Chapter 2

Random Walks
in Applications

The random walks we have considered in Chapter 1 are easy to think
about, because they have a relatively simple structure. However, the random
walks are abstract, so that they may seem disconnected from reality. But
that is not so!

Even though the random walks are abstract, they play a fundamental
role in many applications. Many stochastic processes in applied probability
models are very closely related to random walks. Indeed, we are able to
obtain many stochastic-process limits for stochastic processes of interest in
applied probability models directly from established probability limits for
random walks, using the continuous-mapping approach.

To elaborate on this important point, we now give three examples of
stochastic processes closely related to random walks. The examples involve
stock prices, the Kolmogorov-Smirnov test statistic and a queueing model
for a buffer in a switch. In the final section we discuss the engineering
significance of the queueing model and the (heavy-traffic) stochastic-process
limits.

2.1. Stock Prices

In some applications, random walks apply very directly. A good example is
finance, which often can be regarded as yet another game of chance; see A
Random Walk Down Wall Street by Malkiel (1996).

Indeed, we might model the price of a stock over time as a random walk;
i.e., the position S,, can be the price in time period n. However, it is common
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64 CHAPTER 2. RANDOM WALKS IN APPLICATIONS

to consider a refinement of the direct random-walk model, because the mag-
nitude of any change is usually considered to be approximately proportional
to the price.

A popular alternative model that captures that property is obtained by
letting the price in period n be the product of the price in period n — 1 and
a random multiplier Yy; i.e., if Z, is the price in period 7, then we have

I = Zip 1Y,, n>1. (1.1)
That in turn implies that
Zn:Z()(Yl X---XYn), n>1. (1.2)

Just as for random walks, for tractability we often assume that the suc-
cessive random multipliers Y, : n > 1, are IID. Hence, if we take logarithms,
then we obtain

log(Zy) = log(Zo) + Sp, n >0,

where {S, : n > 0} is a random walk, defined as in (3.4), with steps
X, =1log(Yy), n > 1 that are IID. With this multiplicative framework, the
logarithms of successive prices constitute an initial position plus a random
walk. Approximations for random walks thus produce direct approximations
for the logarithms of the prices.

It is natural to consider limits for the stock prices, in which the duration
of the discrete time periods decreases in the limit, so that we can obtain
convergence of the sequence of discrete-time price processes to a continuous-
time limit, representing the evolution of the stock price in continuous time.
To do so, we need to change the random multipliers as we change n. We
thus define a sequence of price models indexed by n. We let Z}} and V"
denote the price and multiplier, respectively, in period k£ in model n. For
each n, we assume that the sequence of multipliers {Y;* : k& > 1} is IID.
Since the periods are shrinking as n — oo, we want Y — 1 as n — oo.
The general idea is to have

Ellog(Y{")] = m/n and Var[log(Y{")] ~ o?/n .

We let the initial price be independent of n; i.e., we let Z] = Z; for all n.
Thus, we incorporate the scaling within the partial sums for each n. We
make further assumptions so that

Sn(t) = Sl = oB(t) + mt as n— oo (1.3)
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for each ¢ > 0, where B is standard Brownian motion. Given (1.3), we
obtain

log(Zin(t)) = log(Z[},y)) = log(Zo) + STy = log(Zo) + 0B(t) +mt ,

so that
Zy(t) = Zjyy = L(t) = Zoexp(oB(t) + mt) ; (1.4)

i.e., the price process converges in distribution as n — oo to the stochastic
process {Z(t) : t > 0}, which is called geometric Brownian motion.

Geometric Brownian motion tends to inherit the tractability of Brownian
motion. Since the moment generating function of a standard normal random
variable is

(6) = Elezp(6N(0,1))] = ezp(6?/2) ,

the k' moment of geometric Brownian motion for any k can be expressed
explicitly as

E[Z(t)*] = E[(Zy)Flexp(kmt + k*t262/2) . (1.5)

See Section 10.4 of Ross (1993) for an introduction to the application of
geometric Brownian motion to finance, including a derivation of the Black-
Scholes option pricing formula.

The analysis so far is based on the assumption that the random-walk
steps X' = log(Y}!') are IID with finite mean and variance. However, even
though the steps must be finite, the volatility of the stock market has led
people to consider alternative models. If we drop the finite-mean or finite-
variance assumption, then we can still obtain a suitable continuous-time ap-
proximation, but it is likely to be a geometric stable Lévy motion (obtained
by replacing the Brownian motion by a stable Lévy motion in the exponen-
tial representation in (1.4)). Even other limits are possible when the steps
come from a double sequence {{X} : k£ > 1} : n > 1}. When we con-
sider models for volatile prices, we should be ready to see stochastic-process
limits with jumps. For further discussion, see Embrechts, Klippelberg and
Mikosch (1997), especially Section 7.6.

In addition to illustrating how random walks can be applied, this example
illustrates that we sometimes need to consider double sequences of random
variables, such as {{X}! : K > 1} : n > 1}, in order to obtain the stochastic-
process limit we want.
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2.2. The Kolmogorov-Smirnov Statistic

For our second random-walk application, let us return to the empirical
cdf’s considered in Example 1.1.1 in Section 1.1.3. What we want to see
now is a stochastic-process limit for the difference between the empirical cdf
and the underlying cdf, explaining the statistical regularity we saw in Figure
1.8. The appropriate limit process is the Brownian bridge Bg, which is just
Brownian motion B over the interval [0, 1] conditioned to be 0 at the right
endpoint ¢ = 1.

Recall that the applied goal is to develop a statistical test to determine
whether or not data from an unknown source can be regarded as an inde-
pendent sample from a candidate cdf F. The idea is to base the test on
the “difference” between the candidate cdf and the empirical cdf. We de-
termine whether or not the observed difference is significantly greater than
the difference for an independent sample from the candidate cdf F is likely
to be. The problem, then, is to characterize the probability distribution of
the difference between a cdf and the associated empirical cdf obtained from
an independent sample. Interestingly, even here, random walks can play an
important role.

