
Probabilistic Scaling for the

Numerical Inversion of Non-Probability Transforms

by

Gagan L. Choudhury1 and Ward Whitt2

AT&T Laboratories

April 22, 1996

Revision: October 11, 1996

1Room 1L-238, Holmdel, NJ 07733-3030 (gagan@buckaroo.att.com)
2Room 2C-178, Murray Hill, NJ 07974-0636 (wow@research.att.com)

Abstract

It is known that probability density functions and probability mass functions can usually be

calculated quite easily by numerically inverting their transforms (Laplace transforms and generating

functions, respectively) with the Fourier-series method, but other more general functions can be

substantially more difficult to invert, because the aliasing and roundoff errors tend to be more

difficult to control. In this paper we propose a simple new scaling procedure for non-probability

functions that is based on transforming the given function into a probability density function or a

probability mass function and transforming the point of inversion to the mean. This new scaling

is even useful for probability functions, because it enables us to compute very small values at large

arguments with controlled relative error.

Subject classifications: Mathematics, functions: scaling for numerical transform inversion. Queues,

algorithms: scaling for numerical transform inversion.

Keywords: numerical inversion of transforms, Fourier-series method, Laplace transforms, generating

functions, scaling.

Numerical transform inversion is proving to be an effective tool for calculating quantities of

interest in operations research models. It is especially useful for queueing models, because many

probability distributions are readily available in the form of transforms; e.g., see Choudhury, Lucan-

toni and Whitt [9]. Abate and Whitt [3] and Choudhury, Lucantoni and Whitt [8] have shown that

probability distributions can be computed remarkably easily from their transforms by numerical

inversion using the Fourier-series method. This is especially true for cumulative distribution func-

tions (cdf’s) and probability mass functions (pmf’s), because they are nonnegative and bounded

above by 1, but it also tends to be true for probability density functions (pdf’s), because they are

also nonnegative and typically are bounded above away from the origin as well (which suffices, see

Section 2).

However, even for stochastic models, there is interest in calculating more general functions from

transforms. For example, Choudhury and Lucantoni [7] develop an algorithm for calculating mo-

ments, of high as well as low order, from a moment generating function, and Choudhury, Leung and

Whitt [5], [6] calculate performance measures in product-form models by numerically inverting the

generating function of the normalization constant. Both moments and normalization constants tend

to grow (or decline) geometrically fast. Calculating these non-probability functions by numerical

inversion has proved to be substantially more difficult than calculating probability distributions. In

these cases, the inversion algorithms required developing an appropriate way to scale the transforms

before performing the inversion. The scaling algorithms that have been developed are effective, but

they are somewhat ad hoc.

The purpose of this paper is to propose a systematic scaling algorithm for a large class of non-

probability functions. Our main idea is to scale so that the original function is transformed into a

pdf (with a Laplace transform) or a pmf (with a generating function), and the inversion point is

transformed into the mean. It is actually not necessary to think probabilistically, but it can help

intuition. More generally, the mean can be regarded as a center of gravity. The main point is that

our scaling algorithm transforms a potentially difficult inversion problem into one that tends to be

more manageable.

In addition to providing an alternative to the scaling algorithms in Choudhury and Lucantoni

[7] and Choudhury, Leung and Whitt [5], [6], our scaling algorithm here provides an alternative to

other methods proposed for developing general Fourier-series inversion algorithms, e.g., see Honig

and Hirdes [12] and Piessens and Huysmans [16].

The scaling is also important for probability distributions themselves when we want to compute

1

very small values at large arguments with controlled relative error. For example, we want to do this

in order to calculate the asymptotic parameters describing the way tail probabilities decay. Choud-

hury and Lucantoni [7] and Abate, Choudhury, Lucantoni and Whitt [1] showed that it is possible

to calculate these asymptotic parameters from high-order moments. The scaling here provides a

way to calculate the asymptotic parameters directly from the tail probabilities themselves.

Here is how the rest of this paper is organized. In Section 1 we briefly review the Fourier-series

method for one-dimensional Laplace transforms, and in Section 2 we develop the associated scaling

algorithm. In Section 3 we develop an additional scaling algorithm to aid in computing functions

at very large or small arguments. In Section 4 we present some simple examples (exponential

and power functions) to illustrate the scaling concepts. In Section 5 we discuss the application of

the scaling to calculate asymptotic parameters of probability distributions. In Section 6 we apply

the new scaling algorithm to compute small tail probabilities in the statistical multiplexing model

considered by Choudhury, Lucantoni and Whitt [10], i.e., the BMAP/G/1 queue. In Section 7

we describe the variant of the main scaling algorithm for generating functions. In Section 8 we

present the scaling algorithm for multidimensional transforms, which may be Laplace transforms

in some dimensions and generating functions in others. We apply the multidimensional scaling in

Section 9 to a two-dimensional example involving a closed queueing network. There the scaling is

an alternative to our scaling in [5]. Finally, we state our conclusions in Section 10.

