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Abstract

In this paper we establish asymptotics for the basic steady-state distributions in a large class

of single-server queues. We consider the waiting time, the workload (virtual waiting time) and

the steady-state queue lengths at an arbitrary time, just before an arrival and just after a departure.

We start by establishing asymptotics for steady-state distributions of Markov chains of M/GI/1

type. Then we treat steady-state distributions in the BMAP/GI/1 queue, which has a batch

Markovian arrival process (BMAP). The BMAP is equivalent to the versatile Markovian point

process or Neuts (N) process; it generalizes the Markovian arrival process (MAP) by allowing

batch arrivals. The MAP includes the Markov-modulated Poisson process (MMPP), the phase-

type renewal process (PH) and independent superpositions of these as special cases. We also

establish asymptotics for steady-state distributions in the MAP/MSP/1 queue, which has a

Markovian service process (MSP). The MSP is a MAP independent of the arrival process

generating service completions during the time the server is busy. In great generality (but not

always), the basic steady-state distributions have asymptotically exponential tails in all these

models. When they do, the asymptotic parameters of the different distributions are closely

related.



1. Introduction

One of the major accomplishments in queueing theory in recent years has been the

identification and investigation of a large class of models that can be analyzed via structured

Markov chains, in particular, the Markov chains of GI/M/1 type and M/GI/1 type in Neuts [17],

[20]. This structure facilitates detailed analysis of many models of interest. One kind of analysis

in this framework that has been very successful is asymptotic analysis of steady-state tail

probabilities. Important asymptotic results for queues of GI/M/1 type, including the GI/PH/s and

MMPP/PH/1 queues, have been established by Neuts [18], [19], Takahashi [25] and Neuts and

Takahashi [21].

In this paper we continue this line of research. We start in §2 by establishing asymptotics for

Markov chains of M/GI/1 type, exploiting the final-value theorem for generating functions

together with the theory for Markov chains of M/GI/1 type in Neuts [20]. Then in §3 and §4 we

establish asymptotics for steady-state tail probabilities in the BMAP/GI/1 and MAP/MSP/1

queues. The queue length at departures in the BMAP/GI/1 queue (together with an auxiliary

phase state) is a Markov chain of M/GI/1 type, while the queue length at an arbitrary time in the

MAP/MSP/1 queue (together with an auxiliary phase state) is a quasi-birth-and-death (QBD)

process, which can be regarded as of both GI/M/1 and M/GI/1 type.

The BMAP/GI/1 model has a single server, the first-come first-served service discipline,

unlimited waiting room and i.i.d. (independent and identically distributed) service times that are

independent of a batch Markovian arrival process (BMAP). The BMAP and the BMAP/GI/1

queue were introduced and investigated by Lucantoni [13]. The BMAP is equivalent to the

versatile Markovian point process in Neuts [16], [20] or the Neuts (N) process in Ramaswami

[22], with an appealing simple notation. Thus the BMAP/GI/1 queue is the same, except for

notation, as the N/G/1 queue analyzed by Ramaswami [22]; see also Ramaswami [23]. The
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BMAP is a generalization of the Markovian arrival process (MAP) introduced by Lucantoni,

Meier-Hellstern and Neuts [14] allowing batch arrivals. The MAP includes Markov modulated

Poisson processes (MMPPs), phase-type (PH) renewal processes and independent superpositions

of these processes as special cases. The MMPP models changes of phase without arrivals and

arrivals without changes of phase; the BMAP models these as well as arrivals and changes of

phase occurring simultaneously.

To model service times that are not necessarily i.i.d., in §4 we also consider the MAP/MSP/1

queue, which has a Markovian service process (MSP) as well as a MAP. The MSP is a MAP

independent of the arrival process that operates (generates service completions) when the server is

busy. The MAP/MSP/1 queue can be represented as a quasi-birth-and-death (QBD) process, so

that its asymptotic behavior is determined by previous results of Neuts [17], [19].

Let W be the steady-state waiting time (experienced by an arriving customer before beginning

service); let L be the steady-state workload (at an arbitrary time, i.e., the virtual waiting time); and

let Q , Q a and Q d be the steady-state queue lengths (number in system) at an arbitrary time, just

before an arrival and just after a departure, respectively. We show under quite general conditions

that there exist positive constants η ,σ ,α L ,α W ,β, βa and βd such that

e ηxP(L > x) → α L and e ηxP(W > x) → α W as x → ∞ (1)

and

σ − kP(Q > k) → β , σ − kP(Q a > k) → βa and σ − kP(Q d > k) → βd as k → ∞ . (2)

We call η and σ the asymptotic decay rates and α L ,α W ,β ,βa and βd the associated asymptotic

constants. Instead of (2), we actually establish related results for probability mass functions, such

as

σ − kP(Q = k) → β( 1 − σ)/σ as k → ∞ . (3)
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The convergence in (3) and (2) are equivalent, but (2) is usually of greater applied interest. We

also establish limits for the joint distribution of these variables and the auxiliary phase state.

Related results for the MAP/GI/1/K queue (K ≤ ∞) have also recently been established by

Baiocchi [4].

We also establish important relations among the asymptotic parameters in (1)–(3) in the

BMAP/GI/1 model, extending previous results in this direction by Neuts [18], [19]. For

Example, if V is a generic service time, then the asymptotic decay rates η and σ are related by

Ee ηV = σ − 1 . There are also simple relations among the asymptotic constants: βa = α W ,

β = α L and α L /α W = ρ( 1 − σ)/η σ. Hence, if you know the asymptotic decay rates and one

asymptotic constant, then you know the other asymptotic constants. Indeed, assuming that we

know the service-time transform Ee sV , we only need to know one of the asymptotic rates.

Additional results of this kind appear in [2].

We illustrate and confirm our results for the BMAP/GI/1 queue by analyzing an

MMPP 2/D 2/1 example in §5. The MMPP 2 is an MMPP with a two-state environment Markov

chain, while D 2 is a two-point service-time distribution. As in [1] and [2], the exact numerical

results are based on the algorithms in Lucantoni [13], using numerical transform inversion

algorithms in Abate and Whitt [3], as implemented by Choudhury [5]. The asymptotic

parameters are calculated by a moment-based numerical inversion algorithm in Choudhury and

Lucantoni [6]. The algorithm in [6] also calculates moments of all desired orders.

We are motivated to establish our asymptotic results because we believe that they often

provide excellent approximations. The remarkable quality of exponential approximations for tail

probabilities in GI/GI/s queues was pointed out in §1.9 and Chapter 4 of Tijms [26]. Further

evidence is provided in §9 of Abate and Whitt [3] and in [1] and [2]. The associated

approximations for higher percentiles are especially good; e.g., if

w p = inf {x : P(W > x) < 1 − p}, then w p ∼∼ log (α W /( 1 − ρ) )/η. We also develop and
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evaluate relatively simple approximations for the asymptotic parameters in [1], [2].

The BMAP/GI/1 queue is especially attractive because it includes superposition arrival

processes. Whitt [27] applies the asymptotic decay rates in the BMAP/GI/1 and MAP/MSP/1

queues to develop effective bandwidths for independent sources to use for admission control in

multi-service networks. This paper provides theoretical support for the procedures in [27]. For

related work in this direction, see Elwalid and Mitra [8], [9] and references therein.

Our first goal here is to establish the validity of the limits in (1)–(3). Our second goal is to

determine relatively simple expressions for the asymptotic decay rates η and σ. Our third, and

least important, goal is to find expressions for the asymptotic constants. The expressions for the

asymptotic constants are relatively complicated. Thus, it often will be convenient to actually

compute or approximate the asymptotic constants in other ways; e.g., by [6].

2. Structured Markov Chains

For Markov chains of the GI/M/1 type the asymptotics of steady-state distributions is

discussed at length in Neuts [19]. These GI/M/1-type Markov chains have matrix-geometric

steady-state distributions, with a steady-state probability vector of the form

x 0 , x 1 , x 1 R , x 1 R 2 , . . . where R is the rate matrix. The decay rate corresponding to σ in (2) and

(3) is the Perron-Frobenius eigenvalue of the nonnegative matrix R, which coincides with its

spectral radius; see Chapter 1 and § 2.3 of Seneta [24] for background on the Perron-Frobenius

theory. Moreover, the steady-state vector has the asymptotic form

x 1 R i = σi (x 1 r) l + o(σi ) as i → ∞ , (4)

where l and r are left and right eigenvectors associated with σ normalized so that le = lr = 1,

with e being a vector of 1’s; see (10) on p. 224 of Neuts [19]. (Our σ and η are η and ξ in [19].)