Hence, let F' be an arbitrary continuous candidate cdf and let Fj, be the
associated empirical cdf based on an independent sample of size n from F.
A convenient test statistic, called the Kolmogorov-Smirnov statistic, can be
based on the limit

D, = \/ﬁigﬂgﬂFn(t) —F(t)|} = sup(|Bo|) as n— oo, (2.1)

where B is the Brownian bridge, which can be represented as

Bo(t) = B(t) — tB(1), 0<t<1, (2.2)

sup(| Bo [) = sup {| Bo(?) [}
0<t<1

and -
P(sup(|Bo |) > 2) =2 (~1)F*1e 22" 450, (2.3)

k=1
Notice that the limit in (2.1) is independent of the cdf F' (assuming only
that the cdf F' is continuous). The candidate cdf F' could be the uniform cdf

in Example 1.1.1, a normal cdf, a Pareto cdf or a stable cdf. In particular,
the limit process here is unaffected by the cdf F' having a heavy tail.
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In practice, we would compute the Kolmogorov-Smirnov statistic D,, in
(2.1) for the empirical cdf associated with the data from the unknown source
and the candidate cdf F. We then compute, using (2.3), the approximate
probability of observing a value as large or larger than the observed value of
the Kolmogorov-Smirnov statistic, under the assumption that the empirical
cdf does in fact come from an independent sample from F'. If that probability
is very small, then we would reject the hypothesis that the data come from
an independent sample from F'.

As usual, good judgement is needed in the interpretation of the statistical
analysis. When the sample size n is not large, we might be unable to reject
the hypothesis that the data is an independent sample from a cdf F for
more than one candidate cdf F. On the other hand, with genuine data (not
a simulation directly from the cdf F'), for any candidate cdf F', we are likely
to be able to reject the hypothesis that the data is an independent sample
from F for all n sufficiently large. Our concern here, though, is to justify
the limit (2.1).

So, how do random walks enter in? Random walks appear in two ways.
First, the empirical cdf F,,(¢) as a function of n itself is a minor modification
of a random walk. In particular,

nFu(t) = I ooy(Xs)
k=1

where I4(z) is the indicator function of the set A, with Ix(z) =1ifz € A
and I4(xz) = 0 otherwise. Thus, for each ¢, nF,(¢) is the sum of the n IID
Bernoulli random variables J(_ 1(Xk), 1 < k < n, and is thus a random
walk.

Note that the Bernoulli random variable I _., 4(X) has mean F(¢) and
variance F'(t)F°(t). Hence we can apply the SLLN and the CLT to deduce
that

F,(t) > F(t) w.pl as n— oo

and
Vn(F,(t) — F(t)) = N(0,F(t)F¢(t)) in R as n— oo (2.4)

for each ¢ € R. Note that we have to multiply the difference by /n in
(2.4) in order to get a nondegenerate limit. That explains the multiplicative
factor v/n in (2.1).

Paralleling the way we obtained stochastic-process limits for random
walks in Section 1.2, we can go from the limit in (2.4) to the limit in (2.1)
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by extending the limit in (2.4) to a stochastic-process limit in the function
space D. We can establish the desired stochastic-process limit in D in two
steps: first, by reducing the case of a general continuous cdf F' to the case
of the uniform cdf (i.e., the cdf of the uniform distribution on [0,1]) and,
second, by treating the case of the uniform cdf. Random walks can play a
key role in the second step.

To carry out the first step, we show that the distribution of D, in (2.1) is
independent of the continuous cdf F'. For that purpose, let Ui, 1 < k <n, be
uniform random variables (on [0, 1]) and let G, be the associated empirical
cdf. Recall from equation (3.7) in Section 1.3.3 that

F(Uy) <t ifandonlyif Uy < F(t),
so that F< (Uy) 4 Xi,1 <k <n,and
{Gn(F(t)) :te R} L {F,(t): t € R} .

Hence,
Dy = Vasup{|Fa(t) = F(OI} £ Vasup{IGa(F(1) ~ F)l}

Moreover, since F' is a continuous cdf, F' maps R into the interval (0,1)
plus possibly {0} and {1}. Since P(U = 0) = P(U = 1) = 0 for a uniform
random variable U, we have

D, £ \/ﬁosgzgl{lGn(t) -}, (2.5)

which of course is the special case for a uniform cdf.

Now we turn to the second step, carrying out the analysis for the special
case of a uniform cdf, i.e., starting from (2.5). To make a connection to
random walks, we exploit a well known property of Poisson processes. We
start by focusing on the uniform order statistics: Let U,En) be the k" order
statistic associated with n IID uniform random variables; i.e., U,gn) is the k'h
smallest of the uniform random numbers. It is not difficult to see that the
supremum in the expression for D,, in (2.5) must occur at one of the jumps
in G, (either the left or right limit) and these jumps occur at the random
times U,E"). Since each jump of D, in (2.5) has magnitude 1/1/n,

| D= Vi max {| U~ kfn [}) [ < 1/ (26)
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Now we can make the desired connection to random walks: It turns out
that .
(U1(n)a RN Un(,n)) = (Sl/sn-f-l, ey Sn/Sn—I—I) ’ (27)

where
SkEXl-I—----I—Xk, lgkgn-l—l,

with X, 1 < k <n+1, being IID exponential random variables with mean 1.
To justify relation (2.7), consider a Poisson process and let the k** point be
located at Sy (Which makes the intervals between points IID exponential
random variables). It is well known, and easy to verify, that the first n
points of the Poisson process are distributed in the interval (0, S;,+1) as the
n uniform order statistics over the interval (0, S,11); e.g., see p. 223 of Ross
(1993). When we divide by Sy, +1 we obtain the uniform order statistics over
the interval (0, 1), just as in the left side of (2.7).

With the connection to random walks established, we can apply Donsker’s
FCLT for the random walk { S : £ > 0} to establish the limit (2.1). In rough
outline, here is the argument:

Dy = ‘/ﬁfgn/f‘%nﬂ (Sk/Snt1) = (k/n) [}
R (n/Sn 1) max {] (S — k)/vn—(k/n)(Sps1 —n)/Vnlt.  (28)

Since n/Sp+1 = 1 as n — oo and (Sp+1 — Sp)/v/n = 0 as n — oo,
we have

Dy~ sup {| (Spar) = [nt])/Vi = (Lnt) fr) (S = m) VA 1} - (29)

0<t<
To make the rough argument rigorous, and obtain (2.9), we repeatedly apply
an important tool — the convergence-together theorem — which states that
X, = X whenever Y,, = X and d(X,,,Y,,) = 0, where d is an appropriate

distance on the function space D; see Theorem 11.4.7.
Since the functions ¢4 : D — D and 1, : D — R, defined by

Pi(z)(t) = z(t) —tz(1), 0<t<1, (2.10)
and
Po(z) = sup {|z(¢)[} (2.11)
0<t<1

are continuous, from (2.9) we obtain the desired limit

D= sup {|B(t) ~B(1)]} (2.12)
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Finally, it is possible to show that relations (2.2) and (2.3) hold.

The argument here follows Breiman (1968, pp. 283-290). Details can be
found there, in Karlin and Taylor (1980, p. 343) or in Billingsley (1968, pp.
64, 83, 103, 141). See Pollard (1984) and Shorack and Wellner (1986) for
further development. See Borodin and Salminen (1996) for more properties
of Brownian motion.