1. The Fourier-Series Method

Given a Laplace transform

f̂(s) =

∫

∞

0
e−stf(t)dt ,

the fourier-series method calculates the desired function f(t) by constructing a periodic function

by aliasing. The periodic function is calculated from its Fourier series, whose coefficients can be

expressed in terms of the Laplace transform values. To ensure that the aliasing error is negligible,

the original function f(t) is replaced by the damped function e−btf(t), t ≥ 0, for b > 0. Then the
damped function is extended to the whole line by letting it be 0 for t < 0.

By this reasoning, we are able to write

f(t) = fa(t)− ea(t) , (1)

2

where the periodic approximation is

fa(t) =
eA/2l

2lt

∞
∑

k=−∞

f̂

(

A

2lt
+
ikπ

lt

)

eikπ/l (2)

and the aliasing error is

ea(t) =
∞
∑

k=1

e−Akf((1 + 2kl)t) ; (3)

see (2.7) and (2.8) of Choudhury, Lucantoni and Whitt [8]. (These are the one-dimensional versions

of the two-dimensional formulas given there.)

Given (1)–(3), the idea is to choose the parameter A to make the aliasing error in (3) suitably

small, and then choose the parameter l to make the roundoff error in calculating (2) suitably small.

The roundoff error arises with limited precision (such as double precision) because the prefactor in

(2) can be very large, leading to the multiplication of a very small number by a very large number.

The overall procedure is to first choose the parameters l and A to make the roundoff error and

the aliasing error small, and then calculate fa(t) by approximately summing the infinite series in

(2), e.g., with an acceleration technique such as Euler summation. Euler summation tends to be

effective provided that the function f(t) is suitably smooth; e.g., see p. 46 of [3] and O’Cinneide [15].

If the function is not initially sufficiently smooth, then convolution smoothing can be considered;

e.g., see p. 39 of [3] and Platzman, Ammons and Bartholdi [17].

When f is a cumulative distribution function (cdf) or a complementary cdf (ccdf, i.e., one minus

the cdf), |f(t)| ≤ C for C = 1 and all t, so that

|ea(t)| ≤
Ce−A

1− e−A ≈ Ce
−A , (4)

and the aliasing error is easily controlled. When f is a probability density function (pdf), the

aliasing error is also usually easy to control. Then we assume that

|f(x)| < C for all x ≥ (1 + 2l)t , (5)

for some C, which is also sufficient to have the bound (4), as can be seen from (3). For pdf’s,

we may have f(0) = ∞, but the behavior below (1 + 2l)t plays no role in the aliasing error. In
general, pdf’s need not satisfy (5) (because they could have arbitrarily high peaks, approximating

point masses away from the origin), but they do in typical cases. Of course, the bound C is usually

not known in advance, but reasonable estimates of C can usually be determined when performing

the inversion, e.g., by starting with C = 1 and making adjustments as necessary from the observed

3

accuracy. The accuracy can be estimated by performing the inversion with two different parameter

pairs (A, l).

More general functions are difficult to invert for two reasons. First, (5) and, thus, (4) need not

hold. Second, we may wish to calculate very small values f(t). We assume that we are interested

in controlling the relative aliasing error |ea(t)/f(t)| rather than the absolute aliasing error. Our
scaling strategy is to transform the function into a pdf whose mean coincides with the desired

inversion point t, so that we can invoke (5) and achieve (4). We aim to make the inversion point

t coincide with the mean, so that the transformed function value should be O(1). Then a small

absolute aliasing error for the scaled function will translate into small relative error for the original

function f(t).

