the true service-time distribution in the region where it has a significant effect on the

waiting-time probability of interest. The GI/G/1 queueing theory suggests that, if we want to

predict P(W > x) for some given x, then we might try to match the complementary stationary-

excess service-time distribution Fe
c (y) in (1.2) for 0 ≤ y ≤ x. (See (1.4) and (4.2), for example.)

From (1.2), we see that it is critical to get the correct service-time mean, but that we might

otherwise aim for appropriate percentiles rather than higher moments.

Here is how the rest of the paper is organized. In §2 we introduce the new two-parameter

family of long-tail distributions, and discuss its properties. In §3 we develop multi-term

asymptotics for the M/G/1 waiting-time distribution with long-tailed service-time distribution.

Our approach exploits Laplace transforms, and so is different from the previous procedures, in

particular, Willekens and Teugels [31]. In §4 we discuss numerical examples. In §5 we discuss

the second case in which Ee sW < ∞ for some s > 0, but (1.1) does not hold. In §5 we show that

any case-three service-time distribution can be converted to a case-two service-time distribution

simply by exponential damping. As illustrated by Example 5 of [1], our experience is that the

asymptotic approximations for the second case also perform poorly. Finally, in §6 we draw

conclusions.
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2. A Convenient Family of Long-Tail Distributions: Pareto Mixtures of Exponentials

We seek a family of cdf’s F r (x) with tail behavior

Fr
c (x) ∼ α r x − r as x → ∞ , (2.1)

mean 1 and tractable Laplace transform. To have finite mean, we need r > 1. If we would be

content with distributions without moments, then we could use the nonnegative stable laws with

transforms e − sα
, 0 < α < 1, as on p. 448 of Feller [19], but we are primarily interested in

distributions with moments. We want the service-time distribution to have a finite mean, so that

W has a proper distribution.

A familiar family satisfying (2.1) is the Pareto distribution; see Chapter 22 of Johnson and

Kotz [23]. The Pareto complementary cdf is

Fr
c (x) =



 r

r − 1_ ____




r

x − r , x ≥ (r − 1 )/ r , (2.2)

and its density is

f r (x) = r


 r

r − 1_ ____




r

x − (r + 1 ) , x ≥ (r − 1 )/ r . (2.3)

The Pareto distribution has moments

mn′ =
(r − n)

r_ _____


 r

r − 1_ ____




n

, 1 ≤ n < r , (2.4)

so that its squared coefficient of variation (SCV) is c 2 = 1/ r(r − 2 ). This Pareto family is not

too attractive because it does not allow small values, but modifications do. However, the Laplace

transform of this distribution (its density) and its standard modifications are not expressible in

terms of elementary functions.

We thus propose a new modification of (2.2), namely, a Pareto mixture of exponentials
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(PME). For r > 1, let the PME density be

g r (x) =
(r − 1 )/ r

∫
∞

f r (y) y − 1 e − x / y dy (2.5)

for f r in (2.3). From (2.4) and (2.5), we see that the moments of g r are

m n ≡ m n (g r ) = n!mn′ = n!
(r − n)

r_ _____


 r

r − 1_ ____




n

, (2.6)

e.g.,

m 1 = 1 , m 2 =
(r − 2 )

2r_ _____


 r

r − 1_ ____




2

, m 3 =
(r − 3 )

6r_ _____


 r

r − 1_ ____




3

(2.7)

and the SCV is

cr
2 = 1 +

r(r − 2 )
2_ ______ . (2.8)

By performing a change of variables (x to x − 1), we can also represent the density as

g r (x) =
0
∫

r /(r − 1 )

φ r (y) ye− yx dy , (2.9)

where

φ r (y) = r


 r

r − 1_ ____




r

y r − 1 , 0 < y < r /(r − 1 ) . (2.10)

Let G r and G re be the cdf and stationary-excess cdf associated with the density g r . We now

express the complementary cdf Gr
c and the complementary stationary-excess cdf Gre

c directly in

terms of the density g r . This enables us to apply Theorem 1 without doing any integration. The

following can be deduced from (2.9); we omit the proof.
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Theorem 2. For r > 1,

Gr
c (x) = a r g r − 1 (a r x) , x ≥ 0 , (2.11)

and

Gre
c (x) =

x
∫
∞

Gr
c (y) dy = b r g r − 2 (c r x) , x ≥ 0 , (2.12)

where

a r =
(r − 1 )2

r(r − 2 )_ ______ , b r =
(r − 2 )2

(r − 1 ) (r − 3 )_ ___________ and c r =
(r − 1 ) (r − 2 )

r(r − 3 )_ ___________ . (2.13)

Since G r is a Pareto mixture of exponential cdf’s, it is completely monotone, so that the

density g r is monotone. For r integer, the density g r is easily expressed in closed form; see

(4.2.55) on p. 71 of Abramowitz and Stegun [5]. For r = 2 , 3 and 4, the densities and

complementary cdf’s are

g 2 (x) =
x 3

1_ __ ( 1 − ( 1 + 2x + 2x 2 ) e − 2x ) , x > 0 ,

g 3 (x) =
3x 4

16_ ___ ( 1 − ( 1 +
2

3x_ __ +
8

9x 2
_ ___ +

16
9_ __ x 3 ) e − 3x /2 ) , x > 0 ,

g 4 (x) =
8x 5

243_ ___




1 −




1 +

3
4x_ __ +

9
8x 2
_ ___ +

9
128x 3
_ _____ +

243
32x 4
_ ____





e − 4x /3





, x > 0 , (2.14)

G2
c (x) =

2x 2

1_ ___ ( 1 − ( 1 + 2x) e − 2x ) , x > 0 ,

G3
c (x) =

9x 3

16_ ___ ( 1 − ( 1 +
2

3x_ __ +
8

9x 2
_ ___ ) e − 3x /2 ) , x > 0 ,

G4
c (x) =

32x 4

243_ ____




1 −




1 +

3
4x_ __ +

9
8x 2
_ ___ +

81
32x 3
_ ____





e − 4x /3





, x > 0 ,

We now describe the asymptotics of PME distributions. For r integer, the asymptotics follow

easily from the explicit representation above. For non-integer r, we exploit properties of the

incomplete gamma function, §6.5 of Abramowitz and Stegun [5]. For this purpose, let Γ(z) be
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the gamma function and γ(a ,x) the incomplete gamma function in (6.1) and (6.5.2) of [5].