Historically, the derivation of the limit in (2.1) is important because
it provided a major impetus for the development of the general theory of
stochastic-process limits; see the papers by Doob (1949) and Donsker (1951,
1952), and subsequent books such as Billingsley (1968).

2.3. A Queueing Model for a Buffer in a Switch

Another important application of random walks is to queueing models. We
will be exploiting the connection between random walks and queueing mod-
els throughout the queueing chapters. We only try to convey the main idea
now.

To illustrate the connection between random walks and queues, we con-
sider a discrete-time queueing model of data in a buffer of a switch or router
in a packet communication network.

Let W), represent the workload (or buffer content, which may be mea-
sured in bits) at the end of period k. During period %k there is a random
input Vi and a deterministic constant output p (corresponding to the avail-
able bandwidth) provided that there is content to process or transmit. We
assume that the successive inputs Vi are IID, although that is not strictly
necessary to obtain the stochastic-process limits.

More formally, we assume that the successive workloads can be defined
recursively by

Wi = min{K, maz{0, Wy_1+ Vi —u}}, k>1, (3.1)

where the initial workload is Wy and the buffer capacity is K. The mazimum
appears in (3.1) because the workload is never allowed to become negative;
the output (up to p) occurs only when there is content to emit. The min-
imum appears in (3.1) because the workload is not allowed to exceed the
capacity K at the end of any period; we assume that input that would make
the workload exceed K at the end of the period is lost.

The workload process {Wj : k > 1} specified by the recursion (3.1) is
quite elementary. Since the inputs Vj, are assumed to be IID, the stochastic
process {Wy} is a discrete-time Markov process. If, in addition, we assume
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that the inputs Vj take values in a discrete set {ck : k > 0} for some constant
¢ (which is not a practical restriction), we can regard the stochastic process
{W}} as a discrete-time Markov chain (DTMC). Since the state space of the
DTMC {W} is one-dimensional, the finite state space will usually not be
prohibitively large. Thus, it is straightforward to exploit numerical methods
for DTMC’s, as in Kemeny and Snell (1960) and Stewart (1994), to describe
the behavior of the workload process.

Nevertheless, we are interested in establishing stochastic-process limits
for the workload process. In the present context, we are interested in seeing
how the distribution of the inputs V, affects the workload process. We
can use heavy-traffic stochastic-process limit to produce simple formulas
describing the performance. (We start giving the details in Chapter 5.)
Those simple formulas provide insight that can be gained only with difficulty
from a numerical algorithm for Markov chains.

We also are interested in the heavy-traffic stochastic-process limits to
illustrate what can be done more generally. The heavy-traffic stochastic-
process limits can be established for more complicated models, for which
exact performance analysis is difficult, if not impossible. Since the heavy-
traffic stochastic-process limits strip away unessential details, they reveal
the key features determining the performance of the queueing system.

Now we want to see the statistical regularity associated with the work-
load process for large n. We could just plot the workload process for various
candidate input processes {Vj : k > 1} and parameters K and u. However,
the situation here is more complicated than for the the random walks we
considered previously. We can simply plot the workload process and let the
plotter automatically do the scaling for us, but it is not possible to auto-
matically see the desired statistical regularity. For the queueing model, we
need to do some analysis to determine how to do the proper scaling in order
to achieve the desired statistical regularity. (That is worth verifying.)

2.3.1. Deriving the Proper Scaling

It turns out that stochastic-process limits for the workload process are
intimately related to stochastic-process limits for the random walk {Sj : k& >
0} with steps

Xp=Ve—p,
but notice that in general this random walk is not centered. The random

walk is only centered in the special case in which the input rate E[Vy] ex-
actly matches the potential output rate y. However, to have a well-behaved
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system, we want the long-run potential output rate to exceed the long-run
input rate.

In queueing applications we often characterize the system load by the
traffic intensity, which is the rate in divided by the potential rate out. Here
the traffic intensity is

p=EVi/p .

With an infinite-capacity buffer, we need p < 1 in order for the system to
be stable (not blow up in the limit as ¢ — o0).

We are able to obtain stochastic-process limits for the workload process
by applying the continuous-mapping approach, starting from stochastic-
process limits for the centered version of the random walk {S; : & > 0}.
However, to do so when EX}, # 0, we need to consider a sequence of models
indexed by n to achieve the appropriate scaling. In the n'® model, we let
Xn k be the random-walk step Xj, and we let EX,, , — 0 as n — oo.

There is considerable freedom in the construction of a sequence of mod-
els, but from an applied perspective, it suffices to do something simple: We
can keep a fixed input process {Vj : £ > 1}, but we need to make the out-
put rate 4 and the buffer capacity K depend upon n. Let W;* denote the
workload at the end of period k& in model n. Following this plan, for model
n the recursion (3.1) becomes

Wi = min{K,, maz{0, W' +Vy —pn}}, k>1, (3.2)

where K, and u, are the buffer capacity and constant potential one-period
output in model n, respectively.

The problem now is to choose the sequences {K, : n > 1} and {p, : n >
1} so that we obtain a nondegenerate limit for an appropriately scaled ver-
sion of the workload processes {W}' : k > 0}. If we choose these sequence of
constants appropriately, then the plotter can do the scaling of the workload
processes automatically.

Let Sy = Vi + .-+ Vi for kK > 1 with S§ = 0. The starting point is a
FCLT for the random walk {S} : k¥ > 0}. Suppose that the mean E[V}] is
finite, and let it equal m,. Then the natural FCLT takes the form

S, =SY in D as n— o0, (3.3)

where

Sn(t) =n~f(S),, —mulnt]), 0<t<1, (3.4)

the exponent H in the space scaling is a constant satisfying 0 < H < 1 and
SY is the limit process. The common case has H = 1/2 and SY = 0B, where
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B is standard Brownian motion. However, as seen for the random walks, if
Vi has infinite variance, then we have 1/2 < H < 1 and the limit process
S? is a stable Lévy motion (which has discontinuous sample paths). We
elaborate on the case with 1/2 < H < 1 in Section 4.5.

It turns out that a scaled version of the workload process {W;' : k > 0}
can be represented directly as the image of a two-sided reflection map applied
to a scaled version of the uncentered random walk {S} : k > 1} with steps
Vi — pn. In particular,

W, = ¢r(S,) forall n>1, (3.5)

where
Wa(t) =n "W, 0<t<1, (3.6)
Su(t) =n~"ST,, 0<t<1, (3.7)

and ¢x : D — D is the two-sided reflection map.