Neuts points out that the Perron-Frobenius eigenvalue σ of R is relatively easy to obtain, even for

large models, but the asymptotic constant (vector) x 1 (r) l in (4) often is not.
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We now show how to determine the asymptotics for the steady-state distributions of Markov

chains of M/G/1 type. Let the transition matrix be Q(∞) as in (2.1.9) of Neuts [20] with

component m×m matrices A k ≡ A k (∞); m 1 ×m matrices B k ≡ B k (∞) and m×m 1 matrix

C 0 ≡ C 0 (∞). We assume that Q(∞) is irreducible and positive recurrent. In the queueing

models, positive recurrence primarily corresponds to ρ < 1, where ρ is the traffic intensity. Let

(x 0 , x 1 , . . .) be the steady-state vector, with x i = (x i1 , . . . , x im ) and let X(z) =
i = 1
Σ
∞

x i z i be its

(vector) generating function. By (3.3.2) on p. 143 of [20], the generating function satisfies the

equation

X(z) [zI − A(z) ] = zx 0 B(z) − zx 1 A 0 , (5)

where A(z) =
k = 0
Σ
∞

A k z k and B(z) =
k = 1
Σ
∞

B k z k .

We start by directly establishing a solidarity result, showing that the asymptotic decay rate is

independent of the auxiliary phase state. Motivated by Example 4 of [1], we allow asymptotic

behavior of the form β i − p σi as i → ∞ for p ≠ 0 as well as p = 0. Let
i → ∞
lim_ __ and

i → ∞
lim
_ __

denote

the limit inferior and limit supremum, respectively.

Theorem 1. Consider an irreducible positive-recurrent Markov chain of M/GI/1 type. Suppose

that
i → ∞
lim_ __ σ − ii px i j = l j and

i → ∞
lim
_ __

σ − ii px i j = u j for all j, where 0 ≤ l j ≤ u j ≤ ∞ and

− ∞ < p < ∞. If A ≡
k = 0
Σ
∞

A k is irreducible, then l j > 0 (u j < ∞) holds for one j if and only if

it holds for all j.

Proof. Consider an initial state (i , j) where i is the level and j is the phase, with i ≥ m + 1. Let

j ′ be a designated alternative phase state. Since A is irreducible and there are only m phase states,

it is possible to go from (i , j) to (i + k, j ′ ) in at most m steps for some k. Since the chain can go

down at most one level at each transition, we can have k ≥ − m. In particular, there is a finite

product of at most m of the m × m submatrices A l that produce this transition. It is significant
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that this bounding probability is independent of i, provided that i ≥ m + 1, since it is impossible

to reach the lower boundary level from level above level m + 1 in m steps. As a consequence,

there is a constant ε as well as the constant k such that

x i j ≥ ε x i + k, j ′ (6)

for all i. Since the states j and j ′ are arbitrary, formula (6) implies that

i → ∞
lim_ __ σ − ii px i j ≥ ε

i → ∞
lim_ __ σ − ii px i + k, j ′ = ε σk

i → ∞
lim_ __ σ − (i + k) (i + k) px i + k, j ′ (7)

and

i → ∞
lim
_ __

σ − (i + k) (i + k) px i + k, j ′ ≤ ε − 1

i → ∞
lim
_ __

σ − (i + k) (i + k) px i j = ε − 1 σ − k

i → ∞
lim
_ __

σ − ii px i j . (8)

The inequalities (7) and (8) imply the desired conclusion.

We apply (5) to establish the asymptotic behavior of x i as i → ∞. For this purpose, we apply

(5) with z > 1, which is valid provided that everything is finite. We directly assume that B(z) is

finite for the z of interest. From (5) it is evident that the radius of convergence of the generating

function X(z) is the minimal z > 1 such that p(z) = z where p(z) ≡ pf (A(z) ) is the Perron-

Frobenius eigenvalue of A(z). (It is understood that p(z) = ∞ if all elements of A(z) are not

finite.) Properties of p(z) are discussed in Chapter 1 and §2.3 of Seneta [24] as well as in §2.3

and the Appendix of Neuts [20]. We will need the following basic matrix convexity result due to

Kingman [12], which is reviewed in the Appendix of [20].

Lemma 1. If the elements of a nonnegative square matrix A(s) are log-convex functions of s,

then the Perron-Frobenius eigenvalue pf (A(s) ) is log-convex.

We apply Lemma 1 to transforms and related functions, using the following consequence of

Ho
..

lder’s inequality; see p. 284 of Kingman [12].

Lemma 2. Given any random variable X, the transform Ee sX is log-convex in s.

Proposition 3. Let p(z) ≡ pf (A(z) ) be the Perron-Frobenius eigenvalue of A(z), with
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p(z) = ∞ if A(z) is not finite. Then log p(z) and p(z) are increasing convex functions of z for

z > 0, so that when A( 1 ) is irreducible and positive recurrent the equation p(z) = z has at most

one root for z ≠ 1, and, if there is a root, this root must satisfy z > 1.

Proof. The argument is a variant of the proof of Lemma 2.3.4 on p. 94 of Neuts [20]. As done

there, start by making the change of variables z = e − s . Then the elements of the matrix A(e − s )

are log-convex functions of s by Lemma 2. (The elements are constant multiples of transforms.)

Consequently, log p(e − s ) is a decreasing convex function of s on ( − ∞ ,∞), by Lemma 1. (The

relevant domain for s in [20] is [ 0 ,∞), but we are interested in ( − ∞ , 0 ); we can let the domain be

( − ∞ ,∞), allowing infinite values. Alternatively, we can conclude that log p(e − s ) is convex on

the interval it is finite.) By taking the composition of this decreasing convex function with the

decreasing convex function − log z, we see that log p(z) is an increasing convex function of z for

z > 0. Trivially, by taking the composition with the exponential function, we see that p(z) itself

is also an increasing convex function of z. Since A( 1 ) is stochastic, p( 1 ) = 1. Since A( 1 ) is

irreducible and positive recurrent, p ′ ( 1 ) < 1; see p. 481 of [20]. Hence, there is at most one

other root of the equation p(z) = z. By the convexity, if there is a root, then it must satisfy

z > 1.

Remark 1. The change of variables in the proof of Proposition 3 plays an important role. It is

easy to see that the elements of A(z) are convex functions of z, but as noted by Kingman [12]

convexity of the elements does not directly imply convexity of the Perron-Frobenius eigenvalue

pf (A(z) ).

Example 4 in [1] involving the simple M / GI /1 queue shows that the equation p(z) = z may

actually not have a root for z > 1, even when the service-time distribution has a finite moment

generating function. Then W does not satisfy (1). Similarly, in that model Q d (which has the

steady-state distribution of a Markov chain of M/GI/1 type) does not satisfy (2) or (3). In that

example, P(Q > k) ∼ β̃x − 3/2 σk as k → ∞, but the asymptotic form is not a good approximation
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until extremely large k.

We now want to provide conditions for the singularity of X(z) at z = σ − 1 to be a simple

pole, from which it follows that σ − ix i j converges to a nondegenerate limit. (It is easy to see that

if σ − ix i j → l j as i → ∞, then σ − i

k = i + 1
Σ
∞

x k j → σl j /( 1 − σ) as i → ∞.) For this purpose, it is

convenient to rewrite (5) as

X(z) (I − A
_ _

(z) ) = x 0 B(z) − x 1 A 0 (9)

where A
_ _

(z) = A(z)/ z. Let p
_

(z) be the Perron-Frobenius eigenvalue of A
_ _

(z). By Proposition 3,

we are interested in the z such that p
_

(z) = 1. We next introduce a generalization of the

fundamental matrix of Kemeny and Snell [11], which is a convenient form of a generalized

inverse; see Hunter [10]. Variants of this argument are used in Neuts [20]; e.g., see Theorem

3.3.1 on p. 144. A similar argument is also used by Baiocchi [4] to obtain the corresponding

result for the MAP/GI/1 special case.

Consider an irreducible nonnegative matrix P with Perron-Frobenius eigenvalue p ≤ 1 and let

l and r be left and right eigenvectors associated with p normalized so that le = lr = 1, where e is

a vector of 1’s. Let the fundamental matrix associated with P be Z = (I − P + prl) − 1 .

We now show that our fundamental matrix Z has the proper properties. First, note that Z is

the familiar fundamental matrix on pp. 75 and 100 of Kemeny and Snell [11] when P is

stochastic. (Then l is the steady-state vector π and r = e, the vector of 1’s.) Next, we relate the

spectral radiuses of P and P − prl. The spectral radius of P is the Perron-Frobenius eigenvalue

since P is nonnegative; this is not the case for P − prl.