Theorem 3. For r > 1,

Gr
c (x) ∼rFr

c (x) γ(r ,xr /(r − 1 ) ) as x → ∞

∼ Γ(r + 1 ) Fr
c (x) = Γ(r + 1 )



 r

r − 1_ ____




r

x − r as x → ∞ (2.15)

and

Gre
c (x) ∼ Γ(r)



 r

r − 1_ ____




r − 1

x − (r − 1 ) as x → ∞ . (2.16)

Proof. Use (6.5.2), (6.5.3) and (6.5.32) in [5] together with (2.9). Use Lemma 1 to get the

second asymptotic relation.

It is important to note that the next term in the asymptotics rγ(r ,xr /(r − 1 ) ) ∼ Γ(r + 1 ) as

x → ∞ is exponentially small, so that further refinements to (2.15) and (2.16) do not help much.

A crucial point for our purposes is that we can express the Laplace transform of the density g r

conveniently. In particular,

ĝ r (s) ≡ ∫
0

∞
e − sxdG r (x) = ∫

0

∞
e − sxg r (x) dx

= r


 r

r − 1_ ____




r

∫
0

r /(r − 1 )

s + x
x r

_ ____dx . (2.17)

For integer r, the expansion for the integral is given on p. 58 of Gradshteyn and Ryzhik [21]. It

implies that

ĝ r (s) =
i = 1
Σ
r

( − 1 ) r − i

i
r_ _



 r

r − 1_ ____




r − i

s r − i + ( − 1 ) rr


 r

r − 1_ ____




r

s r ln



1 +

(r − 1 ) s
r_ _______





. (2.18)

For example,
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ĝ 2 (s) = 1 − s +
2
s 2
_ __ ln ( 1 +

s
2_ _ ) ,

ĝ 3 (s) = 1 − s +
3
4_ _ s 2 −

9
8_ _ s 3 ln ( 1 +

2s
3_ __ ) ,

ĝ 4 (s) = 1 − s +
3
4_ _ s 2 −

16
27_ __ s 3 +

64
81_ __ s 4 ln ( 1 +

3s
4_ __ ) . (2.19)

Formula (2.18) is fine for computation when s is small, but if s is large, then it can cause

difficulties. Since the first r terms are exactly cancelled by the first r terms in the Taylor series

expansion of the logarithm in (2.18) in powers of s − 1 , we obtain the alternate form

ĝ r (s) =
i = 0
Σ
∞

( − 1 ) i

r + 1 + i
r_ ______



 r − 1

r_ ____




i + 1

s − (i + 1 ) (2.20)

to use for large s . When s is large, it is appropriate to use a truncated version (e.g., the first

several terms) of (2.20). We use an automatic algorithm that truncates the series whenever the

most recent term is below 10 − 12 .

We can also give an explicit representation for the integral (2.17) when r is of the form

n + 1/2 for n integer. In this case,

ĝ r (s) = 1 − s +
2

m 2_ ___ s 2 − . . . +
n!

( − 1 ) nm n_ ________ s n

+ ( − 1 ) n + 12r


 r

r − 1_ ____




r

s r Arctan (√ r /(r − 1 ) s ) , (2.21)

where m k is the k th moment in (2.6). We obtain (2.21) from (2.17) by applying the following

relation between the transforms for different values of r and 2.213.1 on p. 71 of Gradshteyn and

Ryzhik [21]. For numerics involving (2.21), see (4.4.3.9) of [5]. We obtain the following from

Theorem 2.

Theorem 4. For r > 1,

ĝ r + 1 (s) = 1 − s ĝ r (d r s) ,

where d r = r 2 /(r + 1 ) (r − 1 ).
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For example,

ĝ 2. 5 (s) = 1 − s +
5

9s 2
_ ___ − 5 ( 0. 6s)2. 5 Arctan (√ 5/3s ) . (2.22)

From Theorem 3, for r = m + 1/2,

Gr
c (x) ∼

2m + 1

( 1.3.5. . .( 2m + 1 ) )_ ________________ √ π F2. 5
c (x) , (2.23)

so that

G2. 5
c (x) ∼

40
27_ __√ 0. 6π x − 2. 5 and G2. 5e

c (x) ∼
20

9√ 0. 6π_ _______ x − 1. 5 as x → ∞ . (2.24)

We close this section by mentioning a source for other long-tail distributions. Since any

mixture of exponential distributions is infinitely divisible, see p. 452 of Feller [19], the PME

distributions are all infinitely divisible. Since infinitely divisible distributions on [ 0 , ∞) have

convenient Laplace transform representations, see p. 450 of Feller [19], it is natural to consider

them as a source for additional long-tail distributions.

3. M/G/1 Asymptotic Expansions

Three-term asymptotic expansions for the waiting-time tail probabilities P(W > x) in M/G/1

queue with long-tail service-time distributions are described in Willekens and Teugels [31] and

references cited there. The asymptotics are developed in the time domain, exploiting the theory

of regularly varying functions, as in Feller [19], and the theory of subexponential distributions as

in Appendix 4 of Bingham et al. [8]. Here we point out that the M/G/1 asymptotic expansion, can

be derived from the Laplace transforms, although so far it remains to fully justify our procedure.

