Chapter 11

More on the Mathematical
Framework

11.1. Introduction

In this chapter we discuss the mathematical framework for stochastic-
process limits, expanding upon the introduction in Chapter 3. For more
details and discussion, see Billingsley (1968, 1999) and Parthasarathy (1967).

Throughout, we formalize the notion of convergence using topologies.
Hence we start in Section 11.2 by reviewing basic topological concepts. In
Section 11.3 we discuss the topology on the space P of all probability mea-
sures on a general metric space, expanding upon the introduction in Section

3.2.

In Section 11.4 we review basic properties of product spaces. We describe
simple criteria for the joint convergence of random elements and we state
the important (even if elementary) convergence-together theorem, which is
used in many proofs.

In Section 11.5 we discuss the function space D containing the stochastic-
process sample paths, expanding upon the introduction in Section 3.3. We
introduce the other two Skorohod (1956) topologies — Jo and M, — and
provide additional details.

In Section 11.6 we briefly describe the standard approach to establish
stochastic-process limits based on compactness and the convergence of the
finite-dimensional distributions. The compactness approach complements
the continuous-mapping approach described in Section 3.4.
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11.2. Topologies

In this book we focus on stochastic-process limits, i.e., the convergence
of a sequence of stochastic processes to a limiting stochastic process. We use
topology to formalize that notion. Indeed, to a large extent, this is a book
about topology. Of course, we use “topology” in the mathematical sense
rather than the networking sense: Here we characterize the convergence of
sequences of abstract objects (stochastic processes), rather than evaluate
alternative configurations of nodes and links in a communication network.

11.2.1. Definitions

In particular, we define a topology on a set of stochastic processes. To
explain, we briefly review basic topological concepts. Most of the concepts
can be found in any introductory book on topology; e.g., see Simmons (1963)
and Dugundji (1967).

A common way to define a topology on a set is via a metric, as defined in
Section 3.2. In a metric space, we can regard the topology as a specification
of which sequences converge. A direct definition of a topology involves
subsets of the set S. We assume familiarity with elementary set theory. It is
important to distinguish between elements and subsets of a set: When z is
an element of a set S, we write z € S; then {z} is a subset of S and we write
{z} C S. We write A°>, ANB, AUB and A — B = AN B¢ for complement,
intersection, union and difference, respectively.

So here is the direct definition: A topological space is a nonempty set
S together with a topology T, with the topology 7 being a collection (set)
of subsets of S called open sets satisfying certain axioms. In particular,
a topology is any collection of subsets, including the whole set S and the
empty set ¢, that is closed under arbitrary unions and finite intersections.
(Thus S € T.) By closed under arbitrary unions, we mean that arbitrary
unions of sets in the topology are also in the topology.

Every metric determines a topology generated by (the smallest topology
containing) the open balls

By (z,r)={y € S:m(z,y) <r},

for £ € § and r > 0, but not every topology can be induced by a metric.
A topology that can be induced by a metric is called metrizable. We will
primarily be concerned with metrizable topologies.

Given a topology T on a set S, we identify other sets (subsets of S) of
interest. A set is closed if its complement is open. Thus the special subsets



11.2. TOPOLOGIES 443

S and ¢ in every topology are both open and closed. We often use G to
designate an open set and F' to designate a closed set. For any subset A, its
closure A~ is the intersection of all closed sets containing A, which is closed;
its interior A° is the union of all open sets contained in A, which is open;
and its boundary 0A = A~ — A° is the difference between the closure and
the interior, which is closed.

The canonical example is the real line R with the usual distance m(a, b) =
|a —b|. Let (a,b] = {t € R:a <t < b} and let other intervals be defined
similarly. The intervals (a,b), (—o00,b) and (a,0) are all open sets (called
open intervals), while the intervals [a,b], (—o0,b] and [a,00) are all closed
sets (called closed intervals). The intervals (a,b), (a,b] and [a,b] all have
boundary the two-point set {a,b}. The open intervals (a,b) for —oco < a <
b < oo are the open balls inducing the topology.

A second example is the k-dimensional product space R¥. For any p,
0<p<oo,

k
lall, = Q_ la')'/”
i=1

for a = (a',...,a*) € R¥ is the L, norm. The associated metric

myp(a,b) = |la —bllp

induces the Fuclidean topology on R¥. As p — oo, the L, norm approaches
the Lo, norm
—_— 7
lallo = max la*|
which also induces the Euclidean topology on RF.

Finite unions and finite intersections of open (closed) sets are again open
(closed). We obtain new kinds of sets when we consider infinite unions or
intersections. Because of our interest in probability measures on topological
spaces, we are especially interested in countably infinite unions and inter-
sections. A set is a Gy if it is a countable intersection of open sets, an F, if
it is a countable union of closed sets, a G, if it is a countable union of G
sets, and so forth.

A specific topology on a set is determined by specifying which subsets are
open. That can be done by identifying a subbasis or a basis. A subbasis for
the topology is any family of sets such that the given topology is the smallest
topology containing that family. The topology generated by a subbasis
contains the whole set S, the empty set ¢, all finite intersections from the
subbasis and all unions from these finite intersections. A basis is a family of
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open sets such that each open set is a union of basis sets. Thus, the family
of all finite intersections from a subbasis forms a basis. For example, the
collection of all open intervals with rational endpoints is a basis for the real
line with the usual topology.

A topology on a set is also determined by specifying which functions
from the given set to other topological spaces are continuous. A function f
from one metric space (S, m) to another metric space (S’,m’) is continuous
if m'(f(zn), f(z)) — 0 as n — oo whenever m(z,,z) — 0 for a sequence
{np :mn > 1} in S. A function f from one topological space S to another
topological space S’ is continuous if the inverse image of the open set G,
fHG)={s € S: f(s) € G}, is an open set in S for each open set G in S'.

One way to define a topology in terms of functions is to specify a class of
functions from the given set to another topological space, and then stipulate
that the topology is the smallest topology such that all functions in the
designated class are continuous. (The inverse images of open sets for the
functions form a subbasis.)

A one-to-one function f : S — S’ mapping one topological space S onto
another topological space S’ such that both f and its inverse, mapping S’
onto S (which we also denote by f~!) are continuous is called a homeo-
morphism. (In the paragraph above, f~! maps subsets of S’ into subsets of
S; here ! maps elements of S’ into elements of S.) Two homeomorphic
spaces are topologically equivalent. If we are only concerned about topo-
logical concepts, then two homeomorphic spaces can be regarded as two
representations of the same space.