In fact, it is a challenge to even define the two-sided reflection map,
which we may think of as serving as the continuous-time analog of (3.1)
or (3.2); that is done in Sections 5.2 and 14.8; alternatively, see p. 22 of
Harrison (1985). Consistent with intuition, it turns out that the two-sided
reflection map ¢x is continuous on the function space D with appropriate
definitions, so that we can apply the continuous-mapping approach with a
limit for S,, in (3.7) to establish the desired limit for W,,. But now we just
want to determine how to do the plotting.

The next step is to relate the assumed limit for S) to the required limit
for S,,. For that purpose, note from (3.4) and (3.7) that

Sa(t) = 83 () — ™" (4 — o) [nt] .
Hence we have the stochastic-process limit
S, =S as n— oo, (3.8)
where
S(t)=8"(t) —mt, 0<t<1, (3.9)

if and only if
nH (un —my)|nt] > mt as n— oo

for each t > 0 or, equivalently,

1

(i —m)n' ™ > m as n— oo (3.10)
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In addition, because of the space scaling by nl in S,,, we need to let
K,=nK . (3.11)
Given the scaling in both (3.10) and (3.11), we are able to obtain the FCLT
W, = W = ¢x(S), (3.12)

where W, is given in (3.6), S is given in (3.9) and ¢k is the two-sided
reflection map.

The upshot is that we obtain the desired stochastic-process limit for
the workload process, and the plotter can automatically do the appropriate
scaling, if we let

fn = My + m/nlfH and K, =n"K (3.13)

for any fixed m with 0 < m < oo and K with 0 < K < oo, where H with
0 < H < 1 is the scaling exponent appearing in (3.4).

At this point, it is appropriate to pause and reflect upon the significance
of the scaling in (3.13). First note that time scaling by n (replacing ¢ by
nt) and space scaling by n (dividing by nf!) is determined by the FCLT
in (3.3). Then the output rate and buffer size should satisfy (3.13). Note
that the actual buffer capacity K, in system n must increase, indeed go to
infinity, as n increases. Also note that the output rate u, approaches m,
as n increases, so that the traffic intensity p, approaches 1 as n increases.
Specifically,

E [Vl] My

= -(1-H -(1-H
T e (m/my)n~0—H) 4 o(n=(1-H))

as n — oo.
The obvious application of the stochastic-process limit in (3.12) is to
generate approximations. The direct application of (3.12) is

{n= oW, it >0} = {W(t) : £ >0}, (3.14)

where here =~ means approzimately equal to in distribution. Equivalently, by
unscaling, we obtain the associated approximation (in distribution)

WP k>0~ {n'/*W(k/n): k> 0} . (3.15)

Approximations such as (3.15), which are obtained directly from stochastic-
process limits, may afterwards be refined by making modifications to meet
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other criteria, e.g., to match exact expressions known in special cases. In-
deed, it is often possible to make refinements that remain asymptotically
correct in the heavy-traffic limit, e.g., by including the traffic intensity p,
which converges to 1 in the limit.

Often the initial goal in support of engineering applications is to develop
a suitable approximation. Then heuristic approaches are perfectly accept-
able, with convenience and accuracy being the criteria to judge the worth of
alternative candidates. Even with such a pragmatic engineering approach,
the stochastic-process limits are useful, because they generate initial can-
didate approximations, often capturing essential features, because the limit
often is able to strip away unessential details. Moreover, the limits establish
important theoretical reference points, demonstrating asymptotic correct-
ness in certain limiting regimes.

2.3.2. Simulation Examples

Let us now look at two examples.

Example 2.3.1. Workloads with exponential inputs.

First let {Vj : £ > 1} be a sequence of IID exponential random variables
with mean 1. Then the FCLT in (3.3) holds with H = 1/2 and S being
standard Brownian motion B. Thus, from (3.13), the appropriate scaling
here is

pn=14+m/y/n and K, =+nK . (3.16)

To illustrate, we again perform simulations. Due to the recursive defi-
nition in (3.2), we can construct and plot the successive workloads just as
easily as we constructed and plotted the random walks before. Paralleling
our previous plots of random walks, we now plot the first n workloads, using
the scaling in (3.16). In Figure 2.1 we plot the first n workloads for the case
H=1/2, m=1and K =0.5 for n = 10/ for j = 1,...,4. To supplement
Figure 2.1, we show six independent replications for the case n = 10* in
Figure 2.2.

What we see, as n becomes sufficiently large, is standard Brownian mo-
tion with drift —m = —1 modified by reflecting barriers at 0 and 0.5. Of
course, just as for the random-walk plots before, the units on the axes are for
the original queueing model. For example, for n = 10*, the buffer capacity
is K, = 0.5y/n = 50, so that the actual buffer content ranges from 0 to 50,
even though the reflected Brownian motion ranges from 0 to 0.5. Similarly,
for n = 10%, the traffic intensity is p, = (1 +n~1/2)"1 = (1.01)~! ~ 0.9901
even though the Brownian motion has drift —1.
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Unlike in the previous random-walk plots, the units on the vertical axes
in Figure 2.2 are the same for all six plots. That happens because, in all six
cases, the workload process takes values ranging from 0 to 50. The upper
limit is 50 because for n = 10* the upper barrier in the queue is 0.5v/n = 50.
The clipping at the upper barrier occurs because of overflows.

The traffic intensity 0.99 in Figure 2.2 is admittedly quite high. If we
focus instead upon n = 100 or n = 25, then the traffic intensity is not
so extreme, in particular, then p, = (1 +n~1/?)"! = (1.1)~' =~ 0.91 or
(1.2) 1 ~ 0.83.

In Figures 2.1 and 2.2 we see statistical regularity, just as in the early
random-walk plots. Just as in the pairs of figures, (Figures 1.3 and 1.4) and
(Figures 1.21 and 1.22), the plots for n = 10% look just like the plots for
n = 10* when we ignore the units on the axes. The plots show that there
should be a stochastic-process limit as n — oo. The plots demonstrate
that a reflected Brownian motion approximation is appropriate with these
parameters.

Moreover, our analysis of the stochastic processes to determine the ap-
propriate scaling shows how we can obtain the stochastic-process limits.
Indeed, we obtain the supporting stochastic-process limits for the workload
process directly from the established stochastic-process limits for the ran-
dom walks. In order to make the connection between the random walk and
the workload process, we are constrained to use the scaling in (3.16). With
that scaling, the plotter directly reveals the statistical regularity. =

Example 2.3.2. Workloads with Pareto(3/2) inputs.
For our second example, we assume that the inputs Vj, have a Pareto(p)
distribution with finite mean but infinite variance. In particular, we let

Vie EU];l/p for p=3/2, (3.17)

just as in case (#4i) of (3.5) in Section 1.3.3, which makes the distribution
Pareto(p) for p = 3/2. Since H = p~! for p = 3/2, we need to use different
scaling than we did in Example 2.3.1. In particular, instead of (3.16), we
now use

pn =1+m/n'? and K, =n?’K, (3.18)

with m = 1 and K = 0.5 just as before.

