Chapter 7

More Stochastic-Process
Limits

7.1. Introduction

This chapter is a sequel to Chapter 4: We continue providing an overview
of established stochastic-process limits. These stochastic-process limits are
of interest in their own right, but they also can serve as initial stochastic-
process limits in the continuous-mapping approach to establish new stochastic-
process limits.

We start in Section 7.2 by considering a different kind of stochastic-
process limit: We consider CLT’s for sums of stochastic processes with sam-
ple paths in D. We apply these CLT’s for processes to treat queues with
multiple sources, where the number of sources increases in the heavy-traffic
limit; see Sections 8.7 and 9.8.

In Section 7.3 we extend the discussion begun in Section 6.3 about
stochastic-process limits for counting processes. As indicated before, stochastic-
process limits for counting processes follow directly from stochastic-process
limits for random walks, provided that the M; topology is used. We will
apply the stochastic-process limits for counting processes to obtain heavy-
traffic limits for the standard queueing models in Chapters 9 and 10.

In Section 7.4 we apply convergence-preservation results for the compo-
sition and inverse maps to establish stochastic-process limits for renewal-
reward stochastic processes. Renewal-reward stochastic processes are ran-
dom sums of IID random variables, where the random index is a renewal
counting process. When the times between the renewals in the renewal
counting process have a heavy-tailed distribution, we need the M; topology.
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274 CHAPTER 7. MORE STOCHASTIC-PROCESS LIMITS

The Internet Supplement contains additional material supplementing
Chapter 4: In Section 2.2 of the Internet Supplement we discuss strong
approximations, which can be used to establish bounds on the rate of con-
vergence in Donsker’s FCLT expressed in terms of the Prohorov metric. In
Section 2.3 of the Internet Supplement we extend Section 4.4 by present-
ing additional Brownian stochastic-process limits with weak dependence. In
Section 2.4 of the Internet Supplement we discuss the convergence to general
Lévy processes that can be obtained when we consider a sequence of ran-
dom walks. These limits are applied to queues in Section 5.2 of the Internet
Supplement.

7.2. Central Limit Theorem for Processes

In this section we consider a different kind of stochastic-process limit.
Instead of considering scaled partial sums of random vectors, we consider
CLTs for partial sums of random elements of D, i.e., we consider the limiting
behavior of the scaled partial sum

Zn(t) ="/ i[Xi(t) - EX;(t)], t>0, (2.1)
=1

where {X,, : n > 1} = {{X,(t) : ¢ > 0} : n > 1} is a sequence of IID random
elements of D = D([0,00), R).

In fact, we already discussed a special case of IID random elements of D
when we considered the Kolmogorov-Smirnov statistic in Section 1.5. Recall
that the emprical process associated with a sample of size n from a cdf F
can be expressed as

Fot) =) T—ooy(Yi), teR, (2.2)
i=1

where {Y;} is a sequence of IID real-valued random variables with cdf F'.

For the normalized partial sums in (2.1), convergence of finite-dimensional
distributions is elementary by the multidimensional CLT in Section 4.3, pro-
vided that E[X;(t)?] < co. As indicated in Section 11.6, to establish con-
vergence in distribution in D with an appropriate topology, it only remains
to establish tightness. Specifically, we can apply Theorem 11.6.6.

7.2.1. Hahn’s Theorem

The following result is due to Hahn (1978). We have converted the
original result from D([0,1],R) to D([0, c0), R).
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Theorem 7.2.1. (CLT for processes in D) Let {X,, : n > 1} be a se-
quence of IID random elements of D = D([0,00),R) with EX;(t) = 0 and
E[X;(t)?] < oo for all t. If, for all T, 0 < T < oo, there erist continuous
nondeceasing real-valued functions g and f on [0,T] and numbers o > 1/2
and B > 1 such that

E[(X(u) — X(s))%] < (g9(u) — g(s)) (2.3)
and
E[(X(u) = X(£))*(X () — X(9))*] < (f(uw) — ()" (2.4)

forall 0 < s<t<u<T withu—s <1, then
Z,=7Z in (D,J), (2.5)

where Zy, is the normalized partial sum in (2.1), Z is a mean-zero Gaussian
process with the covariance function of X1 and P(Z € C) = 1.

Remark 7.2.1. More elementary conditions. The canonical sufficient con-
ditions for (2.3) and (2.4) in applications of Theorem 7.2.1 have

ft)=9g(t)=Kt, t>0, a=1 and =2,
for some constant K (depending upon T'), yielding
E[(X(u) — X(5))*] < K(u—s)) (2.6)
and
E[(X(u) = X(8))*(X () — X(s))*] < K(u—1)* (2.7)

for0<s<t<u<Twithu—s<1.
Note that conditions (2.6) and (2.7) apply to treat the empirical process
n (2.2). There
E[(X(u) = X(8))’] = P(s <Y1 < u)

and
E[(X(u) = X(#)*(X(t) = X(s))!]=Pt<Yi<u and s<Y;<t)=0.