An important property held by some topological spaces is compactness.
An open cover is a collection of open sets whose union is the entire space.
A topological space is compact if each open cover has a finite subcover. In a
metric space, a subset A is compact if every sequence in A has a convergent
subsequence with limit in A.

Every subset B of a topological space S becomes a topological space in
its own right with the relative topology, which contains all intersections of
open subsets with B, i.e., all sets of the form B N G where G is open in S.
A subset of a compact topological space is itself compact if and only if the
subset is closed. We often use K to denote a compact subset.

For example, in the real line R with the usual metric m(a,b) = |a — b|,
the closed bounded interval [a, b] is compact, but the intervals (a,b), (a, b,
(—o0,b) and (—o0, b] are not compact.

Every (Cartesian) product of topological spaces [[;.; Si; becomes a topo-
logical space with the product topology, which is defined by letting the sub-
basis contain all sets of elements {z; : i € I} such that z;, € G;,, where
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G, is an open set in S;, for any single index ¢y. By Tychonofl’s theorem,
arbitrary products of compact topological spaces are compact.

Under regularity conditions, implied by the topology being metrizable,
the topology is determined by specifying which sequences of elements from
the set converge to limits in the set. A sequence {z,, : n > 1} in a topological
space S converges to a limit x in S if, for each open subset G containing z,
there is an integer ng such that z,, € G for all n > ng. In a metric space
(S,m), the sequence converges if, for all €, there exists an integer ngy such
that =, € By, (z,€) for all n > ny.

When sequences are not adequate, we can use nets. A sequence in S
can be regarded as a map from the positive integers into S; a net in S is a
map from a directed set into S. A directed set, say A, is a set with an order
relation < defined on it, so that for any a,b € A there exists ¢ € A such that
a < cand b < ¢. Of course the positive integers is a directed set; another
directed set that is not totally ordered is the set of all subsets of a given
set ordered by set inclusion. A net {z5: 6 € A} in S in a topological space
S converges to a limit z in S if, for each open set G containing z, there is
do € A such that x5 € G for all § with dg < §. However, as indicated above,
in metric spaces it suffices to consider only sequences. We only mention nets
when it has not yet been established that the topological space is metrizable.

Thus, in a metrizable topological space the topology can be specified in
any of the following ways:

(i) specifying the open subsets, e.g., by specifying a subbasis or a basis,

)
(ii) specifying a class of functions that must be continuous,
(iii) defining a metric,

)

(iv) specifying which sequences converge.

11.2.2. Separability and Completeness

In addition to having the topological space be metrizable, we often want
to impose two additional regularity properties: separability and complete-
ness. A topological space is separable if it has a countable dense subset; a
subset A is dense in a topological space S if A~ = §, i.e., if the closure of
A is the whole space S. In metric spaces, separability is equivalent to sec-
ond countability, i.e., the topology having a countable basis, which in turn is
equivalent to every open cover having a countable subcover. In a separable
metric space, the balls B, (z,r) of rational radius r centered at points z in
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a countable dense set form a countable basis. Separable metric spaces are
quite general, but by the Urysohn embedding theorem, any separable metric
space is homeomorphic to a subset (with the relative topology) of the space

[0,1]° =[0,1] x [0,1] x ...

(with the product topology), which is metrizable as a compact metric space.
The separable metric space itself is in general not compact, however.

A sequence {z, : n > 1} in a metric space (S,m) is fundamental (or
satisfies the Cauchy property) if, for all € > 0, there exists ng = ng(e) such
that

mM(Tp, Tm) <€ forall n>nyg and m >mng .

A metric space (S,m) is complete if each fundamental sequence converges to
a limit in S. Completeness is useful for characterizing compactness, because
a closed subset of a complete metric space is compact if and only if it is
totally bounded, i.e., any cover by open balls has a finite subcover. (That
is, in verifying that any open cover has a finite subcover, we may restrict
attention to covers containing open balls.)

We are primarily concerned about the topology induced by a metric
rather than the metric itself. We will often work with metrics that are not
complete, but it will usually be possible to construct a topologically equiv-
alent metric that is complete. When a topological space is metrizable as
a complete metric space, we call the topological space topologically com-
plete. When we are interested in the topology rather than the metric, the
important property is topological completeness, not completeness.

A topological space that is metrizable as a complete separable metric
space is said to be Polish. Closely related to Polish spaces are Lusin spaces.
One topology Ti is a stronger topology (or finer topology) than another 7
if it contains the other as a proper subset, i.e., if 75 C 71. A set with a
metrizable topology (or, more generally, a Hausdorff topology) on which
there is a stronger topology that is Polish is called a Lusin space. A subset
of a complete metric space is itself a complete metric space (with the same
metric) if and only if it is closed; a subset of a Polish space is Polish if and
only if it is a Gg; a subset of a Lusin space is Lusin if and only if it is Borel
measurable (see the next section). Countable products of Polish (Lusin)
spaces are again Polish (Lusin). A nice account of Polish and Lusin spaces,
and probability measures on them, is contained in Schwartz (1973). These
spaces provide a natural setting for stochastic-process limits; only rarely is
greater generality needed.
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11.3. The Space P

In this section we supplement the discussion in Section 3.2, in which we
described the set P(S) of probability measures on a separable metric space
(S,m), endowed with the topology of weak convergence.

11.3.1. Probability Spaces

In order to define probability measures on S, We make S a measurable
space by endowing S with a o-field of measurable sets (subsets of S). We let
S denote a o-field on S. Like a topology, a o-field (on a set) is a collection
of subsets of the designated set satisfying certain axioms. In particular, a o-
field contains the whole set and is closed under complements and countable
unions. As usual, the sets in the o-field are the sets to which we can assign
probability. A o-field generated by a collection of sets is the smallest o-field
containing those sets.

When we define a probability measure on a measurable space, we obtain
a probability space. A probability measure on (5, S) is a real-valued function
on S satisfying 0 < P(A) <1 forall A€ S, P(S) =1 and P(UX,A4,) =
Yoo, P(Ay) whenever {A, : n > 1} is a sequence of mutually disjoint
subsets in S (No two of the subsets have any points in common.).

We will want to consider functions mapping one measurable space (S, S)
into another (S’,8’). A function h : (S, 8) — (5’,8’) is said to be measurable
if h~1(A4") € S for each A’ € S’. A measurable map h : (S,S) — (S,S')
induces an image (probability) measure Ph™' on ($',S') associated with
each probability measure P on (5,S), defined by

Ph7Y(A") = P(h1(A")) = P({s € §: h(s) € A'}).

forall A’ € S'.