Lemma 3. If P is an irreducible nonnegative matrix with positive Perron-Frobenius eigenvalue

p and associated left and right eigenvectors l and r normalized so that le = lr = 1, then P − prl

is a matrix with spectral radius strictly less than p.

Proof. Note, by the orthogonality of eigenvectors, that the matrices P and P − prl have the same
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eigenvectors, with the eigenvalue of P − prl associated with l and r being 0. Moreover, the

remaining eigenvalues of the matrices P and P − prl coincide. Since p is strictly greater than the

modulus of any other eigenvalue of P, the result is established.

Proposition 4. If P is an irreducible nonnegative matrix with Perron-Frobenius eigenvalue

p ≤ 1 with associated left and right eigenvectors l and r normalized so that le = lr = 1, then

(I − P + prl) is nonsingular,

Z ≡ (I − P + prl) − 1 = I +
n = 1
Σ
∞

(P − prl) n = I +
n = 1
Σ
∞

(P n − p nrl) , (10)

Zr = r > 0 and lZ = l > 0.

Proof. Let sp be the spectral radius. By Lemma 3, sp(P − prl) < 1. Hence, (P − prl) n → 0

and (10) is valid; see p. 22 of Kemeny and Snell [11] and p. 252 of Seneta [24]. Then, as on p. 75

of [11],

(P − prl) n =
i = 0
Σ
n 

 i
n
( − 1 ) n − iP i (prl) n − i

= P n +
i = 0
Σ

n − 1 
 i
n
( − 1 ) n − ip nrl = P n − p nrl .

Finally,

Zr = (I +
n = 1
Σ
∞

P n − p nrl) r = r +
n = 1
Σ
∞

(p nr − p nr) = r ,

where r is known to be strictly positive. A similar argument applies to lZ.

We are now ready to show that the analog of (3) is valid in great generality for Markov chains

of the M/GI/1 type.

Theorem 5. Consider an irreducible positive-recurrent Markov chain of M/GI/1 type in which

the matrix A ≡ A( 1 ) is irreducible and positive recurrent. If the equation p(z) ≡ pf (A(z) ) = z

has a root σ − 1 for z > 1, p(σ − 1 + ε) < ∞ for some positive ε, B(σ − 1 ) is finite and

(x 0 B(σ − 1 ) − x 1 A 0 ) r(σ − 1 ) > 0, then the radius of convergence of X(z) in (5) and (9) is σ − 1 ,
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the derivative p ′ (σ − 1 ) exists with p ′ (σ − 1 ) > 1 and the singularity σ − 1 is a simple pole, so that

σ − ix i → l ≡
p ′ (σ − 1 ) − 1

(x 0 B(σ − 1 ) − x 1 A 0 ) r(σ − 1 ) l(σ − 1 )_ _____________________________ as i → ∞ , (11)

with all components of the limit in (11) being strictly positive and finite.

Proof. Since the matrix A is irreducible, so is A(z) for all z > 0. Hence, pf (A(z) ) is a simple

eigenvalue. By Proposition 3, there is at most one root for z > 1. From (9), it is evident that

(I − A
_ _

(z) ) − 1 exists and equals
k = 0
Σ
∞

A
_ _

(z) k provided that p
_

(z) < 1. Let l(z) and r(z) be left and

right eigenvectors associated with p
_

(z). Multiplying by r(z) on the right in (9), we see that

X(z) r(z) ( 1 − p
_

(z) ) = (x 0 B(z) − x 1 A 0 ) r(z) ≡ H(z) r(z) , (12)

so that

X(z) (I − A
_ _

(z) + p
_

(z) r(z) l(z) ) = H(z) +
1 − p

_
(z)

H(z) p
_

(z) r(z) l(z)_ _______________

and, by Proposition 4,

X(z) =



H(z) +

1 − p
_

(z)

H(z) p
_

(z) r(z) l(z)_ _______________




(I − A
_ _

(z) + p
_

(z) r(z) l(z) − 1

Now we can apply the final-value theorem for probability generating functions (see §5.2 of

Wilf [28]) to get

i → ∞
lim σ − 1 x i =

z → σ− 1
lim ( 1 − zσ) X(z)

=
z → σ− 1

lim ( 1 − zσ)



H(z) +

1 − p
_

(z)

H(z) p
_

(z) r(z) l(z)_ _______________




(I − A
_ _

(σ − 1 ) + p
_

(σ − 1 ) r(σ − 1 ) l(σ − 1 ) ) − 1

=
σ − 1 p

_ ′ (σ − 1 )

H(σ − 1 ) p
_

(σ − 1 ) r(σ − 1 ) l(σ − 1 )_ __________________________ (I − A
_ _

(σ − 1 ) + p
_

(σ − 1 ) r(σ − 1 ) l( (σ − 1 ) ) − 1

=
p ′ (σ − 1 ) − 1

H(σ − 1 ) r(σ − 1 ) l(σ − 1 )_ ___________________ (I − A
_ _

(σ − 1 ) + r(σ − 1 ) l(σ − 1 ) ) − 1 ,

because
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z → σ− 1
lim

zσ − 1
p
_

(z) − 1_ ________ =
σ

p
_ ′ (σ − 1 )_ _______ = p ′ (σ − 1 ) − 1 .

The derivative p ′ (σ − 1 ) exists because p(σ − 1 + ε) < ∞ by assumption, and p(z) is an analytic

function of z away from its singularity; see the Appendix of [20]. Since A( 1 ) is positive

recurrent, p ′ ( 1 ) < 0, as noted in the proof of Theorem 3. Since p(z) is convex, we thus must

have p ′ (σ − 1 ) > 1. Next, apply Proposition 4 to obtain

l(σ − 1 ) (I − A
_ _

(σ − 1 ) + r(σ − 1 ) l(σ − 1 ) ) − 1 = l(σ − 1 ) .

Finally, we need to show that all components of the limit in (11) is strictly positive. By

assumption (x 0 B(σ − 1 ) − x 1 A 0 ) r(σ − 1 ) is positive, and it is known that all components of

l(σ − 1 ) are strictly positive. Hence, the vectors σ − ix i converge as i → ∞ to a finite positive

limit.

Remark 2. The unappetizing condition that (x 0 B(σ − 1 ) − x 1 A 0 ) r(σ − 1 ) > 0 needs to be

verified in applications. This can often be done easily in specific contexts, as we illustrate for the

BMAP/GI/1 queue in the next section. In general, we know that r( 1 ) = e since A ≡ A( 1 ) is

stochastic and that (x 0 B( 1 ) − x 1 A 0 ) e = 0; see p. 145 of [20]. By (12),

(x 0 B(z) − x 1 A 0 ) r(z) > 0 for all z, 1 < z < σ − 1 . For the M/GI/1 queue, x 1 = A0
− 1 ( 1 − B 0 ) x 0

by p. 16 of [20], so that

x 0 B(σ − 1 ) − x 1 A 0 = x 0 (B(σ − 1 ) − ( 1 − B 0 ) ) , (13)

which is strictly positive for σ − 1 > 1 because B(z) > 0 for z > 0.

Several related limits follow immediately from Theorem 5. Results later in the paper have

similar corollaries.

Corollary. Under the conditions of Theorem 5,

σ − ix i e → le =
p ′ (σ − 1 ) − 1

(x 0 B(σ − 1 ) − x 1 A 0 ) r(σ − 1 )_ ________________________ ,
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x i j

x i + 1 , j_ _____ → σ ,
x i e

x i + 1 e_ _____ → σ and
x i e

x i j_ ___ → l(σ − 1 )

as i → ∞.

3. The BMAP/GI/1 Queue

The queue length at departure epochs in the BMAP/GI/1 queue is a Markov chain of the

M/GI/1 type, so that we can apply Theorem 5 to analyze the BMAP/GI/1 queue. Explicit

transform results for the steady-state distributions are given in Lucantoni [13], but the transform

results we will apply primarily follow from Ramaswami [22]. As we have indicated above,

results related to ours for Q d in the MAP/GI/1/K queue (K ≤ ∞) have also recently been

obtained by Baiocchi [4].

A BMAP can be defined in terms of two processes N(t) and J(t): N(t) counts the number of

arrivals in [ 0 ,t] and J(t) is an auxiliary state variable. The pair (N(t) , J(t) ) is a continuous-time

countably-infinite-state Markov chain with infinitesimal generator Q̃ in block-partitioned form,

i.e.,

ρ
Q̃_ __ =






 D 0 . . .

