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What service-time distribution minimizes delays in a G//G/1 queue with given
renewal arrival process and given mean service time? It is natural to conjecture
that the deterministic service-time distribution with unit mass on the mean is
optimal for all objective functions of the form Ef(W) where f is a nondecreasing
function of the steady-state delay W. However, we show that this conjecture is
false. In fact, for hyperexponential interarrival-time distributions (mixtures of two
exponential distributions), the service-time distribution minimizing the average
delay maximizes the proportion of customers delayed.

UPPOSE that we have the opportunity to choose the service-time
distribution in a standard GI/G/1 queueing model with a given
renewal arrival process and a given mean service time. What service-
time distribution should we use to minimize delays? Since the mean
service time is fixed, the issue is how the probability mass should be
spread around the mean. Since variability usually causes greater conges-
tion, we would expect the deterministic service-time distribution with
unit mass on the mean to be optimal, and it often is. However, we have
not yet specified the objective function. We might want to minimize the
average delay or the proportion of customers that have been delayed by
more than x for some x = 0. For example, there might be a penalty for
each customer that is delayed, regardless of the length of the delay (the
case x = 0). But does the specific objective function matter? It is natural
to conjecture that the deterministic service-time distribution is optimal
for all these objective functions. This would occur with stochastic order,
ie., if

Ef(Wp) < Ef(Wg) (1)

for all nondecreasing real-valued functions f for which the expectations
are defined, where W (Wp) is the equilibrium waiting-time with a general
(deterministic) service-time distribution having the given mean.

This paper shows that the desired stochastic ordering of the steady-
state waiting-time distributions in (1) does not always hold. Moreover,
there are renewal arrival processes for which the service-time distribution
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minimizing (maximizing) the average delay maximizes (minimizes) the
proportion of customers delayed. In fact, this result is not a rare pathol-
ogy. It occurs for all renewal processes with H, interarrival-time distri-
bution (hyperexponential: mixture of two exponential distributions) and
can be anticipated to occur for other highly variable “bursty” arrival
processes. With such arrival processes, there is necessarily a tradeoff
between average delay and proportion of customers delayed. However,
limited experience indicates that the average delay is affected more
seriously by this choice. It is well known that average delay in the
GI/G/1 queue (and more general models) is minimized by the determin-
istic service-time distribution; see Rogozin [1966] and more recently
Hajek [1981], Humblet [1982] and Stoyan [1983]; see Whitt [1980] for
additional citations to the literature.

We actually consider more general questions. We look not only at the
service-time distribution yielding the maximum or minimum value of the
objective function, we consider comparisons of two GI/G/1 systems with
any two service-time distributions or any two interarrival-time distribu-
tions. This approach yields many more comparisons. For example, we
show that the probability of delay in an H,/E/1 queue increases in k,
where E; is an Erlang distribution with mean independent of k. As &
increases, the variance decreases, and as k — , E, approaches the
deterministic distribution.

In the comparison of two GI/G/1 queueing systems, it is well known
that the waiting times W, inherit basic stochastic order properties from
the interarrival times u, and service times v,. In particular, if Ef(—u;")
< Ef(—u.®) and Ef(v,Y) < Ef(v)®) for all nondecreasing (nondecreasing
convex) real-valued functions, then Ef(W,') < Ef( W,2) for all n and the
same set of functions (the superscript indexes the system); see Gaede
[1965], Daley and Moran [1968], Stoyan and Stoyan [1969], Borovkov
[1976, §24], Stoyan [1983, §5.2] and Whitt [1981a].

For the special systems M/G/1 and GI/M/1, the stochastic ordering
based on convex functions for the interarrival times and service times
implies the stochastic ordering based on all nondecreasing functions for
the stationary waiting times. For M/G/1 systems with arrival rates A,, if
A\ < A; and Ef(v,') < Ef(v,®) for all convex f, then Ef(W') < Ef(W?) for
all nondecreasing /. (W' is the stationary waiting time in the ith system.)
(Daley and Rolski [1983] have shown that it suffices to have Ef(v,') =
Ef(v,?) for all nondecreasing convex f.) For GI/M/1 systems with service
rates u;, if Ee=' < Ee* for all s = 0 and g = u, then Ef(W') =
Ef(W?) for all nondecreasing f. See Rolski [1972, 1976], Rolski and
Stoyan [1976], Stoyan [1983; Theorem 5.2.3], and Harrison [1977]. Note
that Ee~* < Ee~2 if Ef(—u;) < Ef(—uy) for all nondecreasing convex f
because e** is increasing and convex.
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Here we show that these special properties of the M/G/1 and GI/M/1
systems do not hold for all GI/G/1 systems. It is not always possible to
obtain the stronger stochastic ordering for the stationary waiting times
from the convex stochastic ordering for the interarrival and service times.
Avis [1977, p. 231] conjectured such an ordering for multiserver queues.
Open problem 2 at the end of §5 in Stoyan [1983] also asks what
GI/G/1 systems have this stronger stochastic ordering of the stationary
waiting time distributions. We identify GI/G/1 systems that fail to have
this property.

