Fluid Approximations for Many-Server Queues with Abandonment and their Applications

Ward Whitt

IEOR Department, Columbia University

URL: http://www.columbia.edu/~ww2040

Equilibrium in the ED Regime

Many Servers

skill-based routing

calltypes

serverpools

Here only

M/GI/s+GI

How is system behavior affected by the two non-exponential distributions?

Deterministic Fluid Approximation

for M/GI/s+GI

with large s

Applications

- 1. Delay Announcements
- 2. Uncertainty About Model Parameters
- 3. Sensitivity to Changes in Model Parameters
- 4. Time-Varying Arrivals

M/GI/s+GI Model Elements

service-time cdf: G (mean 1)

abandon-time cdf: F

arrival rate: λ

traffic intensity: $\rho = \lambda/s$

State in M/GI/s+GI Model

Time Plus Number

State in M/GI/s+GI Model

B(t,x) - number of servers busy for less than or equal to time x at time t

Q(t,x) - number of customers in queue waiting for less than or equal to time x at time t

Many-Server Heavy-Traffic Limit

 $s \rightarrow \infty$ and

and

 $\lambda
ightarrow \infty$

traffic intensity: $\rho = \lambda/s$ fixed

Many-Server Heavy-Traffic Limit

$$\frac{B_s(t,x)}{s} \to B(t,x) = \int_0^x b(t,y) \, dy$$

$$\frac{Q_s(t,x)}{s} \to Q(t,x) = \int_0^x q(t,y) \, dy$$

as
$$s \to \infty$$

Many-Server Heavy-Traffic Regimes s large

QDQEDED $\rho < 1$ $\rho \approx 1$ $\rho > 1$ $P(W > 0) \approx 0$ 0 < P(W > 0) < 1 $P(W > 0) \approx 1$ $P(Ab) \approx 0$ $P(Ab) \approx 0$ 0 < P(Ab) < 1

Halfin and Whitt (1981), Mandelbaum, Reiman, ...

Equilibrium in the ED Regime

Underloaded Equilibrium

M/GI/100/200 + GI model with X = 120 and E[I] = 1.0						
	E ₂ time-to-abandon cdf			LN(1,4) time-to-abandon cdf		
	service cdf			service cdf		
Perf. Meas.	E2	<i>LN</i> (1,4)	approx.	E_2	<i>LN</i> (1,4)	approx.
$P(A_s)$	0.1665	0.1668	0.1667	0.168	0.170	0.1667
$E[Q_s]$	40.3	39.6	41.1	14.5	14.5	14.6
	± 0.06	± 0.10	—	±0.02	±0.04	_
$Var(Q_s)$	140	222	0.00	61	82	0.00
	± 0.7	± 1.1	_	±0.2	±0.3	_
$SCV(Q_s)$	0.09	0.14	0.00	0.29	0.39	0.00
$P(W_s = 0)$	0.0005	0.007	0.000	0.032	0.07	0.00
$E[W_s S_s]$	0.353	0.343	0.365	0.126	0.125	0.131
	± 0.0005	± 0.0010	—	± 0.0002	± 0.0004	—

 $M/GI/100/200 + GI \text{ model with } \lambda = 120 \text{ and } E[T] = 1.0$

Application 1.

Delay Announcements

"The Impact of Delay Announcements in Many-Server Queues with Abandonment"

Joint work with Mor Armony and Nahum Shimkin

Direct Response to Delay Announcement

An Equilibrium Delay Announcement

Application 2.

Uncertainty About the Model Parameters

"Staffing a Call Center with Uncertain Arrival Rate and Absenteeism"

Random Arrival Rate Λ Random Number of Servers Γs

Revenue

$$R(s) = r_t T(s) - c_s \Gamma s - c_a L(s) - c_w \Lambda W(s)$$

perf. measure notationfluid approx.throughputT(s) $\Lambda \wedge \Gamma s$ loss rateL(s) $(\Lambda - \Gamma s)^+$ waiting rate $\Lambda W(s)$ $(\Lambda - \Gamma s)^+/f(0)$

Example 1.

M/M/s+M model $\Lambda = 100, 110 \text{ or } 120$ each with probability 1/3

Example 2.

$\Lambda = 1000, \ 1100 \text{ or } 1200$ each with probability 1/3

Example 3.

$\Lambda = 90, 110 \text{ or } 130$ each with probability 1/3

Summary

Fluid Approximation for M/GI/s+GI

See impact of non-exponential distributions

Has useful applications

- ♦ Delay announcements
- ♦ Model parameter uncertainty

References

 WW, Fluid models for multi-server queues with abandonments. Operations Research, forthcoming. Available at http://columbia.edu/~ww2040.

 Mor Armony, Nahum Shimkin and WW. The impact of delay announcements in many-server queues with abandonments.
 Working paper, 2005. Available at http://columbia.edu/~ww2040.

3. WW, Staffing a call center with uncertain arrival rate and absenteeism. *Production and Operations Management*, forthcoming. Available at http://columbia.edu/~ww2040.

4. N. G. Duffield and WW. Control and recovery from rare congestion events in a large multi-server system. *Queueing Systems* 26 (1997) 69–104.