We see that condition (2.6) holds whenever the cdf F' has a bounded density.
However, the different approach in Section 1.5 shows that convergence in
(D, J1) actually holds whenever the cdf F' is continuous. Plots of the scaled
empirical process for the uniform cdf in Figure 1.8 illustrate Theorem 7.2.1.
The limiting Gaussian process in that case is the Brownian bridge. =
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Remark 7.2.2. Eztensions. An analog of Theorem 7.2.1 for stable pro-
cess limits in (D, J;) when E[X (t)?] = oo has been established by Bloznelis
(1996). That opens the way for limits with jumps. It remains to develop
conditions for the M topologies. Other extensions of Theorem 7.2.1 are con-
tained in Bloznelis (1996), Bloznelis and Paulauskas (2000) and references
therein; e.g., see Bass and Pyke (1987). See Araujo and Giné (1980) for
CLTs for random elements of general Banach spaces. =

We now state some consequences of Theorem 7.2.1. We first apply The-
orem 7.2.1 to establish a CLT for stochastic processes with smooth sample
paths, such as cumulative-input stochastic processes to fluid queues. In that
context, a standard model for the input from one source is an on-off model,
in which there are alternating random on and off periods. During on peri-
ods, input arrives at a constant rate; during off periods there is no input. It
is customary to assume that the successive on and off periods come from in-
dependent sequences of ITD random variables, but we do not need to require
that here. A generalization is to allow the source environment be governed
by a k-state process instead of a two-state process. When the environment
state is j, the input is transmitted at constant rate r;. For example, the en-
vironment process might be a finite-state semi-Markov process; see Duffield
and Whitt (1998, 2000). Again we do not require such specific assumptions.

Let X (t) be the total input over the interval [0,¢]. Since the input occurs
at a random rate, with only finitely many possible rates, the sample paths
are Lipschitz with probability one, i.e.,

| X(t) — X(s)| < K(t—s) w.p.l (2.8)

for all 0 < s < ¢, where K is the maximum possible rate. We are interested
in the CLT (2.5) to describe the aggregate input from a large number of
sources.

Corollary 7.2.1. (CLT for Lipschitz processes) If {X,} is a sequence of
IID random elements of C satisfying (2.8), then the CLT (2.5) holds.

Proof. It is easy to see that conditions (2.6) and (2.7) hold. Indeed, (2.8)
implies that

E[(X(u) — X(s))*] < K(u—s5)* < K(u—s)
and

E[(X (u)=X (1)) (X (1)~ X (5))’] < K(u—1)*(t—5)* < K (u—s)" < K (u—s)".
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u
Hahn (1978) applied Theorem 7.2.1 to establish the following CLTs for
Markov processes. For any real-valued random variable Y, let the essential
supremum be
esssup (Y) =inf{c: P(Y >¢) =0} .

Theorem 7.2.2. (CLT for Markov processes) Let {X, : n > 1} be a
sequence of IID Markov processes with sample paths in D. If, for each
T, 0<T < oo, there erists a continuous nondecreasing real-valued func-
tion g on [0,T] and a number o > 1/2 such that either

ess sup E[(X (t) — X (5))*| X (s)] < (g(t) — g(s)) (2.9)

ess sup E[(X (t) — X (s))*|X ()] < (9(2) — g(s)* , (2.10)

for0 < s <t<T, witht—s <1, then conditions (2.3) and (2.4) hold for
X(t) — EX(t), so that the conclusion of Theorem 7.2.1 holds.

Hahn also observed that Theorem 7.2.2 applies directly to finite-state
CTMCs.

Corollary 7.2.2. (CLT for finite-state CTMCs) If {X,, : n > 1} be a se-
quence of IID finite-state continuous-time Markov chains determined by an
infinitesimal generator matriz Q, Then the conditions of Theorem 7.2.2 hold,
with g(t) =t and « =1 in (2.9) and (2.10), so that the conclusion of
Theorem 7.2.1 holds.

Theorem 7.2.1 was also applied by Whitt (1985a) to obtain the following
CLT for stationary renewal processes.

Theorem 7.2.3. (CLT for stationary renewal processes) Let {X, : n >
1} = {{X,(t) : t > 0} : n > 1} be a sequence of IID stationary renewal
counting processes with interrenewal-time cdf F. If

lim ¢~ (F(t) — F(0)) < o< , (2.11)

t—0

then conditions (2.6) and (2.7) hold, so that the conclusion of Theorem 7.2.1
holds.
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Remark 7.2.3. Whitt (1985a) showed that condition (2.11) is necessary for
condition (2.7) to hold. Note that condition (2.11) allows an atom at 0 and
is satisfied if the cdf F' is otherwise absolutely continuous in a neighborhood
of 0. Hence condition (2.11) is not very restrictive. =

From Theorems 7.2.1-7.2.3, we know that the limit process Z is a zero-
mean Gaussian process with sample paths in C' and the covariance function
of one of the summands. Hence, to fully characterize the limit process
it suffices to determine the covariance function of the original component
process.

