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We propose measurements and approximations to describe the
variability of offered traffic to a queue (i.e., the variability of the
arrival process together with the service requirements), and predict
the average workload in the queue (which is assumed to have a
single-server, unlimited waiting space, and a work-conserving ser-
vice discipline). The principal traffic measurement considered is a
normalized version of the variance of the total input of work as a
function of time, which we call the index of dispersion for work
(IDW). Given ample traffic data, the IDW can easily be estimated
using sample averages. Given a mathematical model, such as a
multiclass queue in which each class has GI/G/1 offered traffic, the
IDW can often be calculaed analytically, or approximated by
exploiting limits as t = 0 and t — oo. Our basic premise is that the
average workload is primarily determined by the offered traffic,
beyond the offered load (the deterministic rate work arrives),
through the IDW. In this paper we provide support for this premise
and indicate how the average workload can be predicted from the
IDW or basic model parameters.

. INTRODUCTION AND SUMMARY

Our purpose is to gain a better understanding of com-
plicated queueing systems (and thus alarge class of discrete
event systems). We consider only one queue with a single-
server, unlimited waiting space and exogenous input, but
the queue might be one queue in a network. The problem
is that there may be complicated offered traffic, e.g., several
classes with different service requirements and non-Pois-
son arrival processes. To better understand the offered
traffic (the arrival process together with the service require-
ments), and the resulting congestion in a queue to which
it is offered, we propose traffic measurements and simple
approximations. To a large extent, the measurements can
be applied without specifying a detailed probability model.
On the other hand, for a large class of models, approxi-
mations can be obtained for the principal performance
measure considered here (the average workload) from basic
model parameters, without measurements.
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A. Measurements to Describe the Variability of the
Offered Traffic

The measurements we propose are intended to describe
the variability of the offered traffic, because the variability
of the offered traffic, appropriately defined, is a primary
determinant of performance. We wish to capture the vari-
ability of individual interarrival and service times, but also
the variability resulting from dependence among these
variables. In the context of the growing literature on traffic
measurements [28], [40], [44], our contribution is to suggest
new measurements that hopefully will provide additional
insightinto the offered traffic and its effecton performance.
We attempt to link traffic measurements more closely to
performance analysis.

The main measurement we propose for the offered traffic
is the index of dispersion for work (IDW). Let X(t) be the total
work in service time to enter the queue during the time
interval [0, t]. The IDW is the function of time

var [X(t)]

= > 1
1,(t) JEX@) t=0 1

where 7 is the average service time, var is the variance, and
Eis the expectation. We typically consider equilibrium con-
ditions, under which {X(t): t = 0} has stationary increments
with E[X(0] = pt, where p is the offered load or traffic inten-
sity. Then the IDW is just a scaled version of var [X(t)], the
variance-time curve of X(). From ample data, the IDW is easy
to estimate using sample averages; e.g., we can estimate
E[X(H¥ from a sample path of the total input process by

n

mt) = n~"' 211 IX(t + s) — X(s))* @
from n times points 0 < §; < 5, < **+ < s, (OF the asso-
ciated integral) and var [X(t)] by m(t) — m4(t). (The statistical
precision of the estimate can be an importantissue, butwe
do not discuss it here.)

When the service times are i.i.d. (independent and iden-
tically distributed) and independent of the arrival process,
the IDW essentially reduces to the relatively familiar index
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of dispersion for counts (IDC) of the arrival process alone;
see Section 111-B and (59) below. Thus, in many applications
the IDW will be describing the arrival process alone. How-
ever,whentheindependence conditions do not hold, it can
be important to consider the IDW instead of the IDC; see
[241-(26).

We suggest using the IDW and similar traffic measure-
ments to better understand queueing networks. From the
IDW we can see the variability in the offered traffic to each
queue; from IDW measurements at several queues we can
see how the network topology and other model features
affect variability and performance.

[n this paper, we provide theoretical support for IDW
measurements and approximations and give a few exam-
ples. We intend to discuss actual measurements in other
papers. We discuss IDW measurements and approxima-
tions for a multiclass packet queue in [25], [26]. Elsewhere,
weintendto describe IDW measurements of the arrival pro-
cesses at each queue of several queues in series. The IDW
helps explain interesting phenomena that occur there. For
example, high variability in an external arrival process may
be largely removed from the arrival processes to subse-
quent queues after passing through a queue with low-vari-
ability service times, but may reappear at a queue several
queues later that has a higher traffic intensity than the low-
variability queue. From the IDWs of the offered traffic at
successive queues, this phenomenon can be understood.
The high variability in the external arrival process is reflected
in the large-time behavior of the IDWs at all subsequent
queues, and this large-time behavior determines the per-
formance of any queue in heavy traffic. From the IDWs we
can better understand the behavior of a fairly complex sys-
tem.

[tis significant that in the context of probability models
the IDW can often be obtained from analytical calculations
te.g., inversion of Laplace transforms) or approximations
{e.g., based on the limiting behavior as t = 0 and t — o)
using basic model parameters, as well as from measure-
ments. Thus the IDW also provides a basis for approxi-
mations without measurements. We discuss this analytical
approach as well as the measurements in Section 1I, and
illustrate it by developing approximations for a queue with
asuperposition arrival process, without measurements, in
Section V1.

B. The Performance Measure of Interest

In this paper we consider only one performance mea-
sure—the (long-run) average workload. The workload at
time tis the amount of unfinished work (in service time) in
the system at time t. (The workload process is also called
the virtual waiting time process.) We focus on the average
workload because it is an important index of performance
thatis fairly robust; we contend that it is possible to develop
relatively good approximations for the average workload
without considering the fine structure of the model. We
restrict attention to the average workload, not because it
is the only performance measure worth considering (it is
not), but because it seems to be a good place to start in the
relatively new direction we are heading.

We actually do not focus directly on the average work-
load, but on a normalized version that is intended to high-
light the impact of the variability in the offered traffic, sep-

arate from the measuring units and the offered !oad. In
particular, let £(Z)) denote the long-run average, or mean
steady-state workload as a function of the offered load p
when the mean service time is 7. Instead of E(Z,), we con-
sider the normalized mean workload
, 200 = pKZ,)
cilp) = ————, 0<p<T. 3)
0

Even though c3(p) is a trivial modification of E(Z,), we con-
tend that c3(p) is very useful to see the impact of the vari-
ability in the offered traffic on the average workload. The
normalization in (3) is very convenient for graphical display,
in the spirit of Section 5.5.2 of Allen [6] and Chapter 1 of
Newell [42]. The normalized workload c2(p) is a partial char-
acterization of queue performance as a function of p, some-
what like the caudal characteristic curve introduced by
Neuts [41].

Asafunctionofrandpalone, the average workload might
be described by the exact M/D/1 value (assuming a Poisson
arrival process and deterministic service times)

0
EZ,, MIDIT) = (4)
The normalized mean workload in (3) can be interpreted as
the ratio of the given average workload to what it is in the
M/D/1 case, i.e., from (3) and (4),

; EZ,)
<) = B wony

or

(5)

(Similarly, normalization with respect to the M/M/1 queue
are considered by Burman and Smith [17].) We think of the
M/D/1 formula in (4) as describing the first-order rate effect
of the offered traffic on the average workload, including the
dramatic increase associated with (1 — p)~'as p — 1. We
think of the normalized mean workload in (3) as describing
the second-order variability effect of the offered traffic on
the average workload. Indeed, in Section [I-D we use scal-
ing arguments to show that the normalized mean workload
in (3)is invariant under a change of the deterministic rates.

Thus, the performance measure of interest is the nor-
malized mean workload cXp) in (3) as a function of p. We
consider c¥(p) as a function of p partly because we often
want to consider the performance of a queue at different
traffic intensities. For example, we may want to consider
how much traffic to offer to the queue. Alternatively, for a
given offered traffic, we may want to consider different rates
at which service may be performed. We primarily think of
different traffic intensities resulting from relatively simple
deterministic scaling of the rate of the arrival process or the
service process, but it might occur in more complicated
ways. We suggest focusing on the normalized mean work-
load as a function of p, regardless of how it changes with
p. Of course, it is important to properly represent the way
the normalized mean workload does change with p. When
there is feedback or a control mechanism, the normalized
mean workload and the IDW will often change with p in
unanticipated ways. In this paper we assume that p changes
by the relatively simple deterministic scaling. Even if we are
only interested in one system with a given traffic intensity,
considering the queue as afunction of pis useful to develop
approximations based on light-traffic (p — 0) and heavy-
traffic (p — 1) limits.
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Unlike the average workload £(Z,), c2(p) typically has non-
degenerate limits as p = 0, and as p — 1. Indeed, for
M/G/1 queues, the normalized mean workload is constant,
in particular,

cXp, MIGIT) = ci + 1 (6)

where c? is the squared coefficient of variation (variance
divided by the square of the mean) of a service time. (Here,
it is natural to change p by just changing the Poisson arrival
rate.) However, for other GI/G/1 queues (the interarrival
times and service times come from independent sequences
of i.i.d. random variables), c%(p) changes with p, showing a
response to the variability inthe offered traffic that depends
on p. For example, the normalized mean workloads of five
GI/G/1 queues are displayed in Fig. 1. (Here, we change p
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Fig. 1. The normalized mean workload ci(p) in (3) for five
G1/G/1 models (D = deterministic, £, = Erlang of order 2, M
= exponential, H, = hyperexponential; c; and c; are the
squared coefficients of variation of the nonexponential
interarrival times and service times).

by multiplying all interarrival times by aconstant.) Toalarge
extent, the shape of the normalized mean workload curve
for the GI/G/1 model is a function of the variability of the
arrival process. When the arrival process is Poisson, cXp)
is constant. When the arrival process is more variable than
Poisson, as in the case of H, (hyperexponential, mixture of
two exponentials), c¥(p) tends to increase; when the arrival
process is less variable than Poisson, as in the case of £,
(Erlang of order two, the convolution of two exponentials)
or D (deterministic), c2(p) tends to decrease. Indeed, arough
two-moment approximation for cXp) in GI/G/1 queues,
which we develop in Section IV-AT, is

Cg(p, G[/G”) = Cz + 1+ ,D(Ci -1 7)

where c2is the squared coefficient of variation of an inter-
arrival time.

The curves in Fig. 1 are relatively tame, showing a total
variation of at most 1. More interesting normalized mean
workloads occur in multiclass packet queues with bursty
arrival processes. Fig. 2 displays normalized mean work-
loads for two packet queue models based on simulation
estimates from Fendick et al. Here, in each case thereis a
total variation of 40. Moreover, the behavior is not due to
the arrival process alone. A similar normalized mean work-
load curve for a statistical multiplexer queue can be con-
structed from Table 11i of [51]. (See these references for
model description.) Fig. 2 shows a dramatic increase in the
average workload, relative to the M/D/1 model, as the traffic
intensity increases. Moreover, in contrast to (7), the curves
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Fig. 2. The normalized mean workload cXp) in (3) for two
multiclass packet queue models with bursty arrival pro-
cesses, based on simulation estimates and heavy-traffic and
light-traffic limits, from [25], [26].

in Fig. 2 are markedly nonlinear. Many different shapes are
possible.

In order to predict how offered traffic will affect the aver-
age workload in a queue, it is natural to estimate the nor-
malized mean workload directly via simulation (using either
historical or randomly generated data), and indeed we sug-
gestthisapproach in Section 1i-C. However, we also suggest
obtaining information about the normalized mean work-
load indirectly from the IDW, because the IDW is often
much easier to work with, especially with multiclass queues.
We also consider the IDW in addition to the normalized
mean workload because we want to better understand how
the offered traffic affects the normalized mean workload.

C. A Special Relationship: The IDW and the Normalized
Mean Workload

As a general idea, we suggest using traffic measurements
to gain insight into the variability of offered traffic, and the
performance of a queue to which this traffic is offered. To
support this general idea, we primarily consider only one
traffic measurement, the IDW in (1), and only one perfor-
mance measure, the normalized mean workload cXp)in(3).
As a specific idea, we suggest using the [DW to gain insight
into the normalized mean workload cX(p). The IDW may be
useful more generally, but we contend that it is especially
appropriate for predicting the normalized mean workload.

We contend that cX(p) is primarily determined by the IDW,
sothatitshould be possible to predict c%(p) reasonably well,
given p and {/,(0: t = 0}. Assuming that {cXp):0=<p <
1} is obtained by deterministic scaling of the interarrival or
service times, we contend that the two curves {cXp):0 =
p=<1}and {/ (0=t = o} are very similar. For example,
for two different queues, if one IDW is always higher than
the other, then we predict that the normalized mean work-
loads are similarly ordered. If the two IDWs are nearly the
same, then we predict that the normalized mean workloads
are nearly the same. Moreover, the actual values should be
nearly the same. (These suggested relations are approxi-
mations. In Section V-C we construct several models with
identical IDWs, but different normalized mean workloads.
Nevertheless, approximating the normalized mean work-
load of one of these models by the normalized mean work-
load in another of these models is reasonable.)

Atthis point it seems appropriate to explain why we might
expect the two functions {cX(p): 0 < p =< 1} and {/,(t):0 =<
t = o } to be related. For us, the starting pointwas the heavy-
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traffic diffusion process limit (discussed here in Section 1V)

lim cAp) = A1) = I (00) = lim 1(0) @)
no t oo
which follows from [24], [25], [37], [52], or [42]; i.e., itis known
that c;(1) = /,(x); the heavy-traffic limit ¢3(1) depends on
the total input process of work only via the IDW, and that
in this limit all the correlations play a role. However, it is
apparent that as p decreases from 1, distant correlations in
the total input process of work should have less impact on
c;(p). Roughly speaking, I,,(t) for agiven t has an impact upon
cp) for a given p only if fluctuations in the offered traffic
at time s have an impact upon the workload at time s + ¢
at that p. If the workload process hits zero before time s +
t,thenthisimpacttendsto be gone, butotherwise not. (This
assertion is rigorously justified when the zero state is a
regeneration pointfor the model; otherwise, itis an approx-
imation.) In other words, correlations within busy periods
should be more significant than correlations across busy
periods, and higher p means longer busy periods.

An approximation for ¢;(p) suggested by this heuristic
analysis and (8) is a deterministic time transformation of
140, i.e.,

cip) = 1,(tp), 0 <p <1 9)

where t(p) is strictly increasing, with #0) = 0 and (1) = c.