First, we look at the lower end of the waiting-time distribution, e.g.,
the probability of delay. Since convex ordering does hold for all GI/G/1
systems, lack of stochastic order is likely to show up at the lower end of
the distribution rather than in the tail. Whitt [1981b] exploited this idea
for similar counterexamples in s-server queues. Second, we use light-
traffic asymptotics to see what is going on. We make P(w;' > v,!) near
one so that the distribution of W* is close to the distribution of Wy' =
max{0, v,' — u;'}, then let v;' (1;') be more variable, but not stochastically
smaller (larger) than, the corresponding variable v,®> (u;2). Examples
based on this approach are given in Section 1.

Upon reflection, it is apparent that this phenomenon is not a rare
pathology. In Section 2 we prove (Theorem 2) that the probability of
delay decreases when the service-time distribution becomes more variable
in all H,/G/1 queues. On the other hand, we also show (Theorem 1) that
the probability of delay increases when the service-time distribution
becomes more variable in all GE,/G/1 queues having interarrival-time
distributions that are convolutions of two exponential distributions.
These qualitative properties have important implications for approxi-
mations; e.g., Theorems 1 and 2 are consistent with an approximation
for the probability of delay developed by Kraemer and Langenbach-Belz
[1976].

We conclude in Section 3 with further discussion.

1. LIGHT-TRAFFIC ASYMPTOTICS

We begin by constructing examples in which we increase the variability
of the interarrival times and service times while keeping their means
fixed, and show that the stationary waiting-time distribution does not
increase stochastically.

Example 1. We construct two GI/G/1 systems with Pu,!=2) = P(u,?
=2)=1,P, =0)=Pw.2=0)=1-¢ and P(v,' = 2.5) = 2P(v,2 =
2.4) = 2P(v,* = 2.6) = ¢, so that the interarrival times have the same
distribution and Ef(v,') < Ef(v:?) for all convex f. To obtain our coun-
terexample, we shall show that W' is asymptotically equivalent to Wi as
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¢ — 0; see (7) below. For this purpose, let C* = C'(¢, Wo) be the number
of customers served in a busy period of the ith system as a function of
the initial workload W, and «

C* = min{j = 1: W} = 0}.

We use the regenerative structure to calculate P(Wi> x); see Ross [1970,
§5.4]:

P(W‘ > x) ZCl(( 0 1(Wk'>x)/EC (ea )) (2)

where Wy = 0 and 14 is the indicator function of the set A.
Consider the case i = 1. Since

P(CYe, 0)=1, W' =0)=1—¢,
P(CYe, 0) =2, W' =05, Wol =0) = e(1 —¢), 3)
and  P(Cle 0)>2 Wil =05 Wol=1) =&,
ECU e, ))=1(1 —e) + 2e(1 — e} + [2 + EC(, 1)]€?
=1+ ¢+ 0(e?);

in (4) we have used the fact that EC'(¢, 1) < and EC'(¢, 1) is decreasing
in ¢ in fact, C'(e, 1) is stochastically decreasing in ¢ by virtue of sample
path orderings for {W,'}; see Theorem 4 of Whitt [1981a] and references
cited in this paper. Also, from (3) we have

E Y559 1iwpsoas — €(1 — €
= E TR0 14 < €22 + ECYe, 1)] = 0(é0).
From (2), (4) and (5), we have
P(W!> 0.45) = [e + 0(D)/[1 + ¢ + 0(?)] = ¢ + 0(e).  (6)

(4)

(5)

Formula (6) can also be expressed as
lim,_,, P(W!> x)/P(W! > x) =1 (7
for x such that P(W;' > x) > 0. By similar reasoning,
P(W? > 0.45) = [¢/2 + O(D)]/[1 + ¢ + O(D)] = ¢/2 + O(¢).