D 0 D 1 . . .

D 0 D 1 D 2 . . .

D 0 D 1 D 2 D 3 . . .






(14)

where ρ is the overall arrival rate, D k , k ≥ 0, are m × m matrices, D 0 has negative diagonal

elements and nonnegative off-diagonal elements, D k is nonnegative for k ≥ 1, and D ≡
k = 0
Σ
∞

D k

is an irreducible infinitesimal generator matrix for an m-state continuous-time Markov chain.

(Our expressions differ slightly from Lucantoni’s (1991), because we have factored out the

overall arrival rate ρ in (14).)

Let V denote a generic service time. We assume that φ(s) ≡ Ee sV < ∞ for some positive s.

This is a necessary, but not sufficient, condition for the asymptotics in (1)–(3). Then
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φ′ (s) = EVe sV < ∞ too. Key quantities are φ(η) and φ′ (η) where η is the asymptotic decay

rate in (1).

The generating functions of Q d and Q are given in (20) and (35) of [14], while the Laplace

transform of L is given in (44) there. In particular, let xi j
d be the steady-state probability that the

queue length is i and the auxiliary state is j just after a departure. Let xi
d = (xi1

d , . . . , xim
d ) and let

X d (z) =
i = 0
Σ
∞

xi
dz i . Let D(z) =

k = 0
Σ
∞

D k z k and

A(z) = E[e ρD(z) V ] = ∫
0

∞
e ρD(z) ydP(V ≤ y) . (15)

Then

X d (z) [zI − A(z) ] = ( − x0
dD0

− 1 ) D(z) A(z) , (16)

where ( − x0
dD0

− 1 ) is a positive vector. The generating function of Q d itself is Q d (z) = X d (z) e,

where again e is a vector of 1’s.

As we have indicated, (16) is a consequence of (5). As with (5), we apply (16) for z > 1.

For this, we thus need the matrices D(z) and A(z) to be finite for the z of interest. To analyze

(16), we use the Perron-Frobenius eigenvalues of D(z) and A(z), which are well defined since

A(z) is nonnegative and D(z) has nonnegative off-diagonal elements; see Chapter 1 and §2.3 of

Seneta [24]. As with (5), we will be interested in the z such that pf (A(z) ) = z. By Proposition

3, we know that there is at most one root to the equation pf (A(z) ) = z arising in (16).

Moreover, a necessary condition for such a root to exist is for D(z) and A(z) to be finite, so we

do not need to assume anything extra about finiteness.

We now find alternative conditions for the root to exist in the special case of a BMAP/GI/1

queue. These conditions are consistent with Neuts [19].

Proposition 6. In the BMAP/GI/1 queue, there is at most one root with z > 1 to the equation

pf (A(z) ) = z. One exists if and only if there are solutions σ and η with 0 < σ < 1 and
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0 < η < ∞ to the two equations

pf (D( 1/σ) ) =
ρ
η_ _ and Ee ηV = 1/σ . (17)

Proof. By §2.3 of Seneta [24], the Perron-Frobenius eigenvalue of D(z) is well defined for all

z > 0, provided that D(z) is finite. Moreover, the matrices D(z) and A(z) have a common

associated positive real right eigenvector r(z) by (15):

A(z) r(z) = ∫
0

∞
e ρD(z) yr(z) dP(V ≤ y)

= r(z) ∫
0

∞
e ρypf (D(z) ) dP(V ≤ y) ,

so that

pf (A(z) ) = Ee ρpf (D(z) ) V . (18)

From (18), it is easy to see that (17) is equivalent to pf (A(z) ) = z.

We will show that the two equations in (17) determine the asymptotic decay rates σ and η in

(1)–(3). The representation of the single equation pf (A(z) ) = z in terms of the two equations in

(17) allows us to identify and separate the effects of the arrival process and the service-time

distribution. The arrival process alone and service-time distribution alone each determine a

relation between the asymptotic decay rates σ and η. For example, if the service-time distribution

is deterministic (D), then σ = e − η; if the service-time distribution is exponential (M), then

σ = 1 − η. As the service-time distribution gets more variable in the convex stochastic order (see

§8 of [1]), then σ(η) increases, so that for any service-time distribution with mean 1,

e − η ≤ σ < 1. For further discussion of this decomposition of independent arrival and service

processes, see Whitt [27] and Elwalid and Mitra [8], [9].

Next we apply Proposition 3 to deduce some properties of the Perron-Frobenius eigenvalue of

D(z).

Proposition 7. The Perron-Frobenius eigenvalue of D(z) is a strictly increasing convex function
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of z for z ≥ 0 with pf (D( 1 ) ) = 0.

Proof. Since D(z) is irreducible, e D(z) is a nonnegative matrix with pf (e D(z) ) = e pf (D(z) ); see

(18) above and Theorem 2.7 of Seneta [24]. By Proposition 3, pf (D(z) ) = log (e pf (D(z) ) ) is

increasing and convex function of z. Since e D( 1 ) is stochastic, pf (e D( 1 ) ) = 1, which implies that

pf (D( 1 ) ) = 0.

We can now obtain large-time asymptotics results for Q d in the BMAP/GI/1 queue directly

from Theorem 5 and Proposition 6.

Theorem 8. In the BMAP/GI/1 queue, if ρ < 1, if D ≡ D( 1 ) is irreducible, if the equations in

(17) have solutions with 0 < σ < 1 and 0 < η < ∞, and if Ee (ε + η) V < ∞ and

pf (D(σ − 1 + ε) ) < ∞ for some positive ε, then the radius of convergence of the generating

function X d (z) in (16) is σ − 1 and this singularity is a simple pole, so that

σ − ixi
d → l d =

ρ(p ′ (σ − 1 ) − 1 )

η( − x0
dD0

− 1 ) r(σ − 1 ) l(σ − 1 )_ ______________________ as i → ∞ , (19)

where p(z) ≡ pf (A(z) ) and all components of the limit l d in (19) are positive and finite. In (19),

p ′ (σ − 1 ) = ρ φ′ (η) pD′ (σ − 1 ) > 1, where φ(η) = Ee ηV and p D (z) = pf (D(z) ).

Proof. The conditions here imply the conditions of Theorem 5, since (16) is a special case of (5).

Note, however, that the summation in X(z) and X d (z) start at 1 and 0, respectively. Thus, we can

apply the proof of Theorem 5. First, the Markov chain is irreducible and positive recurrent

because D is irreducible and ρ < 1. Here ( − x0
dD0

− 1 ) D(z) A
_ _

(z) plays the role of x 0 B(z) −

x 0 B(z) − x 1 A 0 in Theorem 5, and

( − x0
dD0

− 1 ) D(z) A
_ _

(z) r(z) = ( − x0
dD0

− 1 ) pf (D(z) ) pf (A
_ _

(z) ) r(z) , (20)

which is strictly positive for all z > 1, because pf (D( 1 ) ) = 0, pf (D(z) ) is strictly increasing in

z, and all other components are strictly positive. The right side of (20) simplifies at σ − 1; by (17)

and (18), pf (D(σ − 1 ) ) = η/ρ and pf (A(σ − 1 ) ) = 1. From (18), we see that p ′ (σ − 1 ) is as

given.
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Remark 3. Let g be the steady-state probability vector associated with the stochastic matrix G in

(23) of Lucantoni [13]. By (53) of [13], ( − x0
dD0

− 1 ) in (19) can be expressed as

− (x0
dD0

− 1 ) = ( 1 − ρ) g. As noted before, (19) implies a limit σl d /( 1 − σ) for the tail

probabilities σ − k

k = i + 1
Σ
∞

xi
d . This expression agrees with the formula for the MAP/GI/1 queue

below (26) in Baiocchi [4].

We also have expressions for the transforms of the other steady-state distributions in the

BMAP/GI/1 queue. Let xi j
t be the steady-state probability that the queue length is i and the

auxiliary state is j at an arbitrary time. Let xi
t = (xi1

t , . . . , xim
t ) and X t (z) =

i = 0
Σ
∞

xi
tz i . Then, by

(35) of Lucantoni [13],

X t (z) D(z) = (z − 1 ) X d (z) . (21)

Relation (21) is established in Theorem 3.3.18 of Ramaswami [22] for the case z < 1, but it is

valid more generally provided that everything is finite. It is convenient to use the following

alternative expression for X t (z) from (3.3.20) of [22]:

X t (z) − x0
t = ρx0

d (D(z) − I) + ρX d (z) E[e ρD(z) V e ] (22)

where V e is a random variable with the service-time stationary-excess distribution, i.e.,

P(V e ≤ x) = (EV) − 1 ∫
0

x
P(V > u) du . (23)

Lemma 4. If pf (A(z) ) = z has a finite root σ − 1 > 1, then D(σ − 1 ) and Ee ρD(σ− 1 ) V e are finite.