For example, let us consider the case of Theorem 7.2.3. There it suffices
to determine the covariance function of a component stationary renewal
process. For a stationary renewal process, now denoted by {A(t) : t > 0},
the covariance function can be computed from the interrenewal-time cdf F,
exploiting numerical transform inversion to compute the renewal function;
see Chapter 4 of Cox (1962) and Section 13 of Abate and Whitt (1992a).
Recall that the renewal function M (¢) is the mean number of renewals in [0, %]
for the ordinary renewal process. We characterize the covariance function
further in the following theorem.

Theorem 7.2.4. (covariance function for a stationary renewal process) Sup-
pose that A is a stationary renewal counting process (having stationary in-
crements with A(0) = 0) with interrenewal-time cdf F having pdf f and
mean \~. Then, for t < u,

Cov(A(t), A(u)) = Var A(t) + Cov(A(t), A(u) — A(t)) ,

where

V(t) =Var A(t) = 2)\/ — As +0.5]ds (2.12)

E[A(t),A(u) — A —)\3/ da/ dbf(a+b)M(u—b)M(t—a) (2.13)

and M(t) is the renewal function of the associated ordinary renewal process,
having Laplace transform

)
MO = e

b

where
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Directly, the Laplace transform of V(t) is

V(s)z/oooe_StV(t)dt:% (M(s) L ) .

s s3  2s2

Proof. For (2.12), see p. 57 of Cox (1962). For (2.13), consider the first
point to the right of ¢. It falls at ¢+ b with the stationary-excess (or equilib-
rium lifetime) pdf f.(b) = AF°(b). Conditional on that point being at ¢ + b,
the first point to the left of ¢ falls at ¢ — a with pdf f(a + b)/F¢(b). Condi-
tional on the loction of these two points at t —a and ¢+ b, we can invoke the
independence to conclude that the expected value of A(t)[A(t+u) — A(t)] is
A2M (t—a)M (u—0b), where M (t) is the ordinary renewal function (expected
number of renewals in [0,]). Integrating over all possible pairs (a,b) gives
(2.13).

7.2.2. A Second Limit

In many of the CLTs for processes, the component random elements
of D have stationary increments. Then the limiting Gaussian process will
also have stationary increments in addition to continuous sample paths, so
that it is natural to consider an additional stochastic-process limit for the
Gaussian process with time scaling; i.e., given Z, = Z as in (2.5), we can
consider

Y,=Y in (CU), (2.14)

where
Y, (t) =c,'Z(nt), t>0. (2.15)

Alternatively, if the component processes are stationary processes, then
the limit process Z will be stationary, so that we have (2.14) with Y,, defined
by

Y. (t) = cgl/ontZ(s), t>0. (2.16)

To obtain the second stochastic-process limit, we can often apply Theo-
rem 4.6.2. The second limit allows us to replaces a Gaussian process with a
general covariance function by a special Gaussian process — fractional Brow-
nian motion — with the highly structured covariance function in (6.13). As
with the first limit, we gain simplicity but lose structural detail by taking
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the limit. In considerable generality, we see that the large-time-scale behav-
ior of the aggregate process should be like FBM. The second limit provides
important new insight when that FBM is not Brownian motion.

We now illustrate by applying Corollary 7.2.1 and Theorem 4.6.2 to es-
tablish a double stochastic-process limit in (D, J;) for the input from many
on-off sources with heavy-tailed on-period or off-period distributions. Con-
vergence of the finite-dimensional distributions was established by Taqqu,
Willinger and Sherman (1997). As indicated there and in Willinger, Taqqu,
Sherman and Wilson (1997), the stochastic-process limit is very helpful to
understand the strong dependence and self-similarity observed in network
traffic measurements, such as in Leland et al. (1994). The stochastic-process
limit shows how high variability (the Noah effect) in the on and off periods
can lead to strong positive dependence (the Joseph effect) in the cumulative
input process. As indicated in Section 4.2, the very existence of the limit
implies that the limit process must be self-similar.

The extension here to weak convergence from only convergence of the
finite-dimensional distributions is important for establishing further stochastic-
process limits, in particular, heavy traffic limits for queues with input from
many on-off sources.

Now we assume that the on periods and off periods come from indepen-
dent sequences of IID random variables. We let the input rate be 1 during
each on period and 0 during each off period. Let the on periods have cdf Fy,
cedf Ff =1 — F; and finite mean my; let the off periods have cdf Fy, ccdf
F§ =1—F, and finite mean my. We assume that the cdf’s have probability
density functions, although that can be generalized; e.g., see Section VI.1 of
Asmussen (1987).

The critical assumtion is that the ccdf’s F; and F, can have heavy tails.
Specifically, we assume that the cdf F; either has finite variance o7 or that

Ff(t) ~cit™ as t— o0

2

for 1 < a < 2. (That can be generalized to regularly varying tails; see
Taqqu, Willinger and Sherman (1997).)