Our procedure is appealing because it is quick and insightful; it clearly shows where the terms

come from.

Our starting point is the idea that a polynomial in the Laplace transform does not affect the
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asymptotics when the dominant singularity is at the origin. This idea is discussed on p. 254 of

Doetsch [15], p. 333 of Bingham et al. [8] and p. 596 of Feller [19] in a special case. Notice that

such polynomial terms appear in the PME transforms in (2.18), (2.19) and (2.21). Indeed, any

distribution on the nonnegative real line with finite k th moment and infinite (k + 1 ) st moment has

a Laplace-Stieltjes transform that can be expressed as
i = 0
Σ
k

a i s i + ĥ(s) where ĥ(s) has a singularity

at 0. We present our key tool as an operational principle. It can be verified in special cases.

First Operational Principle. Suppose that the Laplace transform of a function g is of the form

ĝ(s) =
i = 0
Σ
∞

a i s i + ĥ(s) (3.1)

for scalars a i , where ĥ is the Laplace transform of h, which has a singularity at 0, and the series

is absolutely convergent for s suitably small. Then g(x) ∼ h(x) as x → ∞.

We now give an instance in which a variant of the first operational principle has been

demonstrated. This result is due to Bingham and Doney [7] and appears on p. 333 of Bingham et

al. [8]. Let L(x) be a slowly varying function, e.g., a constant; see [8,9].

Theorem 5. (Bingham and Doney). Consider a probability distribution with cdf G and

Laplace-Stieltjes transform ĝ(s) having finite k th moment but infinite (k + 1 ) st moment, k ≥ 0,

so that ĝ(s) =
i = 0
Σ
k

a i s + ĥ(s). Then ĥ(s) ∼ ( − 1 ) k + 1 s rL( 1/ s) as s → 0 if and only if

G c (x) ∼
rΓ( − r) x r

( − 1 ) k + 1 L(x)_ ___________ as x → ∞ (3.2)

provided that k < r < k + 1.

The integer case related to Theorem 5 is not so clean. The time-domain limit (3.2) implies an

analogous transform limit, but not conversely. We deduce the equivalence below from Bingham

and Doney [7].
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Theorem 6. In the setting of Theorem 5, h(s) ∼ ( − 1 ) k + 1 s k + 1 log s as s → 0 if and only if

∫
0

x
y k + 1 dG(y) ∼ (k + 1 ) ! log x as x → ∞ . (3.3)

The asymptotic relation (3.3) is in turn implied by (but does not imply)

1 − G(x) ∼
x k + 1

k!_ ____ as x → ∞ . (3.4)

Proof. The first equivalence follows from Theorem A of Bingham and Doney [7] by letting their

slowly varying function be log x. Using integration by parts [19, p. 150],

∫
0

x
y k + 1 dG(y) = − x k + 1 G c (x) + (k + 1 )∫

0

x
y kG c (y) dy ,

we see that (3.4) implies (3.3). Example 3.1 below shows that the converse is not true.

Note that the cases covered by Theorems 5 and 6 are especially of interest here because the

PME distributions have precisely this asymptotic form, as shown in Theorem 3. For these PME

distributions we can derive asymptotics for the Laplace transforms directly from (2.18) and

(2.21). For the integer case in (2.18), we get

ĥ(s) ∼ ( − 1 ) n + 1


 n

n − 1_ ____




n

ns n log s as s → 0 ;

for the half-integer case r = n + 1/2 in (2.21), we get

ĥ(s) ∼ ( − 1 ) n + 1


 r

r − 1_ ____




r

rπs r as s → 0 .

For the special case in which G has a Pareto density, g(x) = Ax − (k + 2 ) for x ≥ x 0 , we can

deduce the transform asymptotics in Theorem 6 from exponential integrals, in particular, from

5.1.12 on p. 229 of Abramowitz and Stegun [5]. We now give an example showing that (3.3)

does not imply (3.4). This is similar to Example 1 in Abate, Choudhury and Whitt [2] showing

that an extra condition is needed in the Tauberian theorem applied there. Here too the transform
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asymptotics cannot detect periodic behavior in the time domain.

Example 3.1. To see that the transform asymptotics in Theorem 6 does not directly imply (3.4),

let

g(t) =
π t 2

2 ( 1 − cos t)_ __________ =
π
4_ _



 t

sin (t /2 )_ _______




2

, (3.5)

from which we deduce that

ĝ(s) =
π
2_ _ arctan ( 1/ s) −

π
s_ _ log




1 +

s 2

1_ __




. (3.6)

By 4.4.42 on p. 81 of [5], as s → 0,

arctan ( 1/ s) =
2
π_ _ − s +

3
s 3
_ __ −

5
s 5
_ __ + . . .

Therefore, the ‘‘singularity part’’ of ĝ(s) is the second term on the right in (3.6). Since log has a

branch cut singularity on the negative real axis, the critical singularity of

π
s_ _ log




1 +

s 2

1_ __




=
π
s_ _ log ( 1 + s 2 ) −

π
2s_ __ log s

is at s = 0. Moreover, this term is asymptotic to ( 2/π) s log s as s → 0. Hence, we see that the

transform asymptotics does not reflect the periodic cosine function in (3.5).

We now turn to the M/G/1 queue. Recall from (1.2) that the Laplace transform of the

stationary-excess service-time distribution is ĝ e (s) = ( 1 − ĝ(s) )/ s.

Lemma 2. For the M/G/1 queue with service-time distribution having mean 1,

Ŵ
c
(s) ≡ ∫

0

∞
e − sxP(W > x) dx =

k = 1
Σ
∞

( − 1 ) k + 1


 1 − ρ

ρ_ ____




k

( 1 − ĝ e (s) ) k s − 1 , (3.7)

where the series is absolutely convergent for positive s sufficiently small.

