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Abstract

In this paper we establish asymptotics for the basic steady-state distributions in a large class
of single-server queues. We consider the waiting time, the workload (virtual waiting time) and
the steady-state queue lengths at an arbitrary time, just before an arrival and just after a departure.
We start by establishing asymptotics for steady-state distributions of Markov chains of M/GI/1
type. Then we treat steady-state distributions in the BMAP/GI/1 queue, which has a batch
Markovian arrival process (BMAP). The BMAP is equivalent to the versatile Markovian point
process or Neuts (N) process; it generalizes the Markovian arrival process (MAP) by alowing
batch arrivals. The MAP includes the Markov-modulated Poisson process (MMPP), the phase-
type renewal process (PH) and independent superpositions of these as specia cases. We aso
establish asymptotics for steady-state distributions in the MAP/MSP/1 queue, which has a
Markovian service process (MSP). The MSP is a MAP independent of the arrival process
generating service completions during the time the server is busy. In great generaity (but not
always), the basic steady-state distributions have asymptotically exponential tails in al these
models. When they do, the asymptotic parameters of the different distributions are closely

related.



1. Introduction

One of the magor accomplishments in queueing theory in recent years has been the
identification and investigation of a large class of models that can be analyzed via structured
Markov chains, in particular, the Markov chains of GI/M/1 type and M/GI/1 type in Neuts[17],
[20]. This structure facilitates detailed analysis of many models of interest. One kind of analysis
in this framework that has been very successful is asymptotic analysis of steady-state tail
probabilities. Important asymptotic results for queues of GI/M/1 type, including the GI/PH/s and
MMPP/PH/1 queues, have been established by Neuts[18], [19], Takahashi [25] and Neuts and

Takahashi [21].

In this paper we continue this line of research. We start in 82 by establishing asymptotics for
Markov chains of M/GI/1 type, exploiting the final-value theorem for generating functions
together with the theory for Markov chains of M/GI/1 type in Neuts[20]. Then in 83 and 84 we
establish asymptotics for steady-state tail probabilities in the BMAP/GI/1 and MAP/MSP/1
gqueues. The queue length at departures in the BMAP/GI/1 queue (together with an auxiliary
phase state) is a Markov chain of M/GI/1 type, while the queue length at an arbitrary time in the
MAP/MSP/1 queue (together with an auxiliary phase state) is a quasi-birth-and-death (QBD)

process, which can be regarded as of both GI/M/1 and M/GI/1 type.

The BMAP/GI/1 model has a single server, the first-come first-served service discipline,
unlimited waiting room and i.i.d. (independent and identically distributed) service times that are
independent of a batch Markovian arrival process (BMAP). The BMAP and the BMAP/GI/1
gueue were introduced and investigated by Lucantoni [13]. The BMAP is equivalent to the
versatile Markovian point process in Neuts [16], [20] or the Neuts (N) process in Ramaswami
[22], with an appealing simple notation. Thus the BMAP/GI/1 queue is the same, except for

notation, as the N/G/1 queue analyzed by Ramaswami [22]; see also Ramaswami [23]. The



BMAP is a generdization of the Markovian arrival process (MAP) introduced by Lucantoni,
Meier-Hellstern and Neuts [14] allowing batch arrivals. The MAP includes Markov modulated
Poisson processes (MMPPs), phase-type (PH) renewal processes and independent superpositions
of these processes as specia cases. The MMPP models changes of phase without arrivals and
arrivals without changes of phase; the BMAP models these as well as arrivals and changes of

phase occurring simultaneously.

To model service times that are not necessarily i.i.d., in 84 we also consider the MAP/MSP/1
gueue, which has a Markovian service process (MSP) as well as a MAP. The MSP is a MAP
independent of the arrival process that operates (generates service completions) when the server is
busy. The MAP/MSP/1 queue can be represented as a quasi-birth-and-death (QBD) process, so

that its asymptotic behavior is determined by previous results of Neuts[17], [19].

Let W be the steady-state waiting time (experienced by an arriving customer before beginning
service); let L be the steady-state workload (at an arbitrary time, i.e., the virtual waiting time); and
let Q, Q2 and QY be the steady-state queue lengths (number in system) at an arbitrary time, just
before an arrival and just after a departure, respectively. We show under quite general conditions

that there exist positive constants ), a0 ,a B, B and B¢ such that
e"™P(L > x) - a_ and e”P(W > X) - oy a8SX - 1)
and
o *P(Q>k) - B, 07 kP(Q2 > k) -~ BPand 0 *P(QY > k) — Bl ask - o . (2

We call n and o the asymptotic decay rates and o , 0\, B,p? and B¢ the associated asymptotic
constants. Instead of (2), we actually establish related results for probability mass functions, such

as

o kP(Q = k) - B(1-0)/loask - = . (3)



The convergence in (3) and (2) are equivalent, but (2) is usualy of greater applied interest. We
also establish limits for the joint distribution of these variables and the auxiliary phase state.
Related results for the MAP/GI/UK queue (K < o) have also recently been established by

Baiocchi [4].

We also establish important relations among the asymptotic parameters in (1)—<(3) in the
BMAP/GI/1 model, extending previous results in this direction by Neuts[18], [19]. For
Example, if V is a generic service time, then the asymptotic decay rates n and o are related by
Ee"V = ¢7!. There are aso simple relations among the asymptotic constants: B = oy,
B=a_ ada /ay = p(l-0)/no. Hence, if you know the asymptotic decay rates and one
asymptotic constant, then you know the other asymptotic constants. Indeed, assuming that we
know the service-time transform Ee®V, we only need to know one of the asymptotic rates.

Additional results of this kind appear in [2].

We illustrate and confirm our results for the BMAP/GI/1 queue by analyzing an
MMPP,/D ,/1 example in 85. The MMPP, is an MMPP with a two-state environment Markov
chain, while D, is a two-point service-time distribution. Asin [1] and [2], the exact humerical
results are based on the algorithms in Lucantoni [13], using numerical transform inversion
agorithms in Abate and Whitt[3], as implemented by Choudhury [5]. The asymptotic
parameters are calculated by a moment-based numerical inversion algorithm in Choudhury and

Lucantoni [6]. The algorithmin [6] also calculates moments of all desired orders.

We are motivated to establish our asymptotic results because we believe that they often
provide excellent approximations. The remarkable quality of exponential approximations for tail
probabilities in GI/Gl/s queues was pointed out in 81.9 and Chapter 4 of Tijms[26]. Further
evidence is provided in 89 of Abate and Whitt[3] and in [1] and [2]. The associated
approximations  for higher percentiles  are  especidly good; eg., if

W, = inf{x: P(W > x) < 1-p}, then w, Hlog(aw/(1-p))/n. We aso develop and



evaluate relatively simple approximations for the asymptotic parametersin [1], [2].