More precisely, we think of cX(p) as being approximately
a mixture of /() determined by a mixing cdf (cumulative
distribution function) G,,,(t) that depends on both the IDW
and p, i.e.,

cAp) = \“ I dG (0, 0<p =<1 (10

where G, (0) is stochastically increasing with p, i.e., for any
nondecreasing real-valued function h,

A ax

| Ao dG,,(0 =
{

v

h(t) dG,,, (0 (11)

0

whenever p, < p,. Equation (9) is obtained from (10) by mak-
ing the simplifying assumptions, first, that G,, is indepen-

Table 1

dent of w (the iDW) and, second, that G,, corresponds to
a unit point mass at the point t(p).
The connection between c¢3(p) and /,(t) and approxima-
tions (9) and (10), are further supported by a light-traffic limit
lim cx(p) = cX0) = 1,0) = lim 1,6 (12)
p 0 =0
which is also established in Section IV. Further insight can
be gained from the M/G/1 queue, for which /() =
c2p) = ¢+ 1foralltand p; see (6) and (60). More generally,
using the IDW to approximate the normalized mean work-
load can be regarded as a consequence of a Lévy process
approximation for the net input process of work; see Sec-
tion IV-C. This perspective is helpful because it does not
depend on heavy-traffic or light-traffic limits.

D. Approximations

The most elementary approximation for cf(p) given [ (t)
is (9). One possibility for the time transformation, assuming
that the mean service time is 1, is

ply (=)

= 3 = =1 1
ol = 5o 0 =0 = (13)

yielding our first candidate approximation
cile) = Ll (2)/2T = p)),

The exponent 2 in the denominator of (13) is motivated by
established heavy-traffic behavior of queues with super-
position arrival processes; see [43] and [59]. In Section
l11-E, we show that if the offered traffic is the superposition
from n i.i.d. sources, then the IDW for the superposition
of n processes, say /,,,(t), satisfies /,,(t) = I,(t/n), so that (13)
leadsto ci(p) = I, (pl,1()/2n(1 = p)?), which has the correct
asymptotic behaviorasp = Tand n — o;i.e., c2(p) = /(o)
ifn(1 = p)’ = 0,and cX(p) = 1, (0)if n(1 = p)* = . (See Section
VI for examples with large n.) The time transformation (13)
also constitutes an approximation for the relaxation time in
the queue; e.g., see pp. 133 and 151 of [42], [1] and [2].

A comparison between the exact values and /, (t(p)) in (9)
for t(p) = p/1 — p), p/(1 — p)?, and pl,(20)/2(1 — p)’ for the
H,/M/1 and E/M/1 models appears in Table 1. (In this case

0<p=<1. (14)

A Comparison of the Exact Normalized Mean Workload c#(p) in (3) with Three

Simple Time-Scaled IDWs, 1, (t(p)) for t(p) = p/(1 — p), p/(1 — p) and pl.(00)/2(1 — p)* as
in (13), and the Light-Traffic and Heavy-Traffic interpolation in (17) and (18). The H,
Distribution has Balanced Means, so that the Third Moment is m,, = 18.0.

H./M/, ¢t = 2.0

E/M/1, ¢! =05

Traffic - .
; I i = . = )
Intensity ) w{tle for Ke) Interpolation i b (Kol for 1) Interpolation
P CAol plT = o) pl(T = p)' pl@)21 — p)*  (17Vand (18)  CX0)  ofiT — o) pi(1 — p)* ol (/201 — p)*  (17) and (18)
0.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
0.1 2.07 2.04 2.04 206 2.07 1.85 1.90 1.89 1.92 1.84
0.2 215 2.08 2.10 2.14 2.16 1.77 1.82 1.79 1.82 1.73
0.3 2.24 2.13 2.18 2.25 225 1.70 1.74 1.69 1.73 1.66
0.4 2.34 2.19 229 2.40 2.35 1.66 1.67 1.6 1.64 1.62
0.5 2.45 2.27 2.45 2.57 2.46 1.62 1.62 1.56 1.58 1.59
0.6 256 2.37 2.66 2.74 257 1.59 1.58 1.53 1.54 1.57
0.7 2.68 2.49 2.81 2.87 2.68 1.56 1.55 1.52 1.52 1.55
0.8 2.78 2.05 2.93 2.95 2.79 1.54 1.53 1.51 1.51 1.53
0.9 2.90 2.83 2.98 2.99 2.90 1.52 1.51 1.50 1.50 1.52
1.0 3.00 3.00 3.00 3.00 3.00 1.50 1.50 1.50 1.50 1.50
max
(over p) 7.5% 5.4% 7.1% 0.4% - 2.8% 3.5% 3.8% 2.2%
error
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the H, distributions have balanced means: if \; is the expo-
nential rate and p; the probability of component i, then
PN = pa/Ny. The exact IDW formulas are given in Section
I11-G.) Also appearing in Table 1 is another approximation
discussed below. The advantages of having /,,(c0) in (13) is
not evident from Table 1; it is evident when /() is much
higher, e.g., when itis 77, as in the packet queue examples
in [26].

In this paper we restrict attention to deterministic time-
transformation approximations of the form (9), but we rec-
ognize that the appropriate time transformation t(p) should
ideally depend on the IDW. Thus, in Section V we develop
what we call a variability-fixed-point approximation to obtain
t(p) from 1,(t). To a large extent, this approach is motivated
by the work of Newell, pp. 132-151 of [42] and [43], although
the specific approximation here seems to be new.

In particular, we propose approximation (9) where t(p) is
determined by the fixed point equation

tp) = x(p),(tp)), 0 <p <1 (15)
where x(p) is an increasing function of p, such as
x(p) = p/(1 = p). (16)

Just as it is not clear that t(p) in (13) is best for (9), here it is
not clear that x(p) = p/(1 — p) in (16) is best in (15). Heuristic
arguments in Sections V-A and V-B also suggest x(p) =
p/12(1 — p)*, and x(p) = p/(1 — p?), respectively, but (16) often
seems reasonable. In any case, with (15), t(p) and I,,(t(p)) are
obtained for each p by finding the intersection of the line
t/x(p) with the function /,(t), as illustrated in Fig. 3.

t/x(p)

THE TOW 1,(1)

o talp) ta(p) TIME 1

Fig. 3. The variability-fixed-point approximation applied to
two different IDWs: cXp) = 1,(t(p)) as in (9) where t(p) sat-
isfies (15) with x(p) in (16).

In Fig. 3 the variability fixed-point approximation is
applied to two different IDW curves at the same p. Since
IDW A has lower variability for small t than IDW B, we con-
tend that it is appropriate to have the fixed points ordered
by ta(p) < tg(p) for all sufficiently small p. In Fig. 3, we see
that IDW A intersects the line t/x(p) three times, so that (15)
can have multiple solutions. We avoid ambiguity by always
selecting the minimal solution, but there is a fundamental
difficulty when (15) has multiple solutions; then t(p) and
1,(t(p)) are discontinuous in p, whereas c%(p) should be con-
tinuous. The difficulty stems from approximating the mix-
ing cdf G,,,(t) in (11) to be a unit point mass. We could refine
the approximation by smoothing the curve /,(t(p)) after
applying (13), but here we just observe that multiple solu-
tions to (15) signals a problem with the fixed-point approx-
imation. In most applications, (15) should have a unique
solution, at least for when p is not too small.
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We also apply the fixed-point framework to develop
approximations for the derivatives cX0) and ¢4(1)to use with
the end valuesin (8) and (12) in a light-traffic and heavy-traffic
interpolation. A specific interpolation approximation for
cXp) given the four values c(0), ¢X0), cX, and ¢3(1) is
developed in [60]. The interpolation approximation has the
form

cAp) = ag + ap + ayp’ + azp™ + a,(1 — p)>  (17)

for 0 = p = 1, where the coefficients a; and exponents b,
depend on the four limits cX(0), ¢2(0), cX(1), and €3(1), but not
p. This interpolation obviously avoids the discontinuity
problem above. The parameters a, and b, are chosen so that
the approximation and its first derivative are monotone
whenever possible, and so that the second derivative is
monotone whenever the first derivative cannot be mono-
tone.

We express the derivatives ¢X(0) and ¢X(1) in terms of the
derivatives J,,(0) and /(1) of J,(p) = I,(p/(1 — p)), which in
turn are often available analytically from the asymptotic
behavior of I,,(t). From (15) and additional asymptotics (Sec-
tion V), we obtain the approximations

2J,(M
max {1, Ju(D}

where /(1) = I(®) = cX1), and /,(0) = 1,(0) = c}(0) by (8)
and (12). In Section V-Bwe show that itis convenient towork
with J,,(p) in (18) instead of /,(t).

Equation (18) is the basis for an approximate light-traftic
and heavy-traffic interpolation, given only the asymptotic
behavior of /,,(p) as p — 0 and as p — 1. In support of (18),
we show that the approximation for £%0) is correct for the
Gl/G/1queue, and the approximation for ¢%(1)is correct for
the GI/M/1 queue. Comparisons of the interpolation
approximation based on (17) and (18) with exact values for
the H,/M/1 and E,/M/1 models appear in Table 1. For
H,/M/1, (17) and (18) offer a substantial improvement.
Indeed, all the approximations do remarkably well for these
examples. Unfortunately, the approximations are not always
nearly so good (e.g., see Section VI), but overall, our numer-
ical experience is encouraging. On the basis of perfor-
mance and simplicity, the leading candidates are the simple
time transformation (9) with (13), and the interpolation
approximation (17) and (18).

We became interested in new ways to approximate £(Z,)
and cX(p) because of difficult models, such as those having
the normalized mean workloads displayed in Fig. 2. How-
ever, every model need not be so difficult. For example, we
could have a queue with complicated dependence among
the interarrival times and service times, but a measured
IDW, as in Fig. 4. Our results lead us to predict (probably
quite accurately) from such a relatively level IDW that the
normalized mean workload in this case will be approxi-
mately the same as in an M/G/1 queue, withc? + 1 =5; i.e.,
in some applications, the behavior will be better than we
might expect.

cX0) = J,0/,0) and ¢X1) = (18)

E. Scaling

The functions c%(p) and /,,(t) are intended to characterize
the variability of the offered traffic. It is thus natural to ask
what properties such avariability measure should have. One
property that seems very natural is scale invariance, i.e., an
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0 TIME t

Fig. 4. A relatively level IDW, suggesting the approxima-
tionci(p) = 5,0 < p < 1.

invariance to changes in deterministic linear rates. We
develop this important idea further in Sections |I-D and
H-D.

F. Related Literature

This paper is a natural extension of previous work on
approximations for point processes, and the performance
of queues at which they serve as arrival processes, e.g., [3]-
[5], [22], [34], [35], [42], [43], [51], [54]-[57], and [59]. There are
two major departures from this earlier work: First, we place
a greater emphasis on measurements. Second, we treat the
arrival process together with the service times. Treating the
arrival process together with the service times is important
when the interarrival times and service times are mutually
dependent. As shown in [24]-[26], such dependence can be
amajor factorin multiclass queues with non-Poisson arrival
processes and class-dependent service-time distributions.
Moreover, such multiclass queues frequently arise in
models of communication networks and manufacturing
systems.

For such multiclass queues, heavy-traffic limit theorems
have been established in [11], [37], and [52] that yield rel-
atively simple approximations for the mean steady-state
workload, and other performance measures. Extensions to
networks of queues with feedback have been established
by Reiman [48], Johnson [38], Peterson [45], and Harrison
[33]. Unfortunately, however, for the models motivating this
work (e.g., [24]-[26], and [51]), these heavy-traffic approxi-
mations are not accurate at typical design loads, so it is
desirable to develop refinements. (At typical design loads,
the heavy-traffic approximation can exceed the actual mean
workload by a factor of ten or more; see Fig. 2 and [51].) This
paper provides refinements via the IDW, and by focusing
on light-traffic and heavy-traffic asymptotics, in the spirit of
[51, (171, [49], [50], [55], [59], and [60]. In the context of Fig.
2, we want to do better than a simple linear interpolation
between c3(0) and ¢3(1), and thus distinguish between the
two models.

G. The Rest of This Paper

In Section Il, we develop a general framework for study-
ing the average workload and its offered traffic. In Section
I, we discuss ways to describe the variability of point pro-
cesses and marked point processes, providing background
and motivation for the IDW. In Section IV, we relate the
IDW to the normalized mean workload, and describe the
light-traffic and heavy-traffic behavior of both. In Section
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V, we discuss approximations for the normalized mean
workload based on the IDW or basic mode! parameters. In
particular, we develop (9)-(18) there, and discuss a GI/G/1
model approximation. In Section VI, we give an example
illustrating the four approximations in (9) plus (13), 9) plus
(15), (17) plus (18), and the GI/G/1 model approximation.
Finally, we draw conclusions in Section VII.

1. A GENERAL FRAMFWORK FOR THE WORKLOAD

In this section we define three fundamental features of
our queueing model: the offered traffic, the workload pro-
cess, and the normalized mean steady-state workload, all of
which we regard as functions of the traffic intensity p. We
indicate how to efficiently estimate the normalized mean
workload as a function of p from data. We also discuss how
estimates of the normalized mean workload can be used
to statistically characterize offered traffic. Finally, we dis-
cuss alternative scalings that can be used to produce the
offered traffic and the workload as functions of p. There are
three natural places to do the scaling—the arrival rate, the
mean service requirement, or the rate service is per-
formed—but we show that all three are essentially equiv-
alent, so that it suffices to consider any one.

A. The Offered Traffic and the Workload Process

We assume that service is provided at unit rate whenever
there is work to be done, according to some work-con-
serving discipline, e.g., FIFO (first-in first-out), LIFO (last-in
first-out), or multiclass with nonpreemptive priorities; see
p. 418 of [36]. Since we focus on the workload, the particular
work-conserving discipline does not matter. This is one
strong sense in which the workload is a robust description
of performance.

The stochastic behavior of the workload process is com-
pletely determined by the offered traffic and the initial con-
ditions. (Service is provided by a deterministic mechanism.)
We model the offered traffic as a one-parameter family of
sequences of nonnegative randem variables { {(p~'u,, v,):
n=1},0<p <1}, wherep™ 'u, represents the interarrival
time between the (n — N)th and nth customer, and v, the
service time requirement of the nth customer. (The
sequence {(p”'u,, v,)} plus the service discipline gener-
ates the sequence of discrete events—arrivals and depar-
tures—in the discrete event system.) We describe the steady-
state or long-run average behavior, so we assume that the
offered traffic is a stationary and ergodic sequence for each
p with

Eu,) = Ev,) =1 (19)
and
Eup=cl+1<o and Ev) =cl+1< . (20

Without loss of generality (by choosing the measuring units
for time), in (19) we let the mean service time be 1, so that
the arrival rate (the reciprocal of the mean interarrival time)
coincides with the offered load or traffic intensity p. We
introduce the parameter p in order to be able to consider
theworkload as afunction of p. Our definition of the offered
trafficintroduces p as a scaling of the arrival process. It might
seem more natural to scale the service requirements (i.e.,
to consider {(u,, pv,): n = 1}), or to scale the rate at which
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service is performed. In Section 1I-D, we show that all three
scalings can be obtained from any one.