2. The Scaling Algorithm

We transform f(t) into a pdf using the scaled function

fα0,α1(t) = α0e
−α1tf(t), t ≥ 0, (6)

which has Laplace transform

f̂α0,α1(s) = α0f̂(s+ α1). (7)

To compute f(t), we first compute fα0,α1(t) by numerically inverting f̂α0,α1(s) and then calculate

f(t) by letting

f(t) = α−10 e
α1tfα0,α1(t). (8)

Our choice of parameters α0 and α1 (discussed below) is intended to make fα0,α1(t) not too small

or large, but f(t), α0 and e
α1t may be very small or large (even outside the floating point limit of

the computer). Hence, we compute (8) using logarithms if necessary; i.e., we compute

log f(t) = α1t+ log fα0,α1(t)− logα0. (9)

Now we turn to the choice of the scaling parameters α0 and α1 in (6) and (7). We choose the

parameters α0 and α1 so that the function fα0,α1(t) is like a probability density function (pdf) and

the desired inversion point t is near the mean. To achieve this property, we assume that the desired

function f is nonnegative.

In the following, let f̂ ′(α) be the derivative of f̂(s) at s = α.

Theorem 2.1. Suppose that the function f is nonnegative and let s∗ be the rightmost singularity

4

of f̂(s), with s∗ = −∞ if f̂(s) is analytic. For any m, 0 < m <∞, if the equation

−f̂ ′(α1)
f̂(α1)

= m (10)

has a real root α1 in the interval (s
∗,∞), then fα0,α1 in (6) is a bonafide probability density function

with mean m for α1 satisfying (10) and

α0 = 1/f̂(α1) . (11)

Moreover −f̂ ′(α)/f̂ (α) is decreasing in α for real α in (s∗,∞), so that (10) has at most one real
root.

Proof. Note that
−f̂ ′(α)
f̂(α)

=

∫

∞

0 te
−αtf(t)dt

∫

∞

0 e
−αtf(t)dt

,

so that it is indeed the mean of the pdf with density fα(t) ≡ Cαe−αtf(t), where Cα is chosen so
that the total mass is 1. To establish the monotonicity of −f̂ ′(α)/f̂ (α), we use stochastic order
concepts; these are discussed in the Appendix of Ross [19] and Shaked and Shanthikumar [20].

Note that the ratio of the pdf’s satisfies

fα2(t)

fα1(t)
=
Cα2e

−(α2−α1)t

Cα1
, t ≥ 0,

which is decreasing in t for α2 > α1, which implies that fα2 is smaller than fα1 in the likelihood

ratio ordering, which in turn implies that fα2 is less than fα1 in stochastic order, which in turn

implies that the means are ordered, i.e.,

−f̂ ′(α2)
f̂(α2)

<
−f̂ ′(α1)
f̂(α1)

.

Finally, given α1, α0 must satisfy (11) to make fα0,α1(t) a proper pdf.
�

Hence, to compute f(t), we at first scale the function f using (10) and (11) with m = t and

then use the inversion formula in Section 1. Since the function −f̂ ′(α)/f̂ (α) is monotone, it is
relatively easy to find a root α1 to equation (10) when it exists by a simple search algorithm. For

example, we can start with α = 0 and then consider α = +1 or α = −1. Afterwards, increase
α in absolute value geometrically (e.g., 1, 2, 4, 8 . . .) until a finite interval containing the root is

identified. Thereafter use bisection search. If no finite interval is identified after a large number of

steps, we conclude that no root to (10) exists. Alternatively, we can use the Newton-Raphson root

finding algorithm, which requires the derivative

d

dα

f̂ ′(α)

f̂(α)
=
f̂ ′′(α)

f̂(α)
− f̂

′(α)2

f̂(α)2
,

5

which in turn requires the second derivative f̂ ′′(α). Typically, the second method will be much

faster than the first, but neither requires significant computation.

However, it is important to be aware of two complications. First, the desired root α1 in (10)

must be to the right of all singularities of the Laplace transform f̂(s). This should be checked.

Second, it is important to be aware that a root to equation (10) need not exist even if f̂(α) is finite

for one or more values of α. For example, suppose that

f(t) = (1 + tc)−1 (12)

for c > 2, so that

τ =

∫

∞

0
tf(t)dt <∞ . (13)

Then fα0,α1(t) defined by (6) has mean m < τ in (13) for all α1 ≥ 0, but has infinite mean for
α1 < 0. Thus, it is possible to find a root to (10) for all m ≤ τ , but not for m > τ .

3. Scaling For Large or Small Arguments

From (2) it is evident that there can be numerical difficulties if t is very small, because then

the prefactor in (2) is very large. There can also be numerical difficulties with (2) if t is large and

the transform f̂(s) has singularities on the line with Re(s) = 0, because the argument of f̂ in (2)

will be close to this line when t is large.