We now specify the limiting scaling constant. When 02 < oo, let a; = 2
and a; = ¢I'(2 — «;)/(a; — 1), where T' is the gamma function. When
a1 = ag, let ain = @1 and

o2 2(m? +mj3)
Bm = (my + mg)3T(4 — amin)

(2.17)
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When oy # as, let apin = ay A ag = minay, as and

2m2
2 — max¥min
.= , 2.18
Olim (m1 + m2)3T (4 — amin) (2.18)

where (min, max) is the pair of indices (1,2) if &1 < a9 and (2,1) if a2 < ;.

Let X (t) be the cumulative input from one on-off source over the interval
[0,t]. We assume that the process X has been initialized so that X has
stationary increments. Then

EX(t) =mi/(m1 +mgy) forall ¢>0.

(That can be generalized as well.) We are interested in the limiting behavior
of scaled sum of IID versions of this cumulative-input stochastic process, in
particular,

Loy =7 Hn=1/2 Z[Xi(ﬂf) — myTt/(my +ms)] . (2.19)

Theorem 7.2.5. (iterated limit for time-scaled sum of on-off cumulative-
input processes) If {X; : i > 1} is a sequence of IID cumulative-input
stochastic processes satisfying the assumptions above, then

Zn,T = O'limZH mn (D, Jl)
as first n — oo and then T — oo for
H = (3 — amin)/2 , (2.20)

Znr in (2.19), 02 in (2.17) or (2.18) and Zg standard FBM.

Proof. First the CLT in D as n — oo follows from Corollary 7.2.1. As a
consequence, the limit process, say Y, has paths in C. We establish weak
convergence as 7 — oo in (C,U) by applying Theorem 4.6.2. Convergence of
the finite-dimensional distributions was established by Taqqu, Willinger and
Sherman (1997). As an important part of that step, they established (6.23)
for H in (2.20). They claim to establish weak convergence in the second
limit as 7 — oo by applying Theorem 11.6.5 using only (6.23), but their
argument at the end of Section 3 has a gap, because it does not control
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the small-time behavior. However, that gap can be filled quite easily by
establishing (6.24). First, by (6.23), there exists ty such that

VarY (t) < 2ct*? forall t >t .

However, given ty (where, without loss of generality we may assume that t
is a positive integer),

VarY (t) < 3VarY (t/ty) forall t, 0<t<tg,

by writing Y (¢) as the sum of ¢y random variables Y (kt/to) — Y ((k—1)t/t0),
1 < k < ty. Hence, it suffices to consider ¢ < 1. However, by the Lipschitz
sample-path structure of X7,

Xt <t wpd,

so that
VarY (t) = VarX,(t) < t*,

which is less than 2 fort <1. =

Theorem 7.2.5 involves an iterated limit, in which first n — co and then
afterward 7 — oo. Mikosch et al. (2001) consider the double limit with
Tn — 00 as n — oo. They show that convergence to FBM still holds when
T, — 00 slowly enough. See Remark 8.7.1 for further discussion.

Theorem 7.2.5 extends to more general source traffic models, such as
when the rate process is a finite-state semi-Markov process (SMP), as in
Duffield and Whitt (1998, 2000). In that setting we call the SMP environ-
ment states levels. The self-similarity index H is again determined by the
level-holding-time cdf’s F; ;, giving the distribution of the time spent at level
1 given that the next level will be j. Assuming that the DTMC governing
the state transitions is irreducible, If any of these cdf’s has a heavy tail,
then we get convergence to FBM with 1/2 < H < 1. In particular, H again
is given by (2.20), where ayy, is the minimum among the stable indices of
the cdf’s F; ;, assumed to satisfy 1 < amin < 2.

A related stochastic-process limit for the aggregate input from many
sources is in Kurtz (1996); it also leads to FBM under appropriate condi-
tions.

We remark that we encounter difficulties when we try to establish the
second limit for the stationary renewal processes treated in Theorem 7.2.3
when H > 1/2, because Var (X (t)) =0(t) as t — 0, so that we cannot estab-
lish (6.24) for H > 1/2. We do get the second limit when H = 1/2 though.
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Convergence of the finite-dimensional distributions for a more general model
was established by Taqqu and Levy (1986).

In this section we have only discussed CLTs for processes that converge
to Gaussian processes with continuous sample paths. It is also of interest
to establish convergence to stable processes. Such stochastic-process limits
(only convergence of finite-dimensional distributions) have been established
by Levy and Taqqu (1987, 2000). As indicated before, criteria for weak
convergence in D to a stable process have been determined by Bloznelis
(1996). More work needs to be done in that area.