Since the scaling in (3.18) is different from the scaling in (3.16), for any
given triple (m, K, n), the buffer size K, is now larger, while the output rate
differs more from the input rate. Assuming that m > 0, the traffic intensity
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Figure 2.1: Possible realizations of the first n steps of the workload process
{W} : k > 0} with IID exponential inputs having mean 1 for n = 10/ with
j=1,...,4. The scaling is as in (3.16) with m =1 and K = 0.5.
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Figure 2.2: Six possible realizations of the first n steps of the workload
process {W} : k > 0} with IID exponential inputs for n = 10%. The scaling
is as in (3.16) with m =1 and K = 0.5.
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Figure 2.3: Possible realizations of the first n steps of the workload process
{W} : k > 0} with IID Pareto(p) inputs having p = 3/2 , mean 3 and
infinite variance for n = 10/ with 5 = 1,...,4. The scaling is as in (3.18)
with m =1 and K = 0.5.

in model n is now lower. That suggests that as H increases the heavy-traffic
approximations may perform better at lower traffic intensities.

We plot the first n workloads, using the scaling in (3.18), for n = 107 for
j =1,...,4 in Figure 2.3 for the case m = 1 and K = 0.5. What we see,
as n becomes sufficiently large, is a stable Lévy motion with drift —m = —1
modified by reflecting barriers at 0 and 0.5. To supplement Figure 2.3, we
show six independent replications for the case n = 10* in Figure 2.4. As
before, the plots for n = 10° look just like the plots for n = 10* if we ignore
the units on the axes. Just as in Figures 1.20-1.22 for the corresponding
random walk, the plots here have jumps. =

In summary, the workload process {Wj} in the queueing model is in-
timately related to the random walk {Si} with steps being the net inputs
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and infinite variance for n = 10%. The scaling is as in (3.18) with m = 1
and K =0.5.
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Vi — u each period. With appropriate scaling, as in (3.13), which includes
the queue being in heavy traffic, stochastic-process limits for a sequence
of appropriately scaled workload processes can be obtained directly from
associated stochastic-process limits for the underlying random walk.

Moreover, the limit process for the workload process is just the limit pro-
cess for the random walk modified by having two reflecting barriers. Thus,
the workload process in the queue exhibits the same statistical regularity
for large sample sizes that we saw for the random walk. Indeed, the random
walk is the source of that statistical regularity.

Just as for the random walks, the form of the statistical regularity may
lead to the limit process for the workload process having discontinuous sam-
ple paths.

2.4. Engineering Significance

In the previous section, we saw that queueing models are closely related
to random walks. With the proper (heavy-traffic) scaling, the same forms of
statistical regularity that hold for random walks also hold for the workload
process in the queueing model. But does it matter? Are there important
engineering consequences?

To support an affirmative answer, in this final section we discuss the
engineering significance of heavy-traffic stochastic-process limits for queues.
First, in Section 2.4.1, we discuss buffer sizing in a switch or router in
a communication network. Then, in Section 2.4.2, we discuss scheduling
service with multiple sources, as occurs in manufacturing when scheduling
production of multiple products on a single machine with setup costs or
setup times for switching.

2.4.1. Buffer Sizing

The buffer (waiting space) in a network switch or router tends to be
expensive to provide, so that economy dictates it be as small as possible.
On the other hand, we want very few lost packets due to buffer overflow.

Queueing models are ideally suited to determine an appropriate buffer
size. Let L(K) be the long-run proportion of packets lost as a function of
the buffer size K. We might specify a maximum allowable proportion of lost
packets, €. Given the function L, we then choose the buffer size K to satisfy
the buffer-sizing equation

LK) =¢. (4.1)
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Classical queueing analysis, using standard models such as in Example
2.3.1, shows that L(K) decays exponentially in K specifically, L tends to
have an exponential tail, satisfying

LK) ~ae ™ as K — oo (4.2)

for asymptotic constants a and 7 depending upon the model details. (As
in (4.6), ~ means asymptotic equivalence. See Remark 5.4.1 for further
discussion about asymptotics.)

It is natural to exploit the exponential tail asymptotics for L in (4.2) to
generate the approximation

L(K) = ae ¥ (4.3)

for all K not too small. We then choose K to satisfy the exponential buffer-
sizing equation

K — ¢, (4.4)

ae”
from which we deduce that the target buffer size K* should be
K* =n"tlog (a/e) . (4.5)

This analysis shows that the target buffer size should be directly propor-
tional to n~! and log«, and inversely proportional to loge. It remains to
determine appropriate values for the three constants 7, a and €, but the gen-
eral relationships are clear. For example, if e = 1077, then K* is proportional
to the exponent j, which means that the cost of improving performance (as
measured by the increase in buffer size K* required to make e significantly
smaller) tends to be small.

So far, we have yet to exploit heavy-traffic limits. Heavy-traffic limits can
play an important role because it actually is difficult to establish the expo-
nential tail asymptotics in (4.2) directly for realistic models. As a first step
toward analytic tractability, we may approximate the loss function L(K) by
the tail probability P(W(oco) > K), where W (o0) is the steady-state work-
load in the corresponding queue with unlimited waiting space. Experience
indicates that the asymptotic form for L(K) tends to be the same as the
asymptotic form for the tail probability P(W(co) > K) (sometimes with
different asymptotic constants). From an applied point of view, we are not
too concerned about great accuracy in this step, because the queueing model
is crude (e.g., it ignores congestion controls) and the loss proportion L(K)
itself is only a rough performance indicator.
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As a second step, we approximate W (oo) in the tail probability P(W (cc) >
K) by the steady-state limit of the approximating process obtained from
the heavy-traffic stochastic-process limit. For standard models, the approx-
imating process is reflected Brownian motion, as in Example 2.3.1. Since the
steady-state distribution of reflected Brownian motion with one-sided reflec-
tion is exponential (see Section 5.7), the heavy-traffic limit provides strong
support for the approximations in (4.3)—(4.5) and helps identify approximate
values for the asymptotic constants 7 and «. (The heavy-traffic limits also
can generate approximations directly for the loss proportion L(K); e.g., see
Section 5.7.) The robustness of heavy-traffic limits (discussed in Chapters 4
and 5) suggests that the analysis should be insensitive to fine system details.