Our model of the offered traffic is a family of random
marked point processes (RMPPs) as defined by Franken et
al. [27]. (The arrival process is the basic point process, and
the service times are the marks.) Our definition is the syn-
chronous version, as defined on p. 30 of [27]. We have stip-
ulated that the offered traffic be stationary and ergodic, but
we also have in mind applications in which the offered traffic
is only asymptotically stationary, or is even fundamentally
nonstationary. Nevertheless, the stationary and ergodic
case is a useful framework. From the RMPP point of view,
we are interested in measurements and approximations that
an engineer can use to describe an RMPP, and the conges-
tion that occurs when it serves as the input to a queue. So
far, the RMPP literature has been concerned primarily with
general structural issues, such as existence, uniqueness,
continuity, and insensitivity of stationary distributions, and
the relation between time-stationary and customer-station-
ary distributions.

We now define other associated processes, leading up
to the workload process itself. For each p, let A, = {A,(1):
t = 0} be the arrival counting process (point process),
defined by A, (t) = A(pt) where

A =sup{n=tu + - +u,sttfort=u, =0

1

and A(t) = 0 foru; > t = 0; let X, = {X,(0): t = 0} be the
total input processand Y, = {Y,(): t = 0} the netinput pro-
cess, defined by

Aplt)

X0 =2 v and Y0 =X0-1t t=0 @)

Note that Y,(t) represents the total input minus the total
potential output up to time t. Also note that X,(t) = X,(pt).
Remark (2.1): Llet U, and V, be the partial sums

U,=u+ - +u, and V,=vi+ - +v, n=1
(23)

Since the offered traffic is stationary and ergodic, and (19)
holds, n™'U, = 1, and n™'V,, = 1 w.p.1 (with probability 1)
asn— o, Asafurther consequence, l'1Ap(t) - pand t"Xp(t)
- pw.p.last = oo, O

As a simplifying assumption we assume that the system
starts out empty. The workload process (as a function of p)
Z, = {Z,(t): t = 0} can then be defined by

Zt) = f(Y () = Y, () = inf Y,s)

0=ss=t

= 0sup {Y, (0 = Y,(5)}, t=0. (24)
=s<t

Note that the workload process Z, depends on the offered
traffic only through the net input process Y,, which in turn
is a minor modification of the total input process X,. The
mapping ftaking Y, into Z, in (24) corresponds to the impo-
sition of an impenetrable reflecting barrier at the origin.
Equation (24) can be understood by identifying a sample
path of Z, with a sample path of ¥, modified by moving the
origin for Z, when Y, becomes negative; at time t the origin
is atinfyc <, Y (s). [tis easy to see that the total time in [0,
tl during which the server is idle is

I =~ inf Ys), t=0 (25)

O=ss=<t
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and
Z00 = Y0 + 1, t=0. (26)

Equations (24)-(26) can be proved from “first principles” by
considering the successive jump pointsofX,, Y,,and Z,, and
applying mathematical induction.

It is significant that the representations (24)-(26) follow
from sample-path properties, without imposing any prob-
abilistic assumptions, such as independence or stationar-
ity. This is a second strong sense in which the workload is
arobust description of performance. Benes [8] first explored
the possibility of a general treatment of the workload pro-
cess, without assuming the Markov property, including
derivations of (24)-(26) from first principles. This paper is
intended to contribute to the long-range goal described in
Chapter 1 of [8] of obtaining useful engineering curves,
tables, etc., in such a general framework.

We conclude this section by making a simplifying
assumption. We assume that the arrivals occurone atatime,
i.e., P(u, = 0) = 0. For studying the workload process, this
assumption is without loss of generality, because if batch
arrivals occur in the original offered traffic, then we can
remove them by considering the arrival process for batches,
letting the batch service requirement be the sum of the ser-
vice requirements of all customers in the batch. Obviously,
the total input process and the workload process are
unchanged by this modification.

B. The Normalized Mean Workload

We assume that the workload process Z, = {Z,(t): t = 0}
has a steady-state random value Z, for each p, 0 < p < 1,
which may be obtained by having Z,(t) » Z,as t = o, where
= denotes convergence in distribution, or by assuming that
{Z,(t): t = 0} has a stationary version. (General sufficient
conditions can be found in Chapter 5 of [8], Section 6 of [12]
and Chapter 2 of [27].) Our object is to describe the long-
run average workload, which in this framework coincides
with the mean (steady-state) workload E(Z,). However,
instead of E(Z) itself, we consider the normalized mean
workload, defined by (3).

We now describe an efficient algorithm to estimate E(Z,),
and thus cXp), as a function of p from a segment of a sample
path of {(u,, v,): n = 1} for a single value of p, which we
take to be 1. These estimates from simulations can be used
to test the approximations.

A natural estimator for E(Z,) based on n arrivals is

Z,n) = (07U "o U, (27)

where
o~ 1Un
/p(p"1U,,) = SO Z,(t) dt. (28)

A recursive algorithm to compute /(o™ 'U,) is

1o Uiy = 107U + A, 29
where
20) Uy alZ 07U + Zp " Upaq =,
. _zf(p”_tfmz—) >0 50
(2007 'Z,(p™ U,),
Z(p"Woi1 =) =0,
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Zip UL )
max 10, Z.(o U, =y + v, —p lu, Y, 3D
and
Zip Wy = Zp U, =) +v,, n =1

Note that (31) coincides with the familiar Lindley recursion
associated with the sequence of successive waiting times
in asingle-server queue with the FIFO discipline. Also note
that the recursion (29)-(31) can be conveniently carried out
for several values of p simultancously using one sample
path of the offered traftic. The basis for efficiency is, first,
to treat all cases of p from one sequence of numbers and,
second, to pertorm the calculations recursively at the arrival
epochs,

In this paper we focus on the average workload, butitis
otten useful to consider other performance measures. Itis
significant that the recursion above is easily modified to
compute other averages; the average of 1(Z (1)) can be esti-
mated by (27) where £(Z (0) replaces Z (1) in (28). When f(x)

I[x. =), the indicator function of the interval [x, o), (27)
estimates the average proportion of time Z (t) is above level
v, which usually coincides with the complementary distri-
bution tunction of the steady-state workload. We can treat
this case by redetining A | in (30)

Z,(;)"]U,,.1 -) > x
Z.(p~'U,) < x
<f/.w' Wy - x, Zp U > x> Zem Uy )

. The Warkload Characterization of a Marked Point
Process

One purpose of this paperisto develop appropriate mea-
surements of RMPPs (which may arise as offered traffic to
queues, but also may arise in other contexts). The goal is
to determine what data to collect and what statistics to com-
pute in order to estimate or test for basic structural prop-
orties, such asthe nature of the variability in the RMPP. This
statistical analysis in turn can be used to predict how the
otfered trattic will atiect the performance of a queue to
which it 15 offered.

In[54],156], we suggested using actual performance mea-
sures estimated from a test queue to approximately char-
acterize apoint process. The point process of interest might
arise mn some non-queueing context or be the arrival pro-
cessatsome difterent queue. The ideais to simulate or ana-
Ivticallv describe the test queue with some specified service
mechanism, such as a single exponential server, using the
point process of interest as the arrival process. The result-
ing pertormance measures of the test queue then partially
characterize and describe the point process that is used as
the arrival process. (The idea of using a test queue to char-
acterize a point process originated with the notion of
peakedness associated with the equivalent random method
inteletrattic theory; see Section 4.7 of [18], [22] and [61]. The
noetion of peakedness is itself very close to the IDW, both
being second-order properties; see [22].) To obtain a rich
description of the point process, the performance mea-
sures can be expressed as functions of the service rate or
even the service distribution. Simulations for a whole set
of service rates can be obtained from one set of random

numbers by simultaneously simulating the different queues
using the same data, multiplying each randomly generated
service time by the appropriate constant in each queue.
Arbitrary service-time distributions can be obtained from
any distribution with continuous positive density by first
transforming to a uniform distribution with the given cdf,
and then transforming to the desired distribution using the
inverse cdf. Given arandom variable X with continuous cdf
Fyon some interval {a, b), b = oo, Fi(X) is uniformly distrib-
utedon(0, 11,and F, '(F (X)) has cdf £, forany strictly increas-
ing cdt f,.

Now we suggestasimilar procedure to describe an RMPP,
which includes the nonnegative marks, as well as the point
process. With an RMPP, corresponding queue statistics are
even easier to compute because the queue acts as a deter-
ministic operator on the RMPP. Given sample paths of the
RMPP, the performance measures for the queue can be cal-
culated deterministically without generating any additional
random numbers.

The particular performance measure we suggest is the
normalized mean workload ci(p) in (3). However, since we
are given an unknown RMPP, we cannot initially insist on
the scaling (19). Thus we suppose that we are given one
RMPP {(u,, v,):n = 1} having general means N V= Eu,, and
7 = Fv,. Indeed, we only need be given the total input pro-
cess

X =2 v, t=0. (33)

This involves some loss of information, because from the
total input process, we cannot detect batch arrivals, and we
do not try to; we lump all arrivals at the same instant
together.

Since we are given one RMPP {(u,, v,: n = 1} instead of
a family indexed by p, by a direct application of Section
I-B we would obtain only the statistic c3(p) for one p. In this
context, we suggest obtaining a function of p without
changing the total input process by letting the server work
at different rates. Given Eu, = \™'and £v, = 7, when the
server works at rate r, the traffic intensity is

p = rate in/rate out = A7/r. (34)

Then, separate calculations can be performed for all desired
rforeach sample path of the given RMPP. The offered trattic
is thus unchanged, and we determine what happens if we
process it at different rates. (This convention is natural in
many applications, e.g., in manufacturing, communication
networks, and computers, where production, transmis-
sion, and processing rates can be changed.)

With these new conventions, we need to redefine the
workload process. Instead of (22), let the net input process
be

At
YN = X(t) ~rt = 2 v, —rt, t =0 (35)
[
Then the workload process Z7 = {Z7(t): t = 0} is defined
just as in (24) by Z7 = {(Y]), where f is the barrier map.
Finally, let the modified normalized mean workload be
i = 20120 EZY) (36)
0
with p in (34). In the next section we show that (36) is the
same as (3), so we drop the asterisk in (36).
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Our premise is that cX(p) embodies the primary effect of
the variability in an RMPP upon the average workload in a
single-server queue where the RMPP serves as the offered
traffic. Therefore, we contend that c(p) should be a good
indicator of the level of variability in the RMPP. As we dis-
cuss in Section IV-C, the normalized mean workload is con-
stant as a function of p for any total input process that is a
Lévy process (a process with stationary independent incre-
ments) with no negative jumps. Thus deviations from a con-
stant function of p for c%(p) indicate deviations from Lévy
process structure in the total input process associated with
the RMPP. Since the congestion in a queue tends to be
affected by long-term dependence more at higher loads,
c¥p) roughly describes the variability in the RMPP at dif-
ferent time scales; i.e., the relevant time scale in the RMPP
described by c¥(p) increases as p increases.

To actually estimate cX(p) in (36), we first need to deter-
mine the parameters A and 7. it is natural to estimate 7 by
the sample average n -1£"_,v,obtained from observing the
jumps of Y or Z;. It is natural to estimate A by the sample
mean t~'A(t), or A7 by the sample mean ¢~ 'X(t), obtained by
assuming that no service atall is performed. By our assump-
tion of stationarity and ergodicity, these estimators are
asymptotically consistent (converge to the true value as the
amount of data increases). Typically, they will be asymp-
totically normally distributed as well, e.g., by Theorem 20.1
of Billingsley [9].

Finally, given X and 7 or their estimates, £(Z;) can be esti-
mated for each r, and thus for each p, by a minor modifi-
cation of the algorithm in (27)-(37) (i.e., everywhere o U,
is replaced by U, o~ 'u, ., isreplaced by pu, ., and Ayp =
Z,(U,)*2 when Z(U, ., —) = 0).

D. Alternative Scalings

In Section |I-A we introduced a one-parameter family of
RMPPs and associated workload processes Z, indexed by
p by scaling the arrival process; i.e., welet A () = A(pt) where
A(® has the arrival rate 1. In Section I-C we introduced a
different one-parameter family of RMPPs and workload pro-
cesses by scaling the rate that service is provided. We could
also have introduced a one-parameter family by scaling the
service requirements, i.e., by replacing v, by pv,. It is sig-
nificant that it is easy to go from any one of these cases to
any other, by which we mean that it is easy to express the
sample paths, and thus also the finite-dimensional distri-
butions of Z, each way in terms of any one.

Toseethis, let Y, ,  bethetriply-scaled netinput process,
defined by

AN
Yi. )= 2 7v,—rt, t=20 (37)

i=1

where {(u,, v,): n = 1} satisfies the conditions of Section
H-A, including the normalization Eu, = Ev, = Tin (19). Let
Z, ., be the associated workload processes, defined as
before in terms of Y, ., by (24), i.e,, Z, ., = f(Yy . ). Since
f(kY) = kf(Y) for any net input process Y and any positive
constant k, and

Yardt) = 75 0,00(8) = 7Yy 1 1(r/7)

Y1, 0,mAN) = (/N 6N, 20 (38)
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we have

Zy,.. () = 72y A7) = 7Z1,1,in (N

(INZy s a(ND, £ = 0. 39)

To understand how Z, , , behaves as a function of A, 7 and
r, it thus suffices to know how one of Z,,, Z;,, or
Z, , ,- behaves as a function of p alone for p in (34). In par-
ticular,

Z, () = 7Z, 4 4(rt/1) = 7Z; 1 ,-1(NO)

(I/NZy,2(ND, €= 0. (40)

Moreover, the normalized mean steady-state workload
is then

201 20— PEZ, 1)

Apin =200 EZ\,) = ———— = cXp)
70 o

(41)

as defined in (3), so that the normalized mean workload is
independent of the scaling. In this sense, we have thus
proved that the normalized mean workload cXp) in (3)
describes the effect of the variability in the offered traffic
upon the workload as a function of p, independent of the
effect of the various deterministic rates. Of course, there
is more to the variability than c2(p), but at least the effect
of the deterministic rates has been completely removed.