7.3. Counting Processes

With queueing models and many other applications, the basic random
variables X,, are often nonnegative. For example, in a queueing model X,
may represent a service time, interarrival time, busy period or idle period.
With nonnegative random variables, in addition to the partial sums S,, =
Xi+---+X,, n>1, with Sy = 0, we are often interested in the associated
counting process N = {N(t) : t > 0}, defined in (3.1) of Section 6.3. For
example, the arrival and service counting processes are used to establish
heavy-traffic limits for the standard single-server queue.

When the random variables X, are nonnegative, we can think of the
partial sums S, as points on the positive halfline R,. Then N(t) counts
the number of points in the interval [0,¢]. The two processes {S, : n > 0}
and {N(t) : ¢ > 0} thus serve as equivalent representations of a stochastic
point process. When {X,, : n > 1} is a sequence of IID random variables,
the counting process N is also called a renewal process.

As indicated in Section 6.3, the partial sums {S,, : n > 0} and the count-
ing process {N(t) : t > 0} are inverse processes. Fortunately, we are able to
exploit to inverse relation to great advantage for establishing limit theorems.
Under minimal regularity conditions, we are able to show that CLTs and
FCLTs hold for {N(t)} if and only if they hold for {S,}, without making
any direct probability assumptions about the sequence {X,,}. These equiv-
alence results are applications of the continuous-mapping approach, which
we carefully develop in Chapter 13. Since these limits are also frequently
applied in the continuous-mapping approach, we state the key results here.

Before proceeding, however, we point out that, even though the nonneg-
ativity condition on the summands X; is often natural, it is actually not
required to obtain limits for the counting processes from associated limits
for the partial sums. Without the nonnegativity, we can go from a CLT or
FCLT for partial sums to an associated CLT or FCLT for the associated
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sequence of successive maxima M,,, where
M, = max{S1,...,S,}, n>1.

It turns out that limits for S, imply corresponding limits for M,,. Then M,
itself can be regarded as a partial-sum process with nonnegative steps, so
that we can apply the results in this section to M,,. We then obtain limits
for the associated counting process, defined as

N(t) =max{k: M <t}, t>0.

The details are in Chapter 13.

7.3.1. CLT Equivalence

We now return to the case of nonnegative random variables. We first
state an equivalence result for CLTs; it is Theorem 3.5.1 in the Internet Sup-
plement, which extends Theorem 6 of Glynn and Whitt (1988) and Theorem
4.2 of Massey and Whitt (1994a). Note that there are no direct probability
assumptions on the basic sequence {X} and the limit is arbitrary. Also
note that space scaling is done by a regularly varying function with index p,
0 < p < 1, which covers the standard scaling by y/n and is consistent with
the CLT for IID random variables in the domain of attraction of a stable
law with index o, 1 < a < 2, in Section 4.5. (See Appendix A for more on
regularly varying functions.)

Theorem 7.3.1. (CLT equivalence for partial sums and counting processes)
Suppose that {X,, : n > 1} is a sequence of nonnegative random variables,
m > 0 and 1 is a regularly varying real-valued function on (0,00) with index
p, 0 <p<1. Then
Yp(n)" (S, —mn)=L in R as n— oo,
where S, = X1+ -+ Xy, n > 1, if and only if
PO NG —m ) = —m UPL in R as t— oo,

where N(t) = max{k >0: S, <t},t>0.
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7.3.2. FCLT Equivalence

Next we present an equivalence result for FCLTs allowing double se-
quences {X, ;}. Thus, there is a sequence of partial sums {S,; : & > 1}
and an associated counting process {Ny(t) : ¢ > 0} for each n, so that the
result here also apply to the convergence of sequences of random walks to
general Lévy processes in Section 2.4 of the Internet Supplement. (Theorem
7.3.1 above does not extend to double sequences.)

Again no direct probability assumptions are made on the basic sequences
{Xnk : k> 1} and the limit process can be anything. Finally, note that we
use the M7 topology. As we have seen in previous sections of this chapter,
it is usually possible to establish the FCLT for partial sums in (3.1) below
in the stronger J; topology, but nevertheless as discussed in Section 6.3,
the FCLT for the counting process only holds in the M; topology when the
limit process S for the normalized partial sums has sample paths containing
positive jumps, as occurs with the stable Lévy motion limit in Section 4.5.

To state the result we use the composition function, mapping z,y into
zoy=xz(y(t), t > 0.

Theorem 7.3.2. (FCLT equivalence for partial sums and counting pro-
cesses) Suppose that {X, j : k > 1} is a sequence of nonnegative random
variables for eachn > 1, ¢, — o0, n/c, — 00, my, =+ m, 0 < m < 0o and
S(0) =0. Then

S,=9S in D(0,00),R, M), (3.1)

where Spp = Xp1+ -+ Xpp, k>1, Spo=0 and
Su(t) = & Sy —mant)), 130, (32)
if and only if
N, - —m~'Som™e in D(0,00),R, M), (3.3)
where Ny (t) = max{k > 0: S, <t}, t>0, and
N, (t) = ¢, (Np(nt) —m,, 'nt), t>0. (3.4)
If the limits in (3.1) and (3.3) hold, then
(Sp,N,) = (S,N) in (D,M;)>. (3.5)

Theorem 7.3.2 comes from Section 7 of Whitt (1980), which extends
related results by Iglehart and Whitt (1971) and Vervaat (1972). Theorem
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7.3.2 is proved by applying the continuous-mapping approach with the the
inverse map ! defined in (5.5) in Section 3.5, using linear centering; see
Section 13.8. Specifically, the result is implied by Corollary 13.8.1.