The BMAP/GI/1 queue is especially attractive because it includes superposition arrival
processes. Whitt [27] applies the asymptotic decay rates in the BMAP/GI/1 and MAP/MSP/1
gueues to develop effective bandwidths for independent sources to use for admission control in
multi-service networks. This paper provides theoretical support for the procedures in [27]. For

related work in this direction, see Elwalid and Mitra[8], [9] and references therein.

Our first goa here is to establish the validity of the limits in (1)—«3). Our second goal is to
determine relatively simple expressions for the asymptotic decay rates n and o. Our third, and
least important, goa is to find expressions for the asymptotic constants. The expressions for the
asymptotic constants are relatively complicated. Thus, it often will be convenient to actually

compute or approximate the asymptotic constants in other ways; e.g., by [6].

2. Structured Markov Chains

For Markov chains of the GI/M/1 type the asymptotics of steady-state distributions is
discussed at length in Neuts [19]. These GI/M/1-type Markov chains have matrix-geometric
steady-state  distributions, with a steady-state probability vector of the form
Xo, X1, X1 R, X1 R?,... where Ris the rate matrix. The decay rate corresponding to ¢ in (2) and
(3) is the Perron-Frobenius eigenvalue of the nonnegative matrix R, which coincides with its
spectral radius; see Chapter 1 and 8§ 2.3 of Seneta [24] for background on the Perron-Frobenius

theory. Moreover, the steady-state vector has the asymptotic form
x;R' = o' (x;r)l + o(c') asi - o, (4)

where | and r are |eft and right eigenvectors associated with o normalized so that le = Ir = 1,
with e being a vector of 1's; see (10) on p. 224 of Neuts[19]. (Our c andn aren and & in[19].)
Neuts points out that the Perron-Frobenius eigenvalue o of R isrelatively easy to obtain, even for

large models, but the asymptotic constant (vector) x4 (r) | in (4) often isnot.



We now show how to determine the asymptotics for the steady-state distributions of Markov
chains of M/G/1 type. Let the transition matrix be Q(«) as in (2.1.9) of Neuts [20] with
component mxm matrices A, = Ag(); myxm matrices By = By (0) and mxm; matrix
Cg = Cy(). We assume that Q(e) is irreducible and positive recurrent. In the gueueing

models, positive recurrence primarily correspondsto p < 1, where p is the traffic intensity. Let

(Xo, Xz,...) be the steady-state vector, with X;j = (Xj1, ..., Xjn) and let X(z) = 5 x;Z' beits
i=1

(vector) generating function. By (3.3.2) on p. 143 of [20], the generating function satisfies the

equation

X(7)[2d -A(2)] = 2x0B(2) - 21 A0 , ©)

whereA(z) = S AzZXandB(2) = B z¥.
k=0 k=1

We start by directly establishing a solidarity result, showing that the asymptotic decay rate is
independent of the auxiliary phase state. Motivated by Example 4 of [1], we alow asymptotic

behavior of the form Bi "Po' asi — o forp # Oaswell asp = 0. Let lim and [im denote

I - o i - o
the limit inferior and limit supremum, respectively.
Theorem 1. Consider an irreducible positive-recurrent Markov chain of M/GI/1 type. Suppose

that lim o7'iPx; = 1; and [im o7'iPx;; = u; for al j, where 0<1; < u; <o and

| - o i - o

- <p<ow IfA= % Agisirreducible, thenl; > 0 (u; < ) holdsfor onej if and only if
k=0

it holds for all j.

Proof. Consider an initia state (i,]) wherei isthe level and j isthe phase, withi = m + 1. Let
j" beadesignated aternative phase state. Since A isirreducible and there are only m phase states,
itispossibleto go from (i,j)to (i + k, j') ina most m steps for some k. Since the chain can go
down at most one level at each transition, we can have k = — m. In particular, there is a finite

product of at most m of the m x m submatrices A, that produce this transition. It is significant



that this bounding probability is independent of i, provided that i = m + 1, since it isimpossible
to reach the lower boundary level from level above level m + 1 in m steps. As a consequence,

thereis a constant € as well as the constant k such that
Xij 2 € Xj+k,j’ (6)

foralli. Sincethestatesj and |’ are arbitrary, formula (6) implies that

lim o7'iPx;; 2 € lim 07'iPxj 4 = €0 lim o7 FR (1 +K)PxG Ly ) (7
| - o | - oo i - oo
and
Tm o~ +K)Pxi s < €71 TTm o~ 00 (i +K)Px;; = e to™  Tim o7 'iPx;; . (8)
I - o | - o i - o0

Theinequalities (7) and (8) imply the desired conclusion. m

We apply (5) to establish the asymptotic behavior of x; asi — . For this purpose, we apply
(5) with z > 1, which is valid provided that everything isfinite. We directly assume that B(z) is
finite for the z of interest. From (5) it is evident that the radius of convergence of the generating
function X(z) is the minimal z > 1 such that p(z) = z where p(z) = pf(A(z)) is the Perron-
Frobenius eigenvalue of A(z). (It is understood that p(z) = « if al elements of A(z) are not
finite) Properties of p(z) are discussed in Chapter 1 and §2.3 of Seneta [24] as well asin §2.3
and the Appendix of Neuts [20]. We will need the following basic matrix convexity result due to
Kingman [12], which is reviewed in the Appendix of [20].
Lemma 1. If the elements of a nonnegative square matrix A(s) are log-convex functions of s,

then the Perron-Frobenius eigenvalue pf (A(S)) islog-convex.

We apply Lemma 1 to transforms and related functions, using the following consequence of
Holder’ sinequality; see p. 284 of Kingman [12].
Lemma 2. Given any random variable X, the transform Ee®* islog-convex in s.

Proposition 3. Let p(z) = pf(A(z)) be the Perron-Frobenius eigenvalue of A(z), with



p(z) = o if A(z) is not finite. Then log p(z) and p(z) are increasing convex functions of z for
Zz > 0, so that when A(1) isirreducible and positive recurrent the equation p(z) = zhas at most
oneroot for z # 1, and, if thereisa root, thisroot must satisfy z > 1.