Proof. Recall that the Laplace-Stieltjes transform of W is
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Ee − sW =

1 − ρ


 s

1 − ĝ(s)_ ______




1 − ρ_ ______________ =

1 +


 1 − ρ

ρ_ ____






 s

ĝ(s) − ( 1 − s)_ ___________




1_ _________________________

=
1 +

1 − ρ
ρ_ ____ ( 1 − ĝ e (s) )

1_ __________________ . (3.8)

Since Ŵ
c
(s) = [ 1 − Ee − sW ]/ s, (3.7) follows from (3.8). Since ĝ e (s) is the Laplace transform of

a probability density, ĝ e ( 0 ) = 1 and, for any ε > 0, 1 − g e (s) < ε for positive s suitably small.

Hence, the series is indeed absolutely convergent for positive s suitably small.

The idea now is to invert the series in (3.7) term by term. Borovkov justifies such a term-by-

term approach for long-tail service time distributions in Lemma 2 on p. 133 of [9]. When we do

this, we get

W c (t) =
1 − ρ

ρ_ ____ Ge
c (t) +



 1 − ρ

ρ_ ____




2


1 − Ge

∗2 (t) − 2Ge
c (t)

+


 1 − ρ

ρ_ ____




3 


3 

Ge
c (t) − ( 1 − Ge

∗2 (t) ) + 1 − Ge
∗3 (t)





+ ... (3.9)

Note that the first term is just (1.4), as it should be. To make a connection to Willekens and

Teugels [31], their (10) and (11) shows how to do asymptotics in the time domain to obtain

Theorem 5 below from the terms in (3.9). Instead, we reason directly from (3.7), exploiting the

first operational principle above.

Let + − 1 ( ĝ) denote the inverse Laplace transform of ĝ. Recall that + − 1 (s k ĝ) is the k th

derivative of g. The assumptions in the next operational principle express key properties of

long-tail distributions (our case 3), and are satisfied by the PME distributions in §2. Note, that

the result agrees with the one-term asymptotics in Theorem 1 and the three-term asymptotics in

Willekens and Teugels [31]. With our approach, we can also obtain additional terms.
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Second Operational Principle. Suppose that the service-time density g in an M/G/1 queue has

Laplace transform of the form (3.1), where + − 1 (s k + 1 ĝ( − s) ) is asymptotically negligible

compared to + − 1 (s k ĝ) as x → ∞ for k ≥ − 2 and + − 1 (s − 3 ĥ(s)2 ) is asymptotically negligible

compared to + − 1 ( ĥ(s) ) as x → ∞. Assuming that the asymptotics of the sum in (3.7) is the sum

of the asymptotics for each term, we obtain

P(W > x) ∼


 1 − ρ

ρ_ ____




ψ 1 (x) + m 2



 1 − ρ

ρ_ ____




2

ψ 2 (x)

+





3

m 3_ ___ +
4

3m2
2

_ ____


 1 − ρ

ρ_ ____











 1 − ρ

ρ_ ____




2

ψ 3 (x) as x → ∞ (3.10)

with the two-term (three-term) expansion being valid when m 2 < ∞ (m 3 < ∞), where

ψ 1 (x) ∼Ge
c (x) = ∫

x

∞
G c (y) dy∼∫

x

∞
H c (y) dy

ψ 2 (x) ∼G c (x) ∼H c (x) ≡ ∫
x

∞
h(y) dy

ψ 3 (x) ∼g(x) ∼h(x)

as x → ∞ .

as x → ∞

as x → ∞

(3.11)

Partial Proof. From (3.1), we see that + − 1 (s k + 1 ĥ) is asymptotically negligible compared to

+ − 1 (s k ĥ) as x → ∞, given the corresponding property assumed for ĝ. Since + − 1 (s − 3 ĥ(s)2 ) is

asymptotically negligible compared to + − 1 ( ĥ(s) ) as x → ∞, we can disregard powers ĥ(s) k in

expansions of [ ĝ(s) − ( 1 − s) ]. In particular,
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+ − 1




s k − 1



 s 2

ĝ(s) − ( 1 − s)_ ___________




k




= + − 1




s k − 1




a 2 + a 3 s + . . . +

s 2

ĥ(s)_ ____




k




∼+ − 1


 s 2

ĥ(s)_ ____




as x → ∞ for k = 1 ,

∼+ − 1



2a 2 s

ĥ(s)_ ____ + a 3 ĥ(s) +
s 3

ĥ(s)2
_ _____





for k = 2 ,

∼+ − 1 ( 3a2
2 ĥ(s) ) for k = 3 ,

∼+ − 1 (ka2
k s k − 2 ĥ(s) ) for k > 3 . (3.12)

We thus obtain (3.10) with (3.11) by applying (3.12) and (3.7), assuming the asymptotics can be

done term by term (see p. 133 of [9]).

To apply the second operational principle, we do not need to work directly with the

transforms, because the result gives the asymptotics in terms of the service-time cdf G. However,

we could also work with the transforms; e.g., (2.18), (2.19), (2.21) and (2.22). With (2.18) and

(2.19), we need to work with the functions s n log ( 1 + as − 1 ). For relevant material on Laplace

transforms involving logarithms, see pp. 67-69 of Abramowitz and Stegun [5], No. 43 on p. 320

of Doetsch [15], pp. 340-341 of Carslaw and Jaeger [10] and p. 104 of Smith [28].

We can also do asymptotics when m 2 = ∞ or m 3 = ∞. To illustrate, we consider the PME

distribution with r = 2; then m 2 = ∞. Since we do not have complete theoretical justification,

we call our result a conjecture. (Since the PME distribution is a mixture of exponentials, the

PME distribution is completely monotone. This implies that the waiting-time distribution is

completely monotone. Hence, an anomaly such as in Example 3.1 seems very unlikely.) In [3]

we saw that the two-term asymptotics when r = 2 performs pretty well in this case.
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Conjecture. Consider the M/G/1 queue with PME service-time distribution having r = 2.