We now show how the FCLT equivalence in Theorem 7.3.2 can be ap-
plied with previous FCLTs for partial sums to obtain FCLTs for counting
processes. We start with Brownian motion limits.

Corollary 7.3.1. (Brownian FCLT for counting processes) Suppose that
the conditions of Theorem 7.3.2 hold with ¢, = \/n. If the FCLT for partial
sums in (3.1) holds with S = 0B, where B is standard Brownian motion,
then

N, = m 3/%2¢B in (D,J;)

for N, in (3.4) with ¢, = /n.

Proof. Apply Theorem 7.3.2, noting that the J; and M; topologies are
equivalent when the limit has continuous sample paths and

_ 1. d _
—m loBom e Em 32%B. =

Now we consider FCLTs with stable Lévy motion limits. Recall that
Sa(o, B, 1p) denotes a stable law with index «, scale parameter o, skewness
parameter 0 and shift parameter u; see Section 4.5. We first consider the
case 1 < a < 2. When the summands are IID nonnegative random variables,
the skewness parameter will be g = 1.

Corollary 7.3.2. (stable Lévy FCLT for counting processes when a > 1)
Suppose that the conditions of Theorem 7.3.2 hold with ¢, =n'/*, 1 < a < 2.
If the FCLT for the partial sums in (3.1) holds with S a stable Lévy motion

with S(1) 4 08S4(1,8,0), then
N, = —m~ 128 i (D, M)

for Ny, in (3.4) with ¢, = n'/* and

im0t Tg(1) L (e N5 (1,2 4,0)

Proof. Apply Theorem 7.3.2, noting that

_ _ d _ -1
—m'Som le £ —p~(teTNg
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and
—Sa(O',ﬂ,O) g Sa(O', _/35 0) . =

We now present FCLTs for counting processes that capture the Joseph
effect.

Corollary 7.3.3. (FBM FCLT for counting processes) Suppose that {X,}
is a stationary sequence of nonnegative random variables with mean m =
EX, and Var(X,) < co. If {X, —m} satisfies the conditions of Theorem
4.6.1, which requires that Y, > 0 and aj > 0 in (6.6), then

N, = -m 'Som e in (D,M), (3.6)
where

N, (t) = ¢, }(N(nt) —m™nt), t>0, (3.7)
for ¢y, in (6.16) and S is standard FBM.

Proof. Apply Theorems 7.3.2 and 4.6.1, noting that —S 45 .

Corollary 7.3.4. (LFSM FCLT for counting processes) Suppose that { X, }
is a stationary sequence of nonnegative random variables with finite mean
m = EX,. If {X, —m} also satisfies the conditions of Theorem 4.7.2,
which with the nonnegativity requires that Y; > 0 and a; > 0 in (6.6),
then the stochastic-process limit in (3.6) holds with S being LSFM in (7.10)
with =1 and Ny, in (3.7) with c, in (7.12).

We have yet to state general equivalence theorems that cover FCLTs
with stable Lévy motion limits having index @ < 1. When a = 1, we have
space scaling by n, but a translation term that grows faster than n. The
following covers the special case of a = 1.

Theorem 7.3.3. (FCLT equivalence to cover stable limits with index o =
1) Suppose that { X, : k > 1} is a sequence of nonnegative random variables
for each n, ¢, — 00, my — 00, nmy,/c, — 00 and S(0) = 0. Then

S, =S in D([0,00),R, M)
where Spp = Xp1+ -+ Xpp, k2>1, Spo=0 and
Sn (t) = CEI[Sn,LntJ - mnnt]a t>0, (38)

if and only if
N, = -S in D([0,00),R, M), (3.9)
where
N,(t) = cgl[mnNn(nmnt) —nmpt], t>0.
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Proof. We can apply Theorem 7.3.2 after we express (3.8) in the appro-
priate form: Letting z,,(t) = S, |n¢)/nm, and scaling space by nmy/c;,, we
obtain

Sn(t) = [_Sn,tnﬂ _

Cn My,

t], t>0.

Then z,1(t) = Ny(nmut)/n and (3.9) essentially follows from Theorem
7.32. =

We now state a FCLT equivalence theorem to cover the case of stable
Lévy motion limits with @ < 1. In the standard framework with IID random
variables, the random variables have infinite mean. In this case, there is
no translation term. We now use the inverse map without centering to
characterize the limit process. Specifically, we apply Theorem 13.6.1.