So far, we have not exploited the topology on the space S. For a topo-
logical space (S, T), we always use the Borel o-field B(S) generated by the
open subsets of S. In a metric space (S,m), the topology is generated by
the metric m, i.e., by the open sets determined by m. Assuming that the
o-fields are Borel g-fields, all continuous functions are measurable. Indeed,
the Borel o-field can be characterized as the smallest o-field such that all
bounded continuous real-valued functions are measurable.

Since a topology is closed under arbitrary unions, while a o-field is closed
under countable unions, Borel o-fields tend to be well behaved when the
topological space is second countable, i.e., has a countable basis. Thus, as
an important regularity condition, we require that the metric space (S, m)
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be separable. Separability plays an important role in product spaces; see
Section 11.4 below.

11.3.2. Characterizing Weak Convergence

We are primarily interested in criteria for the convergence of a sequence
of probability measures. As defined in Section 3.2, a sequence of probability
measures {P, : n > 1} on (S,m) converges weakly or just converges to a
probability measure P on (S, m), and we write P, = P, if

Tim. /S fdp, = /S fdp (3.1)

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S. (In Section 1.4 of the Internet Supplement we give a
“Banach-space” explanation for the adjective “weak” in “weak convergence.”)

Note that we could require more. We could require that (3.1) hold for
all bounded measurable real-valued functions or for all indicator functions.
That would be equivalent to requiring that

P,(A) - P(A) forall AeB(S5),

but we do not. Indeed, that mode of convergence is often too strong. To
see why, let

P,{zn})=1 for n>1 and P({z})=1, (3.2)

where
Tp =T as N — 00 . (3.3)

If z,, # z for infinitely many n, then P,(A) /4 P(A) for A = {z}.

We can give a related equivalent characterization of weak convergence
P, = P. A measurable subset A for which P(0A) = 0, where 0A is the
boundary of A, is said to be a P-continuity set. Weak convergence P, = P
is equivalent to “pointwise convergence” P, (A) — P(A) for all P-continuity
sets A in B(S). The following “Portmanteau theorem” gives several alter-
native characterizations of weak convergence.

Theorem 11.3.1. (alternative characterizations of weak convergence) The
following are equivalent characterizations of weak convergence P, = P on
a metric space:

(i) limg, 00 fS fdP, = fS fdP for all f e C(S);
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(i) limy, oo [¢ fdP, = [4 fdP for all uniformly continuous f in C(S);
(iii) limsup,,_, o Pn(F) < P(F) for all closed F;

(iv) iminf, ,» P,(G) > P(G) for all open G;

(v) limy, o Py(A) = P(A) for all P-continuity sets A;

(vi) Paf~' = Pf~' on R for all f € C(S);

(vii) Pof~' = Pf~! on R for all uniformly continuous f in C(S).

The different equivalent criteria in Theorem 11.3.1 can be understood by
looking further at the deterministic example in (3.2)—(3.3). A key property
used in the proof of Theorem 11.3.1 is the ability to approximate probabili-
ties of measurable sets by the probabilities of open and closed sets.

Theorem 11.3.2. (approximation by closed and open sets) Let P be an
arbitary probability measure on a metric space (S, m) with the Borel o-field
B(S). For all A € B(S) and all € > 0, there ezxists a closed set F' and an
open set G with

FCACG

such that
P(G-F)<e.

It is also useful to be able to approximate probabilities by the probability
of compact subsets. A probability measure on a topological space S is said
to be tight if, for all € > 0, there exists a compact supset K such that

P(K)>1—¢.

The following is an important property of Lusin spaces; again see Schwartz
(1973).

Theorem 11.3.3. (approximation by compact sets) In a Lusin space S all
probability measures are tight. Let P be an arbitrary probability measure on
a Lusin space S with its Borel o-field B(S). For all A € B(S) and all € > 0,
there exists a compact set K with K C A such that

P(A-K)<e.
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We put the notion of weak convergence just given in a standard topolog-
ical framework by observing that it can be characterized by a metric. That
can be done in several ways; one is with the Prohorov metric defined in (2.2)
in Section 3.2. We remark that in the definition of the Prohorov metric it
suffices to restrict attention to A being a closed subset of S. The space
P(S) tends to inherit properties from the underlying space S. Given that
(S,m) is a separable metric space, the space (P(S), ) is topologically com-
plete or compact if and only if (S, m) is. Moreover, the subset of probability
measures in P(S) assigning unit mass to individual points in S with the rel-
ative topology is homeomorphic to S itself. See Chapter II of Parthasarathy
(1967).

On the real line R, we often use metrics applied to cumulative distribu-
tion functions (cdf’s). The Lévy metric, say A, is defined by (2.2) in Section
3.2 but only considering sets of the form A = (—o0,z]. Clearly, A < 7, but
both A and 7 induce the topology of weak convergence in P(R).

11.3.3. Random Elements

As indicated in Section 3.2, instead of directly referring to probability
measures, we often use random elements. We now restate Theorem 11.3.1
in terms of random elements. We say that a subset A in B(S) is an X-
continuity set if P(X € 0A) = 0.

Theorem 11.3.4. (alternative characterizations of convergence in distribu-
tion) The following are equivalent characterizations of convergence in dis-
tribution X, = X for random elements of a metric space:

(i) lim, oo Ef(X,) = Ef(X) for all f € C(S);

(ii) im, 00 Ef(X,) = Ef(X) for all uniformly continuous f in C(S);
(iii) limsup,_,.. P(X, € F) < P(X € F) for all closed F;
(iv) liminf, . P(X, € G) > P(X € G) for all open G;

(v) limy,_yo0 P(X,, € A) for all X -continuity sets A;
(vi) f(Xn) = f(X) in R for all f € C(S);

(vii) f(X,) = f(X) in R for all uniformly continuous f in C(S).
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The adjective “weak” in “weak convergence” distinguishes convergence

in distribution X,, = X from the stronger convergence X,, — X with prob-
ability one (w.p.1), which is called a strong limit. (The strong limit can hold
only when X,, and X are defined on a common probability space.) We will
give an alternative explanation for using the adjective “weak” below.

We now elaborate further on the meaning of weak convergence P,, = P.
First, notice that the definition of the Prohorov metric allows the probability
measure P, to assign a mass w(P;, P) arbitrarily far from where P, assigns
its mass, allowing for a small chance of a big error. We can better understand
the Prohorov metric 7 by considering a special representation, originally due
to Strassen (1965); also see Billingsley (1999) and Pollard (1984).