Again, assuming that the asymptotics can be done term by term in (3.7), we obtain

P(W > x) ∼
2 ( 1 − ρ) x

ρ_ ________



1 +

( 1 − ρ) x
ρ( log ( 2x) − 1 )_ ______________





as x → ∞ .

Partial Proof. Reasoning as with the second operational principle, we get

Ŵ
c
(s) =



 1 − ρ

ρ_ ____






 s 2

ĝ 2 (s) − ( 1 − s)_ ____________




−


 1 − ρ

ρ_ ____




2 

 s 2

ĝ 2 (s) − ( 1 − s)_ ____________




2

s + . . .

=
2 ( 1 − ρ)

ρ_ _______ log ( 1 + 2s − 1 ) −


 2 ( 1 − ρ)

ρ_ _______




2

( log ( 1 + 2s − 1 ) )2 s + . . .

Since log ( 1 + 2s − 1 ) ∼ − log s, ( log ( 1 + 2s − 1 ) )2 ∼ − 2 ( log 2 ) logs + ( log s)2 , + − 1 ( − log s) ∼x − 1 ,

+ − 1 (s log s) ∼x − 2 and + − 1 (s( log s)2 ) ∼2 ( log x − 1 )/ x 2 as x → ∞, the result follows.

4. Numerical Examples

In this section we examine some numerical examples.

One-Term Asymptotics for GI/G/1

We start by investigating the quality of the simple one-term asymptotic approximation

provided by the Corollary to Theorem 1. Table 1 covers the PME service-time distribution in §2

with mean 1 and r = 3. 0. Now we consider the PME distribution with mean 1 and r = 4. The

first four moments of G 4 are m 1 = 1, m 2 = 2. 25, m 3 = 10. 125 and m 4 = ∞.

To focus on the influence of the interarrival-time distribution beyond its mean, we consider

four different interarrival-time distributions, all with mean 1.25, so that ρ = 0. 8. The

distributions we consider are Erlang of order 2 (E 2 ), exponential (M), gamma with shape

parameter 1/2 (Γ 1/2 ), and the long-tail distribution in §2 with r = 4 (G 4 ). (The random

variable is multiplied by 1.25 to make it have mean 1.25.) The SCVs of these distributions are

0.5, 1.0, 2.0 and 1.25, respectively. By the criterion of SCV, the long-tail G 4 distribution is
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actually less variable than the Γ 1/2 distribution.

Note that the Γ 1/2 and G 4 distributions do not have rational Laplace transforms. In these

cases, neither the interarrival-time transform nor the service-time transform is rational, but that

presents no difficulty for the numerical transform inversion algorithm based on Pollaczek’s

contour integrals in [3]. Since the service-time distribution is long-tailed, we used the procedure

in §4 of [3] with damping parameter α = 10 − 8 .

The steady-state waiting-time tail probabilities P(W > x) are plotted for values of x ranging

from 5 to 50 in Table 2. Recall that the mean service time is 1 and the mean waiting time in the

M/G/1 case is

EW =
2 ( 1 − ρ)

ρ( 1 + cs
2 )_ ________ = 4. 5 . (4.1)

Thus the range is reasonable.

Insert Table 2 here.

From Table 2, we see that the exact tail probabilities P(W > x) range from 1. 8 × 10 − 4 to

2. 1 × 10 − 3 at x = 50, while the asymptotic approximation is 8 × 10 − 5 . Thus, for these values

of x, the influence of the interarrival-time distribution beyond its mean is still significant and the

simple asymptotic approximation provided by (1.5) is not yet very good. Indeed, in the case of

Γ 1/2 interarrival times, the exact value at x = 50 is about 2. 1×10 − 3 , while the asymptotic

approximation is too small by a factor of 25. For more variable gamma interarrival-time

distributions (with shape parameter less than 1/2), the error is even greater.

Moreover, the difficulty with (1.5) is not alleviated by using (1.4) or (1.3). In particular, the

asymptotic approximation (1.5) for G4e
c in (1.4) is pretty good. Since Gr

c (x) is decreasing in x,

we see that the approximation (2.3) is always less than or equal to (1.4), but (1.4) and (1.5) are
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too low in Table 2.

Also note, consistent with the interarrival-time SCVs, that the tail probabilities for the GI/G/1

queue when the interarrival-time distribution also has a long tail falling between the M and Γ 1/2

cases. Generally speaking, the long-tail property in the interarrival-times has much less impact

upon waiting-time tail probabilities than the long-tail property in service times. As noted in [3],

long-tail interarrival-time distributions present no difficulty for the algorithm there.

Two-Term and Three-Term Asymptotics for M/G/1

We also investigate the accuracy of the asymptotic approximations with more terms in the

M/G/1 case discussed in §3. We consider the same G 4 service-time distribution and we once

again let ρ = 0. 8. In this case we are able to apply the numerical inversion algorithms in [4]

directly, which requires less computation.

The exact results and the asymptotic results are displayed in Table 3. The correctness of the

numerics and the asymptotics is evident from the larger values of x in Table 3. The one-term,

Insert Table 3 here.

two-term and three-term approximations have 23%, 1.5% and 1.0% relative errors at x = 250. In

particular, the two-term and three-term approximations perform well at x = 250, but then the

exact probability is only about 7 × 10 − 7 .

It is also significant that the asymptotic approximations take a long time (large x) before they

are good. For example, even the three-term approximation is off by a factor of 4 at x = 40.