However, the story is not over! Traffic measurements from communi-
cation networks present a very different view of the world: These traffic
measurements have shown that the traffic carried on these networks is re-
markably bursty and complex, exhibiting features such as heavy-tailed prob-
ability distributions, strong positive dependence and self-similarity; e.g., see
Leland et al. (1994), Garrett and Willinger (1994), Paxson and Floyd (1995),
Willinger et al. (1995, 1997), Crovella and Bestavros (1996), Resnick (1997),
Adler, Feldman and Taqqu (1998), Barford and Crovella (1998), Crovella,
Bestavros and Taqqu (1998), Willinger and Paxson (1998), Park and Will-
inger (2000), Krishnamurthy and Rexford (2001) and references therein.
These traffic studies suggest that different queueing models may be needed.

In particular, the presence of such traffic burstiness can significantly alter
the behavior of the queue: Alternative queueing analysis suggests alternative
asymptotic forms for the function L. Heavy-tailed probability distributions
as in Example 2.3.2 lead to a different asymptotic form: When the inputs
have power tails, like the Pareto inputs in Example 2.3.2, the function L
tends to have a power tail as well: Instead of (4.2), we may have

LK)~aK™™ as K — oo, (4.6)

where again « and 7 are positive asymptotic constants; see Remark 5.4.1.

The change from the exponential tail in (4.2) to the power tail in (4.6)
are contrary to the conclusions made above about the robustness of heavy-
traffic approximations. Even though the standard heavy-traffic limits are
remarkably robust, there is a limit to the robustness! The traffic burstiness
can cause the robustness of the standard heavy-traffic limits to break down.
Just as we saw in Example 2.3.2, the burstiness can have a major impact
on the workload process.

However, we can still apply heavy-traffic limits: Just as before, we can
approximate L(K) by P(W(oco) > K), where W(o0) is the steady-state
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workload in the corresponding queue with unlimited waiting space. Then
we can approximate W(oo) by the steady-state limit of the approximating
process obtained from a heavy-traffic limit. However, when we properly
take account of the traffic burstiness, the heavy-traffic limit process is no
longer reflected Brownian motion. Instead, as in Example 2.3.2, it may
be a reflected stable Lévy motion, for which P(W(c0) > K) ~ aK~". (For
further discussion about the power tails, see Sections 4.5, 6.4 and 8.5.) Thus,
different heavy-traffic limits support the power-tail asymptotics in (4.6) and
yield approximations for the asymptotic constants.

Paralleling (4.3), we can use the approximation

L(K) ~ oK™ (4.7)

for K not too small. Paralleling (4.4), we use the target equation (4.1) and
(4.7) to obtain the power buffer-sizing equation

aK T=¢ (4.8)

from which we deduce that the logarithm of the target buffer size K* should
be
log K* =1~ "log (a/e) . (4.9)

In this power-tail setting, we see that the required buffer size K* is much
more responsive to the parameters 77,  and e: Now the logarithm log K™ is
related to the parameters n, a and e the way K* was before. For example,
if € = 1077, then the logarithm of the target buffer size K* is proportional
to j, which means that the cost of improving performance (as measured by
the increase in buffer size K* required to make € significantly smaller) tends
to be large.

And that is not the end! The story is still not over. There are other pos-
sibilities: There are different forms of traffic burstiness. In Example 2.3.2 we
focused on heavy-tailed distributions for ITD inputs, but the traffic measure-
ments also reveal strong dependence. The strong dependence observed in
traffic measurements leads to considering fractional-Brownian-motion mod-
els of the input, which produce another asymptotic form for the function L;
see Sections 4.6, 7.2 and 8.7. Unlike both the exponential tail in (4.2) and
the power tail in (4.5), we may have a Weibull tail

L(K) ~ae™ ™" as K — o0 (4.10)

for positive constants «, n and 7, where 0 < v < 1; see (8.10) in Section 8.8.
The available asymptotic results actually show that

P(W(c0) > K) ~aKPe™ ™" as K — oo
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for asymptotic constants 7, @ and 3, where W(oo) is the steady-state of
reflected fractional Brownian motion. Thus, the asymptotic results do not
directly establish the asymptotic relation in (4.10), but they suggest the
rough approximation

L(K) ~ ae K" (4.11)

for all K not too small and the associated Weibull buffer-sizing equation
ae ™ = ¢ (4.12)

from which we deduce that the 4*" power of the target buffer size K* should
be

K*" =n7l1og (a/e) . (4.13)

In (4.13) the ' power of K* is related to the parameters o, 1 and ¢ the
way K* was in (4.5) and log K* was in (4.9). Thus, consistent with the in-
termediate asymptotics in (4.10), since 0 < ¥ < 1, we have the intermediate
buffer requirements in (4.13).

Unfortunately, it is not yet clear which models are most appropriate.
Evidence indicates that it depends on the context; e.g., see Heyman and
Lakshman (1996, 2000), Ryu and Elwalid (1996), Grossglauser and Bolot
(1999), Park and Willinger (2000), Guerin et al. (2000) and Mikosch et al.
(2001). Consistent with observations by Sriram and Whitt (1986), long-
term variability has relatively little impact on queueing performance when
the buffers are small, but can be dramatic when the buffers are large.

Direct traffic measurements are difficult to interpret because they de-
scribe the carried traffic, not the offered traffic, and may be strongly in-
fluenced by congestion controls such as the Transmission Control Protocol
(TCP); see Section 5.2 of Krishnamurthy and Rexford (2001) and Arvidsson
and Karlsson (1999). Moreover, the networks and the dominant applications
keep changing. For models of TCP, see Padhye et al. (2000), Bu and Towsley
(2001), and references therein.

From an engineering perspective, it may be appropriate to ignore con-
gestion controls when developing models for capacity planning. We may
wish to provide sufficient capacity so that we usually meet the offered load
(the original customer demand). When the system is heavily loaded, the
controls slow down the stream of packets. From a careful analysis of traffic
measurements, we may be able to reconstruct the intended flow. (For further
discussion about offered-load models, see Remark 10.3.1.) However, heavy-
traffic limits can also describe the performance with congestion-controlled
sources, as shown by Das and Srikant (2000).
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Our goal in this discussion, and more generally in the book, is not to
draw engineering conclusions, but to describe an approach to engineering
problems: Heavy-traffic limits yield simple approximations that can be used
in engineering applications involving queues. Moreover, nonstandard heavy-
traffic limits can capture the nonstandard features observed in network traf-
fic. The simple analysis above shows that the consequences of the model
choice can be dramatic, making order-of-magnitude differences in the pre-
dicted buffer requirements.