Proof. The argument is a variant of the proof of Lemma 2.3.4 on p. 94 of Neuts[20]. As done
there, start by making the change of variables z = 5. Then the elements of the matrix A(e™%)
are log-convex functions of s by Lemma2. (The elements are constant multiples of transforms.)
Consequently, log p(e™%) is a decreasing convex function of s on (—o,»), by Lemmal. (The
relevant domain for sin[20] is[0,), but we are interested in (—,0); we can let the domain be
(—o0,), allowing infinite values. Alternatively, we can conclude that log p(e™®) is convex on
the interval it is finite)) By taking the composition of this decreasing convex function with the
decreasing convex function —log z, we see that log p(z) is an increasing convex function of z for
z > 0. Trivialy, by taking the composition with the exponential function, we see that p(z) itself
is aso an increasing convex function of z. Since A(1) is stochastic, p(1) = 1. Since A(1) is
irreducible and positive recurrent, p' (1) < 1; see p. 481 of [20]. Hence, there is at most one
other root of the equation p(z) = z By the convexity, if there is a root, then it must satisfy
z>1l =

Remark 1. The change of variables in the proof of Proposition 3 plays an important role. It is
easy to see that the elements of A(z) are convex functions of z, but as noted by Kingman [12]

convexity of the elements does not directly imply convexity of the Perron-Frobenius eigenvalue
pf(A(z)). =

Example 4 in [1] involving the simple M/GI/1 queue shows that the equation p(z) = z may
actually not have aroot for z > 1, even when the service-time distribution has a finite moment
generating function. Then W does not satisfy (1). Similarly, in that model Q¢ (which has the
steady-state distribution of a Markov chain of M/GI/1 type) does not satisfy (2) or (3). In that

example, P(Q > k) Dﬁx‘g”zok ask — oo, but the asymptotic form is not a good approximation



until extremely large k.

We now want to provide conditions for the singularity of X(z) at z = o~ to be a simple

pole, from which it follows that c‘ixij converges to a nondegenerate limit. (It is easy to see that

if 67'x;; - |jasi —» oo, theno™ T x4 - 0l;/(1-0) asi - .) For this purpose, it is
k=i+1

convenient to rewrite (5) as
X(2)(I = A(2)) = %x0B(2) = x1A0 )

where A(z) = A(z)/z Let p(z) be the Perron-Frobenius eigenvalue of A(z). By Proposition 3,
we are interested in the z such that p(z) = 1. We next introduce a generalization of the
fundamental matrix of Kemeny and Snell [11], which is a convenient form of a generalized
inverse; see Hunter [10]. Variants of this argument are used in Neuts [20]; e.g., see Theorem
3.3.1on p.144. A similar argument is also used by Baiocchi [4] to obtain the corresponding

result for the MAP/GI/1 special case.

Consider an irreducible nonnegative matrix P with Perron-Frobenius eigenvalue p < 1 and let
| and r be left and right eigenvectors associated with p normalized sothat le = Ir = 1, whereeis

avector of 1's. Let the fundamental matrix associated withPbeZ = (I —= P + prl)~1.

We now show that our fundamental matrix Z has the proper properties. First, note that Z is
the familiar fundamental matrix on pp. 75 and 100 of Kemeny and Snell [11] when P is
stochastic. (Then | isthe steady-state vector Ttand r = e, the vector of 1's.) Next, we relate the
spectral radiuses of P and P — prl. The spectral radius of P is the Perron-Frobenius eigenvalue
since P is nonnegative; thisis not the case for P — prl.

Lemma 3. If P isan irreducible nonnegative matrix with positive Perron-Frobenius eigenvalue
p and associated left and right eigenvectors| and r normalized sothat le = Ir = 1, then P — prl
isa matrix with spectral radius strictly less than p.

Proof. Note, by the orthogonality of eigenvectors, that the matrices P and P — prl have the same



eigenvectors, with the eigenvalue of P — prl associated with | and r being 0. Moreover, the
remaining eigenvalues of the matrices P and P — prl coincide. Since p is strictly greater than the
modulus of any other eigenvalue of P, the result isestablished. =

Proposition 4. If P is an irreducible nonnegative matrix with Perron-Frobenius eigenvalue
p < 1 with associated left and right eigenvectors | and r normalized so that le = Ir = 1, then
(I = P + prl) isnonsingular,

Z=(-P+pl)l=1+SP-ph) =1+ 5 (P"-prl), (10)
n=1 n=1

Zr =r >0andlZz=1>0.
Proof. Let sp be the spectral radius. By Lemma3, sp(P — prl) < 1. Hence, (P — prl)" - 0
and (10) isvalid; see p. 22 of Kemeny and Snell [11] and p. 252 of Seneta[24]. Then, ason p. 75

of [11],

(P - prh)" = 3 - 1)"ipi(priyn!

n-1
n (hil _qyn=ipn, = pn _pn
P +i§0Dig( D"l = P =p"rl .
Finally,

Zr=(+ IP"=p"hr=r+ 3 (p"r-p"r) =r,

n=1 n=1
wherer isknown to be strictly positive. A similar argument appliestolZ. m

We are now ready to show that the analog of (3) isvalid in great generality for Markov chains
of the M/GI/1 type.
Theorem 5. Consider an irreducible positive-recurrent Markov chain of M/GI/1 type in which
the matrix A = A(1) isirreducible and positive recurrent. |If the equation p(z) = pf(A(2)) = z
has a root o™t for z> 1, p(c”1+¢€) < o for some positive €, B(c™?) is finite and

(xoB(o™1)=x1A0)r(c™1) > 0, then the radius of convergence of X(z) in (5) and (9) isc ™1,



the derivative p’ (0™ 1) existswith p' (0~1) > 1 and the singularity 6% isa simple pole, so that

S (x0B(0™H)=x1A0)r(a™H)I(c™)
o7'x; » | = asi -

po D) -1 o &

with all components of the limit in (11) being strictly positive and finite.
Proof. Since the matrix A is irreducible, so is A(z) for al z > 0. Hence, pf (A(z)) is asimple

eigenvalue. By Proposition 3, there is at most one root for z > 1. From (9), it is evident that

(I - A(2)) ! exists and equals EK(Z)" provided that p(z) < 1. Let I(z) and r(z) be left and
k=0

right eigenvectors associated with p(z). Multiplying by r(z) ontheright in (9), we see that
X()r(2)(1-p(2)) = (XxoB(2) = x1A0)r(2) = H(2)r(2) , (12)

so that

X(2)(1 - A(2) +p(2)r(2)1(2)) = H(2) + H(z)p(2)r(2)1(2)
1-p(2)

and, by Proposition 4,

X(2) = EH(Z) . H(Z)p(z)r((zz))'(z)g(l A2) + P22

Now we can apply the final-value theorem for probability generating functions (see 85.2 of

Wilf [28]) to get

limo 1x = Iim_l(l—zo)X(z)

i > o

lim (1 ZG)EH(Z) + HAP@I@I@ 1~ R7g-1) + plotyr(om )01y

1-v(7 O
- H(G_l)p(c_l)r(o_l)l(o_l) (I A(o.—l) +p.(o.—1)r(o.—l)|((0.—l)) 1
olp (oY)
— H(o_l)r(o_l)l(o_l) (| _ K(O-—l) + r(o-—l)l(o-—l))—l ,

pr(e ) - 1

because



. op@) -1 _p() _
zlln;-l zo0 -1 o prio) ~ 1.