When t is very small or large, inversion can often be replaced by asymptotic analysis. We now

show that it is also possible to avoid this difficulty by scaling the function so that the inversion is

performed at t = 1. For this purpose, we use the scaled function

f τ (t) ≡ f(τt), t ≥ 0, (14)

which has Laplace transform

f̂ τ (s) =
1

τ
f̂(s/τ). (15)

We compute f(t) by calculating f t(1) by numerically inverting f̂ t(s). For this procedure, we exploit

the fact that

f t(1) = f1(t) = f(t) .

Since the inversion point is shifted to t = 1 after scaling, from (2) we see that there should

be no numerical difficulty even if the actual inversion point t before scaling is arbitrarily small or

large. However, there can be numerical difficulty in computing f̂ t(s) using (15) with τ = t for very

6

small t. This difficulty may be removed by the following key observation based on the initial value

theorem for Laplace transforms. If f(t)→ f(0) as t→ 0, then

lim
t→0
f̂ t(s) = lim

t→0

1

t
f̂

(

s

t

)

=
1

s
lim
s̄→∞

s̄f̂(s̄) for s̄ = s/t

=
1

s
lim
t→0
f(t) =

f(0)

s
.

The above states that if limt→0 f(t) is finite, then so is limt→0 f̂
t(s), so that it should be possible

to rewrite the righthand side of (15) with τ = t (basically by cancelling out t−1 terms) such that

there is no computational difficulty for arbitrarily small t.

On the other hand, if f(t) has a singularity at t = 0, there would be a corresponding singularity

of f̂ t(s) at t = 0 and any inversion procedure would not work for obvious reasons. We illustrate

this using a simple example. Let f(t) represent the cdf of waiting time in an M/G/1 queue with

utilization ρ, arrival rate λ and service-time LST ĥ(s). Then the LST of f(t) is

f̂(s) ≡
∫

∞

0
e−stdf(t) =

(1− ρ)
s− λ+ λĥ(s)

. (16)

From (15),

f̂ t(s) =
1

t
· (1− ρ)
(s/t)− λ+ λĥ(s/t)

. (17)

If we try to compute directly from (17), then there is numerical difficulty for small t. However,

(17) can be rewritten as

f̂ t(s) =
(1− ρ)

s− λt+ λtĥ(s/t)
, (18)

and there is no numerical difficulty in computing from (18) for arbitrarily small t.

Next, if we do the same exercise on the pdf instead of the cdf, then we get

f̂(s) =
s(1− ρ)

s− λ+ λĥ(s)
(19)

and

f̂ t(s) =
1

t

(s/t)(1− ρ)
(s/t)− λ+ λĥ(s/t)

=
(s/t)(1− ρ)

s− λt+ λtĥ(s/t)
. (20)

Note that (20) does have a numerical difficulty for small t, whereas (18) does not. This is because

the pdf has a singularity at t = 0, while the cdf does not.

7

4. Simple Examples

In this section we discuss two simple examples to illustrate the scaling concepts.

Example 4.1. (an exponential function) Suppose that f(t) = eθt, t ≥ 0, with Laplace transform
f̂(s) = (s−θ)−1. Of course, no numerical inversion is needed in this case; this example is to illustrate
the procedure. For θ > 0, there does not exist a finite C such that |f(x)| ≤ C for x ≥ (1 + 2l)t.
For θ < 0, f(t) will be very small when t is suitably large.

In this case equation (10) becomes

−f̂ ′(α1)
f̂(α1)

=
1

α1 − θ
= t,

so that

α1 = θ + t
−1

and, by (11),

α0 =
1

f̂(α1)
= (α1 − θ) = t−1.

Hence,

f̂α0,α1(s) =
t−1

s+ t−1
,

and

fα0,α1(x) = t
−1e−x/t, x ≥ 0,

which is the exponential pdf with mean t, as could be predicted from Theorem 2.1.

Note that the scaled transform f̂α0,α1(s) does not have the numerical difficulties of the original

transform f̂(s). First, for all x ≥ (1 + 2l)t, |fα0,α1(x)| ≤ C, where

C =
1

t
e−(1+2l) and

C

|fα0,α1(t)|
= e−2l < 1.

Second, fα0,α1(t) = 1/et, which does not become too large or small unless t itself is very small or

large.

We can address the problem of extremely large or small t by first using the scaling procedure

in Section 3. As in (15), we let

f̂ t(s) =
1

t
f̂(s/t) =

1

s− θt .

To get f(t), we compute f t(1) by inverting f̂ t(s). Hence, the inversion point is shifted from t to 1.