IH. THE VARIABILITY OF THE OFFERED TRAFFIC

In this section we discuss methods to directly assess the
variability of the offered traffic, without reference to queues
(different from the normalized-mean-workload character-
ization discussed in Section [I-C). We begin by discussing
variance-time curves and indices of dispersion for point
processes, and then we consider the IDW in (1). We describe
the IDW when the offered traffic comes from several inde-
pendent sources, when the service times are independent
of the arrival process, and when the offered traffic is as in
a GI/G/1 queue. We combine these descriptions to analyt-
ically describe the IDW of offered traffic to a multiclass
queue when the classes are independent and the offered
traffic for each class is as in a GI/G/1 queue. This multiclass
model includes the models of Heffes and Lucantoni [35],
Siram and Whitt [51], and Fendick et al. [24]-{26].

A. Variance-Time Curves

The variability of a real-valued random variable X is often
partially characterized by its variance var (X). To make the
characterization dimensionless (independent of the mea-
suring units), it is natural to consider the squared coeffi-
cientof variation ¢ = var (X)/(EX)%. (Note that cix = ci.) The
variability of a stochastic process {X(t): t = 0} is more com-
plicated than the variability of a real-valued random vari-
able, because it includes fluctuations over time due to the
dependence among the different variables, as well as the
variability of the individual variables X(t) for each t. Never-
theless, the variance and associated dimensionless nor-
malizations are useful partial characterizations of the vari-
ability of a stochastic process. A natural generalization of
the variance is the variance-time curve {var [X(t)]: t = 0}.

From what we have said, it is clear that in general the
variance-time curve is an unsatisfactory partial character-
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ization of the variability of the process {X(t): t = 0} because
it only captures one form of the variability—the variability
of the individual variables X(t) for each t. However, if the
stochastic process {X(t): t = 0} is a cumulative process, i.e.,
if X() measures some cumulative quantity over the interval
[0, 1], then the variance-time curve often does appropriately
partially characterize the variability of the process, because
the variance-time curve partially characterizes the depen-
dence among the increments of {X(t): t = 0}. For any k +
Ttime points 0 < ¢, < t; < -+ < {,
A
= X(tg)} = var 2 [X(t) — X(t,- )]

!
=1

var [X(t,)

koK
= 2 2 covIX(t) = X(t, ),

[X(t) — Xt, ). 42)

Thus variance-time curves are natural candidates to par-
tially characterize cumulative processes. This is important
for us, because the arrival process A, and the total input
process X, defined in (21) and (22) are cumulative processes.

From the case of asingle random variable, one would nat-
urally think that the appropriate normalization of the
variance-time curve would be the squared-coefficient-oi-
variation curve {c%,: t = 0}, obtained by setting c3,, = var
[X(OVEX()* for each t. However, this normalization fails to
capture regularity that often occurs in cumulative pro-
cesses forlarge t. When {X(t): t = 0} isacumulative process,
typically t7'EX(t) = x,0 < x < o0, and ™ 'var X(t) > ¢%,0 <
0% < o, as{ — o, 50 that

var {t7'X(0)]

var [X(0] 0 as ¢ (43)
= = > — as t — o
[EX(O] LECE™TX())?

whereas
var [X(]  t'var X1 o’ ,
FIX0] X st el

For this reason, we consider normalizations of the form (44).

B. Indices of Dispersion for Point Processes

Variance-time curves have been used quite extensively
todescribe point processes; see pp. 69-133 of Cox and Lewis
[20]and Brillinger[13]. The associated normalized functions
are called indices of dispersion; see pp. 70-72 of [20]. For
the arrival counting processes A () with interarrival times
p~'u,, the index of dispersion for intervals (IDI) is defined
by
_nvar(p'U,)

Ep™ U

. n=1 (45)

and the index of intervals for counts (IDC) is defined by
var [A, (D]

p t) =

st E[A D]

var [A(pt)]
- = I(pt), t=0. (46
A PV )

/
Note that the IDl in (45) is independent of the scale factor
p, but the IDC in (46) is not. In this context, the normal-
ization of the variance can be interpreted as the corre-
sponding variance term for a Poisson process. Thus, for a
Poisson process, I;(n) = Tforall nand /() = 1for all tand
p.Ingeneral, the indices of dispersion describe the relative
variability of the point process at ditferent arrival epochs
or times compared to a Poisson process.
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It is significant that the limit of /,(n) as n — o, and the
limit of /.(t) as t — oo typically exist and coincide, equaling
the variability portion of the normalization constant in the
central limittheoremsfor U, and A(t), respectively (e.g., see
Theorem 6 of [29)]), which we refer to as the asymptotic vari-
ability parameter ci. Moreover, c3 is typically the constant
completely characterizing the efiect of the variability in the
arrival process on the workload and other performance
measures in alarge class of queues in heavy traffic; see [37].
Thus, in Section 2 of [55] we proposed using the variance-
time curves to develop approximations for point processes
and queues where the point processes serve as arrival pro-
cesses. The IDI and IDC are also proposed as a basis for
approximating arrival processes by Heffes [34], Newell [42],
[43], Heffes and Lucantoni [35], and Sriram and Whitt [51].

C. The Index of Dispersion for Work

We are motivated to consider new measures of variability
for the offered traffic because we want to consider the ser-
vice times together with the arrival process. As pointed out
in [24], in multiclass queues with non-Poisson arrival pro-
cesses and class-dependent mean service times, there often
is significant dependence between interarrival times and
service times, and among successive service times, as well
as among successive interarrival times. This extra depen-
dence occurs even if the overall offered traffic is the super-
position of mutually independent processes for the differ-
ent classes and, for each class, the service times are i.i.d.
and independent of the arrival process for that class. More-
over, in realistic examples of packet queues with variable
packet lengths, it was found that significant error in esti-
mating queueing performance measures can result from
ignoring any of the three forms of dependence.

To treat the service times together with the interarrival
times, Fendick etal. [24] proposed a three-dimensional index
of dispersion for intervals (3D-1D}), defined by

15,n) = (R, Clos CHu)

_[nvar U, nvarV, ncov(U, V) R
- ( (EUY T (EV,) (EUMNEV,) )

= 1.

‘

(47)

Obviously, the first and second terms in (46) are just the
ordinary IDIs for the interarrival times u,, and service times
v, separately. The third term captures the dependence
between the interarrival times and service times.

We propose yet another index of dispersion here, the
index of dispersion for work (IDW), defined in (1). We are
motivated to replace the 3D-IDI by the IDW because, first,
the three-dimensional characterization is somewhat cum-
bersome; second, the 3D-IDI, just like the ordinary IDI in
(45), does not directly describe the timing of the variability;
third, from Section ll-A itis clear that the workload depends
on the offered traffic solely through the total input process
{X,(0:t = 0} in (22); fourth, experience with simulations of
packet queue models (Section 3 of [25]) indicates that the
IDW provides a more useful characterization of the depen-
dence for predicting the mean workload.

Thus we suggestworking with the variance-time curve of
the total input process. For this purpose, it is initially con-
venient to abandon the scaling conventions of Section
lI-A and consider one oftered traffic {(u,, v,): n = 1} without
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the parameter p, and without specifying the means Eu, and
Ev,. (The scaling can always be introduced afterwards, as
we will show.) Paralleling (22), we let the total input be
defined by (33) and we let the IDW be defined by (1), where
7 = Ev,. We choose the normalization in (1) so that the IDW
reduces to the IDC when the service requirements are con-
stant, i.e., when P(v, = 7) = 1for all n. Thus, for the offered
traffic of an M/D/1 queue, 1,,() = 1 for all t.

Let V() = var [X(t)], where {X(t): t = 0} is a stationary
process. Since I,(t) = V,(t)/7pt, the behavior of 1,(t) as a
function of t is determined by the behavior of V,,(t). Par-
alleling pp. 73-75 of [20], we can provide an integral rep-
resentation for V,,(t), assuming appropriate smoothness. In
particular, we can write

t pv
V,(t) = gt + g S 2y W) dudv, t=0,
0 Jo

. cov[X(s + hy — X(s), X(s + t + h) — X(s + )]
Yult) = L'LT‘:] A2 '

(48)

fort = 0, where n,, = 7p(c2 + 1)) (see Section IV-A-3). From
(1) and (48), we see that V,,(t) is convex (concave) if and only
if v, () = 0(=<0) for all t. In turn, v,,(t) = 0 (<0) for all tif
and only if

cov [X(t,) — X(ty), X(ty — X(t3)] = 0 (<0) (49)

forall0 = t; < t, < t3 < t;. Moreover, v,(t) = 0 (<0) for
all t clearly implies that /,,(t) is nondecreasing (nonincreas-
ing) in t. Whenever the covariances in (51) are all positive
(negative), the IDW is nondecreasing (nonincreasing). As
with the M/G/1 queue, the IDW is constant whenever {X(t):
t = 0} has independent increments. In other words, the
shape of the IDW reflects the covariances in the increments
of the total input process.

From (1) and (47), we see that the IDW can be expressed
as

1 t
Iw(t) = {’"w + ? SO BW(U) duj'/‘rp (50)
where

t
Bult) = SO 2y, (u) du, t = 0. (51)

In other words, 1,,(t) — 1,,(0) can be expressed as the average
of cumulative covariances given by 8,,(t) in (51).

D. Alternative Scalings

In Section 11-D we considered three different scalings of
the net-input and workload processes. In this section we
show how these scalings affect the IDW. First, the total input
process is obviously unaffected by the rate that service is
provided, so it suffices to consider the IDW I, , (t) for the
scaled input process

AN
X0 = 21 v, t=0 (52)
i=
given the single sequence {(u,, v,): n = 1} satisfying the
normalization Eu,, = Ev,, = 1. From (1),

var (X, (0] _ 7* var [X;4(A0)]
TE[X), ()] T2E[X; 1(ND)]

Iw, A r(t) =

= Iw,1,1()\t) = Iw()\t); t = 0. (53)
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To treat the general case, it thus suffices to consider the
single IDW I,,(t) obtained from {(u,, v,)} unscaled, and then
scale by the arrival rate, just as for the IDC in (46). For the
arrival-process scaling in (19), then, the IDW of the offered
traffic as a function of p, say I,,,(t), is

Iw;(t) = /W(pt), t=0. (54)

E. Superposition from Independent Sources

The IDW and the IDC are very convenient for treating the
superposition of independent processes. Suppose that we
have n sources of offered traffic (stationary versions),
indexed by i, so that the total arrival counting processes and
total input process are

Al = A + - -+ + A0 and

X0 = Xy + -0 + X0, t=0. (55)

Let \, be the arrival rate, and 7, the mean service require-
ment of the ith class; let p, = \j7;, A = /.y Nand 7 =
L7, A7/ = 1,s0thatp = A = \. Let the IDCs and IDWs
be based on the scaling in (19), so that each IDC is based
on arrival rate 1, and each IDW is based on offered load 1.
If the component processes are independent, then the var-
iances add and

(A = A P
n XI
=2 (—)mm, (20 0
i=1 \A
and
ot < YArXO) 2 var 1X,(0)
0= TExe T et
=2 <8/_Tl>lw()\lt)/ t= 0. (57)
i=1 oT

In (56), I.(t) is scaled by A and /,(t) by \, because the arrival
rates of A(t) and A;(t) are A and N;. Similarly, in (57), [(t) is
scaled by N = p, and /,,,(t) is scaled by \; = p,/7; because the
arrival rates for X(t) and X,(t) are A and \;; see Section [lI-D.

Without the scaling convention above, the IDC and IDW
associated with a superposition of ni.i.d. sources would be
identical to the IDC and IDW, respectively, of a single
source. With the scaling, t in a component process is
replaced by t/n. The time scaling reflects the convergence
to a Poisson arrival process that is taking place as n
increases.

F. Independent i.i.d. Service Times
The IDW simplifies when the service times are i.i.d. and
independent of the arrival process. Then
E[X(6)] = (Ev) E[A(D)] = pt

var [X(t)] = E[A(] var (vy) + [E(v)P var [A@®], t=0
(58)

so that
(0 = var (vq)  var [A(t)]
" [Ev)P  EAG]
Equation (59) coincides with (4.49) of Newell [42]. In this case,
1.(t) is essentially the same measure of dependence as a
function of time as /.(t) in (46).

=c+ I, t=0 (59
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From (59), we see that /() = ¢ + 1 for all t when the
arrival process is also Poisson, i.e., for the M/G/1 queue.
From (6), we see that ci(p) and /. (t) are both constant and
equal for the M/G/T queue.

We can combine (57) and (59) to express the IDW for the
offered traffic to a multiclass queue with independent
sources, each of which has i.i.d. service times independent
of its arrival processes. Then, with the notation of Section
11-E

n " ;

. T, ) \ 7

(ot = 2 <@>c;, .S (”’ ’>/(,(>\,r), t=0. (60
r= 1\ pT =1\ pT

Note that the coefficients in the second sum in (60) are not

the same as the corresponding coefticients in (56) unless 7,

= 7 forall i.

G. Gl/G/1 Offered Tratfic

If, in addition to the service-time assumptions of Section
HI-F, we assume that the arrival process is arenewal process
(i.i.d. interarrival-times), then we have the offered traffic to
a GI/G/T queue. For renewal arrival processes, we can ana-
Iytically compute the IDC, so that for GI/G/T oftered traffic
we can apply (59) to analytically compute the IDW. Simi-
larly, for offered tratfic from independent GI/G/1 sources,
which we might call $(GH/G)/1 offered traffic, we can ana-
Iytically compute the IDW via (60). A natural approach is to
apply Laplace transtorms. It numerical inversion is to be
performed in the multiclass framework of Section I11-E, then
we start by finding the Laplace transform \7,(5) of var [A,(8)]
for each i. To apply (60), we express the second term as

> (’ﬁ)/(,o\,r)
1\ pT

;. (ﬂ) var [A,(0]
o7 At
» 7 var [A (0]

= ) —=, t = 0. 61
ped p7t

pa}
=1

n

Finally, we invert £ 7 V,(s) to obtain £7_ | r2var [A,(t)]. For
example, thisapproach was used to obtain the IDC by Heffes
and Lucantoni [35]. For their application, the component
arrival processes are i.i.d., so that the [DC of the super-
position process is the same as the IDC of one component
arrival process, except for the scale factor (see (46)), so that
it sufficies to invert V (s).

To specify the procedure for a renewal arrival process,
assume that A () is a stationary version of arenewal process
(the equilibrium renewal process) with arrival rate . We
wish to determine V,(t) = var [A,(t)] and its Laplace trans-
form Vi(s) = |7 e V(0 dt. Let F(t) = P(u, < t) be the cdf
of one of the i.i.d. interarrival times with mean A\~ ', and let
f(s) = i e “'dF(t)beits Laplace-Stieltjes transform (Laplace
transtorm of the density). Let H,(t) be the renewal function,
i.e., the mean number of renewals in the interval (0, t] in the
ordinary renewal process, and let Hyls) = §& e ' Hy(b dt be
its Laplace transtorm; see Chapter 2 of Cox [19].