The Strassen representation theorem relates the Prohorov distance be-
tween two probability measures to the distance in probability between two
specially constructed random elements with those probability laws. For two
random elements X; and X, of a separable metric space (S, m) defined on
the same underlying probability space (2, F, P), the in-probability distance
between X; and X5 is defined by

p(X1,X2) =inf{e > 0: P(m(X1,X2) >¢) <€} . (3.4)

(We need separability for m(X7, X2) to be a legitimate random variable; see
the next section. The distance p is only a pseudometric because p(Xi, X2) =
0 does not imply that X; = X5.)

It is easy to see that

r(PX; 1, PX, 1) < p(X1,Xo)

for any random elements mapping an underlying probability space (2, F, P)
into a separable metric space (S,m). The Strassen representation theorem
allows us to go the other way for specially constructed random elements.

Theorem 11.3.5. (Strassen representation theorem) For any € > 0 and
any two probability measures Py and Py on a separable metric space (S,m),
there exist special S-valued random elements X1 and Xo on some common
underlying probability space such that

PX;'=P, for i=1,2

and
p(X]_,XQ) < 7T(P1,P2) +e€, (35)
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where p is the in-probability distance in (3.4). If the two probability measures
Py and P» are tight, which always holds if (S, m) is also a Lusin space, then
the random elements X1 and X9 can be constructed so that
p(Xl,XQ) = 7I'(P1,P2) . (36)
The Strassen representation theorem says that the Prohorov distance be-
tween probability measures can be realized (possibly only via an infimum)
as the distance in probability between two specially constructed random
elements on a common probability space that have the given probability
measures as their probability laws. It suffices to let the underlying proba-
bility space be the product space (S, m) x (S, m) and the random elements
be the coordinate projections. The problem then is to construct the prob-
ability measure on (S,m) x (S, m) with the specified marginal probability
laws satisfying (3.5) or (3.6).

Example 11.3.1. A simple example. To fix ideas it is useful to consider an
example. In Table 11.1 we specify three different random variables defined
on a simple probability space (2, F, P). The sample space {2 contains only
four elements; the o-field F contains all subsets; and the probability measure
P assigns equal probabilities to each set containing a single point.

Q| P{w}) | Xi(w) | Xo(w) | X5(w)
wi| 1/4 | 1/4 | 3/4 | 1/4
wy | 1/4 | 2/4 | 4/4 | 2/4
ws| 1/4 | 3/4 | 1/4 | 3/4
wy| 1/4 | 4/4 | 2/4 | 100

Table 11.1: Three possible random variables

In Table 11.2 we display the distances 7(PX; !, PX; ') and p(X1, X2),

distance 1=1,j=2|i1=1,57=3|1=2, j=3
n(PX; ', PX;") 0 1/4 1/4

p(Xi, X)) 1/2 1/4 1/2

1X; — X;]] 1/2 99 99 1/4

Table 11.2: Distances between the random variables

along with the uniform distance between the random variables || X; — X5 ||,
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where
| X ||= sup |X(w)| -
weN

Note that the random variables X; and X are different, but they have the
same distribution. The distances always increase as we go down in Table
11.2, but generalizations going sideways are hard to make. =

The Skorohod representation theorem, Theorem 3.2.2, also helps to un-
derstand the topology of weak convergence.

11.4. Product Spaces

We are often interested in joint convergence of random elements: We
want to go beyond X,, = X and Y,, = Y to obtain (X,,Y;) = (X,Y). We
consider such joint limits because we want to understand the joint distribu-
tion of X, and Y,,. We also often require the joint convergence in order to
apply the continuous-mapping approach. Just li

First, to have a vector random element (X,Y’) well defined, we need
X and Y to be defined on a common underlying probability space. Then,
given random elements X of a separable metric space (S’,m') and Y of a
separable metric space (S”,m"), we can regard (X,Y’) as a random element
of the product space associated with two metric spaces (S’, m') and (S”, m"),
ie.,

S=8x8"={(z,y):x€ 8, yes"}.

The open rectangles G' x G"” with G’ open in §' and G” open in S”
are a basis for the product topology on S’ x S". The product topology
is characterized by having convergence (z},z!) — (z/,2") if and only if
z,, = z' and z!! — z”. The product topology can be induced by several
different metrics, one being the mazimum metric

m((wlayl)a (15'2,@/2)) = max{ml(xla"E?)’m”(ylay2)} :

Similarly, the measurable rectangles A' x A" with A’ measurable in S’
and A” measurable in S” generate the product o-field on the product space
S’ x 8"; i.e., the product o-field is the smallest o-field on S’ x §” containing
the measurable rectangles.

The following basic theorems explain why we need our metric spaces to
be separable, i.e., to have countable dense subsets.
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Theorem 11.4.1. (separability of product spaces) The product space S’ x
S" with the product topology is separable if and only if the component spaces
S’ and S" are separable.

Theorem 11.4.2. (the Borel o-field in product spaces) The Borel o-field
B(S) associated with the product space S = S’ x S" with product topology
is the product o-field B(S") x B(S") if and only if the metric spaces (S',m')
and (S",m") are separable.

For a probability measure P on S = S’ x 8", marginal probability mea-
sures P' and P" are defined on (S’,S’) and (S”,S") by setting

P'(A)=P(A' x 8") and P"(A") = P(S' x A")

for every A’ € 8§ and A” € §”. Thus, if (X,Y) is a random element of
S = 8" x 8" with probability law P, then P’ and P” are the probability
laws of X and Y, respectively.

Theorem 11.4.3. (criteria for joint convergence) Suppose that the product
space S = S’ x 8" with the product topology is separable. Then the following
are each necessary and sufficient conditions for convergence in distribution
(Xn,Yn) = (X,)Y) in S:

(i) P(X,e€eA)Y,eA") -5 P(XeA)YeA
for every X -continuity set A" and every Y -continuity set A”.

(i) Tim P(X,€F.Y,eF')<P(XeF,YeF"

n—oo

for every closed set F' in S" and every closed set F" in S".

(i) lim P(X,e€GY,e€G")>P(XeqG,Y eqG"

n—oo

for every open set G' in S’ and every open set G" in S".

In general, we must verify one of the limits in Theorem 11.4.3 (i) — (iii)
in order to establish convergence in distribution for vector random elements,
but there are two special cases in which we easily get convergence in dis-
tribution for vector random elements. One case involves independence and
the other involves a deterministic limit.
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For given probability measures P’ on (S’,8’) and P” on (S”,8"), the
product probability measure P' x P" on the product space S’ x S” with the
product o-field 8’ x 8" is defined by

(PI % PII)(AI X A”) — PI(AI)PII(AII)

for every A’ € &’ and A” € §”. By Theorem 11.4.2, the product measure
is defined on the Borel field of §' x S” when (S',m') and (S”,m') are
separable. When X and Y are independent random elements of S’ and S”,
the probability law of (X,Y) is the product probability law PLX ! x P,Y 1,
where P, are the probability measures in the underlying probability spaces.