The derivative p' (0™1) exists because p(o™1 + €) < oo by assumption, and p(z) is an analytic
function of z away from its singularity; see the Appendix of [20]. Since A(1l) is positive
recurrent, p' (1) < 0, as noted in the proof of Theorem 3. Since p(z) is convex, we thus must

havep' (6~1) > 1. Next, apply Proposition 4 to obtain
l(o™HY(I = A(c™Y) +r(e™HI(c7) T = 1(c7?) .

Finally, we need to show that all components of the limit in (11) is strictly positive. By
assumption (XoB(071)-x;A0)r(c1) is positive, and it is known that all components of
I(o1) are strictly positive. Hence, the vectors o™'x; converge asi — o to a finite positive
limit. m

Remark 2. The unappetizing condition that (xoB(c™%)-x;A0)r(c™1) > 0 needs to be
verified in applications. This can often be done easily in specific contexts, as we illustrate for the
BMAP/GI/1 queue in the next section. In general, we know that r(1) = e since A = A(1) is
stochastic and that (XxgB(1)-Xx1Ap)e=0; see p.145 of [20]. By (12,
(xoB(2) =x1Ag)r(z) > Oforalz 1 < z < o1, Forthe M/GI/1 queue, x; = A5t (1-Bg)Xg

by p. 16 of [20], so that
XoB(07h) = x1Aq = Xo(B(071) - (1-By)) , (13)
which is strictly positivefor 6™ > 1because B(z) > Oforz > 0. m

Severa related limits follow immediately from Theorem 5. Results later in the paper have
similar corollaries.
Corollary. Under the conditions of Theorem 5,

(XoB(071) = x1Ag)r(c71)

o 'xje - le =
p'(c™) -1
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3. TheBMAP/GI/1 Queue

The queue length at departure epochs in the BMAP/GI/1 queue is a Markov chain of the
M/GI/1 type, so that we can apply Theorem5 to analyze the BMAP/GI/1 queue. Explicit
transform results for the steady-state distributions are given in Lucantoni [13], but the transform
results we will apply primarily follow from Ramaswami [22]. As we have indicated above,
results related to ours for QY in the MAP/GI/UK queue (K < ») have also recently been

obtained by Baiocchi [4].

A BMAP can be defined in terms of two processes N(t) and J(t): N(t) counts the number of
arrivalsin[0,t] and J(t) is an auxiliary state variable. The pair (N(t), J(t)) is a continuous-time
countably-infinite-state Markov chain with infinitesimal generator (5 in block-partitioned form,

i.e.,

(14)

w]

o

w]

BN
OooooQd

where p is the overall arrival rate, Dy, k = 0, are m x m matrices, Dy has negative diagonal

elements and nonnegative off-diagonal elements, Dy is nonnegativefor k > 1, and D = Y Dy
k=0

is an irreducible infinitesimal generator matrix for an m-state continuous-time Markov chain.
(Our expressions differ dlightly from Lucantoni’s (1991), because we have factored out the

overal arriva rate p in (14).)

Let \V denote a generic service time. We assume that @(s) = Ee® < o for some positive s.

This is a necessary, but not sufficient, condition for the asymptotics in (1)—(3). Then
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@ (s) = EVe® < o too. Key quantities are @(n) and ¢' (n) where | is the asymptotic decay

ratein (1).

The generating functions of QY and Q are given in (20) and (35) of [14], while the Laplace

transform of L is given in (44) there. In particular, let xﬂ- be the steady-state probability that the

queue length isi and the auxiliary stateisj just after adeparture. Letx? = (x4, ..., x% ) and let
X4(z2) = %xidzi. LetD(z) = s D z" and
i=0 K=0
A(z) = E[ePP@V] = J’O°° ePP@YdP(V < ) . (15)
Then
X{(2)[2 - A@D)] = (-xDs")D(2A(2) , (16)

where (-x8Dg?) is a positive vector. The generating function of Q¢ itself is Q4(z) = X%(2)e,

where again eisavector of 1's.

As we have indicated, (16) is a consequence of (5). As with (5), we apply (16) for z > 1.
For this, we thus need the matrices D(z) and A(z) to be finite for the z of interest. To analyze
(16), we use the Perron-Frobenius eigenvalues of D(z) and A(z), which are well defined since
A(z) is nonnegative and D(z) has nonnegative off-diagonal elements; see Chapter 1 and §82.3 of
Seneta [24]. Aswith (5), we will be interested in the z such that pf (A(z)) = z By Proposition
3, we know that there is a most one root to the equation pf(A(z)) = z arising in (16).
Moreover, a necessary condition for such aroot to exist is for D(z) and A(z) to be finite, so we

do not need to assume anything extra about finiteness.

We now find alternative conditions for the root to exist in the special case of a BMAP/GI/1
gueue. These conditions are consistent with Neuts [19].
Proposition 6. In the BMAP/GI/1 queue, there is at most one root with z > 1 to the equation

pf(A(z)) = z One exists if and only if there are solutions ¢ and n with 0 < o0 < 1 and
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0 < n < oo tothetwo equations
pf(D(1/0)) = % and Ee"V = 1/c . (17)

Proof. By 82.3 of Seneta [24], the Perron-Frobenius eigenvalue of D(z) is well defined for al
z > 0, provided that D(z) is finite. Moreover, the matrices D(z) and A(z) have a common

associated positive real right eigenvector r (z) by (15):

A@)1(2) = [ "eP@Yr(2)dP(V 5 y)

= r(z)jo“’ ePP(P@) gp(V < y) |
so that
pf (A(z)) = EePPI(P@)V (18)
From (18), itiseasy to seethat (17) isequivaenttopf(A(z)) =z =

We will show that the two equations in (17) determine the asymptotic decay rates o and n in
(1)—(3). The representation of the single equation pf (A(z)) = zin terms of the two equationsin
(17) alows us to identify and separate the effects of the arrival process and the service-time
distribution. The arrival process alone and service-time distribution alone each determine a
relation between the asymptotic decay rates o and . For example, if the service-time distribution
is deterministic (D), then o = e™"; if the service-time distribution is exponential (M), then
0 = 1-n. Asthe service-time distribution gets more variable in the convex stochastic order (see
88 of [1]), then o(n) increases, so that for any service-time distribution with mean 1,
e " < 0 < 1. For further discussion of this decomposition of independent arrival and service

processes, see Whitt [27] and Elwalid and Mitra[8], [9].