Proof. By Proposition 6, pf (D(σ − 1 ) ) = η/ρ < ∞, so that D(σ − 1 ) must be finite. Also, by

Proposition 6, Ee ηV = σ − 1 < ∞. Hence, using integration by parts,

Ee ηV e = E(e ηV − 1 )/ηEV < ∞. Finally, as in Proposition 6,

pf (Ee ρD(σ− 1 ) V e ) = Ee ρpf (D(σ− 1 ) ) V e = Ee ηV e < ∞ .
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Similarly, let xi j
a and X a (z) be the corresponding probabilities and generating function seen

by the first customer in a batch upon arrival. Let D( j ,k) be the ( j ,k) th element of D. Then, by

the covariance formula in (8) of Melamed and Whitt [15] for instance,

Xj
a (z) = Xj

t (z)
k = 1
Σ
m

(D − D 0 ) ( j ,k) , (24)

so that the generating function of Q a is Q a (z) = X a (z) e = X t (z) (D − D 0 ) e.

Remark 4. In the MAP/GI/1 queue, where customers arrive and depart one at a time, Q a has the

same distribution as Q d , but we need not have X a (z) = X d (z). What we do have is

X a (z) e = X d (z) e. To see that this is consistent with (21) and (24), note that in the MAP/GI/1

case (21) becomes X t (z) (D 0 + D 1 z) = (z − 1 ) X d (z) and (24) yields X a (z) e = X t (z) D 1 e.

Then note that D 1 e = − D 0 e, so that X(z) D 1 e = X d (z) e. By (34) of Lucantoni [14], in the

BMAP/GI/1 queue

x0
t = − x0

dD0
− 1 or x0

d = − x0
t D 0 ,

whereas by the reasoning in (24) x0
ae = x0

t (D − D 0 ) e.

From (21), (22), (24) and Theorem 8, we have the following asymptotic results for xi
t and xi

a .

Theorem 9. Under the conditions of Theorem 8,

σ − ixi
t → l t and σ − ixi

a → l a as i → ∞ , (25)

where

l t =
σ η

ρ( 1 − σ)_ _______ l d (26)

and

l a = l t

k = 1
Σ
m

(D − D 0 ) ( j ,k) (27)

for l d in (19), so that l ae = l t (D − D 0 ) e.

Proof. Apply the final-value theorem for generating functions, first with (22) and (24). Note that
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l d ρE(e ρD(σ− 1 ) V e ) = l d ρ( 1 − σ)/η σ ,

because

l(σ − 1 ) E(e ρD(σ− 1 V e ) = l(σ − 1 ) E(e pD (σ− 1 ) V e ) = l(σ − 1 )
η

(e ηV − 1 )_ _________ =
η σ

( 1 − σ) l(σ − 1 )_ _____________

using Lemma 1 of [2]. Alternatively, from (19) and (21), since

l(σ − 1 ) D(σ − 1 ) = l(σ − 1 ) p D (σ − 1 ),

l d =
1 − σ

σ_ ____ l tD(σ − 1 ) =
1 − σ

σ_ ____ l tp D (σ − 1 ) =
ρ( 1 − σ)

σ ηl t
_ _______ .

Remark 5. In the MAP/GI/1 queue, (25)–(27) yield l de = l ae = l tD 1 e = l teσ η/ρ( 1 − σ). As

a quick check on (25)–(27), note that in the M/GI/1 queue D − D 0 = D 1 = − D 0 = 1, and

p D (σ − 1 ) = σ − 1 − 1 = η/ρ, so that η σ/ρ( 1 − ρ) = 1.

Let F j (x) be the joint probability that the workload is less than or equal to x and the auxiliary

state variable is j at an arbitrary time in steady state. Let F(x) = (F 1 (x) , . . . , F m (x) ) and

F̂(s) = ∫
0

∞
e − sxdF(x). Then, by (44) of Lucantoni [13],

F̂(s)



I + ρ

s
D(V̂(s) )_ _______





= x0
t . (28)

The Laplace transform of L is then F̂(s) e.

Let F a (x) = F1
a (x) , . . . , Fm

a (x) be the joint probability that the waiting time of the first

customer in a batch is less than or equal to x and the auxiliary state variable upon arrival is j. Let

F̂
a

(s) = ∫
0

∞
e − sxdF a (x). Then

F̂j
a

(s) = F̂(s)
k = 1
Σ
m

(D − D 0 ) ( j ,k) (29)

for F̂(s) in (28), by the same argument as for (24). The Laplace transform of W b , where W b is

the waiting time of the first customer in a batch, is then F̂
a

(s) e = F̂(s) (D − D 0 ) e.
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To treat the workload and waiting time of the first customer in a batch in (28) and (29), let

l̃(s) and r̃(s) be left and right eigenvectors of ρD(V̂(s) )/ s associated with its Perron-Frobenius

eigenvalue, which we denote by f (s), normalized so that l̃(s) e = l̃(s) r̃(s) = 1. Note that

l̃( − η) = l(σ − 1 ) and r̃( − η) = r(σ − 1 ). From (17), it is evident that the critical singularity is at

s = − η. From (17), f ( − η) = − 1. By Theorem 7, 0 > f (s) ≥ − 1 for 0 > s ≥ − η. We need

the following analog of Proposition 4.

Lemma 5. The matrix Y(σ − 1 ) ≡ I − ρ η − 1 D(σ − 1 ) + r(σ − 1 ) l(σ − 1 ) is nonsingular and

l(σ − 1 ) Y(σ − 1 ) = l(σ − 1 ).

Proof. As noted above, (17) implies that pf (ρ η − 1 D(σ − 1 ) ) = 1. Consider a vector u such that

u(I − ρ η − 1 D(σ − 1 ) + r(σ − 1 ) l(σ − 1 ) ) = 0. If we multiply on the right by r(σ − 1 ), we see that

u r(σ − 1 ) = 0, but this implies that u is a left eigenvector of D(σ − 1 ). Since ur(σ − 1 ) = 0, we

must have u = 0.

Let S and S a denote the auxiliary state at an arbitrary time and at an arrival epoch,

respectively, in steady-state. As in (4) of [13], let π be the probability vector of S, i.e., satisfying

πD = 0 and πe = 1. Let πa be the probability vector of S a , which by the argument for (24)

satisfies πj
a = π j

k = 1
Σ
m

(D − D 0 ) ( j ,k). Then F(∞) = π and the Laplace transform for the tail

probabilities π − F(x) is (π − F̂(s) )/ s. As before, let φ(η) = Ee ηV and p D (z) = pf (D(z) ).

Theorem 10. Under the conditions of Theorem 8, the critical singularity of [π − F̂(s) ]/ s is at

s = − η and it is a simple pole, so that

e ηxP(L > x, S = j) = e ηx (π j − F j (x) ) → lj
L =

ρpD′ (σ − 1 ) φ′ (η) − 1

x0
t r(σ − 1 ) l(σ − 1 ) j_ __________________ =

( 1 − σ)

σlj
t

_ ______ , (30)

e ηxP(W > x, S a = j) = e ηx (πj
a − Fj

a (x) ) → l Wb

= lj
L

k = 1
Σ
m

(D − D 0 ) ( j ,k) =
( 1 − σ)

σlj
a

_ ______ , (31)

e ηxP(L > x) → α L ≡ l Le (32)
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and

e ηxP(W b > x) → α Wb ≡ l Wb

e as x → ∞ , (33)

where l l and l Wb

are finite with all positive components.