Now we apply the scaling procedure in Section 2 to get

1 =
−f̂ t′(α1)
f̂ t(α1)

=
1

α1 − θt
,

8

so that α1 = θt+ 1 and α0 = 1. As a consequence,

f̂ tα0,α1(s) = (1 + s)
−1

and

f tα0,α1(x) = e
−x, x ≥ 0 .

Hence, we calculate f tα0,α1(1) = e
−1 by numerically inverting (1 + s)−1, which avoids all problems

of small or large t. Then we calculate f t(1) by applying (8), i.e.,

f(t) = f t(1) = α−10 e
α1fα0,α1(1) = e

θt .

Example 4.2. (a power) Now suppose that

f(t) = tx, t ≥ 0,

for some x > 0, which has Laplace transform

f̂(s) =
Γ(x+ 1)

sx+1
.

There is a genuine difficulty in the inversion for t near 0 if x is negative, because then 0 is a

singularity. Otherwise, we can apply the method of Section 3 to transform the inversion point to

t = 1. So henceforth assume that the inversion point is t = 1.

We solve (10) to obtain α1, obtaining

1 =
−f̂ ′(α1)
f̂(α1)

=
x+ 1

α1
,

so that α1 = x+ 1. Then, by (11),

α0 =
1

f̂(α1)
=
(x+ 1)x+1

Γ(x+ 1)
.

Hence,

f̂α0,α1(s) = α0f̂(s+ α1) =

(

x+ 1

s+ x+ 1

)x+1

(21)

and

fα0,α1(t) =
(x+ 1)x+1txe−(x+1)t

Γ(x+ 1)
, t ≥ 0, (22)

which we recognize as a gamma pdf with shape and scale parameter x + 1, and so mean 1 and

variance (1 + x)−1.

The scaled function-transform pair (fα0,α1(t), f̂α0,α1(s)) in (21) and (22) is much better behaved

than the original pair (f(t), f̂(s)). First, the function fα0,α1(t) is strictly decreasing for x > 1, so

that C/|fα0,α1(1)| < 1. Second, the quantity fα0,α1(1) does not get too small or large for any x,
even large x, as can be seen from Stirling’s formula.

9

5. Asymptotic Parameters of Tail Probabilities

Suppose that we know or suspect that a complementary cdf (ccdf) F c(t) ≡ 1 − F (t) has the
asymptotic form

F c(t) ∼ αtβe−ηt as t→∞ (23)

for positive constants α and η and arbitrary constant β, where f(t) ∼ g(t) as t → ∞ means that
f(t)/g(t) → 1 as t → ∞. Choudhury and Lucantoni [7] and Abate et al. [1] showed how the
asymptotic parameters α, η and β can be calculated numerically from the moments after they have

been calculated by numerically inverting the moment generating function.

Now we show how the asymptotic parameters can be calculated from three values of F c(t) for

large t. It suffices to solve the three equations

logF c(ti) = logα+ β log ti − ηti (24)

with i = 1, 2, 3 for log α, β and η. We use the scaling to compute F c(ti) by numerical inversion

from the Laplace transform (1− f̂(s))/s for suitably large and separated ti.
To illustrate, we consider the first-moment cdf (the time-dependent mean normalized to be

a cdf) of reflected Brownian motion (RBM), which was analyzed in Abate and Whitt [2]. The

associated RBM first-moment ccdf, denoted by H c(t), is known to have the asymptotic form

Hc(t) ∼ 2
√

2

πt3
e−t/2 as t→∞ ; (25)

see Corollary 1.3.5 on p. 567 of [2]. We will verify that η = 1/2, α = 2
√

2/π and β = −3/2 by
applying numerical transform inversion. The Laplace transform of H c(t) is

Ĥc(s) =
1− ĥ1(s)
s

=
s+ 1−

√
1 + 2s

s2
; (26)

see p. 568 of [2].

From (26), we obtain the derivative

Ĥc
′

(s) =
(2 + 3s)

√
1 + 2s− (2 + 5s+ 2s2)
s3(1 + 2s)

, (27)

so that

r(s) =
−Ĥc′(s)
Ĥc(s)

=
1 + 2s−

√
1 + 2s

2s(1 + 2s)

= (1 + (1 + 2s)−1/2)/2s . (28)

10

A partial check is obtained by noting that, by L’Hospital’s rule, r(0) = 0.5, which agrees with the

known formula for the mean; combine Corollaries 1.3.4 and 1.5.1 of [2].