Theorem 11.4.4. (joint convergence for independent random elements)
Let X,, and Y, be independent random elements of separable metric spaces
(S',m') and (S",m") for each n > 1. Then there is joint convergence in
distribution

(Xn, Yp) = (X,Y) in S xS8"

if and only if X,, = X in S and Y, =Y in S".

Theorem 11.4.5. (joint convergence when one limit is deterministic) Sup-
pose that X,, = X in a separable metric space (S',m') and Y, = y in a
separable metric space (S",m"), where y is deterministic. Then

(Xn, Yy) = (X,y) in S ' x8".

Proof. By Theorem 11.4.3, it suffices to show that
P(X,€AY,eB)— P(Xe€AyeB) (4.1)

for each X-continuity set A and y-continuity set B (i.e., where y ¢ 0B).
First suppose that y € B, which implies that P(Y,, € B) — 0. Then (4.1)
holds because

P(X,€A)—P(Y,¢B)<P(X,€AY, e B)<P(X,€A).
Now suppose that y &€ B. Then (4.1) again holds because
P(X, € A,Y, € B)< P(Y, € B) > 0. =

Given two random elements X and Y of a common metric space (S, m),
we can speak of the random distance m(X,Y). Such a random distance is
a legitimate real-valued random variable when (S,m) is a separable metric
space, but not otherwise; see p. 225 of Billingsley (1968).
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Theorem 11.4.6. (measurability of the distance between random elements)
If (S, m) is a separable metric space and X and Y are random elements of
S defined on a common domain, then m(X,Y') is a legitimate measurable
real-valued random variable.

Note that convergence in distribution Y;, = y to a deterministic limit in
Theorem 11.4.5 (where (S”,m") is a separable metric space) is equivalent
to convergence in probability; i.e., Y, = y above if and only if

P(m"(Yn,y) >€) 50 as n— oo

for all € > 0.

We now give a useful way to establish new weak convergence limits from
given ones. We already used this result in our treatment of the Kolmogorov-
Smirnov statistic in Section ?7.

Theorem 11.4.7. (convergence-together theorem) Suppose that X, and Y,
are random elements of a separable metric space (S, m) defined on a common
domain. If X, = X in S and m(X,,Y,) = 0 in R, then

(Xn,Yn) = (X, X) in (S,m)x(S,m) .

Proof. For any closed subset F of S, let F€ be its closed e-neighborhood,
defined by

Fe={yeS:m(z,y) <e forsome z¢€F}.
For any two closed subsets F; and F; of S,
P(X, € F,Y, € /) < P(X, € (F1NF)%)+P(m(X,,Y,) >e¢,
so that

lim P(X, € F,Y, € i) < lim P(X, € (FiNFK)) < P(X € (FNF)°)

n—oo n—oo

by Theorem 11.3.4 (iii), since X,, = X. Letting ¢ | 0, we have P(X €
(Fi NFy)¢) | P(X € (F1 N Fy)). Hence,

lim P(X,€F,Y, e Rh)<P(XeF,XcFR),

n—oo

which implies the conclusion by Theorem 11.4.3. =
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We usually use Theorem 11.4.7 in proofs to obtain a desired limit Y;, =
X in S (one coordinate only) by treating a closely related sequence { X}
that is easier to analyze. There is a converse to Theorem 11.4.7 that adds
insight into the significance of joint convergence to a common limit. We not
only get the two marginal limits X,, = X and Y, = X, but we also get
asymptotic equivalence of X,, and Y,,.

Theorem 11.4.8. (asymptotic equivalence from joint convergence) Sup-
pose that X,, andY,, are random elements of a separable metric space (S, m)
with a common domain. If (X,,,Y,) = (X, X) in S x S, then

m(X,,Y,) =0 in R.

Proof. Apply the Skorohod representation theorem to replace the conver-
gence in distribution (X,,Y;) = (X,X) in S X S by convergence w.p.1 for
the special versions X,, and Y,. Then apply the triangle inequality in (S, m)
to deduce that m(X,,Y,) — 0 w.p.1. Finally, note that m(X,,Y;) has the
same distribution as m(X,,Y,), so that we obtain the desired conclusion.

11.5. The Space D

In this section we supplement the discussion of the functions space D
in Section 3.3, primarily by introducing the Skorohod (1956) Jo and My
topologies. For the discussion here, we assume that the functions are real-
valued and that the function domain is [0, 1].

We start by making some observations about the J; metric defined in
(3.2) of Section 3.3. The metric dj, is incomplete, but the topology is
topologically complete; there exists a topologically equivalent metric that is
complete; see Billingsley (1968). The space (D, Ji) is separable; a countable
dense set is made up of the rational-valued piecewise-constant functions with
only finitely many discontinuities, all at rational time points in the domain
[0,1]. Thus the space (D, J;) is Polish. The J; topology can also be defined
on D spaces with more general ranges. We can let the range be R* or any
Polish space.

11.5.1. J, and M, Metrics

A metric inducing the Jy topology on D([0,1],R) is defined by replacing
the set of functions A by the larger set A’ of all one-to-one maps of [0, 1]
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onto [0, 1], without requiring any continuity, i.e.,

dy(z1,22) = Inf {Jlar 0 A —aa| VA —el]} . (5.1)

Since A C A’, we obviously have
dj,(z1,72) < dj, (z1,72) < [|71 — 22| -

We will have little to say about the J» topology; see Bass and Pyke (1987)
for an application.

As noted in Section 3.3, we need a different topology on D if we want
the jump in a limit function to be unmatched in the converging functions.
In order to establish limits with unmatched jumps in the limit function
(or process), we use the Skorohod (1956) M topologies. We define the M
topologies using the completed graphs of the functions, defined in (3.3) in
Section 3.3.

The completed graph It is thus natural to consider established metrics
defined on the set of all compact subsets of R¢. Perhaps the best known
such metric is the Hausdorff metric. Given compact subsets Ky and Ky of
RE. the Hausdorff metric my is defined by

mpy (K1, Ks) = sup m(z1,Ks2)V sup m(ze, K1) , (5.2)
T1€EK1 T2€K>

where m(z, A) is the distance between the point x and the set A, defined by

m(z,A) =m(A,z) = inf m(z,y) (5.3)
yeA

and m is the metric used on R¥; e.g., see Section 1.4 of Matheron (1975).