Hence, for sufficiently small ¢, Ef(W') > Ef(W?) for the nondecreasing
function f(x) = 1(.450)(x).

Example 2. Now we let the two systems have identical service- -time
distributions and change the interarrival-time distributions. Let P(u,! =
2) =1, P(u,? = 1.9) = P(u,” = 2.1) = %, Pw,/,=0=1-P,,=25)=
1—¢(i=1,2),n=1 Now Ef(u,") < Ef(u,”) for all convex f and, by
similar reasoning, P(W*' > 0.45) = ¢ + 0(¢?) and P(W? > 0.45) = ¢/2 +
0(?).

Copyright © 2001 All Rights Reserved



Delays in the GI/G/1 Queue 45

It is also easy to see that the standard stochastic ordering that holds
for the stationary waiting times in M/G/1 and GI/M/1 systems need not
hold for the transient waiting times under the same ordering of the
interarrival times and service times.

Example 3. For M/G/1 systems, let P(u,’ > x) = e, x = 0, and Wy =
0,i=1, 2. Let v, be as in Example 1. Then Ef(W,") < Ef(W,) for all
nondecreasing convex f by existing theory, but

P(W)'>14) = P(u,' <0.1) =1 — e = 0.0952 > 0.09063
= ()1 — e = (B)P(u,' < 0.2) = P(W2 > 14).

A similar counterexample holds for Wy’ in GI/M/1 systems.

2. PROBABILITY OF DELAY IN K,/G/1 QUEUES

The probability of delay (in fact, also the mean waiting time) has a
very simple expression for K; interarrival-time distributions, which have
a rational Laplace-Stieltjes transform with denominator or degree 2; see
p. 329 of Cohen [1969]. In this special case, the probability of delay
depends on a single real root, say 4, of an equation involving the
transforms «(s) of the interarrival times and B(s) of the service times,
namely,

B(s) = al(-s)™". (8)

Cohen shows for K,,/G/1 queues that (8) has exactly m complex roots in
the positive half plane, one of which is 0. Hence, for m = 2, there is a
single positive real root. Moreover, the probability of delay satisfies

P(W>0) =1~ f(a)/s, 9)

where f(a) is a constant depending on the interarrival-time distribution.
Hence, the qualitative effect of changing variability is easy to see. If the
variability of the service-time distribution increases in the sense of the
expected value of all convex functions, then 8(s) increases for all s. (This
service-time assumption is a weaker sufficient condition for the ordering.)
What happens to the root 4 in response to this change in §(s) depends
on whether a(—s)™* hits 8(s) from above or below at s = . If B(s) >
a(—s)7! for all s, 0 < s < §, then 6 increases when 8(s) increases. Note
that the derivatives of a(—s)~! and 8(s) at 0 are —Eu and —Ev, respec-
tively, so the two functions are equal at 0 and a(—s)™! starts off below
B(s). When a(—s)™" is continuous (has no singularity), then everything
is as expected, as is the case for the convolution of two exponential
distributions, e.g., Ez. Let GE, denote the convolution of two exponential
distributions, with possibly different parameters )\, and Az, having trans-

Copyright © 2001 All Rights Reserved



46 Whitt
form
als) = (M/(\ + 8))(A/(N2 + 8)).

THEOREM 1. Consider two stable GE»/G/1 queues with a common inter-
arrival-time distribution. If Ef(v,)) < Ef(v,?) for all convex real-valued f
(or only if Bi(s) < Ba(s) for all s), then P(W* > 0) < P(W? > 0).

Proof. As noted above, a(—s)™" is initially less than B(s). Moreover, in
the case of the convolution of two exponentials,

o(=8)"1 = [(Ar = $)(A2 = 8)]/Mid, (10)

so that «(—s)™" is continuous. Hence, a(—s)™" must hit 8(s) from below,
so that § increases as 3(s) increases.

Here is a numerical example:

Example 4. The probability of delay in E;/D/1, Ey/E,/1 and E,/M/1
systems with p = 0.5 is, respectively, 0.323, 0.360, 0.382.

It is also possible to calculate the range of possible values for
P(W > 0) for GE»/G/1.