From Chapter 4 of [19],

. #(s)
Hys) = P
s(1 — 1£(s))
AT YR
§) = — [ Hys) — = + —1|,
. s s 2s
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From (59) and (62), we see that in this GI/G/1 case the
covariance density in (48) can be expressed in terms of the
renewal density hy(t) (the derivative of Hy(t)) by

Yol = Vi = 2NAo(0) - N], € = 0. 63)

In this case we can apply properties of the renewal function
to deduce properties of the IDW. For example, from (3.13)
on p. 171 of Barlow and Proschan {7}, we deduce that H(t)
< (=)t for all t, so that [() < (=0)c? + 1 for all t if the
interarrival-time distribution is NBUE (NWUE), i.e., new bet-
ter (worse) than used in expectation. From Brown [14], [15],
we deduce that Hy(t) — At is nondecreasing, so that /. (t) is
nondecreasing, if the interarrival-time distribution is IMRL
(increasing mean residual life). Moreover, we deduce that
Hy(©) — Ntis nondecreasing and concave, so that [ (t) is non-
decreasing and concave, if the interarrival-time distribu-
tions is DFR (decreasing failure rate). (For IFR distributions,
Hy(H) — At need not be monotone.)

Example 3.1: Hyperexponential (H,) Distributions: Sup-
pose that the interarrival-time distribution is hyperexpo-
nential, i.e., a mixture of two exponentials, with density

fit)y = ppe™ + (1 — pue ™, t =0 (64)

Since the H, distribution is DFR, from the remarks above,
Hy(® — Atand /(1) are nondecreasing and concave. In fact,
from p. 50 of Cox [19],

5 — 1
Hylt) = Nt + % - Be ", t=0,
) 2N3 2N .
Vi) = Acit — 23 + —Be"’, t=0,
v
2 2 28 .
I((t)zcgf‘ﬁ+—de Motz 0, (65)
vt vt
where m,, is the kth moment, A = m,' i = (m, —
my/mi,
(1 — Py — )’
v =0~ pu + pu and f = PP

From large-time asymptotics in (115) below, we can also
express 8 and vy in (66) as
(c;— 1 !E B o

o 1)
f=——— and y =23 €+

—_— 67
2 |3 2 i 7

This exact expression for the IDC in (65) is used to calculate
the H,/M/1 values in Table 1.

Example 3.2: Erlang (E,) Distribution: Suppose that the
interarrival-time distribution is Erlang of order two (£)), i.e.,
the convolution of two exponential distributions, with
Laplace transform f(s) = [2M(2\ + s)I*. Then, by p. 50 of [19]
or p. 79 of [20], Hy(t), V\(t) and /.(t) are as in (65) with ci =

12,y = 4N and 3 = —1/4, so that
Vi == +=-—-e™, t=0. (68)
We remark that the £, distribution is not so well behaved;
see p. 50 of [19). In this case hy(t) is not monotone, so that
1.(t) is not convex.
In Examples 3.1 and 3.2, we see t.at the IDC has the

asymptotic form

N B
1) = 3 + T+ ot™") as t— o (69)
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where B is a known constant. In fact, this is true more gen-
erally, as we indicate in Section [V-B-3 below. From (69) we
obtain the approximation

B
I = ¢+ Ttz 0 (70)

which is often very good, provided that t is not too small,
as can be seen from Examples 3.1 and 3.2. Combining (60)
and (70), we obtain a convenient analytical approximation
for the IDW in multiclass queues in which each class pro-
vides GI/G/1 offered traffic.

1V. THe IDW AND THE NORMALIZED MEAN WORKLOAD

In this section we investigate the basic premise of this
paper—that the normalized mean workload cX(p) in (3) is
primarily determined by the IDW of the offered traffic in
(1. Indeed, we have observed that for the M/G/1 queue that
the IDW completely determines the normalized mean
workload: cX(p) = I,(t) = ¢ + 1 for all p and t. Moreover,
for GI/M/1 queues, the IDC, and thus the IDW, completely
determines the normalized mean workload; i.e., from (59)
and (62), we see that the IDC, and thus the IDW, completely
determinesthe arrival-process renewal function Hy(t), which
in turn is well known to completely determine the inter-
arrival-time distribution. However, for GI/G/1 queues in
which neither the interarrival-time distribution nor the ser-
vice-time distribution is exponential, the IDW does not
completely determine the normalized mean workload,
because from (59) and (62) we identify only the first two
moments of the service time distribution. For general
Gl/G/1 queues, it is well known that the average workload
depends on the service-time distribution beyond the first
two moments. On the other hand, it is also known that the
average workload does not greatly depend on the service-
time distribution beyond the first two moments; see Table
111 of [58] and Tables 4-9 of Ramaswami and Latouche [47].
(These tables describe other mean steady-state quantities,
but they determine the mean workload via L = AW and Bru-
melle’s formula, (72) below.)

To be specific about the scaling for the IDW, let {/,(t):
t = 0} be defined with respect to {X(t): t = 0} using the
scaling in Section [1-A; i.e., E[X,()] = t, t = 0, for a stationary
version. As indicated in Section llI-E, the associated IDW
of {X,(): t = 0} is then /() = I, (pt) forall p, 0 < p < 1.
Hence, even when we introduce the scaling by p in Section
I, there is essentially only one IDW as a function of t. Thus,
as discussed in Section I-C, the main idea in this paper is
that we should be able to use the IDW {/,(t): t = 0} as a
basis for approximating {c¥(p): 0 < p < 1}. In fact, we con-
tend that {c2(p):0 < p = 1} and {/,,(): t = 0} contain roughly
the same information, so that it should be possible to
approximate either function reasonably well, given the
other. This strengthened version of the main hypothesis
supports using the normalized mean workload to approx-
imately characterize an RMPP, as proposed in Section 1I-C.
The strengthened version of the main hypothesis is sup-
ported by (9), but not by (10). In general, it should be easier
to go from /,(t) to cX(p) than vice versa.

In this section we relate the IDW to the normalized mean
workload by considering light traffic, heavy traffic, and a
Lévy process framework (when the total input process has
stationary independent increments). The IDW may be
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viewed as a means to implement and improve light-traffic
and heavy-traffic interpolation, in particular, via (18).

A. Light Traffic

In this section we describe the limiting behavior of
cXp) as p — 0, and relate it to the limiting behavior of /()
as t — 0. The main positive result that we establish in this
section is (12). The derivatives at 0 are not so simply related,
but they involve similar ingredients.

1) The Normalized Mean Workload in Light Traffic: Expe-
rience has revealed that many performance measures
depend on the fine structure of the queueing model in light
traffic. Indeed, recent light-traffic limits for the mean wait-
ing time in the GlI/G/1 queue established by Daley and Rol-
ski [21] indicate that both the appropriate normalization,
and the resulting nondegenerate limit depend on the fine
structure of the interarrival-time and service-time distri-
butions. To briefly summarize their result, let P(u; < t) =
F(t) be the unscaled interarrival-time cdf. If there exists o
> 0 such that t™%F(t) > 7,0 < y < ®,ast = 0and E(v** %)
< o, where v is a service time, then (with our scaling)

lim p @ E(W,) = E(v' "™ )1y/A1 + a) 71
o—0
where W, is the steady-state waiting time as a function of
p. As Daley and Rolski point out, (71) indicates limitations
on the possibility of developing simple robust approxi-
mations for the mean waiting time using light-traffic asymp-
totics. Even for the Gl/G/1 model, the light-traffic limit
depends on the detailed behavior of the interarrival-time
distribution near the origin, and possibly higher moments
of the service-time distribution. It is significant that the
mean steady-state workload is much better behaved in this
respect. This can be seen from Brumelle’s [16] general for-
mula (not restricted to GI/G/1) relating the mean workload
E(Z,) to the waiting time and the service time; see pp. 408-
412 of [36] and (4.2.4) on p. 107 of [27]. Using the scaling in
(19) and assuming that all the quantities exist in equilibrium
as well as limiting averages, we have
2
KZ,) = pE(W,v) + p % 72)
where v is the service time of the customer with waiting
time W,. (Note that Z, is the time-stationary workload, while
W, and v are the customer-stationary synchronous waiting
time and service time.) Hence

cHp) = (1 = p)(c + 1) + 2(1 = p)EW,V) 73)

where (c2 + 1) = EWHI(Ev)®. In great generality, W, — 0 and
E(W,v) — 0as p — 0, so that we have the very robust light-
traffic limit
lim cXp) = c20) = ci + 1. 74
p—0
Moreover, in general the derivative of the normalized mean
workload at the origin is
¢%0) = —(c? +1) + 2 lim p 'EW,V) = —cX0). (75)

p—0

For example, in the GI/G/1 queue,

E(W,v) = E(W,)(EV) = E(W,) (76)
so that (74) is valid and, by (71)
¢H0) = (2 + NFO) — 1) (77)
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where f(0) = lim, ., t™'F(t) is the density of the unscaled
interarrival-time distribution at the origin. Since the cdf of
the scaled interarrival-time is

F(t) = Plp lu, = t) = Plu, < pt) = Fpt),

)

the scaled density and unscaled densities are related by
f () = pf(pt), t=0. (78)

From (78), we see that f(0) = o~ '£,(0) in (77).

For example, when the interarrival-time is exponential,
£(0) = p, and ¢X0) = 0. When the interarrival-time distri-
bution is Erlang or deterministic, f,(0) = 0, and ko) =
—c0). Perhaps the main point is that (74), (75), and (77) are
much less delicate than (71), so that it is more reasonable
to hope for robust light-traffic approximations for the mean
workload than for the mean waiting time.

Brumelle’'s formula (72) also produces the linear inter-
polation (7) for GI/G/1 queues when we apply the familiar
waiting time approximation

Fw,) = A 79)
20 = p)
Indeed, (72) provides a simple way to derive (79) from
cX0) =1+ ¢, c¥N) = ¢ + ¢?and linear interpolation.

From Brumelle’s general formula (72), we immediately
obtained the general form of c;(0) in (74). The general form
of the derivative ¢,(0) in (75) is more complicated, but we
can heuristically derive what it should be. (Under regularity
conditions, this argument can be made rigorous; e.g., by
the methods of Reiman and Simon [49] or Reiman and Weiss
[50]. For related heuristicdiscussion, see Section 6.8 of New-
ell [42].) As in Section |I-A, we assume that customers arrive
one at a time. Consider the customer-stationary process,
and let v, be the service time of the 0th customer, v_, be
the service time of the (= 1)st customer, and u, the unscaled
interarrival-time between these two customers. In light
traffic we can ignore all other customers so that for small
0

EW,v) = E(v_y = p™'ug*vy) (80)
where (x)* = max {x, 0}.

2) The Derivative ¢2(0) for a MultiClass Queue: Of course,
(80) is often difficult to work with because v_;, v, and ug
canbearbitrarily dependent. However, toillustrate the pos-
sibilities, consider the multiclass queue in which the overall
offered traffic is the superposition from independent
sources. For each class, assume that the service times are
i.i.d. and independent of the arrival process, but do not
require that each component arrival process be a renewal
process. As above, we use the scaling in (19) with F(u,) =
E(vg) = 1. Let p,(t) be the conditional probability that cus-
tomer —1 is class i, and customer 0 is class j given that u;
= t, which we assume exists as a measurable function of
t that is continuous at t = 0. Of course, from the assump-
tions above, given the class identity of customers —1 and
0,v_y, vy, and g are independent. Let f(t) be the density of
up, and letv; be aservice time from class iwith mean 7,. (Since
i cannot be 0 or —1, there is no conflict with the notation
of (80)). Let v,. be a random variable with the stationary-
excess distribution of the distribution of v;, and note that

T Py, > y) [Py, >y + 0
Plv, > t) = s 2 Py | B2 YT
Ve >0 =1 o, =) rvy
TPy, — 0 > y) H(v, — 0]
= dy = 1
50 Ev,) 4 E(v) ®Y
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and
Vo

E(v,,) = P(v, > t) dt. (82)

S0

Under regularity conditions allowing us to move limits
inside the integral, from (80)-(82) we obtain

ax

fim 207 "EW,v) = lim 2p~" 2 20 pleb (Fv)
=1,

o—0 o 0 Joo =1

n

< Eltv; = 071 pflpt) dt

n n 5o

=2 2 2 p,0)f0) (Ev)
J0

P ly—1

Eliv, — '] dt

n n

2 Z‘ Z‘ p,,(0) fO) (Ev)) (Ev,) E(v,)
i=1f=

I

n n

2 2 p, ) FON(Ev) (Ev)i(cs, + T (83)

I

Of cou rse, p,(t)and f(t) are not easy to work with forgeneral

t, but the light traffic limit produces p,,(0) f(0) in (83), which

is not hard to describe. In particular, an arbitrary arrival is

type i with probability N\,/X = \;; the next interarrival time

is 0 with a type j arrival with density N, it j # /, and f(0) if

j =i, where £,(0) is the stationary interarrival-time density
for class i, so that

(NN i#

PO AO) = ¢ o

NGO, 0=

Hence,

o f(0) \
lim 207 'EW,W = 2 N(Ev) (el + D (1 - p(w}\ - 1))
i1 A

p—0

(85)
and, from (75),
B Lo . T, , f0) >
H0) = el + [ -
o (V)] “ <p> <7><C" + )( N
Y <3> <1) 2(0) (86)
i=1\p/ \7

where ¢(p) is the normalized mean workload for class i
alone with the scaling in (19). Note that (86) agrees with (77)
in the case of a GI/G/1 queue. For the superposition of n
i.i.d. sources, (74) and (86) yield

5 N . L /A0
;0 =ci:+1 and 0 = i+ (L
n Ay

- 1), 87)
The factor (p/p)? in the sum (86) and the factor nin (87) show
that ¢30) — 0 as the number of component streams
increases, reflecting the convergence of the superposition
arrival process to a Poisson process. For a superposition of
a large number of independent streams, a simple approx-
imation is ¢(0) = 0.