Proof. Our approach is to apply the final-value theorem for Laplace transforms; e.g., p. 254 of

Doetsch [7]. For this purpose, apply (27) to obtain

s
(π − F(s) )_ _________ (I + ρD(V̂(s) )/ s) = M(s) ≡

s
π(I + ρD(V̂(s) )/ s)_ ________________ −

s

x0
t

_ __ . (34)

Multiplying on the right in (34) by r̃(s), we obtain for s < 0

s
(π − F(s) )_ _________ r̃(s) ( 1 − f (s) ) =

s

π( 1 − F(s) ) r̃(s) − x0
t r̃(s)_ ______________________ . (35)

Immediately, we can write

s → − η
lim (s + η)

s
(π − F(s) )_ _________ r̃(s) =

s → − η
lim




(s + η)

s
π r̃(s)_ _____ −

( 1 − f (s) ) s

(s + η) x0
t r̃(s)_ ____________





=
η f ′ ( − η)

x0
t r̃( − η)_ ________ , (36)

where, with p D (z) ≡ pf (D(z) ),

f ′ (s) =
s
ρ_ _ pD′ (V̂(s) ) V̂ ′ (s) −

s 2

ρp D (V̂(s) )_ _________ ,

so that

f ′ (η) =
η

ρpD′ (σ − 1 ) φ′ (η) − 1_ __________________ . (37)

As in Theorem 8,

p ′ (σ − 1 ) ≡
dz
d_ __ pf (A(z) )z = σ− 1 = ρpD′ (σ − 1 ) E[Ve ηV ] = ρp ′ (σ − 1 ) φ′ (η) (38)

and the denominator of (30) is strictly positive. Next, by (34) and (35),
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(s + η)
s

(π − F(s) )_ ________



I + ρ

s
D(V̂(s) )_ _______ − f (s) r̃(s) l̃(s)





= (s + η)



M(s) −

s( 1 − f (s) )

(π( 1 − f (s) ) − x0
t ) r̃(s) l̃(s) f (s)_ ___________________________





(39)

Taking the limit as s → − η in (39), we obtain



s → − η

lim (s + η)
s

(π − F(s) )_ ________







I − ρ

η
D(σ − 1 )_ _______ + r̃( − η) l̃( − η) )





=
η f ′ ( − η)

x0
t r̃( − η) l̃( − η)_ _____________ , (40)

where the matrix on the left is nonsingular by Lemma 5 and the right side is strictly positive and

finite as in (36). We then note that l̃( − η) = l(σ − 1 ) and r̃( − η) = r(σ − 1 ). We take the inverse

in (40) to obtain (30). By Lemma 5, l(σ − 1 ) Y(σ − 1 ) = l(σ − 1 ). Hence

l(σ − 1 ) = l(σ − 1 ) Y(σ − 1 ) − 1 , and we can delete the Y(σ − 1 ). We apply (29) and (30) to obtain

(31)–(33).

We conclude this section by stating some relations among the asymptotic constants that

follow from theorems 8–10.

Theorem 11. (a) In the BMAP/GI/1 queue, if the limits exist, then

β = α L , βa = α W (41)

and

β
βa
_ __ =

l te

l t (D − D 0 ) e_ __________ =
l Le

l L (D − D 0 ) e_ ___________ =
l Le

l Wb

e_ ____ = l(σ − 1 ) (D − D 0 ) e . (42)

(b) In the MAP/GI/1 queue,

β
βa
_ __ =

β
βd
_ __ =

l te

l tD 1 e_ _____ =
l Le

l LD 1 e______ =
l Le

l We_ ___ =
α L

α W_ ___ = l(σ − 1 ) D 1 e =
ρ( 1 − σ)

η σ_ _______ . (43)

Proof. (a). Apply Theorems 8–10, recalling that β = σl te /( 1 − σ) and βa = σl ae /( 1 − σ). (b)

In the MAP/GI/1 queue, customers arrive one at a time, so that βa = βd and l We = α W . Then

D − D 0 = D 1 . Finally, by (26), βd /β = η σ/ρ( 1 − σ). Theorem 2 of [2] also shows that
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α W /α L = η σ/ρ( 1 − σ) in any G/GI/1 queue.

Corollary. (a) In the MAP/M/1 queue, σ = 1 − η so that

β
βa
_ __ =

α L

α W_ ___ =
ρ
σ_ _ =

ρ
1 − η_ ____ . (44)

(b) In the MAP/D/1 queue, σ = e − η , so that

β
βa
_ __ =

α L

α W_ ___ =
ρ( 1 − e − η )

ηe − η
_ _________ =

ρ( 1 − σ)
− σlogσ_ _______ . (45)

Remark 6. In applications we are often interested in the steady-state sojourn time or response

time T, i.e., the waiting time W plus the service time V. Theorem 1 of [2] shows that in any

G/GI/1 queue if e ηxP(W > x) → α W as x → ∞, then e ηxP(T > x) → α W /σ. Moreover, the

exponential approximation for the sojourn-time distribution is also remarkably good, even when

the service-time distribution is not nearly exponential. .

4. The MAP/MSP/1 Queue

In this section we briefly consider a related class of Markovian queueing models that allows

dependence among the service times. In particular, we let the number of service completions

during the first t units of time that the server is busy be a MAP that is independent of the arrival

process. We call this service process a Markovian service process (MSP).

In the MAP/MSP/1 queue, it is easy to see that the queue length at an arbitrary time, together

with the auxiliary phase state of both the arrival and the service process, can be represented as a

quasi-birth-and-death (QBD) process, which is a specially structured continuous-time Markov

chain, as in Chapter 3 of Neuts [17]. In particular, a QBD process has an infinitesimal generator

of the form
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Q̃ =











B̃ 1

B̃ 0

Ã 2

Ã 1

Ã 0

Ã 2

Ã 1

Ã 0

...

Ã 1

Ã 0

Ã 0 . . .











(46)

Let D0
↑ and D1

↑ be the matrices characterizing the MAP and let D0
↓ and D1

↓ be the matrices

characterizing the MSP, as in (14), assuming that they each have overall rate 1. Let the overall

service rate and arrival rate be 1 and ρ, respectively. Then, as in Whitt [27], it is easy to see that

the matrices in (46) can be expressed using the Kronecker product ⊗ and sum ⊕ operations as

Ã 0 = I 1 ⊗ ρD1
↑ , Ã 1 = D0

↓ ⊕ ρD0
↑ and Ã 2 = D1

↓ ⊗I 2 , (47)

where I 1 and I 2 are identity matrices. By our assumption that the MSP operates only when the

server is busy,

B̃ 0 = I 1 ⊕ ρD0
↑ and B̃ 1 = Ã 2 . (48)

We can obtain alternative models by changing the definition of B 0 . For example, we could let the

phase process run without generating any real service completions. Then we would have

B̃ 0 = D ↓ ⊕ ρD0
↑ .

Remark 7. Special cases of the MAP/MSP/1 are the M/M/1 and PH/PH/1 queues. For the

M/M/1 queue, Q̃ in (46) reduces to the familiar infinitesimal generator of the continuous-time

queue-length process, without any auxiliary states. The PH/PH/1 queue is a familiar QBD

process; see §3.7 of Neuts [17]. The number of auxiliary states is m 1 m 2 where m 1 and m 2 are

the number of phases in the interarrival time and service-time distributions.

Remark 8. The MAP/MSP/1 model has the MSP and MAP stochastically independent.

Dependence can easily be introduced within the QBD framework. We would then typically not

have the Kronecker structure in (47) and (48).
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Since the MAP/MSP/1 queue produces a Markov chain of GI/M/1 type, it has the asymptotic

behavior in (4), where in this case the rate matrix R is the minimal nonnegative solution to the

equation

R 2 Ã 2 + RÃ 1 + Ã 0 = 0 . (49)

The asymptotic decay rate σ is then the Perron-Frobenius eigenvalue of R, pf (R), which upon

multiplying by the associated eigenvector in (49) we see satisfies the equation

pf (Ã(σ) ) = 0 , (50)

where Ã(z) = x 2 A 2 + zA 1 + A 0 . As with D(z) in §3, the Perron-Frobenius eigenvalue of A(z)

is well defined since A(z) has nonnegative off-diagonal elements. By the same argument as for

Proposition 7, which follows Lemma 2.3.4 of Neuts [20], we have the following result.

Proposition 12. In a QBD process if Ã( 1 ) is irreducible, then the Perron-Frobenius eigenvalue

pf (Ã(z) ) is a strictly increasing convex function of z with pf (A( 1 ) ) = 0, so that the equation

pf (A(z) ) = 0 has at most one root σ with 0 < σ < 1.

We apply Proposition 12 to establish asymptotics for the MAP/MSP/1 queue.

Theorem 13. In the MAP/MSP/1 queue, if Q̃ is irreducible and positive recurrent, and D ↑ ( 1 )

and D ↓ ( 1 ) are irreducible, then

x i = x 0 R i = σi (x 0 r̂(σ) ) l̂(σ) + o(σi ) as i → ∞ , (51)

where the asymptotic decay rate σ is the unique root with 0 < σ < 1 of the equation

pf (Ã(z) ) = 0 or, equivalently, the equation

pf (D ↓ (z) ) = − pf (ρD ↑ ( 1/ z) ) , (52)

and l̂(σ) and r̂(σ) are left and right eigenvectors of A(σ) associated with pf (A(σ) ) such that

l̂(σ) r(σ) = l̂(σ) e = 1.