To illustrate, the Hausdorff distance between two compact subsets in R¥
is depicted in Figure 11.1. The compact sets are the set of points inside
the oval and the set of points inside the rectangle, including the boundaries.
Note that the two sets overlap. The dashed lines identify the point in the oval
furthest away from the rectangle and the point in the rectangle furthest away
from the oval. The Hausdorff distance is the greater of these two distances.
Thus, even if one compact subset is a proper subset of another, they are a
positive distance apart.

Thus, for any z1,29 € D, the M5 metric on D is defined by

dMQ(ml,xg) = mH(le,sz) y (5.4)

where my is the Hausdorff metric in (5.2) and T, is the completed graph of
z, defined in (3.3) of Section 3.3. The topology on the space of completed
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Figure 11.1: The Hausdorff distance between two compact subsets of the
plane. The Hausdorff distance is the length of the longer dashed line.

graphs induced by the Hausdorff metric is the Skorohod Ms topology (al-
though that is not the way it was originally defined). The M; topology is
stronger than the M topology. It pays closer attention to order.

From the definitions above, it is not obvious how the M; and M topolo-
gies are related. For understanding the relation beween the two topologies,
it is significant that the M, topology can also be expressed via parametric
representations. Indeed, an alternative My metric (inducing the My topol-
ogy) can be defined by (3.4) in Section 3.3, after changing the definition of
a parametric representation: Instead of requiring that (u,r) be nondecreas-
ing, using the order on the completed graphs, we only require that the time
component function r be nondecreasing. With that definition, it is evident
that the M; topology is stronger than the Ms topology, i.e., M; convergence
implies M> convergence.

Unlike the J topologies, it is not possible to extend the M topologies by
allowing the range to be an arbitrary Polish space, because the completed
graphs require linear structure. However, the range can be a separable
Banach space with the M topologies. That generalization is used to obtain
heavy-traffic stochastic-process limits for the workload process in an infinite-
server queue in Section 10.3.
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11.5.2. The Four Skorohod Topologies

A unified approach to the four Skorohod topologies via graphs was pro-
vided in the thesis by Pomarede (1976). In that approach, the My and Jy
topologies are generated by the Hausdorff metric applied to the completed
and uncompleted graphs, respectively. Similarly, the M; and J; topolo-
gies are defined in terms of parametric representations of the completed
and uncompleted graphs. That approach to the J; topology draws upon
Kolmogorov (1956).

For applications, it is significant that previous limits for stochastic pro-
cesses with the familiar J; topology on D will also hold when we use one
of the other Skorohod (1956) non-uniform topologies instead, because the
J1 topology is stronger (or finer) than the other topologies. The four non-
uniform Skorohod topologies are ordered by

Jy>Jo> My and Jy > M; > M, (5.5)

where > means stronger than, with M; and Jy not being comparable. Ex-
amples of functions z, converging to the indicator function z = Ifp-1 4] in
D([0,1],R) in the different topologies are given in Figure 11.2. We contend
that the M; topology is often the most appropriate one; we discuss this
point further in Chapter 6.

We have indicated that all four non-uniform Skorohod topologies reduce
to uniform convergence over [0,1] when the limit function is continuous.
More generally, convergence in all four of these topologies implies local uni-
form convergence at any continuity function of a limit function. Thus all
four Skorohod topologies are stronger than the L, topologies on D induced
by the norms

1
Iz llp= ( /0 () Pdt) /7 . (5.6)

More generally, we have the following continuity result.

Theorem 11.5.1. (continuity of integrals) Suppose that g : R¥ — R is a
continuous function and let f : D¥ — (C,U) be defined by

t
f@)() = /0 g(z)(s)ds, t>0.

If D* is endowed with any of the Skorohod non-uniform topologies, then f
18 continuous.
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Figure 11.2: Four candidate sequences of functions {z, : n > 1} that might
converge to x = Ijj/q) in D([0, 1], R), where a,, = 271 —2n~1 and b, =
271 — L

Proof. First note that

[ iatslas < [ iotsyias

for all real-valued z and ¢ with 0 < ¢ < T. Then use the bounded conver-
gence theorem: Convergence x, — z imples that sup,, ||z,|| < oo and that
Zn(t) = z(t) at almost all ¢. =

Since the J; topology on D is Polish, the Jp, M, M, and L, topologies
on D are automatically Lusin. In Chapter 12 we will show that the M;
topology is Polish.

As with the J; and M; topologies on D, the domain of the functions can
be changed to [0,00). for the Jo and M topologies. In all cases z, — z is
understood to mean that there is convergence of the restrictions of x,, to the
restriction of = in D([0, ¢}, R¥) for all ¢ that are continuity points of the limit
function x. However, it sometimes is desirable to obtain stronger control of
the convergence at the end of the domain. By exploiting the SLLN, we can
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often assume that the sample paths z satisfy ||z||, < oo w.p.1, where ||z]|4
is the weighted-supremum norm, i.e.,

zllw = sup {|z()|/(1+1)},
0<t<o

so that we can use the metric ||z1 — z2||w on the subset of functions in
D([0,00),R) with finite weighted-supremum norm. Weak convergence with
the weighted-supremum norm was established by Miiller (1968) and applied
by Whitt (1972). Related weighted distances have been used extensively in
the study of empirical processes, as can be seen from Shorack and Wellner
(1986) and Csorgd and Horvath (1993).

In Section 3.3 we noted that addition is not continuous everywhere on
D x D, but that it is continuous at all pairs (z,y) in D x D that have no
common discontinuity points (and, for the M; topology, at all pairs (z,y)
that have no common discontinuity points with jumps of opposite sign). In
many applications, we are able to show that the two-dimensional limiting
stochastic process has sample paths in one of those subsets w.p.1., so that
we can apply the continuous-mapping approach with addition.

11.5.3. Measurability Issues

Since addition is not continuous everywhere, we most not only show that
it is continuous almost everywhere, but we must show that it is measurable.
It is thus important to know more about the Borel o-fields associated with
the non-uniform Skorohod topologies. Fortunately, in each case, the Borel o-
field coincides with the usual o-field, namely, the Kolmorogov o-field, which
is generated by the projection maps m, . 4 : D — RF . defined by

Tty (2) = [2(t1), ..., z(tr)]

so that measurability in (D, B(D)) with any of the non-uniform topologies
is consistent with the standard notion. The Kolmogorov o-field generated
by the coordinate projections (or “cylinder sets”) is usually associated with
the product space R® and the Kolmogorov (1950) extension theorem; see
Neveu (1965).