3) Small-Time Asymptotics for the IDW: As in Section
I-D, let V() = var [X(O]when {X(0): t = 0} is the total input
process. With the scaling Eu,) = E(v,) = 1in (19),

I =tV t=0 (88)
so that the limits and derivatives at t = 0 are related by
Vi0)

L0 = Vi(0) and [0 =

(89)
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Since arrivals occur one at a time, in great generality

EA®Y) = PAWD =1) + ot) as t—0

=t+o(t) as t—0 (90)

where o(t) is some function h(t) such that t'h(t) = 0 as
t — 0, so that

EX(t) = tEw? + olt) as t— 0,
V() = tEW?) + oft) as t— 0, 91
and
lim 1,(t) = 1,000 = V/(0) = ci + 1, (92)
t—0
which together with (74) establishes (12).
Ingeneral, [,(0) = V;(0)/2is quite complicated. However,
suppose that the service times {v,} are i.i.d., and inde-

pendent of the arrival process as in Section IlI-F. Then, by
(59), 1O = c? + 1(t), and

VZ(0)

13A0) = 10) = 5

93)

where V,(t) = var [A(D)], t = 0. As in Section 4.5 of Cox and
Lewis [20] or Section [1I-C here, the variance function V(t)
can be expressed in terms of the covariance density, whose
Fourier transform is the spectral density; i.e.,

t v
V) =t +2 S SO y.(Wdudv, t=0 (94)
0
so that
t
Vi) =1+ 2 S yi(u)du, t=0,
0
Vi = 2v,0, t=0,
V(0
1A0) = LAY = v,(0), (95)
where
. COVI[A(s + h) — A(s), As + t + h) — A(s + 1)]
v = lim 3
h—0 h-
(96)
and
¥:0) = lim y.(0) = f0) — 1, 97)
=0

with f(t) being the density of the stationary interarrival-time
distribution.

For the special case of a renewal arrival process, V(At) is
given in (62). From (62), we see that

;
Vi) = 2[/40(0 —t+-| t=0,

2]

Vi) = 2[hyt) — 11, t =0, (98)
where hy(?) is the renewal density, so that

1.00) = V(0) =1
and

140) = = ho0) — 1 =10 -1, 99)

consistent with the analysis above.
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4) The Derivative I;(0) for a MultiClass Queue: As in Sec-
tions I11-E, I1I-F, and 1V-A2 we now consider traffic from inde-
pendent sources. By (57),

n 2 t
plifoty = X & /;W(p—’), t >0, (100)
i=1pT T
so that
n 0 2
[0 = 2 <—> 1,+(0). 101)
i=1 Iy

If, in addition, the service times of each class are i.i.d. and
independent of the arrival process for that class, then we
can combine (59), (99), and (101) to obtain

n \ 2
L0 = % <&) <@ - 1). (102)
=1 o )\,

Note from (74), (86), (92), and (102) that

¢2(0) = 1,(0)1,,,(0) for each i, (103)

but we do not have ¢%(0) = 1,(0)/,(0) = J(0) J,(0) as in (18).
Indeed, from (86) and (102) we see that in general it is not
possible to construct ¢2(0) from /;,(0) and /,,(0). However, for
multiclass queues with common service-time distributions,
we do get the correct light-traffic derivative. Then, from (86)

and (102),
n 2 n 2
> <&> 20 = (2 + N 2 <&> (@ - 1>
i=1 \p i=1\p Ni

= [,(0) [,(0). (104)

¢X0)

B. Heavy Traffic

In this section we describe the limiting behavior of
c¥p) as p — 1, and relate it to the limiting behavior of /,(1)
as t & o. The main positive result that we establish in this
section is (8).

1) The Normalized Mean Workload in Heavy Traffic: The
normalized mean workload and the entire workload pro-
cess are very closely linked to the IDW in heavy traffic. The
mappings in (22) and (24) that transform the total input pro-
cess X, into the workload process Z, appropriately preserve
convergence in a functional limit theorem setting (weak
convergence), so that the CLT behavior of X;(f) as t = o
determines the heavy-traffic behavior of Z,as p — 1; see[9],
[24]-[26], [37], [52], and [53].

The CLT behavior of X;(t) is the limit

X - 1] = N0, 0) as t— o (105)

where = denotes convergence in distribution, as in Bil-
lingsley [9], and N(a, b) denotes a normal random variable
with mean a and variance b. Given that Xy(t) is defined in
terms of {(u,, v,)} as in (22), in great generality the limiting
variance o2 in (105) can be expressed as

o2 = lim t="var Xy() = I (o) = ¢} + ¢} — 2cis  (106)

o0

where ¢2, c2, and c2sare the limits as n = oo of ¢}, ¢, and
s, in(47). The CLT (105) holds quite generally, in particular
whenever there is a joint (functional) CLT for the pair of par-

tial sums (U,, V,). Moreover, the joint convergence of
(U,, V,) is sufficient for a heavy-traffic limit theorem for Z,
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as p — 1. The normalized process
2= = p) 7t —pH, t=0 (107)

then converges to reflected Brownian motion (RBM) as p —
1. Under extra regularity conditions (e.g., uniform inte-
grability, p. 32 of [9]), the steady-state distribution and its
moments converge as well, so that we have
lim cXp) = c21) = I (o) = c3 + c% — 2cis  (108)
p—1
which gives (8) and is consistent with (47).
For a GI/G/1 queue,

cd=clci=c! and cis =0 (109)

RN

where c?is the squared coefficient of variation of an inter-
arrival time, and ¢} is the squared coefficient of variation
ofaservicetime, butin general none of the relations in (109)
hold; i.e., ci, c%, and c3salso embody dependence among
interarrival times, among service times, and between inter-
arrival times and service times; see [24].
2) The Derivative ¢(1) for a GI/G/1 Queue: In general, it
seems reasonable to assume that the normalized mean
workload can be expanded in a Taylor series about p = 1,
yielding
Exp) = ¢l = (1 = p)ezh + o1 —p) as p =~ 1
(110

where c2(1) is given by (108). However, we know very little
about when (110) is valid and, if so, what is the value of
).

However, for a Gl/G/1 queue, we can determine what
¢2(1) should be from Marshall’s [39] formula for the mean
waiting time, i.e.,

Fp~'u = v EU))

EW,) = 2oy — vl 2E) at
where | is the steady-state idle period (portion of a busy
cycle in which the server is idle). Even though the propor-
tion of time that the server is idle, which is 1T — p, goes to
0asp — 1,1, typically converges in distribution to /;, and
E(/’;) — E(I¥)ywhere I,is theidle period with p = 1. Even though
the expected length of a busy cycle becomes infinite as p
— 1,the idle period per busy cycle is typically well behaved.
Assuming that E(If,)/ZE(I/)) actually converges to E(F)2E(L),
we can combine (72), (110), and (111) to obtain

exn = B _ ci -1 (112)
Z E(I\) a .

In fact, there has been much more work related to (112),
as described in [60], but it is not very satisfactory because
the ratio E(I‘;')/2E(ly) is quite complicated. However, for the
special case of a GI/M/1 queue, Halfin [30] proved that the
analogs of (110) and (112) for the waiting time are valid and
that

E I! 3
2y _ Ewd (113)
261y 3EW)
so that
X = <‘2m‘” —(ci+ 1 114
g N+ )) 114
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where m,; = E(u?). A refined approximation for ¢X(1) in
Gl/G/1 queues is developed in [60] by exploiting algorith-
mically generated values in tables for the case o = 0.98.

3) Large-Time Asymptotics for the IDW of a Multiclass
Queue: The asymptotic behavior of the IDC of a renewal
process as t = o is well known. It in turn determines the
asymptotic behavior of the IDW for a multiclass queue with
independent GI/G/1 classes.

As in Section -G, let V() = var [A,\(8)], where A,(1) is a
stationary renewal process with arrival rate X. By (18) on p.
58 of Cox [19] (there, p3 = F(u — Fu)?),

V1(t) 2 1 (ma3 (Cﬁ + 1)2> =1
I/ = — = —_——-— - — + t
c t) ¢ Ca t 3 3 ) o )
as t— o (115)

where m,; = E(u°) as in (114). (Note that the second term
on the right in (115) is similar, but not identical, to (114).)
Combining (57), (59) and (115), we obtain for the multiclass
queue with independent GI/G/1 classes (using the scaling
convention in Section IlI-E)

noy ) . 1o /_)
Iw(p[) = 24 <Q/T/> (cy + C;) -7 Z <L>

i=1\ pT

N 241y
. < i Mas (_7C‘” ) > + O(I_W) as t — oo
3 2 ;
(116)
where i indexes the parameter of class i.
In the case of ni.i.d. classes, (116) reduces to
2 > n )\_;mﬂl (Ci'l + 1)2
Ity = (c2y + ¢y — = [ =2 - = ——
\\() (Cfﬂ Csl) t < 3 2
+olt™) as t— oo, 117)

In contrast, the small-time asymptotics in the case of i.i.d.
classes is

5 t (0
Ity = (1 + ¢35 + — (ﬁ - 1> + o) as t—0; (118
n\ N
see (102). In (117) the second-order term is multiplied by n,
whereas in (118) the second-order term is divided by n.
However, both (117) and (118) are special cases of relation

Lol = L(pt) = Iy(pt/n), t = 0. (119)

The IDW basically remains unchanged upon superposing
ni.i.d. processes, but the arrival rate has been multiplied
by n, so the scaling must change; see Section I11-D.

Note that (119)yields useful qualitative information about
the way /..(t), and thus presumably c2(p), behaves as a func-
tion of n, where n i.i.d. processes are being superposed.!f
I (tyisincreasing (decreasing) int, then/,(pt/n)for each fixed
tis decreasing (increasing) in n. Moreover, in the sense of
this time scating, 1,(pt/m converges to [,(0)-(the M/G/1
model) at rate n~'. (See [4], [51], and [59] for related dis-
cussion.)

C. Lévy Process Framework

In (5) and Section lII-E we observed that the normalized
mean workload and the IDW are constant and equal for the
M/G/1 queue. This property extends to a large class of Lévy
processes, i.e., processes with stationary independent
increments. Indeed, it is obvious that if X, is a Lévy process,
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then the IDW is constant, because

var [X,(®] _ tvar [X(p)

L) = -
D= "o T tEXo)

= var [X4(1)], t = 0.

(120)

Itturns outthat the Lévy process structure affects the nor-
malized mean workload in the same way. In particular, for
any storage model in which the workload process Z is
defined in terms of the net input process Y by (24), if the
net input process is a Lévy process having sample paths
without negative jumps, with E[Y(1)] < 0 and var [¥(1)] <
o, then the steady-state workload Z exists, having a Laplace
transform satisfying a generalization of the M/G/1 Pollac-
zek-Khintchine equation with

fz = 2 L (21

—2E[Y(ND]

see Zolotarev [63], Chapters IX and XVII of Feller [23],
Bingham [10], Harrison [31], and Chapter 3 of Prabhu [46].
This representation includes a Brownian motion net input
process, and the associated reflected Brownian motion
workload process arising in the heavy traffic limit, as dis-
cussed in Section IV-B1 (see Harrison {32]), as well as the
M/G/1 queue, and the batch-Poisson model discussed in
[24]. There are also other examples, such as the gamma pro-
cess; see p. 72 of Prabhu [46].

Furthermore, if the Lévy net input process is Y, defined
in terms of a total input process X, with E[X,(t)] = pt via (22),
then ¥, must be a Lévy process without negative jumps and

£Z,) = var [Y, ()] _ var [X, (0] TE[X, (D] _ 7pl (1) (122)

—2£[Y,(0)] TE[X,(0)] Z‘E[Yp(t)]i 2(1 = p)
so that
cXp) = WL} = [0 forallpandt (123)

In other words, with the Lévy process structure, the nor-
malized mean workload coincides with the IDW; both are
constant and equal.

V. APPROXIMATIONS

So far, we have shown that the IDW and the normalized
mean workload are closely related, but we have yet to
develop specific approximations for c2(p) given /,(t), such
as (9)-(18). We tackle this problem now, relying heavily on
heuristics. In this section, we assume that the IDW is avail-
able, and our purpose is to approximate c%(p). The IDW may
have been estimated from measurements, asin (2), or it may
have been determined analytically. For multiclass queues
in which each class provides GI/G/1 input, we apply (60),
and expressions for the IDC of arenewal process in Section
111-G. We may use exact expressions for the IDC as in Exam-
ples 111-1 and I11-2, Laplace transform inversion, or the
asymptotic approximation based on t = o in (70) and (115).

A. Variability Fixed Point Equations

it is intuitively clear that the time transformation t(p) in
(9) should depend on the IDW. In this section we consider
how. As indicated in Section [-C, /(1) for a given t has an
impact upon cX(p) for a given p only if fluctuations in the
offered traffic at time s have an impact upon the workload
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at time s + t at that p. Moreover, if the workload process
hits zero before time s + t, then this impact tends to be
gone. It is thus natural to consider the approximation

cHp) = ElTeolo))] (124)

where T(p) is the first passage time to 0 starting in equi-
librium with traffic intensity p. We then approximate the
mean first passage time to zero by what it would be for a
Lévy process without negative jumps (see p. 79 of [46)), i.e.,

£Z,)
T—0»p

E[Teo(p)] = ; (125)
i.e., the mean workload in equilibrium is £(Z,), and the
workload goes down at an average rate of (1 — p). Com-
bining (3), (124), and (125) we obtain the approximation

Ell(Too(p)
Emmn=%%%%?

, 0=p=<. (126)
The resulting approximation for cXp) is based on a random
variable T, satisfying equation (126). Note that this pro-
cedure yields an approximation of the form (10); the cdf
G.(t) there can be thought of as the cdf of Te(p). (Newell
uses a similar line of reasoning on pp. 132-152 of [42]; see
especially (4.32)-(4.36) there. However, Newell considers
only the heavy-traffic case in which /,(t) is essentially con-
stant.) The mean E[T.o(p)] is a form of the relaxation time;
we can think of (126) as a relaxation-time fixed-point equa-
tion in the space probability-distribution-valued functions
of p.

Looking at (126), we see thata much more tractable equa-
tion would resultif we could move the expectation operator
insider /,(t) on the right. Then we would obtain the fixed-
point equation

TE[Te
HTuo) ~ Zote)

, 0=p =1 (127)
in the space of real-valued functions of p. Motivated by (127),
we propose approximations based on deterministic time
transformations t(p) as in (9), where (p) is determined by
the fixed-point equation (15), where x(p) is an increasing
function of p with x(0) = 0, and x(p) = ® asp — 1. From (127),
we would be led to choose

x(p) = pf2(1 — p)* (128)

which seems to be consistent with the heavy-traffic asymp-
totics for superposition arrival processes in [43]and [59], but
other asymptotics in the next section suggest something
like

X(p) = p/(1 + p)(1 = p) = pl(1 = pY (129)

which is closer to (16). We have not resolved what function
x(p) is best. We suggest (16) as a specific candidate, but
something like (128) may be better when there are many
classes; see Section VI-B. With (16), (128) or (129), (15) is easily
solved for any p by finding the intersection of the line t/x(p)
with /,(t), as illustrated in Fig. 3.