Next we apply Proposition 3 to deduce some properties of the Perron-Frobenius eigenvalue of
D(2).

Proposition 7. The Perron-Frobenius eigenvalue of D(z) is a strictly increasing convex function
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of zfor z = Owith pf(D(1)) = 0.

Proof. Since D(z) isirreducible, e®® is a nonnegative matrix with pf (e?@) = ePl(P(@): see
(18) above and Theorem 2.7 of Seneta [24]. By Proposition 3, pf(D(z)) = log (eP(P@)) js
increasing and convex function of z. Since e®™® s stochastic, pf (e®®) = 1, which implies that

pf(D(1)) = 0. m

We can now obtain large-time asymptotics results for Q¢ in the BMAP/GI/1 queue directly
from Theorem 5 and Proposition 6.
Theorem 8. In the BMAP/GI/1 queue, if p < 1, if D = D(1) isirreducible, if the equations in
(17) have solutions with 0 <o <1 and 0<n <o, and if EeC*MV < w0 and
pf(D(o™! + €)) < « for some positive €, then the radius of convergence of the generating

function X9(z) in (16) iso~* and this singularity is a simple pole, so that

o7ixd 19 = N(-X60o")r(o” (™) asi » o, (19
p(p'(0™Y) - 1)

wherep(z) = pf(A(z)) and all components of the limit |9 in (19) are positive and finite. In (19),
p'(c™!) = p@ (n)pp(c™") > 1, whereq(n) = Ee" andpp(2) = pf(D(2)).

Proof. The conditions here imply the conditions of Theorem 5, since (16) is a special case of (5).
Note, however, that the summation in X(z) and X9(z) start at 1 and O, respectively. Thus, we can
apply the proof of Theorem 5. First, the Markov chain is irreducible and positive recurrent
because D is irreducible and p < 1. Here (-x3Dg?)D(2) A(z) plays the role of xoB(z) -

XoB(2) —x1Ag inTheorem 5, and

(-x6D5*) D(2) A(2)r(2) = (-x§D5*) pf(D(2)) pf(A(2))r(2) (20)

which is strictly positive for all z > 1, because pf(D(1)) = 0, pf(D(2)) is strictly increasing in
z, and all other components are strictly positive. The right side of (20) simplifies at o~1; by (17)
and (18), pf(D(c™1)) = n/p and pf(A(c™1)) = 1. From (18), we see that p' (o7 !) is as

given. m
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Remark 3. Let g be the steady-state probability vector associated with the stochastic matrix G in
(23) of Lucantoni [13]. By (53) of [13], (-xIDg!) in (19) can be expressed as

-(x8Dg!) = (1 - p)g. As noted before, (19) implies a limit ol%/(1 - ) for the tail

probabilities 0% 5 xI. This expression agrees with the formula for the MAP/GI/1 queue
k=i+1

below (26) in Baiocchi [4]. m

We aso have expressions for the transforms of the other steady-state distributions in the

BMAP/GI/1 queue. Let x}j be the steady-state probability that the queue length is i and the

auxiliary stateisj at an arbitrary time. Letxt = (x{1,...,x,)and X'(2) = 5 xiZ'. Then, by
i=0

(35) of Lucantoni [13],
X'(2)D(2) = (z-1)X%2) . (21)

Relation (21) is established in Theorem 3.3.18 of Ramaswami [22] for the case (z1< 1, but it is
valid more generally provided that everything is finite. It is convenient to use the following

alternative expression for X!(z) from (3.3.20) of [22]:
X'(2) = xb = px§(D(2) - 1) + pX4(2) E[e*P"] (22
where V., is arandom variable with the service-time stationary-excess distribution, i.e.,
P(Ve < x) = (EV)—leXP(v > u)du. (23)

PP Ve arefinite.

Lemmad4. If pf(A(z)) = zhasafiniterootc™! > 1, thenD(c™!) and Ee
Proof. By Proposition 6, pf(D(0™1)) = n/p < «, so that D(c~1) must be finite. Also, by
Proposition 6, Ee"W =071 < . Hence, using integration by  parts,

Ee": = E(e"V - 1)/nEV < . Findly, asin Proposition 6,

pf(EepD(O’l)Ve) = EePPIPONVe _ EaVe ¢ o, m



-15-

Similarly, let xfj and X?(z) be the corresponding probabilities and generating function seen
by the first customer in a batch upon arrival. Let D(j,k) be the (j,k)" element of D. Then, by
the covariance formulain (8) of Melamed and Whitt [15] for instance,

X2(2) = X}(z)k§ (D-Do)(J.K) | (24)
=1

0 that the generating function of Q2 isQ?(z) = X2(z)e = X'(2)(D-Dy)e

Remark 4. Inthe MAP/GI/1 queue, where customers arrive and depart one at atime, Q2 has the
same distribution as QY, but we need not have X3(z) = X9(z). What we do have is
X23(z)e = XY4(z)e To seethat this is consistent with (21) and (24), note that in the MAP/GI/1
case (21) becomes X' (z)(Dg + D12) = (z - 1) X%(2) and (24) yields X?(z)e = X'(z)D;e.
Then note that D;e = —Dge, o that X(z)D,e = X%(z)e. By (34) of Lucantoni [14], in the
BMAP/GI/1 queue

xt = —-x3Dgt or x§ = -x4Dy ,

whereas by the reasoning in (24) xe = x5(D - Dg)e. =

From (21), (22), (24) and Theorem 8, we have the following asymptotic results for x' and x2.

Theorem 9. Under the conditions of Theorem 8,

o'x - Itando™'x® - 12 asi - o, (25)
where
It — p(l—O) Id (26)
on
and
m -
2= 1'S (D-Dg)(j.k) (27
k=1

for 19in (19), sothat 12%e = I'Y(D-Dg)e.