Proof. It is easy to see that Ã( 1 ) is irreducible if D ↑ ( 1 ) and D ↓ ( 1 ) are. Thus, by Proposition
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12, the equation pf (Ã(z) ) = 0 has at most one root with 0 < z < 1. By Theorem 3.1.1 of [17],

this root σ exists and satisfies 0 < σ < 1, and (51) is valid. As shown in [27], from basic

properties of the Kronecker operations, we obtain

pf (Ã(z) ) = pf



z(I 1 × ρD1

↑ ) + (I 1 ⊕ ρD0
↑ ) + (D0

↓ ⊗I 2 ) +
z

(D1
↓ ⊗I 2 )_ ________





= pf ( (I 1 ⊗(ρzD1
↑ + ρD0

↑ ) ) + ( (D0
↓ +

z

D1
↓

_ ___ ) ⊗I 2 ) )

= pf (zρD1
↑ + ρD0

↑ ) + pf (D0
↓ +

z

D1
↓

_ ___ ) )

= pf (D ↑ (z) ) + pf (D ↓ ( 1/ z) ) . (53)

By Proposition 7, note that pf (D ↑ (z) ) and pf (D ↓ (z) ) are increasing convex functions of z. It

then follows directly that pf (D ↓ ( 1/ z) ) is a convex function of z as well.

We can easily obtain related results for the steady-state distributions just before arrivals and

just after departures by applying [15]. For this purpose, let xi j
t denote the steady-state probability

that the queue length is i and the (joint arrival and service) phase is j at an arbitrary time, and

similarly for xi j
a and xi j

d . Then, paralleling (24), we obtain

xi j
a = xi j

t

k
Σ Ã 0 ( j ,k) and xi j

d = xi j
t

k
Σ Ã 2 ( j ,k) , (54)

from [15], using time reversal in §4 there for xi j
d . Hence,

xi
ae = xi

tÃ 0 e and xi
de = xi

tÃ 2 e , (55)

from which the asymptotics for xi
a and xi

d follow. Moreover, since the long-run flow rate from

level i up (down) is xi
tÃ 0 e (xi

tÃ 2 e), we have xi
ae = xi

de, as we should.

5. A Numerical Example

To illustrate and confirm our BMAP/GI/1 results in §3, we conclude with a numerical

example. We consider a relatively simple MAP, in particular, a two-state Markov modulated
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Poisson process (MMPP 2). As on p. 37 of Lucantoni [13], an MMPP is a BMAP with

D 0 = M − Λ, D 1 = Λ and D j = 0 for j ≥ 2, where M is the infinitesimal-generator matrix of

the Markovian environment process and Λ is the associated Poisson rate matrix. With two

phases,

M =


m 1 − m 1

− m 0 m 0




and Λ =


0 λ 1

λ 0 0



, (56)

where m 0 ,m 1 ,λ 0 and λ 1 are positive constants and m 0 λ 1 + m 1 λ 0 = m 0 + m 1 , so that the

arrival rate is 1. The overall arrival rate is then ρ where ρ is specified separately. Then

D(z) =


 m 1

− m 0 + λ 0 (z − 1 )

− m 1 + λ 1 (z − 1 )

m 0 



. (57)

As usual, the Perron-Frobenius eigenvalue pf (D(z) ) ≡ p D (z) can be found by solving the

characteristic equation. Let x = z − 1, m = m 0 + m 1 , s = λ 0 + λ 1 and d = λ 0 − λ 1 . Then

the characteristic equation is

det (D(z) − γI) = γ2 − γ(sx − m) + λ 0 λ 1 x 2 − mx = 0 , (58)

yielding

p D (z) = γ(x) =
2

sx − m + √ d 2 x 2 + 2mx( 2 − s) + m 2
_ ____________________________ . (59)

In this context, the key equations in (17) are

γ(σ − 1 − 1 ) =
ρ
η_ _ and Ee ηV = σ − 1 (60)

for γ(x) in (59).

We now consider a concrete example. We verify the equations in this paper by independently

calculating the asymptotic parameters by the moment-based numerical inversion procedure in

Choudhury and Lucantoni [6]. We also calculate the probability distributions themselves using
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the algorithms in Lucantoni [13], together with the numerical transform inversion in Abate and

Whitt [3], as implemented by Choudhury [5].

For our concrete example, consider the two-point service-time distribution:

P(V = 11 ) = 0. 01960784 = 1 − P(V = 0. 8 ) .

This distribution has first two moments EV = 1 and EV 2 = 3. Let ρ = 0. 7, ρ λ 0 = 1. 1,

ρ λ 1 = 0. 3 and ρm 0 = ρm 1 = 0. 1, so that the overall arrival rate is 0.7, but the instantaneous

arrival rate in phase 0 is 1.1, which is greater than the overall service rate of 1. Then

m = 0. 285714, s = 2. 0 and d = 1. 142857, so that (59) becomes

γ(x) = x − 0. 142857 + 0. 5√ 1. 306122x 2 + 0. 0816326 . (61)

In this case the solution of (60) is η = 0. 1115972 and σ = 0. 878066, as is easy to check. Thus

p D (σ − 1 ) = 0. 159424, l(σ − 1 ) = ( 0. 629544 , 0. 370456 ),

D(σ − 1 ) =



0. 142857

0. 075362

− 0. 083342

0. 142857




and r(σ − 1 ) =


0. 694306

1. 179891



(62)

with l(σ − 1 ) and r(σ − 1 ) being chosen so that l(σ − 1 ) r(σ − 1 ) = l(σ − 1 ) e = 1.

To calculate l d in (19), we also need φ′ (η), pD′ (σ − 1 ) and g. (Recall that

( − x 0 D0
− 1 ) = ( 1 − ρ) g). First,

φ′ (η) = EVeηV = 1. 593677 . (63)

From (59),

pD′ (z) = γ′ (x) =
2
s_ _ +

4
(d 2 x 2 + 2mx( 2 − s) + m 2 ) − 1/2
_ _________________________ ( 2d 2 x + 2m( 2 − s) ) , (64)

so that here

pD′ (σ − 1 ) = γ′ ( 0. 138866 ) = 1. 277475 . (65)
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From [5], we obtain g = ( 0. 241185 , 0. 758815 ), so that g r(σ − 1 ) = 0. 811421. Thus, we

obtain from (19)

l d =
ρ(ρpD′ (σ − 1 ) φ′ (η) − 1 )

η( 1 − ρ) g r(σ − 1 ) l(σ − 1 )_ _____________________ = 0. 091288l(σ − 1 ) (66)

and l ae = l de = 0. 091287. From (26), we obtain

l t =
σ η

ρ( 1 − σ)_ _______ l d = 0. 0795156l(σ − 1 ) (67)

and l te = 0. 0795156. We also see that (66) and (67) are consistent with (27), i.e.,

l ae = l tD 1 e = l de as it should.

Next,

l L =
1 − σ

σ_ ____ l t = 0. 572608l(σ − 1 ) (68)

and

l We =
1 − σ
σl ae_ ____ = 0. 657379 , (69)

so that α L = β, α W = βa and

α W

α L_ ___ =
βa

β_ __ =
l de

l te_ ___ =
η σ

ρ( 1 − σ)_ _______ = 0. 871049 (70)

as in Theorem 11.

Finally, Table 1 compares the exponential approximations β σk and βa σk with the exact

values P(Q > k) and P(Q a > k) in this model. From Table 1 it is apparent that the exponential

approximations are excellent at the 80th percentile and beyond. (Of course, in general, the point

where the exponential approximations become good depends on the model.)

Acknowledgment. We are grateful to Dave Lucantoni for assistance.
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_ __________________________________________________
P(Q a > k) P(Q > k)_ ____________________ _ ____________________

k exact approx. exact approx._ __________________________________________________
2 0.5039 0.5068 0.4366 0.4415
4 0.3660 0.3908 0.3223 0.3404
8 0.2267 0.2323 0.1989 0.2023

10 0.1790 0.1791 0.1563 0.1560
12 0.1395 0.1381 0.1214 0.1203
14 0.1076 0.1065 0.09348 0.09273
16 0.08249 0.08208 0.07174 0.07150
20 0.04869 0.04879 0.04242 0.04250
24 0.02898 0.02901 0.02525 0.02526
28 0.017250 0.017242 0.015024 0.015019
36 0.0060921 0.0060927 0.0053066 0.0053070
48 0.0012798 0.0012798 0.0011148 0.0011148_ __________________________________________________ 
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Table 1. A comparison of approximations with exact values for the steady-state queue-length
tail probabilities in the MMPP 2/D 2/1 example in §5.