Since the M/G/1 waiting-time tail probability has the exact representation

P(W > x) = 1 − ( 1 − ρ)
n = 0
Σ
∞

ρnGre
∗nc (x) , (4.2)
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where Gre
∗nc is the complementary cdf associated with the n-fold convolution of the stationary

excess cdf G re associated with G r , we anticipate that the first term might provide a good

approximation in light traffic, i.e.,

P(W > x) ∼∼ 1 − ( 1 − ρ) ( 1 + ρG re (x) ) ∼∼ ρGre
c (x) , (4.3)

which is approximately equal to (1.4) in light traffic. Hence, we show numerical values for the

M/G/1 queue with ρ = 0. 2 in Table 4. From Table 4, we see that the asymptotic approximations

do indeed perform significantly better in this case.

Insert Table 4 here.

We conclude by making two observations about the differences between the asymptotics in

(1.1) and (1.5). With (1.1), once the asymptotics provides a good approximation, it tends to stay

good, whereas with (1.5) in Table 4 it is better at x = 8 than at x = 40. Another is that (1.1) is

better in heavy traffic, while (1.5) is better in light traffic.

Finite Approximations

We now consider approximations based on finite approximations of the service-time

distribution. We assume that the original service-time distribution is the PME distribution with

r = 3, so that we have exact results to compare with, namely, the results in Table 1.

We consider two approximations: first, (1.6) in which the approximating service-time

distribution is stochastically less than the true service-time distribution and, second, (1.7) in

which the point mass is put in the midpoint of the interval.

The upper limit of the approximating distribution is fixed at 500. The difference between

successive boundary points is made to grow geometrically so that the ratio of the last difference

to the first equals 200. The results are displayed in Table 5.
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Insert Table 5 here.

Consistent with theory, the approximation based on (1.6) yields a lower bound, while the

approximation based on (1.7) is neither a lower bound nor an upper bound. As one might

anticipate, the approximation based on (1.7) is considerably more accurate than the one based on

(1.6).

For the lower x values, the upper limit of 500 on the approximating distribution looks

reasonable. However, for the higher x values, this seems to be not entirely true, because as we

increase the number N of points, the approximations approach a value slightly lower than the true

value.

Overall, Table 5 suggests that this finite approximation scheme is reasonable. Certainly the

approximations provided by (1.6) and (1.7) are far superior to the approximation provided by the

gamma distribution matching the first two moments, as can be seen by comparing Tables 1 and 5.

5. The Second Case

In this section we point out that the second case of waiting-time asymptotics is not as

pathological as it might seem. Indeed, it is closely related to the third case that we have

considered.

For the discussion here, it is useful to classify the service-time distributions (all assumed to

have mean 1). We assume that all interarrival-time distributions have finite mean and that V − U

has a nonlattice distribution. We say that a service-time distribution belongs to class I if (1.1)

holds for all interarrival time distributions and all ρ , 0 < ρ < 1. We say that a service-time

distribution belongs to class II if, for each interarrival-time distribution, there exists ρ∗ with

0 < ρ∗ < 1 such that (1.1) holds for all ρ with ρ∗ < ρ < 1 but does not hold for any ρ with
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0 < ρ < ρ∗ . We say that a service-time distribution belongs to class III if (1.1) never holds.

Since (1.1) is characterized by the equation Ee s(V − U) = 1 having a solution, e.g., see Abate,

Choudhury and Whitt [1], Asmussen [6] or Borovkov [9], it is easy to classify the service-time

distributions directly in terms of their Laplace-Stieltjes transforms ĝ(s) ≡ Ee − sV . If ĝ(s) has no

singularities, then it is class I. Henceforth, assume that it does have singularities (necessary in the

left half plane). Let − s ∗ for s ∗ > 0 be the rightmost singularity of ĝ(s) (s ∗ is the radius of

convergence of Ee sV). Then g is classified as follows:

class III:

class II:

class I:

s ∗ = 0 .

s ∗ > 0 and 1 < g( − s ∗ ) < ∞
s ∗ > 0 and g( − s ∗ ) = ∞

(5.1)

From (5.1) it is easy to see how to convert a class-III service-time distribution into a class-II

service-time distribution and vice versa. For any u > 0 and any class-III service-time density

g(x), construct a new density by exponential damping, i.e., by setting

h u (x) =
ĝ(u)

e − uxg(x)_ _______ , x ≥ 0 , (5.2)

Clearly, h u (x) is a bonafide probability density function. Since ĥ u (s) = ĝ(s + u)/ ĝ(u),

ĝ( 0 ) = 1 and ĝ( − s) = ∞ for all s > 0, − u is the rightmost singularity of ĥ u (s) and

ĥ u ( − u) = 1/ ĝ(u). Hence, h u is indeed a class-II density. If u is very small, then h u is very

close to g.

Moreover, given any class-II density h, where h(s) has rightmost singularity at − s ∗ , we can

construct a class-III density by setting

ĝ(s) =
h( − s ∗ )

ĥ(s − s ∗ )_ ________ , (5.3)

i.e., by setting
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g(x) =
h( − s ∗ )

e s ∗ xh(x)_ _______ , x ≥ 0 . (5.4)

In other words, we obtain classes II and III from each other simply by translation (to move the

critical singularity) and renormalization with the transforms.

The asymptotics for a GI/G/1 queue with a class-II service-time distribution is given in

Pakes [25, Theorem 2] and Borovkov [9]. The version developed by Pakes seems very nice,

because the asymptotic constant is directly expressed in terms of available transforms. The

following is a restatement.

