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1 Introduction
One of the great successes of queueing, for both theory and applications, was the
development of the theory of product-form Markovian queueing networks stemming
from Jackson [4]. The product-form theory motivated considering decomposition
approximations for more general open queueing networks, e.g., with non-exponential
service-time distributions and non-Poisson arrival processes, as developed by [5, 8]. In
these early decomposition approximations, the arrival processes were partially char-
acterized by their rate and a single variability parameter, corresponding to the variance
of an interarrival time in a renewal-process approximation.

In [15] we developed a new decomposition algorithm to approximate the steady-
state performance of a single-class openqueueing network of single-server queueswith
unlimited waiting space, the first-come first-served discipline and Markovian routing.
The algorithm allows non-renewal external arrival processes, general service-time dis-
tributions and customer feedback. Each flow is partially characterized by its rate and
a scaled version of the variance-time curve, called the Index of Dispersion for Counts
(IDC). Let A be an arrival counting process at a queue, i.e., A(t) counts the total number
of arrivals in the interval [0, t]. We assume that A is a stationary point process.We par-
tially characterize A by its rate and its IDC, defined by IA(t) ≡ Var(A(t))/E[A(t)],
t ≥ 0. The required IDC functions for the external arrival processes can be calcu-
lated from the model primitives or estimated from data. Approximations for the IDC
functions of the internal flows are calculated by solving a set of linear equations.
The theoretical basis is provided by heavy-traffic limits for the flows established in
[10, 11, 14].
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Building on Bandi et al. [1], in [11] we developed a new Robust Queueing (RQ)
technique to generate approximations of the mean steady-state performance at each
queue from the IDC of the total arrival flow and the mean μ−1 and squared coef-
ficient of variation (scv) c2s of the service time at that queue. With RQ, we replace
the stochastic net-input process by a deterministic instance drawn from a predeter-
mined uncertainty set of input functions, while the RQ workload Z∗ is regarded as
the worst-case workload over the uncertainty set. The RQ approximation of the mean
steady-state workload is

E[Zρ] ≈ Z∗
ρ ≡ sup

x≥0

{
−(1 − ρ)x + b

√
ρx(IA(x) + c2s )/μ

}
, (1)

where b = √
2; see Theorem 2 of [11] and §EC.3 of its e-companion.

2. Problem statement
Improve the RQNA in [15] and extend it to more general models.
2.1 Improvements
2.1.1Allowingmultiplebottleneckqueues TheRQNA in [15] exploits the special
case of the FCLT for the flows in Theorem 3.1 of [14] in which only a single queue
in the network is a bottleneck. That leads to tractable approximations involving one-
dimensional reflected Brownian motion (RBM) supporting the approximations in [15,
16]. With more bottleneck queues, we can exploit multidimensional RBM.
2.1.2. Statistical fitting with system data There is also great potential to exploit
large system data sets together with advanced statistical techniques, e.g., machine
learning, within this RQNA framework to fit the covariance functions of the internal
flows, e.g., Cov(Ai, j (t), Ak,l(t)), that play a critical role in non-tree networks; e.g.,
see (28) of [15] and §§5.2–5.3 of [16].
2.2. Extensions
There are also many opportunities to extend the basic model. Such extensions are no
doubt best motivated from the needs of concrete applications, as illustrated by the
extensions of QNA in [8] discussed in [6]. Here are some: allow (i) multiple servers at
each queue, (ii) multiple classes and/or more general routing, (iii) time-varying arrival
processes.

3. Discussion
3.1 Performance comparisons with alternative algorithms
§6 of [15] compares RQNA predictions to simulation and other algorithms for difficult
network examples with extensive near-immediate feedback from [2]. These examples
are difficult for RQNA because the feedback induces strong dependence among the
flows and the service times, as illustrated by the case of immediate feedback; see §III
of [8] and §4 of [15]. Without our special techniques to eliminate near-immediate
feedback, RQNA performs quite poorly, but when we incorporate these special tech-
niques from §4 of [15], RQNA (elim) performs as well as the sequential bottleneck
decomposition (SBD) from [2], which in turn outperforms QNA from [8] and QNET
from [3].
As noted in Sects. 1.2 and 7 of [15], RQNA is effective for tree networks. Indeed,
Theorem 5 of [11] shows that it is asymptotically exact in both light and heavy traffic
for the G/GI/1. Second, Corollary 2 of [12] shows that a GI/GI/1 queue is fully
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characterized by the four tuple consisting of the rate and IDC of the arrival and service
processes. Dramatic examples are provided by Tables 2 and 3 from [12], which show
comparisons for queues in series exhibiting the heavy-traffic bottleneck phenomenon
from [7]. The interarrival time has an H2 distribution with scv c2a = 8.0 but three
possible values for the remaining third parameter r . Only RQNA captures the impact
of r (necessarily indirectly, because r is not used). From this perspective, RQNA
performs far better than the other methods.
3.2. Extensions
(i) Allowing multiple servers at each queue. As can be seen from §5.2 of [8], mul-
tiple servers at each node was allowed for QNA. An approach to robust queueing
with multiple servers is in [1]. New ideas are needed to extend [10, 11] to multiple
servers. (ii) Allowing multiple classes and/or more general routing. A provision for
multiple classes, where each class had its own routing, was provided in §2.3 of [8].
The algorithm aggregated the input data to convert it into an associated approximate
Markovian routing. (iii) Allowing time-varying arrival processes. A significant start
for a single queue with time-varying arrivals is in [13], but more is needed to treat
networks. For background on queues with time-varying arrivals, see [9].
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