COROLLARY 1. The probability of delay in a stable GE»/G/1 queue with
fixed traffic intensity p has a supremum p and a minimum attained for G
=D.

Proof. Obviously B(s) is minimized for all s over all service-time
distributions with mean ! by ™%, so the minimum is clear. For the
supremum, note that 8(s) can be made arbitrarily close to 1 for any s
and any mean by choosing a distribution with almost all the mass at 0
and a small bit at a very large value. So, for the supremum, it suffices to
apply (9) and (10) and solve a(—s)™" = 1, which yields P(W > 0) = p in
this case.

There is also another possibility for the behavior of a(—s)% it can
have a singularity, at s, say, so that a(s) approaches —oo(+®) as s
approaches so from the left (right). In fact, for the K»/G/1 queue, a(—s)™"
can have at most one such singularity (see Cohen), which is the full
extent of the complexity. Now if § > so, then a(—s)7! hits B(s) from above
instead of below at s = §, which will always be the case as 3(s) is decreased
since a(—(so+))™! = +oo while B(sp) = 1. This case applies for the
H,/G/1 queue.

THEOREM 2. Consider two stable Ho/G/1 queues with common interarri-
val-time distributions. If Ef(v.t) < Ef(v,2) for all convex real-valued f, then
P(W!'>0) = P(W?>0).

Proof. Here
a(—s)7" = [(A — 8) (A2 — /[N — s(ph + (1 — PIN)],  (11)
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so that there is a singularity at
So = MAo/(pA1 + (1 = p)Ag).

Hence, just to the right of so, a(—s)™! is near +oo. Also, for very large s,
a(—s)™ is negative, so that the single root § must be larger than s,.
Consequently, a(—s)™ hits B(s) from above at 6.

Here is a numerical example.
Example 5. Consider an H, interarrival-time density

f(x) = qre™ + (1 — Q)he™, x = 0,

with balanced means (g/A; = (1 — g)/A;), overall mean 2, and squared
coefficient of variation (the variance divided by the square of the mean)
¢’ = 2. Let the service rate be # =1, so that p = 0.5. Then P(W > 0) =
0.59175 for H,/M/1 and P(W > 0) = 0.61395 for H,/D/1.

Paralleling Corollary 1, we have:

COROLLARY 2. The probability of delay in stable H,/G/1 queues with
common interarrival-time distribution and common traffic intensity p has
an infimum of p and a maximum attained for G = D.

Proof. As in Corollary 1.

It is also interesting to vary the interarrival-time distribution instead
of the service-time distribution. Whitt [1982b, 1984b] investigates such
changes for H,/G/1 queues. Now we can add

THEOREM 3. The probability of delay in stable H,/G/1 queues with com-
mon service-time distribution, common traffic intensity p, and common
squared coefficient of variation c? of the interarrival-time distribution, has
an infimum of p attained at the limiting M/G/1 system and a supremum
of 1 = 2(1 = p)/(1 + ¢?) attained at the MB/G/1 system (having an arrival
process that is batch Poisson with geometrically distributed batches having
mean batch size EB = (c? + 1)/2).

Proof. Theorem 1 of Whitt [1984b] treats the case of exponential
service times. Apply Corollary 2 with the fact that the bounds in Theorem
3 depend on the service-time distribution only through its mean.

3. DISCUSSION

(1) Theorem 2 shows that Conjectures 5.1 and 5.2 of Avis are both
false.

(2) Example 1 shows that the desired stochastic ordering of the steady-
state waiting time is not true in D/G/1 systems. Since E,—>Dask— oo,
by continuity (§11 of Borovkov), the desired stochastic order is not true
for E,/G/1 systems as well for sufficiently large k. We conjecture that
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the steady-state delay distribution is stochastically decreasing in k and [
in E./E,/1 systems though. This conjecture is consistent with all available
tables.

(3) Corollaries 1 and 2 can be extended to indicate the range of possible
delay probability values given additional constraints on the service-time
distribution such as additional moments. For example, if the service-
time variance, o2, is given, too, then the maximum delay probability for
E,/G/1 and the minimum for Hy/G/1 is attained at the two-point service-
time distribution with mass ¢2/(¢® + %) on 0 and mass u2/(¢* + p7%)
on ! + po? see (12) of Eckberg [1977]. For the Hy/G/1 queue, the
maximum mean delay given two moments of the service time is also
attained at this two-point distribution, which contradicts a conjecture in
Daley and Trengove [1977]; see open problem 5.2.4 of Stoyan [1983].
Hence, the singularity in (11) has other important consequences. Further
discussion appears in §4 of Whitt [1983a].