Theorem 7. (Pakes) Consider the GI/G/1 queue with EV = 1, EU = ρ − 1 and Laplace

transforms â(s) = Ee − sU and ĝ(s) = Ee − sV , where the rightmost singularity of ĝ(s) is − s ∗ ,

0 < s ∗ < ∞, and ĝ( − s ∗ ) = d, 1 < d < ∞ (class II). For ρ < ρ∗ , where â(ρ∗ ) = 1/ d,

P(W > x) ∼
1 − dâ(s ∗ )

s ∗ ŵ( − s ∗ ) â(s ∗ )_ ______________ Ge
c (x) as x → ∞ . (5.5)

We can calculate the asymptotic constant in (5.5) by calculating the waiting-time transform

value ŵ( − s ∗ ). To do this, we can use the Pollaczek [26,27] integral representation, using

exponential damping just as for the case-III service-time distributions in [3]. Note that, in

contrast to (1.4), the asymptotic constant in (5.5) depends on the interarrival-time distribution

beyond its mean via â(s ∗ ) and ŵ( − s ∗ ).

Corollary. If, in addition to the assumptions of Theorem 7, the interarrival-time distribution is

exponential, then

P(W > x) ∼
( 1 − [ρ /ρ∗ ] )2

ρ( 1 − ρ)_ ___________ Ge
c (x) as x → ∞ . (5.6)

Proof. Since â(s) = ρ/(ρ + s), ρ∗ = s ∗ /(d − 1 ) and
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1 − dâ(s ∗ )

s ∗ ŵ( − s ∗ ) â(s ∗ )_ ______________ =
ρ + s ∗ − dρ

ρs ∗
_ __________

1 − ρ ĝ e ( − s ∗ )

1 − ρ____________ =
( 1 − [ρ /ρ∗ ] )2

ρ( 1 − ρ)_ ___________ .

From the close connection between classes II and III shown in (5.2)–(5.4), we anticipate that

the asymptotic formula for class II also does not yield very good approximations, and this is our

experience. The poor performance of (5.6) is illustrated by Example 5 of [1].

6. Conclusions

In this paper we have focused on the GI/G/1 queue with long-tail service-time distributions.

We have seen that long-tail service-time distributions not only make the steady-state waiting-time

tail probabilities bigger (see Table 1), but they significantly affect the ways we can analyze the

model. In particular, we have focused on two issues: asymptotic approximations and numerical

algorithms.

In §3 we showed that M/G/1 asymptotics is remarkably easy to derive with Laplace

transforms, although the procedure is not fully justified. We have also seen that the asymptotics

provides remarkably simple formulas. Unfortunately, however, the approximations for the tail

probabilities P(W > x) provided by the asymptotics in Theorem 1 and §3 for the case of long-

tail service times can be quite poor for typical x of interest. Indeed, the quality of the

approximations in the case of long-tail service-time distributions is as remarkably bad as the

quality of the approximations in the case of (1.1) is remarkably good. (This can be explained, at

least in part, by the rates of convergence.) Moreover, the asymptotic approximation with long-tail

service-time distribution often underestimates the true tail probability. Thus, we suggest caution

when applying asymptotics for the waiting-time tail probabilities in the case of long-tail service-

time distributions.

Fortunately, the algorithms in Abate, Choudhury and Whitt [3], Abate and Whitt [4] and

Choudhury, Lucantoni and Whitt [12] are effective for computation when the Laplace transform
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of the service-time distribution is known. Since Laplace transforms do not seem to be known for

the classical long-tail distributions, we introduced a new class of long-tail distributions with

explicit Laplace transforms in §2. This class seems promising for applications with data.

We have also suggested approximating other distributions by finite approximations in order to

obtain an approximation of the required Laplace transform. With data, we suggest using

empirical Laplace transforms. With data, the significant remaining difficulty is the validity of the

independence and stationarity assumptions underlying the GI/G/1 model.

In this paper we have focused on long-tail service-time distributions rather than long-tail

interarrival-time distributions. We have found that long-tail interarrival-time distributions have

much less impact on waiting-time tail probabilities. Indeed, large waiting times are primarily due

to long service times and short interarrival times. However, care should be taken in the analysis

whenever long-tail distributions might be present.

We have analyzed the steady-state performance of the GI/G/1 queue with the FIFO discipline.

The long-tail property makes steady-state be approached more slowly. Hence, it is even more

important than usual to consider the transient behavior. The long-tail property also suggests that

we should consider other service disciplines besides FIFO such as processor sharing.

In Section 5 we considered the second case, intermediate between the long-tail service-time

distributions and the exponential asymptotics in (1.1). We showed that the second case is closely

related to the third. We reviewed the asymptotics for the second case and noted that the quality of

the associated approximations is also typically not good.
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_ ________________________________________________________
long-tail service time

gamma service time
with r = 3. 0_ __________________________________________________

exact by [4] and approximation from
x asymptotics in (1.1) exact by [4] asymptotics in (1.5)_ ________________________________________________________
10 1. 797×10 − 1 1. 675×10 − 1 8. 296×10 − 2

20 4. 122×10 − 3 4. 673×10 − 2 1. 481×10 − 2

30 9. 454×10 − 3 1. 573×10 − 2 5. 706×10 − 3

40 2. 168×10 − 3 6. 407×10 − 3 2. 963×10 − 3

50 4. 974×10 − 4 3. 143×10 − 3 1. 801×10 − 3

60 1. 141×10 − 4 1. 804×10 − 3 1. 207×10 − 3

70 2. 617×10 − 5 1. 165×10 − 3 8. 638×10 − 4

80 6. 002×10 − 6 8. 171×10 − 4 6. 481×10 − 4

90 1. 377×10 − 6 6. 075×10 − 4 5. 040×10 − 4

100 3. 158×10 − 7 4. 708×10 − 4 4. 030×10 − 4_ ________________________________________________________ 




































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
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
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
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

Table 1. The steady-state waiting-time tail probabilities P(W > x) in two M/G/1
queues having service-time distributions with common first two moments m 1 = 1
and m 2 = 2. 67 and common arrival rate ρ = 0. 8. The approximation based on the
asymptotics is also shown for the long-tail service-time distribution.