Proof. Apply the final-value theorem for generating functions, first with (22) and (24). Note that
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19pE(ePP Vo) = 19p(1-0)/nao,
because

V-1 _ (1-0)l(c™})
n no

I(O_l)E(epD(o_lv‘*) — |(0-—1)E(epo(0_1)ve) — I(o-—l)

usng Lemma 1 of [2]. Alternatively, from (19) and (21), since

I(6™*)D(c™%) = I(a™Y)pp(c7?),

d - 9 1th(a-1)y = 9 gt —1=0r]|t
I 1_0ID(0) mlpD(o ) S=oy

Remark 5. Inthe MAP/GI/1 queue, (25)—(27) yield |9 = 12e = I'D,e = I'eon/p(1-0). As
a quick check on (25)—27), note that in the M/GI/1 queue D - Dy = D; = - Dg = 1, and

Pp(0™1) =67t -1 =nlp,sothatno/p(l-p) =1 =

Let F; (x) be the joint probability that the workload is less than or equal to x and the auxiliary
state variable is j at an arbitrary time in steady state. Let F(x) = (F1(X),..., Fn(x)) and

Ie(s) = J'Ooo e ¥dF(x). Then, by (44) of Lucantoni [13],
,E(S)E, +p D(V(s)) E S (28)
O S O

The Laplace transform of L isthen Ie(s) e

Let F2(x) = F§(X), ..., F&(x) be the joint probability that the waiting time of the first
customer in a batch is less than or equal to x and the auxiliary state variable upon arrival isj. Let

Fo(s) = Ioooe‘s"dl:a(x). Then
Fi(s) = ﬁ(s)kg(D—Do)(j,k) 29)
=1

for IE(S) in (28), by the same argument as for (24). The Laplace transform of W, where WP is

the waiting time of the first customer in abatch, isthen IEa(s) e= Ie(s)(D -Dg)e
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To treat the workload and waiting time of the first customer in a batch in (28) and (29), let
I~(5) and 7 (s) be left and right eigenvectors of pD(\7(s))/s associated with its Perron-Frobenius
eigenvalue, which we denote by f(s), normalized so that 1(s)e = I(s)F(s) = 1. Note that
I(-n) = I(c™Y)andF(-n) = r(c~1). From (17), it is evident that the critical singularity is at
s=-n. From(17),f(-n) = -1. By Theorem7,0 > f(s) = -1for0 > s= —-n. Weneed
the following analog of Proposition 4.

Lemma 5. The matrix Y(o™!) =1 - pn™'D(c7 1) + r(c™1)I(c7?) is nonsingular and
I(c"1)Y(o™) = I(c™ D).

Proof. As noted above, (17) implies that pf (pn "*D(c™ 1)) = 1. Consider avector u such that
u(l —pn tD(c™Y) +r(o™YHI(c™1)) = 0. If wemultiply ontheright by r (o™1), we see that
ur(o™!) = 0, but this implies that u is a left eigenvector of D(c~1). Sinceur(c™!) = 0, we

musthaveu = 0. =m

Let S and S? denote the auxiliary state at an arbitrary time and at an arrival epoch,
respectively, in steady-state. Asin (4) of [13], let 1t be the probability vector of S i.e., satisfying

D = 0 and e = 1. Let @ be the probability vector of S?, which by the argument for (24)

m
satisfies ¥ = 1 3 (D —Dg)(j,k). Then F(e) = 1 and the Laplace transform for the tail
k=1

probabilities T — F(X) is (1T - IE(S))/S. Asbefore, let (n) = Ee"V andpp(2) = pf(D(2)).

Theorem 10. Under the conditions of Theorem 8, the critical singularity of [ 11— IE(S)]/S is at

s = —nanditisasimplepole, so that
xyr(o™H1(o™1); olt
eMP(L > x, S = j) = e™(m - F;(x) — IF = 2 ( - ) ,( i L (30)
ppp(c™H)@'(n) -1 (1-0)
b m a
e™P(W > x, $* = j) = e™(1® - F3(x)) - IV = IF 5 (D-Dg)(j,k) = ———+, (31)
k=1 (1-0)

e™P(L > x) - a_ =lte (32)
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and
eTP(WP > x) - ay =1Weasx - «, (33)

wherel' and I'W" are finite with all positive components.
Proof. Our approach is to apply the final-value theorem for Laplace transforms; e.g., p. 254 of

Doetsch [7]. For this purpose, apply (27) to obtain

(M= FO) (4 po(Ueys) = M) = TLFPOVENS _ %0 (g
Multiplying on the right in (34) by r(s), we obtainfor s < 0
(0= F(S)) =y a _ (1 - F(s))F(s) — xoF (9)
= T(9)(1-1(s)) = - . (35)
Immediately, we can write
im (s +m) ™ FO e = im E(S+ () (s + n)xbF(s)
s s s- g Ty T-TNs O
Xof (=)
= , 36
nf'(-n) (39
where, with pp (2) = pf(D(2)),
S Vv
(9 = Lo U V(9 - L2
so that
' =1y _
f1(n) = ppp(0 )@ (n) - 1 _ 37)

n

Asin Theorem 8,
p'(c7h) = % pf(A(2)Z =6 = PPp (0 1) E[VE"Y] = pp’'(c71) ¢ (n) (39)

and the denominator of (30) is strictly positive. Next, by (34) and (35),
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(s+1) (n—:(S)) A+ p D(\A/S(s)) o

- f(s)F(s)1(s)0
0 O

(M(1=1() — x0T F(S) 5 39

O
= (s+ r1)EM(S) -

s(1-1(s)) O
Teking thelimitass — —n in(39), we obtain
0 - 00 - . 0 xti(—mi(-
0 lim (S‘H])MDD -p D(c™") +F(-m)T(-n)0 = Xor ( 'r]) (-n) . (40)
S ° oo o nf(n)

where the matrix on the left is nonsingular by Lemma 5 and the right side is strictly positive and
finite asin (36). Wethennotethat I(-n) = (o~ 1) andf(-n) = r(o~1). Wetaketheinverse
in (40) to obtan (30. By Lemma 5 I(c"})Y(c™!) =1(c7!). Hence
l(6™Y) = (o7 1) Y(o71) 72, and we can delete the Y(o ™). We apply (29) and (30) to obtain

(31)«(33). m

We conclude this section by stating some relations among the asymptotic constants that
follow from theorems 8-10.