Theorem 7.3.4. (FCLT equivalence to cover stable limits with a < 1)
Suppose that {X, j : k > 1} is a sequence of nonnegative random variables
such that Spp = Xp1 + -+ Xpp = 00 w.p.l as k — oo and Ny(t) =
max{k > 0: S, <t} = oo w.p.1 ast — oo for each n. Also suppose that
cp — 00 asn — 0o. Then

S.=S in (D,M)
with S71(0) = 0 for
Sn(t) = C;Llsn,LntJa t>0,

if and only if
N, =S"' in (D, M)

with S(0) =0 for
N,(t) =n 'Ny(cat), t>0.

Since the process sample paths are nondecreasing, the M; convergence
in Theorem 7.3.4 is equivalent to convergence of the finite-dimensional dis-
tributions. Theorem 7.3.4 is easy to apply because

{871(s) > t} = {S(t) < s},

so that
P(S7Y(s) >t} = P(S(t) < )

for all positive s and ¢; see Lemma 13.6.3 in Section 13.6. When S(¢) has a
stable law with index «, 0 < a < 1, the marginal distributions are easy to
compute by numerical transform inversion.
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7.4. Renewal-Reward Processes

We now apply the convergence-preservation results for the composition
and inverse maps established in Chapter 13 to obtain FCLTs for renewal-
reward processes. Renewal-reward processes are random sums of IID ran-
dom variables, where the random index is an independent renewal counting
process. The results for the renewal process alone follow from the previous
section.

Let {X,, : n > 1} and {Y,, : n > 1} be independent sequences of IID
random variables, where Y;, is nonnegative. Let S} = X; + .-+ + X,, and
Sy =Y1+ -+ +Y, be the associated partial sums, with S¥ = S§ = 0. Let
N be the renewal counting process associated with {Y,,}, i.e.

N(t) =max{k>0:5] <t}, t>0.

The renewal-reward process is the random sum
N(t)
Z@t) =Y X t>0. (4.1)
i=1

The random variable Z(t) represents the cumulative input of required work
in a service system during the interval [0,¢] when customers with random
service requirements X,, arrive at random times Sj.

We assume that X; and Y; have finite means m = EX; and A7 =
EY; > 0. Thus we have the SLLNs: n 152 — m, n" 1S5 — A~ ! w.p.l as
n— oo and t7IN(t) = A, t71Z(t) = Am w.p.1 as t — oo.

We are interested in the FCLT refinements. We assume that X; and
Y; either have finite variances ‘7325 and 05 or are in the normal domain of
attraction of stable laws. In the case of infinite variances, let

P(Xi| > 1) ~ b (42)
P(X, > 1) ~ @pqxﬂn) (4.3)
PYi>t) ~ yyt (4.4)

as t = 0o, where 1 < o <2 and 1 < ay < 2. (Recall that Y, > 0 w.p.1.)
We form the normalized process

Zn(t) = n~Y%(Z(nt) — Amnt), t>0, (4.5)

where o = min{a,, ay} with a, =2 if 07 < co and ay =2 if 0}, < 0.
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The starting point for obtaining FCLTs for Z(t) are FCLTs for S* and
S3. which involve the scaled stochastic processes

(t)=n o (ST, —mnt), t>0, (4.6)

and

S =n (8,

The associated scaled process for the renewal counting process N(t) is

—Alnt), t>0. (4.7)

Y, (t) =n Y% (N(nt) — Ant), ¢t>0. (4.8)

Connections between limits for Sj and Y, follow from Section Section 13.8;
an overview was given in Section 7.3.

Theorem 7.4.1. (renewal-reward FCLT with finite variances) If the ran-
dom wvariables X1 and Y1 have finite variances a?c and 05, then

Z,=oB in (D,Ji),
where Zy, is in (4.5) with a = 2, B is standard Brownian motion and

o = Aos + m*Na, . (4.9)

Proof. We apply Corollary 13.3.2. For that purpose, let (X,,,Y,) in (3.8)
be defined by X,, = S¥ in (4.6) and Y,, in (4.8). The convergence X, =

U, where U 4 ;B follows from Donsker’s theorem, Theorem 4.3.2. The

convergence Y, = V, where V 4 33/ 2oyB follows from Donsker’s Theorem
and Corollary 13.8.1, as indicated in Corollary 7.3.1. By independence and
Theorem 11.4.4, we obtain the joint convergence (X,,Y,) = (U,V) in
(3.8) from the two marginal limits. Since the sample paths of (U, V) are
continuous, condition (3.9) automatically holds. Finally, the limit in (3.10)
simplifies, because

o0;B10Xe + m)\3/20yB2 4 (A2 + m2/\30§)1/2B

where B; and By are independent standard Brownian motions. =

It is often insightful to replace variances by dimensionless parameters
describing the variability independent of the scale. Thus, let ¢ and 0121 be
the squared coefficients of variation or SCVs, defined by c2 = 02/m? and

c?/ = )\205. We can alternatively express o2 in (4.9) as

o? = pm(c2 + CZ) , (4.10)
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where p = Am.