_ ___________________________________________
interarrival-time distribution_ ____________________________________________________________

long-tail common
G 4 Γ 1/2 M E 2 asymptotics

x ca
2 = 1. 25 ca

2 = 2. 0 ca
2 = 1. 0 ca

2 = 0. 5 (1.5)_ ____________________________________________________________
5 0.3462 0.4498 0.3200 0.2364 0.0810

10 0.1550 0.2417 0.1359 0.0833 0.0101

20 0.0328 0.0714 0.0262 0.0120 0.0013

30 0.0074 0.0215 0.0055 0.0021 0.00038

40 0.00180 0.00661 0.00128 0.00051 0.00016

50 0.00050 0.00209 0.00036 0.00018 0.00008_ ____________________________________________________________ 























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

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
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













Table 2. A comparison of exact values with the asymptotic approximation (1.5) for
the tail probabilities P(W > x) in GI/G/1 queues with a long-tail service-time
distribution having r = 4. Four different interarrival-time distributions are
considered, all with ρ = 0. 8.



_ _______________________________________________________
asymptotics_ ___________________________________________________________________________

one-term two-term three-term

x exact φ(x) ≡
x 3

10. 125_ ______ φ(x)



1 +

x
27_ __





φ(x)



1 +

x
27_ __ +

x 2

352_ ___


_ ___________________________________________________________________________

10 0.1359 0.0101 0.0374 0.0730

20 0.0262 0.0013 0.0031 0.0042

30 0.0055 0.00038 0.00072 0.00087

40 0.00128 0.00016 0.00027 0.00031

50 3. 60 × 10 − 4 8. 10 × 10 − 5 1. 25 × 10 − 4 1. 39 × 10 − 4

62.5 1. 04 × 10 − 4 4. 15 × 10 − 5 5. 94 × 10 − 5 6. 31 × 10 − 5

125 6. 75 × 10 − 6 5. 18 × 10 − 6 6. 30 × 10 − 6 6. 42 × 10 − 6

250 7. 29 × 10 − 7 6. 48 × 10 − 7 7. 18 × 10 − 7 7. 22 × 10 − 7_ ___________________________________________________________________________ 





















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
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
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Table 3. A comparison of asymptotic approximations with exact values of the tail
probabilities in the M/G/1 queue with long-tail service times having r = 4 and
ρ = 0. 8.



_ _____________________________________________________________
asymptotics_ _____________________________________________________________

one-term two-term three-term_ _________________________________________________________________________________

x exact φ(x) ≡
x 3

0. 63281_ _______ φ(x)



1 +

x
1. 35_ ____





φ(x)



1 +

x
1. 35_ ____ +

x 2

11. 39_ _____


_ _________________________________________________________________________________

8 1. 7778 × 10 − 3 1. 236 × 10 − 3 1. 445 × 10 − 3 1. 665 × 10 − 3

16 1. 8336 × 10 − 4 1. 545 × 10 − 4 1. 675 × 10 − 4 1. 744 × 10 − 4

24 5. 0499 × 10 − 5 4. 578 × 10 − 5 4. 836 × 10 − 5 4. 927 × 10 − 5

32 2. 0663 × 10 − 5 1. 931 × 10 − 5 2. 012 × 10 − 5 2. 034 × 10 − 5

40 1. 0409 × 10 − 5 9. 888 × 10 − 6 1. 022 × 10 − 5 1. 029 × 10 − 5_ _________________________________________________________________________________ 
































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






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





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










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Table 4. A comparison of asymptotic approximations with exact values of the tail
probabilities in the M/G/1 queue with long-tail service times having r = 4 and
ρ = 0. 2 (light traffic).



_ _____________________________________________________________________
Approximations_ _____________________________________________________________________

(1.6) (1.7)_ ______________________________________________________________________________________
x Exact N = 100 N = 300 N = 900 N = 100 N = 300 N = 900_ ______________________________________________________________________________________
10 1. 675e − 1 9. 226e − 2 1. 359e − 1 1. 560e − 1 1. 711e − 1 1. 679e − 1 1. 675e − 1
20 4. 673e − 2 1. 991e − 2 3. 417e − 2 4. 195e − 2 4. 828e − 2 4. 689e − 2 4. 673e − 2
30 1. 573e − 2 6. 284e − 3 1. 103e − 2 1. 388e − 2 1. 633e − 2 1. 578e − 2 1. 572e − 2
40 6. 407e − 3 2. 726e − 3 4. 534e − 3 5. 655e − 3 6. 645e − 3 6. 421e − 3 6. 396e − 3
50 3. 143e − 3 1. 481e − 3 2. 303e − 3 2. 800e − 3 3. 241e − 3 3. 141e − 3 3. 130e − 3
60 1. 804e − 3 9. 292e − 4 1. 370e − 3 1. 624e − 3 1. 845e − 3 1. 796e − 3 1. 790e − 3
70 1. 165e − 3 6. 381e − 4 9. 080e − 4 1. 056e − 3 1. 182e − 3 1. 154e − 3 1. 151e − 3
80 8. 171e − 4 4. 655e − 4 6. 473e − 4 7. 433e − 4 8. 277e − 4 8. 051e − 4 8. 031e − 4
90 6. 075e − 4 3. 543e − 4 4. 852e − 4 5. 523e − 4 6. 068e − 4 5. 948e − 4 5. 935e − 4

100 4. 708e − 4 2. 783e − 4 3. 771e − 4 4. 267e − 4 4. 664e − 4 4. 577e − 4 4. 567e − 4_ ______________________________________________________________________________________ 













































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

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











Table 5. A comparison of approximate tail probabilities P(W > x) based on finite
service-time distribution approximations (1.6) and (1.7) using N points with exact
values for the M/G/1 queue with PME distribution having r = 3. 0 and ρ = 0. 8 for
several values of N. (e − k stands for ×10 − k)