Theorem 11.5.2. (the Borel o-fields on D) The Borel o-fields on D with
any of the non-uniform Skorohod topologies coincides with the Kolmogorov
o-field generated by the coordinate projections.

Theorem 11.5.2 can be proved by direct verification in each case, as done
for the J; topology in Billingsley (1968). For the non-J; topologies, we can
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also exploit the established Jj result and properties of Lusin spaces; see p.
101 of Schwartz (1973).

Theorem 11.5.3. (Borel o-fields for comparable Lusin spaces) Any two
comparable Lusin topologies on a set have identical Borel o-fields.

It often happens that we have a limit for a sequence of stochastic pro-
cesses with sample paths in D, where the limit process has continuous sample
paths. Then there is considerable flexibility on the choice of the topology.
In that case, the four non-uniform topologies on D reduce to uniform con-
vergence over all bounded intervals, and all four topologies have the same
Borel o-field. Clearly, then it does not matter which of these topologies is
used.

We might naturally try to simplify matters even further in such a sit-
uation. We might choose to work directly with the space (D,U), where U
denotes the topology of uniform convergence (over closed bounded subinter-
vals) on D, induced by the uniform metric in Section 3.3 when the function
domain is [0, 1]. There is a complication, however. Even though convergence
Ty — x in D with the various non-uniform Skorohod topologies is equivalent
to uniform convergence over all bounded intervals when the limit function x
is continuous, in general we cannot simply work with the space (D,U), be-
cause there are measurability problems. The Borel o-fields on D (generated
by the open subsets) of all the non-uniform Skorohod topologies on D co-
incide with the usual Kolmogorov o-field on D generated by the coordinate
projections, but that is not true for (D,U). The Borel o-field on (D,U)
is much larger than the Kolmogorov o-field. As a consequence, familiar
stochastic processes such as the Poisson process cannot be regarded as ran-
dom elements of (D,U) with the Borel o-field; see Section 18 of Billingsley
(1968).

The measurability problems arise because the space (D,U) is nonsep-
arable. However, everything works well if we use D with a non-uniform
Skorohod topology. The Borel o-field then is the familiar one and, if a limit
function is continuous, convergence is equivalent to uniform convergence.

If we want to consider only convergence of stochastic processes where
the limiting stochastic process has continuous sample paths, then there is
an alternative approach. We can then use the space (D, U) with the uniform
topology, but use a smaller o-field than the Borel o-field, in particular, the
o-field generated by the open balls, called the em ball o-field By, (z,7). Such
a theory was developed by Dudley (1966, 1967) and is explained and used
by Pollard (1984).
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In contrast, in this book we are interested in the convergence of stochastic
processes where the limiting stochastic process has discontinuous sample
paths. Thus, for both measurability and convergence, we want to use a
non-uniform topology on D. The particular non-uniform topology on D
becomes important when the limit functions become discontinuous. The J;
topology is useful because it allows some flexibility in the location of jumps,
but it requires that the converging functions have jumps corresponding to
each jump in the limit function. Thus, here we focus on the M; topology.

11.6. The Compactness Approach

In this book we focus on the continuous-mapping approach to estab-
lish stochastic-process limits. To put the continuous-mapping approach in
perspective, we now describe the standard approach to establish stochastic-
process limits based on compactness. Our accounts of both the compactness
approach and the continuous-mapping approach are abridged versions of the
excellent accounts in Billingsley (1968).

The compactness-approach applies to probability measures on a general
metric space (S,m). In Section 3.2 we indicated that the space (P(S),n)
of probability measures on (S, m) with the Prohorov metric 7 is a metric
space. As in any metric space, we have convergence 7 (P,, P) — 0 as n — oo
for a sequence {P, : n > 1} in (P(S),n) if and only if every subsequence
{P,s : n' > 1} contains a further subsequence {P,» : n" > 1} with P,» = P.
We exploit a version of sequential compactness to provide conditions under
which that characterization of convergence is satisfied. The compactness
approach has been used to establish most of the initial stochastic-process
limits we will use in the continuous-mapping approach.

As in any metric space, a subset A of (P(S), 7) has compact closure A~ if
and only if the set A is relatively compact, i.e., if every sequence {P, : n > 1}
in A has a subsequence {P, : n' > 1} with P, = P’, where the limit P’ is
necessarily in the closure A~. Thus, given a sequence {F, : n > 1}, we can
establish convergence P, = P in P(S) by showing, first, that the sequence
{P, : n > 1} is relatively compact and, second, by showing that the limit of
any convergent subsequence must be P. The second step can be established
by establishing a weaker form of convergence, which is not strong enough to
imply weak convergence (i.e., w(P,, P) — 0), but which is strong enough to
uniquely determine the limit P. The two steps together imply that P, = P.

A key step in the compactness-approach to limits for sequences of prob-
ability measures on a metric space is to relate compact subsets in the space
(P(S), ) to compact subsets of the underlying space (S, m). That can be
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done by applying Prohorov’s theorem, from Prohorov (1956). The key con-
cept is tightness, which we now extend from a single probability measure to
a set of probability measures. A subset A of probability measures in P(S)
is said to be tight if, for all €, there exists a compact subset K of (S, m) such
that

P(K)>1—e¢ forall PecA.

The compact set K depends upon €, but it must do the job for all P in
A. Theorem 11.3.3 implies that every single probability measure on a Lusin
space is tight.

Theorem 11.6.1. (Prohorov’s theorem) Let (S,m) be a metric space. If a
subset A in P(S) is tight, then it is relatively compact. On the other hand,
if the subset A is relatively compact and the topological space S is Polish,
then A is tight.

Thus, in Polish spaces tightness is necessary and sufficient for relative
compactness. That implies that nothing is lost by focusing on tightness
when we want to establish relative compactness. (That is the primary basis
for interest in knowing whether a topological space is Polish when we are
concerned about weak convergence of probability measures.)

From Prohorov’s theorem, we obtain a useful way to establish conver-
gence P, = P.

Corollary 11.6.1. (tightness criterion for weak convergence) Let {P,, : n >
1} be a sequence of probability measures on a metric space (S,m). If the
sequence {P,} is tight and the limit of any convergent subsequence from
{P,} must be P, then P, = P.