_ __________________________________________________________
x exact α L e − ηx α̂ L (x) η̂(x)_ __________________________________________________________
3.0 0.4278 0.4243 0.5931 9.178
6.0 0.31441 0.31431 0.5740 9.966
9.0 0.232846 0.232844 0.57279 9.9984

12.0 0.17249290 0.17249283 0.5727272 9.999554
18.0 0.094663802 0.094663802 0.572723848 9.99960019
24.0 0.051951350 0.051951350 0.572723841 9.99960026_ __________________________________________________________ 









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Table 1. A comparison of exponential approximations with exact values of the workload tail
probabilities, P(L > x), in the M/H2

b/1 queue with ρ = 0. 7 and cs
2 = 4. 0 in

Example 1. Also included are the local linear regression estimates of the
asymptotic parameters.

_ __________________________________________________________
x exact α T e − ηx α̂ T (x) η̂(x)_ __________________________________________________________
3.0 0.4943 0.4849 0.7107 8.263
6.0 0.35947 0.35921 0.6581 9.921
9.0 0.266115 0.266108 0.6547 9.99667

12.0 0.1971358 0.1971356 0.6545 9.99949
18.0 0.108187743 0.108187743 0.654544812 9.9996010
24.0 0.059373268 0.059373268 0.654544803 9.99960026_ __________________________________________________________ 


















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







































Table 2. A comparison of exponential approximations with exact values of the sojourn-time
tail probabilities, P(T > x), in the M/H2

b/1 queue with ρ = 0. 7 and cs
2 = 4. 0 in

Example 1. Also included are the local linear regression estimates of the
asymptotic parameters.



_ _________________________________________________________________
workload sojourn_ __________________________ _ __________________________

percent percent
x exact approx. error exact approx. error_ _________________________________________________________________
3.0 0.3765 0.4097 8.8 0.4801 0.5356 11.6
6.0 0.2900 0.2931 1.0 0.3564 0.3833 7.6
9.0 0.2230 0.2097 − 6. 0 0.2884 0.2742 − 4. 9

12.0 0.1506 0.1501 − 0. 3 0.2033 0.1962 3.5
15.0 0.1049 0.1074 2.4 0.1355 0.1403 3.5
18.0 0.0771 0.0768 − 0. 4 0.0997 0.1004 0.7
21.0 0.0557 0.0550 − 1. 3 0.0733 0.0719 − 1. 9
24.0 0.03913 0.03932 0.5 0.05137 0.05142 0.1
27.0 0.02800 0.02814 0.5 0.03644 0.03678 0.9
30.0 0.02020 0.02013 −. 03 0.02638 0.02632 − 0. 2
36.0 0.010304 0.01030 0.2 0.01344 0.01347 0.2
42.0 0.005282 0.005275 − 0. 1 0.006908 0.006898 − 0. 1
48.0 0.002699 0.002701 0.7 0.003528 0.003521 0.1
54.0 0.001383 0.001383 0.0 0.001808 0.001808 0.0
60.0 0.000708 0.000708 0.0 0.000925 0.000925 0.0_ _________________________________________________________________ 
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Table 3. A comparison of exponential approximations for the steady-state workload and
sojourn-time tail probabilities with exact values in the MMPP2 / D 2 /1 queue in
Example 2.

_ _____________________________________________
k exact ( 1 − σ) β σk − 1 ( 1 − σ ap ) βap

∗ σap
k

_ _____________________________________________
1 0.1384 0.0954 0.0787
2 0.0986 0.0835 0.0693
3 0.0780 0.0731 0.0611
4 0.0652 0.0639 0.0538
8 0.03694 0.03748 0.0324

12 0.02163 0.02197 0.0195
16 0.01268 0.01287 0.0118
20 0.00743 0.00755 0.00710
40 0.000514 0.000522 0.000565
50 0.000135 0.000137 0.000159_ _____________________________________________ 












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
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Table 4. A comparison of approximations with exact values of P(Q = k) in the M/H2
b/1

queue with ρ = 0. 7 and cs
2 = 4. 0 in Example 1 revisited. Here σ = 0. 874996,

β = 0. 763625 and β( 1 − σ)/σ = 0. 109095.



_ ________________________________________________
P(Q = k) P(Q > k)_ ____________________ _ __________________

k exact approx. exact approx._ ________________________________________________
2 0.06561 0.05383 0.4366 0.4415
4 0.03856 0.03644 0.3223 0.3404
8 0.02236 0.02467 0.1989 0.2023

12 0.01479 0.01467 0.1214 0.1203
16 0.008884 0.008718 0.07174 0.01715
20 0.005172 0.005182 0.04242 0.04250
30 0.001413 0.001412 0.01158 0.01158
40 0.0004380 0.0004381 0.003155 0.003155_ ________________________________________________ 
















































































Table 5. A comparison of approximations with exact values of P(Q = k) and P(Q > k) in
the MMPP/D 2/1 queue with ρ = 0. 7 in Example 2 revisited in §6.

_ ___________________________________
k exact β σk β ap σap

k
_ ___________________________________

0 0.69138 0.6988 0.6979
1 0.60513 0.6077 0.6069
3 0.45968 0.45963 0.45901
7 0.26323 0.26288 0.26252

15 0.08612 0.08600 0.08587
23 0.028175 0.028134 0.028087
29 0.012188 0.012170 0.012148
40 0.002624 0.002618 0.002613
46 0.001136 0.001132 0.001130_ ___________________________________ 

































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
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





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
























Table 6. A comparison of approximations with exact values from pp. 24, 74 of Hillier and
Yu (1981) of the tail probabilities P(Q > k) in the M/E 2/4 model with ρ = 0. 9 in
Example 4. Here σ = 0. 869646, β = 0. 69879 , EQ = 5. 3542, β ap =
EQ( 1 − σ) = 0. 69794 and σ ap = 0. 86963.



_ ___________________________________
k exact β σk β ap σap

k
_ ___________________________________

0 0.36963 0.4031 0.3681
1 0.25167 0.2763 0.2522
2 0.17438 0.1894 0.1728
4 0.08264 0.08900 0.08112
8 0.01830 0.01965 0.01788

10 0.008600 0.00923 0.008394
12 0.004042 0.00434 0.003941
14 0.001900 0.00204 0.001850
16 0.000893 0.000958 0.000869_ ___________________________________ 




















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




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
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Table 7. A comparison of approximations with exact values from pp. 24, 74 of Hillier and
Yu (1981) of the tail probabilities P(Q > k) in the M/E 2/4 model with ρ = 0. 75
in Example 4. Here σ = 0. 68548, β = 0. 4031, EQ = 1. 1691, β ap = EQ( 1 − σ)
= 0. 36805 and σ ap = 0. 68519.

_ _______________________________
k exact β( 1 − σ) σk

_ _______________________________
1 0.086259 0.0912
2 0.077288 0.07933
4 0.059657 0.06000
6 0.045318 0.045374
8 0.034306 0.034316

10 0.025951 0.025952
12 0.019626 0.019627
28 0.0021006 0.0021006
44 0.00022482 0.00022481
66 0.000010408 0.000010408_ _______________________________ 

























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





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




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












Table 8. A comparison of approximations and exact values from p. 74 of Hillier and Yu
(1981) of the probability mass function values P(Q = k) in the M/E 2/4 queue with
ρ = 0. 9 in Example 4.



_ ________________________________________________________________________
random asymptotic asymptotic supporting
variable decay rate constant theory_ ________________________________________________________________________

W η α W part I
T η α T = α W /σ Theorem 1
L η α L = ρ( 1 − σ) α W /η σ Theorem 2

Q a σ = Ee ηV βa = η σ2 φ′ (η) α W /( 1 − σ) Theorem 3
Q σ β = βa α L /α W = ρ σ φ′ (η) α W Corollary to Theorem 17

Q d σ βd = βa if no batches Theorems 3 and 15
N a σ βa /σ Remark 7
N σ β/σ Remark 7

N d σ βd /σ Remark 7_ ________________________________________________________________________ 





















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





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


Table 9. A summary of the asymptotic parameters of the steady-state random variables in the
G/GI/1 queue.