When the analysis indicates that very large buffers are required, instead
of actually providing very large buffers, we may conclude that buffers are
relatively ineffective for improving performance. Instead of providing very
large buffers, we may choose to increase the available bandwidth (process-
ing rate), introduce scheduling to reduce the impact of heavy users upon
others, or regulate the source inputs (see Example 9.8.1). Indeed, all of
these approaches are commonly used in practice. It is common to share the
bandwidth among sources using a “fair queueing” discipline. Fair queue-
ing disciplines are variants of the head-of-line processor-sharing discipline,
which gives each of several active sources a guaranteed share of the avail-
able bandwidth. See Demers, Keshav and Shenker (1989), Greenberg and
Madras (1992), Parekh and Gallager (1993, 1994), Anantharam (1999) and
Borst, Boxma and Jelenkovié (2000).

Many other issues remain to be considered: First, given any particular
asymptotic form, it remains to estimate the asymptotic constants. Second,
it remains to determine how the queueing system scales with increasing
load. Third, it may be more appropriate to consider the transient or time-
dependent performance measures instead of the customary steady-state per-
formance measures. Fourth, it may be necessary to consider more than a
single queue in order to capture network effects. Finally, it may be necessary
to create appropriate controls, e.g., for scheduling and routing. Fortunately,
for all these problems, and others, heavy-traffic stochastic-process limits can
come to our aid.

2.4.2. Scheduling Service for Multiple Sources

In this final subsection we discuss the engineering significance of the
time-and-space scaling that occurs in heavy-traffic limits for queues. The
heavy-traffic scaling was already discussed in Section 2.3; now we want to
point out its importance for system control.

We start by extending the queueing model in Section 2.3: Now we assume
that there are inputs each time period from m separate sources. We let each
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source have its own infinite-capacity buffer, and assume that the work in
each buffer is served in order of arrival, but otherwise we leave open the
order of service provided to the different sources. As before, we can think
of there being a single server, but now the server has to switch from queue
to queue in order to perform the service, with there being a setup cost or a
setup time to do the switching.

We initially assume that the server can switch from queue to queue in-
stantaneously (within each discrete time period), but we assume that there
are switchover costs for switching. To provide motivation for switching, we
also assume that there are source-dependent holding costs for the workloads.
To specify a concrete optimization problem, let W,f; denote the source-i work-
load in its buffer at the end of period k and let S’,i’j be the number of switches
from queue i to queue j in the first & periods. Let the total cost incurred
in the first k& periods be the sum of the total holding cost and the total
switching cost, i.e.,

Ck = Hk + Sk ;
where
m k '
A=Y Y,
i=1 j=1
and
m m o
50233 st
i=1 j=1

where h; is the source-: holding cost per period and c; ; is the switching cost
per switch from source 7 to source j. Our goal then may be to choose a
switching policy that minimizes the long-run average expected cost

C = lim k' E[Cy] .
k—00

This is a difficult control problem, even under the regularity condition
that the inputs come from m independent sequences of ITD random variables
with finite means m?. Under that regularity condition, the problem can
be formulated as a Markov sequential decision process; e.g., see Puterman
(1994): The state at the beginning of period k + 1 is the workload vector
(Wkl, ..., W) and the location of the server at the end of period k. An
action is a specification of the sequence of queues visited and the allocation
of the available processing per period, u, during those visits. Both the state
and action spaces are uncountably infinite, but we could make reasonable
simplifying assumptions to make them finite.
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To learn how we might approach the optimization problem, it is helpful
to consider a simple scheduling policy: A polling policy serves the queues to
exhaustion in a fixed cyclic order, with the server starting each period where
it stopped the period before. We assume that the server keeps working until
either its per-period capacity u is exhausted or all the queues are empty.

There is a large literature on polling models; see Takagi (1986) and
Boxma and Takagi (1992). For classical polling models, there are ana-
lytic solutions, which can be solved numerically. For those models, numer-
ical transform inversion is remarkably effective; see Choudhury and Whitt
(1996). However, analytical tractability is soon lost as model complexity
increases, so there is a need for approximations.

The polling policy is said to be a work-conserving service policy, because
the server continues serving as long as there is work in the system yet to be
done (and service capacity yet to provide). An elementary, but important,
observation is that the total workload process for any work-conserving policy
is identical to the workload process with a single shared infinite-capacity
buffer. Consequently, the heavy-traffic limit described in Section 2.3 in the
special case of an infinite buffer (K = oo) also holds for the total-workload
process with polling; i.e., with the FCLT for the cumulative inputs in (3.3)
and the heavy-traffic scaling in (3.10), we have the heavy-traffic limit for the
scaled total-workload processes in (3.12), with the two-sided reflection map
¢x replaced by the one-sided reflection map. Given the space scaling by nf
and the time scaling by n, where 0 < H < 1, the unscaled total workload
at any time in the n'® system is of order n and changes significantly over
time intervals having length of order n.

The key observation is that the time scales are very different for the
individual workloads at the source buffers. First, the individual workloads
are bounded above by the total workload. Hence the unscaled individual
workloads are also of order n’. Clearly, the mean inputs must satisfy the
relation

My = My 1+ -+ Mym -

Assuming that 0 < m,; < m, for all i, we see that each source by itself is
not in heavy traffic when the server is dedicated to it: With the heavy-traffic
scaling in (3.10), the total traffic intensity approaches 1, i.e.,

Pn =my/unT1 as n— oo,

but the instantaneous traffic intensity for source ¢ when the server is devoted
to it converges to a limit less than 1, i.e.,

Png = mv,i/,u/n ) mv,i/mv = P;‘ <1.
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Since each source alone is not in heavy-traffic when the server is working
on that source, the net output is at a constant positive rate when service
is being provided, even in the heavy-traffic limit. Thus the server processes
the order n unscaled work there in order n” time, by the law of large
numbers (see Section 5.3).

The upshot is that the unscaled individual workloads change significantly
in order nf time whenever the server is devoted to them, and the server
cycles through the m queues in order n# time, whereas the unscaled total
workload changes significantly in order n time. Since H < 1, in the heavy-
traffic limit the individual workloads change on a faster time scale. Thus,
in the heavy-traffic limit we obtain a separation of time scales: When we
consider the evolution of the individual workload processes in a short time
scale, we can act as if the total workload is fixed.

Remark 2.4.1. The classic setting: NCD Markov chains. The separation
of time scales in the polling model is somewhat surprising, because it occurs
in the heavy-traffic limit. In other settings, a separation of time scales is
more evident. With computers and communication networks, the relevant
time scale for users is typically seconds, while the relevant time scale for
system transactions is typically milliseconds. For those systems, engineers
know that time scales are important.

There is a long tradition of treating different time scales in stochastic
models using nearly-completely-decomposable (NCD) Markov chains; see
Courtois (1977). With a NCD Markov chain, the state space can be decom-
posed into subsets such that most of the transitions occur between states
in the same subset, and only rarely does the chain move from one subset to
another. In a long time scale, the chain tends to move from one local steady-
state regime to another, so that the long-run steady-state distribution is an
appropriate average of the local steady-state distributions.