These two conditions apply very naturally to establish criteria for con-
vergence X,, = X for stochastic processes {X,(t) : 0 < ¢ < 1} in the
function space C = C([0,1],R) of continuous real-valued functions on the
interval [0, 1] (or any other closed bounded interval) with the uniform met-
ric. First, it is natural to require convergence of all the finite-dimensional
distributions, i.e., to show that

(Xn(tr), -, Xalt)) = (X(8),..., X () in B (6.1)

for all positive integers k and all & time points #1,...,%; with 0 <#; < --- <
tr < 1. By the Kolmogorov extension theorem, it is known that the finite-
dimensional distributions uniquely determine a probability distribution on
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the larger product space R%!  endowed with the Kolmogorov o-field gen-

erated by the coordinate projections. Since the Borel o-field on C with the
uniform norm coincides with the Kolmogorov o-field generated by the co-
ordinate projections, the finite-dimensional distributions also determine the
distribution of a stochastic process X with sample paths in C.

However, convergence of the finite-dimensional distributions is not strong
enough to imply convergence in distribution X,, = X of the random ele-
ments of C.

Example 11.6.1. Convergence of finite-dimensional distributions is not enough.
To see that convergence of the finite-dimensional distributions does not
imply convergence in distribution X,, = X for random elements of C,

it suffices to consider a deterministic example. Let P(X = z) = 1 and
P(X, = z,) =1for all n > 1, where z(t) = 0,0 < ¢ <1, and

,(0) =0, zp(n)=1 and z,(2n") ==z,(1)=0,

with z,, defined by linear interpolation elsewhere. Clearly, z,(t) — z(t)
pointwise as n — oo, but || z, — z ||= 1 for all n. Hence, (6.1) holds for all
positive integers k and all k-tuples (¢1,...,%) with 0 <t < --- <t <1,
but P(| X, — X |)=1)=1. =

The observations above yield a simple criterion for convergence in distri-
bution in C. We say that a set of random elements is tight if the associated
set of image measures is tight,

Corollary 11.6.2. (criteria for convergence in distribution in C) There is
convergence X, = X in C if and only if the sequence {X, : n > 1} is tight
and there is convergence of all the finite-dimensional distributions of X, to
those of X.

Hence, in addition to the convergence of the finite-dimensional distribu-
tions in (6.1), we need to establish tightness of the sequence {{X,(t) : t >
0} :n > 1}

Fortunately compact subsets of the space C' can be conveniently charac-
terized by the Arzela-Ascoli theorem. To state it, let v(x;d) be a modulus
of continuity, defined for any function z in C' by

’U(H), (5) = sup{|x(t1) — :v(t2)| : 0<t1 <ty <1, |t1 — t2| < (5} . (62)
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Theorem 11.6.2. (Arzela-Ascoli theorem) A subset A of C has compact
closure if and only if
sup z(0) < oo
€A
and
lim supwv(z,d§) =0.
6—0 TEA
From the Arzela-Ascoli theorem we easily obtain criteria for a sequence
of probability measures on C' to be tight.

Theorem 11.6.3. (tightness criterion for random elements of C) A se-
quence {X,, : n > 1} of random elements of C is tight if and only if, for
every € > 0, there exists a constant ¢ such that

P(|X,(0)] >¢c)<e forall n>1, (6.3)
and, for every e > 0 and n > 0, there exists § > 0 and ngy such that
P(w(X,,0) >€) <n forall n>ny. (6.4)

The tightness criterion in Theorem 11.6.3 in turn give us convenient nec-
essary and sufficient conditions for convergence in distribution for random
elements of C.

Theorem 11.6.4. (criteria for convergence in distribution in C') There is
convergence in distribution X, = X in C if and only if (6.1), (6.3) and
(6.4) all hold.

The modulus inequality in (6.4) can in turn be translated into various
probability and moment inequalities. The following is a consequence of
Theorem 12.3 of Billingsley (1968).

Theorem 11.6.5. (moment criterion for tightness in C') A sequence {X,, :
n > 1} of random elements of C = C([0,1],R) is tight if {X,(0)} is tight in
R and there exist constants v > 0 and o > 1 and a nondecreasing continuous
function g on [0,1] such that

E[|Xn(t) — Xn(s)]"] < 1g(t) — g(s)|* (6.5)

for0<s<t<I1.
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The compactness approach to establish stochastic-process limits in (C, U)
and (D, J1) is developed in detail in Billingsley (1968). As illustrated by the
treatment of the Ji topology in Billingsley (1968), there are related cri-
teria for convergence X,, = X in D = D([0,1],R) with the non-uniform
Skorohod topologies. Because of the discontinuities, we want to require con-
vergence of the finite-dimensional distributions only for time points ¢ that
are almost surely continuity points of the limit process X, i.e., for which
P(t € Disc(X)) = 0, where Disc(z) is the set of discontinuity points of z,
and that suffices. Let

Tx ={t>0:P(t € Disc(X)) =0} U{1}.

Theorem 11.6.6. (criteria for convergence in distribution in D) There is
convergence in distribution X, = X in D with one of the Skorohod non-
uniform topologies if (6.1) holds for all t; € Tx and {X, : n > 1} is tight
with respect to the topology. The conditions are necessary for the Ju and M,
topologies.

From Theorem 11.6.1, we know that necessity in Theorem 11.6.6 de-
pends on the space being Polish. Since we have separability, it remains
to establish topological completeness. Topological completeness for J; was
demonstrated by Kolmogorov (1956) and Prohorov (1956); see Billingsley
(1968) for a different approach. For the M; topology, we establish topolog-
ical completeness in Section 12.8 by using Prohorov’s argument.

We exploit analogs of the Arzela-Ascoli theorem characterizing compact
subsets of D with the relevant non-uniform Skorohod topology. For that
purpose, we exploit generalizations of the modulus of continuity v(z,d) in
(6.2). The compactness-approach to stochastic-process limits via Prohorov’s
theorem explains our interest in characterizing compact subsets of D in
Section 12.12.

We conclude this section by establishing an elementary result about
tightness on product spaces. The result applies to finite or countably in-
finite products.

Theorem 11.6.7. (tightness on product spaces) Let S = [[2, S; be a prod-
uct of separable metric spaces with the product topology. A set A of proba-
bility measures on S is tight if and only if the sets A; = {P7ri_1 : P e A} of
marginal probability measures on S;, where m; is the i coordinate projection
map, are tight for all 3.
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Proof. First suppose that A € P(S) is tight. Let € be given. Thus there
is a compact subst K in S with P(K) > 1 —¢ for all P € A. Then, for each
i, m;(K) is compact in S; and K C ; ! (m;(K)), so that

Pr7 Y (m(K))>P(K)>1—c¢.

Second, suppose that P ! is tight for each i. For ¢ > 0 given, choose
compact K; in S; such that Pm,~ Y(K;) > 1 — €27 for all i. By Tychonoff’s
theorem, K = [[°, K; is compact in S. Moreover,

o0

o
P(E) <> Py (Kf)<e) 2'=¢. =
i=1 =1
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