(4) The situation for K,/G/1 queues is more complicated. For
K,./G/1 queues,

P(W > 0) = f(a)/ITZ" 0.

where [[727* 8; is the product of the m — 1 roots. For example, if m = 3,
then there are two roots. In the GE3/G/1 case, one root increases and the
other decreases when the transform B(s) increases. Hence, no simple
ordering for the probability of delay can be expected. However, Daryl
Daley has shown (personal communication) that all the roots behave the
same way for H,,/G/1 queues, so that H,, results do hold for m = 2.

(5) For GI/K,./1 queues, the probability of delay can also be obtained
from the roots of a transform equation like (8) (see p. 321 of Cohen).
However, for m = 2, there are two relevant nonzero roots, so the simple
argument of §2 is not available.

(6) Decreasing probability of delay in response to greater variability
in the interarrival times and service times is actually not so counterin-
tuitive. The basic idea is that greater variability in the interarrival times
and service times tends to make the waiting times both larger and more
variable. Not only will the mean delay tend to increase, but also the
greater variability will cause the tails of the steady-state distribution to
be fatter. Since the lower tail is just the probability of no delay, the
probability of no delay might increase in response to greater variability.
The greater variability can offset the effect of the greater mean.

(7) A very interesting discussion of the effect of variability on queues
is given by Wolff [1977]. For example, he notes that the effect of greater
service-time variability in a heavily loaded GI/G/» system depends on
the squared coefficient of variation of the interarrival times, el If el <
1 (less variable), then increased service-time variability means increased
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variability for the number of busy servers. On the other hand, if ¢, > 1
(more variable), increased service-time variability means decreased var-
iability for the number of busy servers. It is interesting that ¢, = 1 tends
to be a boundary for the qualitative behavior in our development in §2,
too.

In the GI/G/x setting, under heavy load the number busy servers is
approximately normally distributed with mean A/u (independent of var-
iability) and variance-to-mean ratio (peakedness)

z=14(c2— 1)y

where

y=u J; [P(v > x)]%dx;

see Whitt [1982a] and references he cites. The parameter y tends to
increase with decreasing service-time variability, achieving its maximum
for a given mean at D. Since the GI/G/n system behaves like a GI/G/
system for fixed p as n — oo, the number of customers in a GI/G/n system
for very large n will respond to increasing service-time variability in the
same way as the number of busy servers in GI/G/ o systems. In particular,
when there is more than one server, even the mean delay can decrease
when the service-time variability increases. (Use Little’s formula.) As in
comment (6) above, this situation provides an example of the effect of
changing variability in a congestion measure. The mean number of busy
servers in a GI/G/o system is always A/u. It is the variance that is
changing in response to service-time variability.

(8) The results here are consistent with the approximation for the
probability of delay in GI/G/1 queues given by Kraemer and Langenbach-
Belz, namely,

P(W>0)=p+ (c’ — Dp(l = p)glcs, ¢, p)
where
gled, ¢%, p)
]([1 + 2 + pc2/[1 + ple? + 1) + p*(4e + ¢D], =1

49/[ca2 + P2(4Ca2 + csz)], =1,

and ¢,? and ¢, are the squared coefficients of variation of the interarrival
times and service times, respectively. By differentiating in the case ¢, <
1, we see that the KL approximate probability of delay is decreasing in
c,? for all .2 satisfying

e = [V16(1 + p)p® + (1 — p)® — (1 — p)]/8p%
For E;/G/1 the KL approximation says that the probability of delay
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should be increasing in ¢ This qualitative behavior appears in Table
2.8-4 of Kiihn [1976] for the GI/G/1 queue with ¢, = 0.75 (which is based
on KL).

(9) The variability in the service times considered here is variability
in the service-time distribution. For arrival processes, one can also
consider variability of the arrival rate over time such as occurs in a
nonstationary Poisson process. Comparison results in this setting have
been obtained by Ross [1978] and Rolski [1981]. Heyman [1982] has
given counterexamples in the spirit of the ones developed here.
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