Theorem 11. (a) In the BMAP/GI/1 queue, if the limits exist, then
B=oL,p*=ay (41)
and

pa _ I'(D-Do)e _ I"(D-Do)e _ |We

' = e = T = T [(c™1)(D-Dy)e. (42)
(b) Inthe MAP/GI/1 queue,
Ba _ Bd _ ItDle _ I'-Dle _ |We _ o _ 1 _ no
rF =-=rFr = = = = = (o Die=__—"— . (43
B P e ITe e "o, @ )DieE oy W

Proof. (a). Apply Theorems 8-10, recalling that B = ol'e/(1-0) and B2 = al2e/(1-0). (b)
In the MAP/GI/1 queue, customers arrive one at atime, so that B2 = B9 and |We = ayy. Then

D - Dy = D;. Finally, by (26), BY/B = no/p(1-0c). Theorem 2 of [2] aso shows that



-20-

oaw/a, = nol/p(l-o)inany G/Gl/lqueue. =

Corollary. (a) Inthe MAP/M/1 queue,c = 1 — n so that

B2 _ 0w _ o _ 1-n
7w v e (9

(b) Inthe MAP/D/1 queue, ¢ = e™ ", so that

B* _ 9w _ ne" _ -oclogo

(45)

B ol p@-em p(-o)

Remark 6. In applications we are often interested in the steady-state sojourn time or response
time T, i.e.,, the waiting time W plus the service time V. Theorem 1 of [2] shows that in any
G/GI/1 queue if e7*P(W > X) - ay asX — o, thene™P(T > x) —» aw/o. Moreover, the
exponentia approximation for the sojourn-time distribution is also remarkably good, even when

the service-time distribution is not nearly exponential.  m.

4, The MAP/MSP/1 Queue

In this section we briefly consider arelated class of Markovian queueing models that allows
dependence among the service times. In particular, we let the number of service completions
during the first t units of time that the server is busy be a MAP that is independent of the arrival

process. We call this service process a Markovian service process (MSP).

In the MAP/MSP/1 queueg, it is easy to see that the queue length at an arbitrary time, together
with the auxiliary phase state of both the arrival and the service process, can be represented as a
guasi-birth-and-death (QBD) process, which is a specialy structured continuous-time Markov
chain, asin Chapter 3 of Neuts[17]. In particular, a QBD process has an infinitesimal generator

of theform
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Let D) and D] be the matrices characterizing the MAP and let D§ and D be the matrices
characterizing the MSP, as in (14), assuming that they each have overall rate 1. Let the overal
service rate and arrival rate be 1 and p, respectively. Then, asin Whitt [27], it is easy to see that

the matrices in (46) can be expressed using the Kronecker product [ and sum [J operations as
Ao = 1,0pD} , A; = D{0pDy and A, = DO, , (47)

where |1 and |, are identity matrices. By our assumption that the MSP operates only when the

server is busy,
é():'leDE) and élez. (48)

We can abtain alternative models by changing the definition of By. For example, we could let the
phase process run without generating any real service completions. Then we would have
B, = D' OpD}.

Remark 7. Specia cases of the MAP/IMSP/1 are the M/M/1 and PH/PH/1 queues. For the
M/M/1 queue, (3 in (46) reduces to the familiar infinitesimal generator of the continuous-time
gueue-length process, without any auxiliary states. The PH/PH/1 queue is a familiar QBD
process; see 83.7 of Neuts [17]. The number of auxiliary states is m; m, where m; and m, are
the number of phasesin the interarrival time and service-time distributions.

Remark 8. The MAP/MSP/1 model has the MSP and MAP stochastically independent.

Dependence can easily be introduced within the QBD framework. We would then typically not

have the Kronecker structurein (47) and (48). m
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Since the MAP/M SP/1 queue produces a Markov chain of GI/M/1 type, it has the asymptotic
behavior in (4), where in this case the rate matrix R is the minimal nonnegative solution to the

equation
RZAZ + RA]_ + AO =0. (49)

The asymptotic decay rate o is then the Perron-Frobenius eigenvalue of R, pf (R), which upon

multiplying by the associated eigenvector in (49) we see satisfies the equation
pf(A(0)) = 0, (50)

where,&(z) = x?2A, + zA; + Ay. Aswith D(z) in §3, the Perron-Frobenius eigenvalue of A(z)
is well defined since A(z) has nonnegative off-diagonal elements. By the same argument as for
Proposition 7, which follows Lemma 2.3.4 of Neuts [20], we have the following result.

Proposition 12. In a QBD process if ,&(1) isirreducible, then the Perron-Frobenius eigenvalue
pf (A(z)) is a dtrictly increasing convex function of z with pf(A(1)) = 0, so that the equation

pf(A(z)) = Ohasat most oneroot o withO < o < 1.

We apply Proposition 12 to establish asymptotics for the MAP/M SP/1 queue.
Theorem 13. In the MAP/MSP/1 queue, if (3 is irreducible and positive recurrent, and D' (1)
andD* (1) areirreducible, then

Xi = XoR = 0 (xof(0))I(0) + 0(c') asi - o, (51)

where the asymptotic decay rate o is the unique root with 0 < 0 < 1 of the equation

pf(,&(z)) = 0 or, equivalently, the equation

pf(D*(2)) = —pf(pD' (1/2)) , (52)

and f(o) and 1 (o) are left and right eigenvectors of A(o) associated with pf (A(o)) such that
I(o)r(c) = I(c)e = 1.

Proof. It is easy to see that A(1) isirreducible if D' (1) and D' (1) are. Thus, by Proposition
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12, the equation pf(,&(z)) = 0 has at most one root with0 < z < 1. By Theorem 3.1.1 of [17],
this root o exists and satisfies 0 < 0 < 1, and (51) is valid. As shown in [27], from basic

properties of the Kronecker operations, we obtain

~ O ! O
pf(A(2)) = prt(I1><pD1) + (1,0pD}) + (DyO1,) + wg
Dl
= pH((110(p2D} +pDY)) + ((Dy + —-) 1))
Di
= pf(zpDi+pDg) + pf(Dg +—-))
= pf(D"(2)) + pf(D' (1/2) . (53)

By Proposition 7, note that pf (D' (z)) and pf(D* (2)) are increasing convex functions of z It

then follows directly that pf (D* (1/z)) isaconvex function of zaswell. m

We can easily obtain related results for the steady-state distributions just before arrivals and
just after departures by applying [15]. For this purpose, let xitj denote the steady-state probability
that the queue length is i and the (joint arrival and service) phase is | at an arbitrary time, and

similarly for x{j and x,‘]' Then, paralleling (24), we obtain
= Z Aok and o =) F A1) (54
from [15], using time reversal in 84 there for xﬂ Hence,
xde = xiAye and x%e = xiA e, (55)
from which the asymptotics for x? and x¢ follow. Moreover, since the long-run flow rate from
level i up (down) isx!Age (X'A, e), we have xie = x%e, aswe should.
5. A Numerical Example