B. Light-Traffic and Heavy-Traffic Derivatives

In order to specify the function x(p) in (15) and in order
to develop a light-traffic and heavy-traffic interpolation
approximation, we consider the asymptotic behavior as p
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- 1,and asp — 0. As noted in Section IV-B3, in considerable
generality, /() = A+ Bt~ + o(t ") as t = o, so we assume
this general asymptotic form. Then (15) becomes

B
== A — (130)

and t(p) is the solution to a quadratic equation, i.e.,

A 1/2
X(;’) < 4B > (137)

A’X(p)
Combining (9), (15) and (131), we obtain

B 2
z = Iw(t( N = A+ — = Al1 + - -
c,(p) P t(p) < y<m>>
= A0 +y—yH (132)

tp) =

a1

U

where y = B/A’x(p), so that

, B B-

cylp) = A +m~m. (133)

Note that (132) and (133) present candidate approximations
when x(p) is specified.

We also assume that cﬁ(p) can be represented in a Taylor
series expansion as

cdp) =cHD) — (1 = p e + o1 —p) as p = 1.
(134)

Combining (133) and (134), we see that we should have
A = ci),

_B
Aa’
(135)

1

x(p) =al —p~ "+ o) as p—1 and ¢X1) =

Finally, we set a = 1/2, because that makes ¢ (1) agree with
the exact results for the GI/M/1 queue in (114) obtained by
Halfin [30].

Given the expansion for /.(t) as t = o, we obtain the cor-
responding expansion for /(p) = I (p/(1 — p)yasp = 1,i.e.,

(1 —p)
0

Jlp)y = A + B+o(1—p as p—1, (136)

sothat ci(1) = A = [,(c0) = J (1),
Ji.() = =B and ¢X1) = 2/, (1) (D). (137)

We replace /(1) in the denominator of (137) by max {1, /.(1)}
in (18) to avoid errors caused by dividing by very small num-
bers. This adjustment is motivated by experience with G/
G/M1queues suchasthe £,)/D/1queue, for which J,.(1) = 0.10;
see [60].

Similarly, in light traffic we assume that /() = C + Dt +
o(t) as t — 0 (see (48) and (89)) and ci(p) = c(0) + pcX0) +
o(p) as p = 0. In this case (15) yields t(p) = Cx(p)/(1 — Dx(p))
and

o) = 1 {tlp) = C + Dtp) = C + CDx(p) + olx(p))
as p — 0. (138)
Hence, x(p) = ap + o(p)asp — 0,

c,0) = C=/J0 =140 and

¢;0) = aCD = aJ(0) J,(0) = al,(0) /,(0).  (139)
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To be consistent with (100), we set a = 1, and (139) reduces
to (18). Note that (129) is consistent with the asymptotics
bothasp = 0and p — 1.

While the approximation for ¢2(0) in (139) and (18) is cor-
rect for a single-class queue in which the service times are
i.i.d. and independent of the arrival process, and for mul-
ticlass queues with common service-time distributions, it
is not correct in general. For the general multiclass model
of Section IV-A2, we have derived ¢3(0) in (86), so for that
model we should use (86) instead of (18).

C. Model Approximations

Our basic premise is that the normalized mean work-
loads in two different queueing systems should be nearly
the same if the IDWs of their offered traffic are nearly the
same. This premise immediately suggests an approxima-
tion procedure: Given a single-server queue with complex
offered traffic, replace the offered traffic with offered traffic
that is more manageable, and has nearly the same IDW. By
“more manageable,” we mean that the normalized mean
workload can be computed exactly or approximately. The
basic premise implies that the normalized mean workload
obtained for the more manageable offered traffic should be
a good approximation for the normalized mean workload
in the original model.

Essentially this same approximation procedure has
already been applied with some success to approximate
complexarrival processes by renewal processes in[54], [55],
[5], and [51], and by Markov modulated point processes in
[34], [35]. The main difference here is that we are treating
the service times together with the arrival process.

As an alternative to the fixed-point approximation in Sec-
tion V-A and the light-traffic and heavy-traffic interpolation
in Section V-B, we suggest a GlI/G/1 model approximation.
For any given offered traffic with IDW /,(8), we choose
GI/G/1 offered traffic (if possible) to approximate /,(t). Of
course, this means that we must choose cdf’s F,(t) and F (1)
foraninterarrivaltime uandaservice time vwith the scaling
(19). We then approximate the original queue by the
Gl/G/1 queue.

A convenient way to approximately match the GI/G/1 IDW
to the given IDW is to apply the asymptotics again. We use
the asymptotics for the given IDW to determine four param-
eters that partially specify the cdf’s F (t) and F.(t), in partic-
ular, the squared coefficients of variation c¢; and c?, the
density of F,(t) at the origin, denoted by £,(0), and the third
moment of F (1), denoted by m ;. We then can fit cdf’s to
c?, ¢, £,(0), and m,,. (The first moments are 1 here.)

We do not consider the distribution fitting to these
parameters in detail here. However, given c? and the unit
mean, we can easily pick the service-time cdf, e.g., accord-
ing to (3.7) or (3.12) of [55]. Ignoring the density £,(0), we can
fitan H, distribution to £,(t) using (3.5) and (3.6) of [55], when
ci> Tand m,, > 1.5(c? + 1)°. More generally, for F (1), we
suggest working with phase-type distributions, so that we
obtain a PH/PH/1 queue, which can be solved algorith-
mically as in Ramaswami and Latouche [47].

Thefour parametersc;, c2, f,(0), and m,;are easy to obtain
from 1,(0), 1,(0), I,.(e), and J;(1). First, since c0) = 1 +
¢l and cX1) = ¢l + ciforaGliG/1queue, we apply (8) and
(12) and let

ci =100 —1 and ¢ = [ () = [(0) + 1. (140)
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Second, we apply (95) and (97) to obtain
0y = 1,(0) + 1. (147)
Finally, we apply (59), (115), and (137) to obtain

My = 3,1 + 3l + 12 (142)

For the multiclass queue in which each class has GI/G/1
offered traffic, we can also express the IDW asymptotic val-
ues 1,(0), 1,,(0), 1,(0), and J;,(1) in (140)-(142) in terms of the
parameters N, 7, €%, €%, £,i(0), and my;; for each class. For
example, in the special case of the superposition of n i.i.d.
Gl/G/1 sources, we can express the approximating G1/G/1
parameters c2,, 2., f..(0), and m,,, for the queue with the
superposition arrival process in terms of the exact Gl/GI1
parameters associated with one source, ¢, ¢34, f;1(0), and
My3y, by

2 _ 2 2 _ 2
Csn = Cs1y Can = Cauy

(i +1) €3 + 1

f.n(0) = a0 + 1 —

- §(n — N + 1A (143)

My3n = NMa3y 2

It is significant that for the superposition of n i.i.d. H,/G/1
sources, (143) without using f,,(0) gives parameters of a sin-
gle H,/G/1source with a different third moment butan iden-
tical IDW. This is easy to see from (65)-(67). We will work
with this example in Section VI.

Just seeing what these GI/G/1 parameters ¢3, ¢2,£,(0), and
m,;are provides some insight, since we already understand
that GI/G/1 queue fairly well. Given these parameters, we
need not fit F,(t) and F(t); instead, we can apply the light-
traffic and heavy-traffic interpolation approximation in [60],
or the interpolation approximation based on (8), (12), and
(18). (Then the difference is only in the correction factors
X(c?, ¢?) for ¢2(1) in (2.21) and (2.24) of [60].) In the special
case of the superposition of n i.i.d. sources, by matching
the IDWs, we can express the approximating limiting values
of ¢ X p) for the queue with the superposition offered traffic
in terms of the limiting values of c2,(p) for the queue with
a single source by

c20) = c24(0), cX(1) = ¢34,
¢%0) = n "¢ 0) and XM = nek(D). (144)

In fact, given that c24(p) is exact, all the limiting values in
(142) except ¢,(1) are exact. Of course, the main idea with
the GI/G/1 model approximation is to do better than the
interpolation approximation in (17) and (18) by exploring
the exact solution of the approximating model.

In the case of the arrival process alone (as occurs when
the service times are i.i.d. and independent of the arrival
process), there is a procedure proposed by T. ). Ott and H.
Zucker (unpublished manuscript, AT&T Bell Laboratories,
1981) for finding a renewal process that has exactly the same
IDC as a given stationary point process, whenever such a
construction is possible. (We assume the rates are fixed at
1.)Theideais to match the renewal function associated with
the renewal process to E[A°(1)], where A°(t) is the Palm ver-
sion of the stationary arrival counting process A(t), obtained
by conditioning on a point being at 0. It is well known that
this is equivalent to matching the IDCs, because for any
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stationary point process

t

A —t =2 S FlA%s)] ds, t =0 (145)
0

see p. 68 of [20].
For a renewal process, we have

and f(s) = T ae (146)

where f(s) and &(s) are the Laplace-Stieltjes transforms (LSTs)

fis) = So e ' dF(t) and &) = SO e " dE[A()]  (147)
with F being the interarrival-time cdf. Thus we can find an
interarrival-time cdf for a renewal process with the same
IDC by solving the second equation in (146). Obviously, the
procedure works if and only if f(s) so obtaiAned is an LST of
abona fide cdf, which occurs if and only if f(s) is completely
monotone; see p. 439 of [23].

At first glance, the Ott-Zucker procedure may not look
very promising, but they prove that &(s)/(1 + &s)) is indeed
completely monotone, so that f(s) is the transform of abona
fide cdf, whenever the stationary point process is the super-
position of stationary renewal processes in which each
component interarrival-time distribution is completely
monotone (a mixture of exponentials). Moreover, in the case
of superposition of stationary renewal processes, the trans-
form &(s) is easily expressed in terms of the rates \; and
transforms &(s) of the component renewal processes by

,‘ n n n x/x/
1-als) = -

1>

i 1
e+ 2 X . (148
1 - &,(S) 121 j=1 s ( )

jEi

>

Even when the Ott-Zucker procedure does not produce a
bona fide cdf, it may be useful for generating approxi-
mations. For example, Ott and Zucker applied the trans-
form f(s), even when it is not completely monotone, to
approximately solve the approximating “GI"’/M/1 queue in
the usual way, and the results were very encouraging. We
tend not to prefer this approach because it requires con-
siderable data about the arrival process, becauseitdoes not
seem to extend to include the service requirements, and
because further work must be done to identify and solve
the approximating GI/G/1 queue. However, the procedure
obviously has potential.

Once we have an approximate GI/G/1 model, we can cal-
culate other performance measures besides the average
workload, but it is not at all clear that the IDW should be
used to predict more than the average workload. Obviously,
the IDW provides some idea about the queue performance
more generally, but it is not so directly connected to other
performance measures. To illustrate the limitations, note
that neither the IDW nor the full workload process can dis-
tinguish between a queue with batch arrivals having a Pois-
son arrival process for batches, and a simple M/G/1 queue
in which the customers arrive one at atime. Thus, from the
IDW or the mean workload, we cannot predict the average
waiting time per customer. However, if service times are
independent of waiting times, so that customer arrivals
occurone at atime, then we can predict the average waiting
time from the average workload using Brumelle’s formula
(72).
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As illustrated by the M/G/1 queue, the full distribution of
the steady-state workload depends on the service-time dis-
tribution beyond the first two moments, so we clearly can-
notdetermine the distribution of the steady-state workload
from the IDW. Even a full Gl/G/1 model approximation
matching the IDW exactly does not help. The difficulties are
well illustrated by examples in Ramaswami and Latouche
[47]. However, a natural rough approximation for the steady-
state workload distribution, assuming nice behavior, is an
atom of (1 — p) at zero (which is exact), plus an exponential
tail, with the previously determined mean, i.e.,

PZ, > t) = pe "EE > Q. (149)

This exponential approximation is asymptotically correct in
heavy traffic in great generality, and is known to be remark-
ably good for a large class of M/G/1 queues. As indicated
by the heavy-traffic limit, (149) tends to perform better as
pincreases. A possible refinement of (149) is to use an inter-
polation approximation, using the fact that the workload
distribution, conditional on being positive, behaves like the
stationary-excess of the service-time distribution in light
traffic.

Of course, we can also consider other model approxi-
mations besides GI/G/1 models. Another good candidate
for the arrival process is a Markov modulated Poisson pro-
cess. This model approximation is well illustrated by Heffes
and Lucantoni [35].

VI. A MuLTICLASS EXAMPLE

We conclude this paper with an example illustrating the
approximations. As in Section IlI-G, we consider a multi-
class queue with n independent GI/G/1 sources, i.e., a
(X'~ GI/G)1 model. In addition, we assume that the n
sources have common arrival and service distributions. (We
consider class-dependent service-time distributions in [24]-
[26].)

As in Section IH-E, we assume that each IDW is scaled to
have offered load 1, and each IDC is scaled to have arrival
rate 1, so that by (56)-(60)

Loty = Lalptin) = ¢ + I (ptin), 0 <p =<1 (150)

where p is the total arrival rate, and the index 1 refers to a
quantity associated with a single component source. Note
that in (150) the IDW essentially reduces to the IDC. More-
over, by (87), (92), and (104),

2
sy

cX0) =140 =1+ ¢

2
E0) = 1,00 1,(0) = LT 5 <@ - 1)- (51)
n N1
By (106),
1) = Ifo0) = ¢ + ¢ (152)
by (18) and (117),
. 2/,40) n
1) = = -
G = a1, o)~ max {1, ¢ 5 )
M (€ + 1}
< 3 5 > (153)

Note that c(0), ¢2(0), and c2(1) in (151) and (152) are exact,
while ¢2(1) in (153) is an approximation.
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We compare four approximations developed in this
paper—the simple time transformation (9) plus (13), the vari-
ability fixed-point approximation (9) plus (15), the inter-
polation approximation (17), (18) plus (151)-(153), and the
Gl/G/1 model approximation (143) plus Example 111-G-1—
with simulation estimates of exact values obtained by Albin
[3], [5] in the process of developing her hybrid approxi-
mation. (See Chapters 3-5 and Appendices 6 and 17 of [3].)

A. The First Experiment: H,/M/1 Classes

The first experiment contains 9 cases, based on 3 values
of p (0.5, 0.8, and 0.9), and 3 values of n (2, 8, and 128). The
interarrival-time distributions are hyperexponential with
balanced means, and ¢} = 2.0 (then m,; = 18, and £,(0) =
1.333); the service-time distributions are exponential. Thus,

c¥0) = 2.0 and cX1) = 3.0. (154)

As a basis for comparison, a simple M/M/1 approxima-
tion is c2(p) = 2.0 for all nand p as in (6), and a simple two-
moment heavy-traffic (or asymptotic-method, see [55])
approximation is ¢2(p) = 2 + p for all n as in (7). The
M/M/1 approximation is good for large n, because the
superposition process approaches a Poisson process as n
— ». However, neither simple approximation provides uni-
formly good extra information beyond (154).