The limit process ¢B in Theorem 7.4.1 has continuous sample paths.
In contrast, when either X; or Y7 has a heavy-tailed distribution, the limit
process has discontinuous sample paths.

Theorem 7.4.2. (renewal-reward FCLT for heavy-tailed summands) Sup-
pose that (4.2) and (4.3) hold with 1 < ay < 2, and that either 05 < oo or
02 = 0o and (4.4) holds with oy < ayy < 2. Then

y
Z, = oS, in (D,Ji),

where Zy, is in (4.5), a = ag, So is a stable Lévy motion with S, (1) 4

Sa(1,Bz,0) for By in (4.3) and
0% = (12A/Cl) (4.11)
for vz in (4.2) above and C, in (5.14) of Section 4.5.

Proof. We again apply Corollary 13.3.2 and Theorem 11.4.4, with X,, =
SZ in (4.6) and Y, in (4.8). From Theorems 4.5.2 and 4.5.3, we get X,, =
U, as needed in the condition of Corollary 13.3.2, with U = §S,, where

Sa(1) 2 Su(1, Bs,0) for B, in (4.3) and

§ = (72/Ca)V®

for vy, in (4.2) and C, in (5.14). With the space scaling by n™%, we get
Y, = V for V = 0e. Since V = Oe, condition (3.9) holds trivially. Hence
we get Z,, = Uo e 4 \1/2U from Corollary 13.3.2. Hence o is as in (4.11).
u

Even though the limit process oS, in Theorem 7.4.2 has discontinuous
sample paths, we can use the Ji topology on D. That is no longer true for
the next two theorems.

Theorem 7.4.3. (renewal-reward FCLT for a heavy-tailed renewal process)
Suppose that (4.4) holds for 1 < ay < 2 and that either o2 < 0o or 02 = o0
and (4.2) holds with ay < oy < 2. Then

Zn = 0Sqa in (D, M)
where Zy, is in (4.5), o = ay, So is stable Lévy motion with S, (1) 4
Sa(1,—1,0) and

0% = m* Ay A/ Cy

for 7y in (4.4) above and Cy in (5.14) of Section 4.5.
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Proof. We again apply Corollary 13.3.2 and Theorem 11.4.4 with X,, = S
in (4.6) and Yy, in (4.8). Using the scaling function n ="/, we obtain U = Oe.
We obtain the FCLT for the renewal counting process from Theorems 4.5.2,
4.5.3, 7.3.2 and Corollary 7.3.2, making use of the M; topology. The limit
process V then is

V £ 678, 0 de

where §/,(1) £ 5,(1,1,0) and § = (v,/Ca)"/®. Thus

mV £ mlte™ ('yy/Ca)l/"Sa
where S, (1) 4 Sa(1,—1,0), by virtue of (5.9) in Section 4.5. =
We now treat the case in which the two processes have heavy tails with
the same index.

Theorem 7.4.4. (renewal-reward FCLT for heavy-tailed summands and
renewal process) Suppose that (4.2)~(4.4) hold with 1 < oy < 2 and oy = 0y,
Then

Z, = 0S, in (D,M),

where Zy, is in (4.5), @ = ay = ay, S, is a stable Lévy motion with S, (1) 4
Sa(1,8',0) for
/BI = 'Yzﬂm - ma)\a'Yy
Yz + MmNy

bl

A
C_a(%c + maka’)’y)a
Yo i (4.2), vy in (4.4) and Cy in (5.14) of Section 4.5.

Proof. We again apply Corollary 13.3.2 and Theorem 11.4.4 with (X,,,Y,,)
defined as in the previous theorems. As in Theorem 7.4.2, we get X,, = U

for U £ 68, with § = (v,/C,)!/®. As in Theorem 7.4.3, we get Y, = V
for V £ 1S, with Sq(1) £ Sa(1,—1,0) and 7 = A1+ ' (4, /Ca) /2. Since U
and V are independent processes without any fixed discontinuities, condition
(3.9) holds. Hence we get Z,, = Z, where

Z L 5SL o he + mnS2
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where S., and S2 are two independent a-stable Lévy motions with S. (1) 4
Sa(1,Bz,0) and S2(1) 4 Sa(1,—1,0). Thus we obtain

o = X+ m*n”

Yz a VY \a
_ Joy e ey
AT

= (A/Ca)(yz + m*X%y)
g = SAY 2B, + mn(—1)
B AV + mny

using scaling relations (5.9) and (5.10) in Section 4.5. =
We used the strong (mostly independence) assumptions to get

(X,,Y,) = (U, V) in D? (4.12)

for X,, = S? in (4.6) and Y, in (4.8). Given (4.12) without the other
specific assumptions we would still get limits for Z,, in (4.5) by applying
the convergence-preservation results for composition and inverse. Chapter
4 contains alternative FCLTs that can be employed.
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