However, different behavior can occur if the chain does not approach
steady-state locally within a subset. For example, that occurs in an infinite-
capacity queue in a slowly changing environment when the queue is unstable
in some environment states. Heavy-traffic limits for such queues were es-
tablished by Choudhury, Mandelbaum, Reiman and Whitt (1997). Even
though the queue content may ultimately approach a unique steady-state
distribution, the local instability may cause significant fluctuations in an
intermediate time scale. The transient behavior of the heavy-traffic limit
process captures this behavior over the intermediate time scale. =

For the polling model, the separation of time scales suggests that in
the heavy-traffic limit, given the fixed scaled total workload W, (t) = w,
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in the neighborhood of time ¢ the vector of scaled individual workloads
(WL(t),...,W™(t)) rapidly traverses a deterministic piecewise-linear tra-
jectory through points (w!,...,w™) in the hyperplane in R™ with w! +
-+ + w™ = w. For example, with three identical sources served in numer-
ical cyclic order, the path is piecewise-linear, passing through the vertices
(2w/3,w/3,0), (0,2w/3,w/3) and (w/3,0,2w/3), corresponding to the in-
stants the server is about to start service on sources 1, 2 and 3, respectively.
In general, identifying the vertices is somewhat complicated, but the expe-
rience of each source is clear: it builds up to its peak workload at constant
rate and then returns to emptiness at constant rate. And it does this many
times before the total workload changes significantly. Hence at any given
time its level can be regarded as uniformly distributed over its range.

As a consequence, we anticipate a heavy-traffic averaging principle: We
should have a limit for the average of functions of the scaled individual
workloads; i.e., for any s,h > 0 and any continuous real-valued function f,

h1/5+ FOWEL(@))dt = bt /H (/0 fla;uW (t))du)dt ,  (4.14)

where a; is a constant satisfying 0 < a; < 1 for 1 <4 < m. In words, the
time-average of the scaled individual-source workload process over the time
interval [s,s + h] approaches the corresponding time-average of a propor-
tional space-average of the limit W for the scaled total workload process.
(For other instances of the averaging principle, see Anisimov (1993) and
Freidlin and Wentzell (1993).)

This heavy-traffic averaging principle was rigorously established for the
case of two queues by Coffman, Puhalskii and Reiman (1995) for a slightly
different model in the Brownian case, with H = 1/2 and W reflected Brow-
nian motion. They also determined the space-scaling constants a; appearing
in (4.14) for m sources: They showed that

__p(=p)
Zl§j<k§m P3Pk

(4.15)

a;

where p! is the limiting source-i traffic intensity, i.e., p} = m, ;/m, for our
model. The upper limits a; depend only on the means m, j, 1 < j < m. For
m = 2, a; = 1; for m identical sources, a; = 2/m. The variability affects
the limit in (4.14) only through the scaling and the one-dimensional limit
process W.

Coffman, Puhalskii and Reiman (1998) also considered the two-queue
polling model with unscaled switchover times. Even though the switchover
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times are asymptotically negligible in the heavy-traffic scaling, they have a
significant impact because the relative amount of switching increases as the
total workload decreases. Coffman, Puhalskii and Reiman (1998) show that
the heavy-traffic averaging principle is still valid with switchover times, with
the scaled total workload processes converging to a Bessel diffusion process,
which has state-dependent drift of the form —a + b/z for positive constants
a and b. (For additional heavy-traffic limits for polling models, see van der
Mei and Levy (1997) and van der Mei (2000).)

Even though the polling models have yet to be analyzed for nonstan-
dard scaling, with H # 1/2 and W not a diffusion process, it is evident
that the heavy-traffic averaging principle still applies. We can anticipate
that the other forms of variability (associated with heavy tails and strong
dependence) affect the heavy-traffic limit only through the limit process W.

The separation of time scales provides a way to attack complicated ser-
vice control problems such as the one formulated at the beginning of this
subsection. Even if all the desired supporting mathematics cannot be estab-
lished, the heavy-traffic limits provide a useful perspective for approximately
solving these problems. The heavy-traffic averaging principle reduces the
dimension of the state-space in the control problem. It provides a form of
state-space collapse; see Reiman (1984b), Harrison and van Mieghem (1997),
Bramson (1998) and Williams (1998b). It lets us focus on the single process
that is the heavy-traffic limit for the scaled total-workload process. For nat-
ural classes of service policies, we can express the local cost rate associated
with a fixed total workload and then determine an expression for the long-
run average total cost as a function of the controls that produces a tractable
optimization problem. In the more challenging cases it may be necessary to
apply numerical methods to solve the optimization problem, as in Kushner
and Dupuis (2000).

By now, there has been substantial work on this heavy-traffic approach
to scheduling, yielding excellent results. We do not try to tell the story here;
instead we refer to Reiman and Wein (1998), Markowitz, Reiman and Wein
(2000), Markowitz and Wein (2001) and Kushner (2001).

For these more complicated control problems, there are many open tech-
nical problems: It remains to establish the heavy-traffic averaging principle
in more complicated settings and it remains to show that the derived policies
are indeed asymptotically optimal in the heavy-traffic limit. Markowitz et
al. (2000, 2001) restrict attention to dynamic cyclic policies in which each
source is served once per cycle in the same fixed order. It is easy to con-
struct examples in which larger classes of policies are needed: With three
sources, it may be necessary to serve one source more frequently; e.g., the
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cycle (1,2,1,3) may be much better than either (1,2,3) or (1,3,2).

Nevertheless, the practical value of the heavy-traffic approach is well es-
tablished: Numerical comparisons have shown that the policies generated
from the heuristic heavy-traffic analysis perform well for systems under nor-
mal loading. Moreover, the heavy-traffic analysis produces important in-
sight about the control problem, as illustrated by concluding remarks on p.
268 of Markowitz and Wein (2001) about the way model features — setups,
due dates and product mix — affect the structure of policies. And there is
opportunity for further work along these lines.

Heavy-traffic analysis has also been applied to other queueing control
problems. We have discussed the scheduling of service for multiple sources
by a single server. We may instead have to schedule and route input from
multiple sources to several possible servers; see Bell and Williams (2001),
Harrison and Lopez (1999) and references therein. More generally, we may
have multiclass processing networks; see Harrison (1988, 2000, 2001a,b),
Kumar (2000) and references therein.

In conclusion, the successful application of heavy-traffic analysis to these
classic operations-research stochastic scheduling problems provides ample
evidence that heavy-traffic stochastic-process limits for queues have engi-
neering significance.