To illustrate and confirm our BMAP/GI/1 results in 83, we conclude with a numerical

example. We consider a relatively simple MAP, in particular, a two-state Markov modulated
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Poisson process (MMPP,). As on p. 37 of Lucantoni [13], an MMPP is a BMAP with
Do =M -A,D; =AandD; = Oforj > 2, where M is the infinitesimal-generator matrix of
the Markovian environment process and A is the associated Poisson rate matrix. With two

phases,

O 5
M = and A = , 56
e -mip D Mg 0

where mgy,m;,Ag and A, are positive constants and mgA; + m;Ag = mg+my, so that the

arrival rateis1. Theoverdl arrival rateisthen p where p is specified separately. Then

D( ) D‘mo + )\0(2_1) Mg U (57)
Z) = [ .
0 m; -my + A (z2-1)g

As usual, the Perron-Frobenius eigenvalue pf(D(z)) = pp(2) can be found by solving the
characteristic equation. Letx = z—-1,m=mg+my,Ss=Ag+A;andd = Ag — Aq. Then

the characteristic equation is

det(D(2) = yl) = y* - y(x-m) + AgA;x*-mx = 0, (58)
yielding
s —m+ VAT T amx(2 )+ 17
Po(2) = Y() = LG (59)
In this context, the key equationsin (17) are
vo=t-1) = 1 and Ee"V = g1 (60)

P
for y(x) in (59).
We now consider a concrete example. We verify the equations in this paper by independently

calculating the asymptotic parameters by the moment-based numerical inversion procedure in

Choudhury and Lucantoni [6]. We aso calculate the probability distributions themselves using
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the algorithms in Lucantoni [13], together with the numerical transform inversion in Abate and

Whitt [3], asimplemented by Choudhury [5].
For our concrete example, consider the two-point service-time distribution:
P(V = 11) = 0.01960784 = 1 - P(V = 0.8) .

This distribution has first two moments EV = 1 and EV? = 3. Let p = 0.7, pAy = 1.1,
pA; = 0.3and pmy = pm; = 0.1, so that the overall arrival rate is 0.7, but the instantaneous
arrival rate in phase 0 is 1.1, which is greater than the overal service rate of 1. Then

m = 0.285714,s = 2.0and d = 1.142857, so that (59) becomes

y(X) = x — 0.142857 + 0.5V1.306122x2 + 0.0816326 . (61)

In this case the solution of (60) isn = 0.1115972 and 0 = 0.878066, asis easy to check. Thus

Pp(0™1) = 0.159424, |(c™1) = (0.629544, 0.370456),

[0.075362  0.1428570 1. 17989111
D(e™) = B Band r(c™) =0 0 (62)
0.142857 —0.083342] [0.694306L

withl(o™1) and r(c™ 1) being chosen sothat (oY) r(o™1) = I(oc"Y)e = 1.

To caculae 19 in (19), we dso need ¢'(n), pp(c™!) and g (Recal that

(-xoDot) = (1-p)g). First,

¢ (n) = Eve"V = 1.593677 . (63)

From (59),
() =y () = 5 + @229 DT o2y L omiz-s)) L (64

so that here

pb(0™1) = v (0.138866) = 1.277475 . (65)
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From [5], we obtain g = (0.241185, 0.758815), so that g r(o~!) = 0.811421. Thus, we

obtain from (19)

1 = ”“"p)g_rl(c_l)'("_l) - 0.0912881(c"1) (66)
p(ppp(c )@ (n) - 1)

and12e = |9 = 0.091287. From (26), we obtain

It = p(i_;o)w = 0.07951561 (G~ 1) (67)

and I'e = 0.0795156. We also see that (66) and (67) are consistent with (27), i.e,

l2e = I'D; e = |9easit should.

Next,
It = -2 it = 0.572608I (0
e 0.5726081(c 1) (68)
and
ol?e
IWe = Z—— = 0.657379, (69)
sothata, = B,ayw = B?and
Io t —
Je B oo le P79 - g g71040 (70)
O B2 [“e no

asin Theorem 11.

Finally, Table 1 compares the exponential approximations Bo¥ and B2c* with the exact
valuesP(Q > k) and P(Q? > k) inthismodel. From Table 1 it is apparent that the exponential
approximations are excellent at the 80" percentile and beyond. (Of course, in general, the point
where the exponential approximations become good depends on the model.)
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Tablel. A comparison of approximations with exact values for the steady-state queue-length
tail probabilitiesin the MMPP,/D ,/1 examplein 85.
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Table 1. A comparison of exponential approximations with exact values of the workload tail
probabilities, P(L > x), in the M/H3/1 queue with p = 0.7 and ¢Z = 4.0 in
Examplel. Also included are the loca linear regression estimates of the
asymptotic parameters.
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Table 2. A comparison of exponentia approximations with exact values of the sojourn-time
tail probabilities, P(T > x), in the M/H5/1 queue with p = 0.7 and ¢2 = 4.0 in
Example 1. Also included are the local linear regression estimates of the
asymptotic parameters.
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Table 3. A comparison of exponential approximations for the steady-state workload and
sojourn-time tail probabilities with exact values in the MMPP,/D,/1 queue in
Example 2.
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Table 4. A comparison of approximations with exact values of P(Q = k) in the M/H5/1
queue with p = 0.7 and ¢2 = 4.0 in Example 1 revisited. Here ¢ = 0.874996,
B = 0.763625and 3(1-0)/c = 0.109095.
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Table 5. A comparison of approximations with exact values of P(Q = k) and P(Q > k) in
the MMPP/D ,/1 queue with p = 0.7 in Example 2 revisited in 86.
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Table 6. A comparison of approximations with exact values from pp. 24, 74 of Hillier and
Yu (1981) of the tail probabilities P(Q > k) inthe M/E,/4 model withp = 0.9in
Example 4. Here o0 = 0.869646, [ = 0.69879, EQ = 5.3542, B4 =
EQ(1-0) = 0.69794and 04, = 0.86963.
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Table 7. A comparison of approximations with exact values from pp. 24, 74 of Hillier and
Yu (1981) of the tail probabilities P(Q > k) in the M/E»/4 model with p = 0.75
in Example4. Here 0 = 0.68548, B = 0.4031, EQ = 1.1691, B,, = EQ(1-0)
= 0.36805and 04, = 0.68519.
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Table 8. A comparison of approximations and exact values from p. 74 of Hillier and Yu
(1981) of the probability mass function values P(Q = k) in the M/E»/4 queue with
p = 0.9in Example 4.
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Table 9. A summary of the asymptotic parameters of the steady-state random variablesin the
G/GI/1 queue.