Ten other approximations are compared with simulation
estimates of exact values in Table 2. in addition to the sim-
ulation estimates, which were obtained by Albin [3]-[5],
approximate 95 percent confidence intervals are indicated
in parentheses below the estimate. Albin’s estimates
actually are for the mean number in system, but these are
converted into the mean workload by applying L = AW and
(72), Since this transformation is linear, the new confidence
intervals are easily obtained as well.

The first two approximations are Albin’s hybrid approx-
imation, and QNA approximation in (29) and (33) of [57] that
is based on it. Both of these approximations perform well
for thisexample, but they only apply to superpositions with
i.i.d. service times independent of the arrival process. In
that context, the QNA approximation is appealing because
of its simplicity.

The next three approximations are simple deterministic
time transformations of the IDW, as in (9) where t(p) is inde-
pendent of the IDW. For this example, the exact IDW is
available from (150) and Example 11I-G-2. Here, we see that
it is better to have the exponent 2 on (1 — p) in t(p), which
was not obvious from Table 1.

The next three approximations are variability fixed-point
approximations based on (9) and (15) with three different
candidate x(p) functions, (16), (128) and (129). Overall, (129)
seems best, butitseemstoo low for alf cases except the first.

The next-to-last approximation is a GI/G/1 model approx-
imation as discussed in Section V-C. By redefining the third
momentas in (143) and fitting an H, distribution to the first
three moments, we obtain an H,/M/1 queue with the iden-
tical IDW. (Evidently the same result would be achieved by
applying (148).) The approximate solution is then the exact
solution for the resulting HyM/1 model (obtained in the
usual way). As can be seen from Table 2, the GI/G/1 model
approximation performs well, but not exceptionally well.
Evidently thereis alimit to the information provided by the
IDW.
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Table 2 A Comparison of Ten Approximations with Simulation Estimates of Exact
Values of the Normalized Mean Workload c(p) in a Multi-Class (Z7-, GI,/M)/1 Model
with n i.i.d. Sources, Each Having Exponential Service Times and H, Interarrival Times
with Balanced Means and c2 = 2.0, as Discussed in Section VI-A. Estimated 95 Percent
Confidence Intervals Appear Below the Simulation Estimates in Parentheses.

Simple Time Transformation (9)

Variability Fixed
Point equation GG

Albin’s QNA with t(p) = (15) model approx.
Number [31,[51 (29 and (33)
Traffic of Simulation Hybrid  of Whitt plufe) (16) (128)  (129) H/MN
Intensity ~ Sources  Estimate  approx. [57] 21— p? o/l —pf pl1—p) exact  jnterp.
n=2 2.34 2.30 2.50 237 2.27 2.15 230 242 2.27 2.28 2.28
(£0.01)
p =105 n=328 2.19 2.10 2.25 2.12 2.08 2.04 2,01 2.01 2.13 2.08 2.04
(£0.00)
n =128 2.02 2.01 2.01 2.01 2.01 2.00 2.00 2.00 2.01 2.00 2.00
(+£0.02)
n=2 2.60 2.69 2.86 2.90 2.85 2.45 273 2.89 2.54 2.64 2.65
(+0.02)
p =038 n=28 2.52 2.39 2.47 2.63 2.51 2.15 230 267 2.24 227 2.20
(+0.03)
n =128 2.09 2.05 2.05 2.07 2.05 2.01 203 206 202 202 2.00
(+0.02)
n=2 2.90 2.86 2.96 2.98 2.97 2.68 2.89 298 278 2.81 2.81
(+0.03)
p =09 n=28 2.72 2.72 2.78 291 2.87 2.30 253 291 2.40 2.48 2.44
(£0.04)
n =128 2.21 2.16 2.16 2.28 2.20 2.02 2.04 227 2.04 2.05 2.01
(£0.05)

The final approximation in Table 2 is the interpolation
approximation in (17) and (18) using (151)-(153), which coin-
cides with the interpolation approximation applied to the
H,/M/1 model obtained by the GI/G/1 model approxima-
tion. (All the interpolation approximations for GI/G/1
queues in [60] coincide for exponential service-time dis-
tributions.) It is significant that the interpolation approxi-
mation performs nearly as well as the GI/G/1 model approx-
imation. This example suggests that it may not be
worthwhile obtaining a full GI/G/1 model that has nearly the
same IDW even if it can be done.

In summary, the simple time transformation in (9) plus
(13), and the interpolation in (17) plus (18) look very good
in this experiment, and are appealing because of their sim-

plicity.

B. The Second Experiment: H, and E, Distributions

The second experiment consists of 24 cases, based on 2
values of p (0.7 and (0.9)), 3 values of n (2, 4, and 16), 2 inter-
arrival-time distributions, and 2 service-time distributions.
The two interarrival-time and service-time distributions are
E, and H, with balanced means, and ¢2 = 5.0. With mean
1, the third moments are m,; = 3.0, and m,; = 3ci(c3 + 1
= 90, respectively; the densities at the origin are f0) = 0,
and f0) = 2c¥(1 + c?) = 5/3.

Albin’s simulation experiment also includes other dis-
tributions, including other service-time distributions with
the same c2, in particular, lognormal for ¢ = 5.0, and shifted
exponential with c2 = 0.5. (A shifted-exponential random
variable is a constant plus an exponential.) In support of
approximations for the mean workload that only depend
on the first two moments of the service time, the simulation
estimates with the different service-time distributions are
quite close to the estimates for the service distributions we
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consider. The bigger discrepancy occurs when cl=cl=
5.0, p = 0.7, and n = 2; the lognormal service times yield
values about 6 percent lower. Overall, Albin’s simulation
results support using only two moments of the service-time
distribution.

The basic approximations developed here are compared
to the estimated exact values in Table 3. Each simulation
estimate is also given an approximate standard deviation
based on 20 batches from one long run.

As in Section VI-A, the approximations are all obtained
analytically, without measurements, using the explicit for-
mulas for the E, and H, IDWs in Section 11I-G. Otherwise,
we would have worked with the asymptotic approximation
in (69) and (115). For example, for the H,/H, case, the approx-
imation is 1,,(t) = 10 — 12n/t, which is quite accurate for /,,(t)
= 8. In applications, typically the component arrival pro-
cesses have a given time scale, so that when more com-
ponent processes are introduced, p increases with n. Then,
the IDW associated with the superposition of n i.i.d. pro-
cesses is independent of n. In contrast, here the IDWs
change with n, as indicated in (150) and as illustrated for the
H,/H, and E,/E, cases in Figs. 5 and 6, where the variability
fixed-point equation (15) is solved graphically for all n and
p. In Table 3, we only describe the variability fixed point
equation with x(p) in (16).

For the most part, the numerical resuits in Table 3 look
good, but clearly not nearly as good as the results for the
Gl/G/1queueinTable Tand [60]. The results are consistently
good for E, arrival processes, but ¢3(0) differs from ciM by
only 0.5 in these cases. (From our approach, we do clearly
see that it should be easier to obtain good approximations
in these cases.)

For the H, arrival processes, the results are reasonable
for smaller n, but the quality of the results deteriorates dra-
matically as n increases. Indeed, for the Hy/E, case, the two
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Fig. 5. The IDWs and the variability-fixed-point approxi-

Table 3 A Comparison of Three Approximations for the Normalized Mean Workload
c;(p) in (3) with Simulation Estimates for the Multi-Class Model Having Common
Service-Time Distributions and n i.i.d Component Arrival Processes, as Described in
Section VI-B. The Simulation Estimates Come from Chapter 5 and Appendix 17 of [3].
The Statistical Precision is Described Approximately by One Sample Standard
Deviation Based on 20 Batches From One Long Run.

F, service ¢ = 0.5 H, service, ¢! = 5.0
Arrival E, c2=05 H,, ¢ci=5.0 E,ci=05 H, ct=5.0
exact 1.1 3.58 5.58 8.67
st. dev. (0.009) (0.06) (0.09) (0.11)
n=2 (14) 1.06 4.41 5.51 9.38
(9) and (15) 1.10 3.26 5.52 8.87
(17) and (18) 1.13 3.32 5.53 8.40
exact 1.16 2.95 5.62 8.14
st. dev. (0.008) (0.03) (0.06) (0.14)
p =07 n=4 (14) 1.13 3.63 5.52 8.81
(9) and (15) 1.17 2.20 5.54 7.92
(17) and (18) 1.27 2.37 5.56 7.53
exact 1.28 1.99 .78 6.83
st. dev. (0.009) (0.05) 0.11) (0.08)
n=16 (14) 1.32 2.27 5.59 7.26
(9) and (15) 135 1.70 5.64 6.57
(17) and (18) 1.29 155 5.68 6.22
exact 1.05 4.76 5.52 9.43
st. dev. (0.013) (0.17) (0.16) 0.17)
n=2 (14) 1.01 5.40 5.50 9.95
(9) and (15) 1.02 5.00 5.50 9.85
(17) and (18) 1.05 4.65 5.51 9.43
exact 1.04 4.44 5.43 9.26
st. dev. (0.016) 0.14) 0.13) (0.25)
p =09 n=4 (14) 1.01 5.31 5.50 9.89
(9) and (15) 1.05 4.38 5.51 9.45
(17) and (18) 1.10 4.00 5.52 8.96
exact 1.10 4.03 5.40 8.77
st. dev. 0.014) (0.16) (0.15) (0.29)
n=16 (14) 1.04 4,73 5.51 9.57
(9) and (15) 1.17 2.28 5.54 7.88
(17) and (18) 1.13 2.13 5.57 7.23
c) 1.5 1.50 6.00 6.00
ne o) -15 1.00 —6.00 4.00
o 1.0 5.50 5.50 10.00
n= e -0.25 4.364 —0.455 2.40
|
10 | pz07
sk | SLope-3/7 /p-09
9l i / SLOPE=1/9
— 14
8 Z
z SE E2/Ep /1
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mation for the H,/H,/1 examples in Section VI-B.

2 4 [} 8 10 12 14 1B 18 20
TIME t

Fig. 6. The IDWs and the variability-fixed point approxi-
mation for the E,/E./T examples in Section VI-B.

Indeed, from Table 3 we see that the derivatives are least
informative for large n in the H,/E, case. This difficulty with

approximations, (9) plus (15), and (17) plus (18), both per- the approximation also was observed of the H,/M/1 queue
form very poorly when n = 16 and p = 0.9. For the inter- in Table 5 of [60]. As before, the results can be interpreted
polation approximation, this could be anticipated, because more positively: The approximations for the function
the derivatives cease to pin down the middle as nincreases. c(p) have the right shape. The values do not match well at
In particular, for n = 16, ¢3(0) = 0.063, and ¢X(1) = 69.8. higher p because the functions are very steep at that end.
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However, we could not anticipate so clearly the difficulty
with the variability fixed point approximation in the H,/E,
case with n = 16and p = 0.9. We conjecture that the asymp-
totics in Section V-B cease to be relevant as n and p both
get large, so that for large n, x(p) in (16) should become
something like p/2(1 — p)*, as in (128). Indeed, from [43] and
[59], we know that the crucial factor when n — o andp —
1is n(1 — p)?, so that the crude approximation (14) should
get steadily better as n increases.

From [59], we see that as n gets extremely large, in a cer-
tain sense ¢ 2(p) approaches a step function, increasing from
cX0) to cX1) when p is in the interval (1 — Jaln, 1 —
Jbiny, e.g., fora =100 and b = 0.01. Forexample, if we were
to consider the case n = 10°, we anticipate that we would
have

2

cXp) = cX0) = 1,(0) for p =< 0.99 (155)
and
cXp) = cX1) = I () for p = 0.9999. (156)

Consistent with (151), we would predict ¢2(0) = 0, butincon-
sistent with (152), we would predict ¢%1) = 0. However,
clearly ¢2(1) = 0 does not describe the behavior of cXp)well
in a practically meaningful neighborhood of p = 1.0. Indeed,
the IDW approximation (153), i.e., ¢ (1) = oo for H,/E,, seems
to tell the main story.

VIl. CONCLUSIONS

In this paper we have developed some new ways to gain
insightinto the offered traffic to aqueue (the arrival process
together with the service requirements), and its effect on
performance. We have proposed two basic measurements
of the offered traffic: the normalized mean workload
{cXp): 0 < p < 1} in (3) (Section 1I-C) and the IDW {/,(0):
t = 0} in (1) (Section 111). Both are functions that can be esti-
mated from a single sample path of the offered traffic; see
(2) and Section I1-B. Moreover, both measurements also
apply to the arrival process alone, as well as to the arrival
process together with the service requirements, essentially
by considering constant service times.

Much of the paper has been devoted to establishing con-
nections betwen 1,(t) and c2(p). We have provided strong
support for our basic premise that c3(p) is primarily deter-
mined by /() starting with (8) and (12), and continuing with
Section IV. We have also indicated limitations on this basic
premise by considering different queues with identical
IDWs. In particular, this occurs when the arrival process is
asuperposition of i.i.d. H, renewal processes, and we apply
the GI/G/1 model approximation in Section V-C by rede-
fining the third interarrival-time momentas in (143). The H,/
G/1 model obtained by fitting an H, distribution to the first
three moments has exactly the same IDW as the queue with
the superposition arrival process, but the resulting approx-
imation performs only about as well as the interpolation
approximation.

We have also proposed four ways to approximate cp)
in terms of /,(t), which can be applied either with mea-
surements or basic model parameters (as illustrated by Sec-
tion VI). The first approximation is the simple time trans-
formation in (9) and (13); the second is the variability fixed-
point approximation in (9), (15), and Section V-A; the third
is the interpolation approximation in (17), (18) and Section
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V-B; and the fourth is the GI/G/1 model approximation in
Section V-C (which was not developed completely). We have
found (in [24]-[26] and [60], as well as here) that these
approximations perform quite well, but not uniformly so.
All these procedures correctly capture the first-order
behavior in the limiting values c%0) and c(1). For the mid-
dle, on the basis of simplicity as well as performance, we
prefertheinterpolation approximation(17)and(18),and the
sample time transformation (14). All the approximations
seem promising, but they require further study.

In predicting the function {cXp): 0 = p < 1} given {/,(t):
t = 0}, we succeed in predicting the performance of the
queueatallpgiventhe offered trafficatonlyonep, butrecall
that this strong property requires that the offered traffic
depend on p via the simple linear scaling in Section [I-A. If
the offered traffic is not exogenous (e.g., if there are feed-
back effects, as in a closed queueing network), then the
offered traffic will not change by the simple linear scaling
when we change the arrival rate or service rate. Then
c2(p) may only be related to the IDW associated with the
given p. The IDW should nevertheless provide useful
insight.
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