We computed Hc(t) for several values of t using the scaling and the algorithm in Section 1. We

verified that all computations are correct up to the displayed number of places by doing independent

computations with inversion parameters l = 2 and l = 3. The results are displayed below in

Table 1. We get the first four values equally accurately even without scaling, but for t ≥ 50
there are significant errors in the unscaled algorithm. (For the cases with t ≥ 100, the unscaled
algorithm using double precision cannot distinguish the exact values from 0.) Note that at t = 2000,

Hc(t) is even below the floating-point limit of the computer we used. For this example the scaling

parameter α1 approaches −0.5 and α0 approaches 0.5 as t approaches infinity. (This is easy to
show analytically as well.)

t Hc(t) asymptotic approximation

2.0 0.5679012E-01 0.2075537E+00
5.0 0.5634086E-02 0.1171599E-01
10.0 0.2186916E-03 0.3400147E-03
20.0 0.6303259E-06 0.8099911E-06
50.0 0.5611686E-13 0.6268347E-13
100.0 0.2905855E-24 0.3077839E-24
200.0 0.2038120E-46 0.2098828E-46
500.0 0.3764690E-112 0.3809733E-112
1000.0 0.3573839E-221 0.3595250E-221
2000.0 0.9029074E-439 0.9056141E-439

Table 1. Numerical results for the RBM first-moment ccdf H c(t)

Table 1 also shows the asymptotic approximation using (25). Note that the exact value ap-

proaches the asymptote, but remarkably slowly. For example, there is only two-digit accuracy

when the tail probability is 10−439, which is already far outside the typical range of interest. This

is unlike distributions with true exponential tails where the convergence is often spectacularly fast.

We can compute estimates of the asymptotic parameters based on any three values of t, but we

cannot expect them to be very accurate because of the accuracy in Table 1. If we use the last three

values, then we get

α = 1.4607588 , β = −1.4872161 , η = 0.5000059 ,

whereas the true values are

α = 1.5957691 , β = −1.5 , η = 0.5 .

11

The accuracy for the asymptotic decay rate η is excellent, but the accuracy for α and β is not too

good. However, overall the accuracy is good enough for many practical purposes. Just as in the

context of moments [1], the accuracy may be greatly enhanced. Here we can assume a multi-term

asymptotic expansion and get estimates based on many points. The main point here, however, is

that the scaling enables us to accurately compute very small tail probabilities.

6. A Multiplexing Example

We now consider the MMPP/D/1 queueing model used to study the effectiveness of effective

bandwidths to describe buffer overflow probabilities with statistical multiplexing in [10]. In that

model there are N independent sources sending fixed-length cells to a buffer, which is drained by

an output channel at a fixed rate whenever cells are present. The cell service-time distribution is

thus deterministic and its value is set at 1 (by choosing the unit of time).

As in [10], we consider the special case of homogeneous on-off sources. For each source, the

on and off periods have exponential distributions. The mean off-period ζ is 10 times the mean

on-period ω. During the on period cells arrive according to a Poisson process at (peak) rate p. The

mean number of arrivals in an on-period is pω = 60. The source rates are appropriately adjusted

so that the long-term utilization of the output channel is 0.3 for each N .

We consider the cases of N = 2 and N = 24. The case N = 24 is the example in Section II

of [10]. In that case ω = 436.6, ζ = 4363.3 and p = 0.1375. The case N = 2 is an alternative

considered in Section IV of [10].

The Laplace-Stieltjes transform Ŵ (s) of the steady-state waiting-time distribution (used to ap-

proximate the buffer overflow probability) is given in (8.4) of [10]. The waiting-time tail probability

P (W > x) is calculated by numerically inverting the transform Ŵ c(s) = [1 − Ŵ (s)]/s. However,
there are two difficulties. First, the D service is not so easy to treat. Hence, we approximate the D

service-time transform e−s by an accurate non-probability transform that is a hybrid of Padé and

Erlang approximations. In particular, we used the approximation

e−s =
a0 + a1s

(1 + bs
128)

128
+ 1− a0 , (29)

where a0 = 0.9984796, a1 = 0.0894316 and b = 0.9119549. Note that the approximation is close to

the Erlang E128 approximation, which is obtained by setting a0 = 1, a1 = 0 and b = 1. However,

(29) also matches the first 3 moments of the deterministic distribution and can be shown to be very

accurate in predicting the waiting-time tail probability. We intend to discuss the approximation of

12

transforms such as e−s in more detail elsewhere [11]; our approach is similar in spirit to Akar and

Arikan [4].

The second difficulty is that the transform Ŵ (s) has an involved matrix expression, so that it

is not easy to analytically calculate the derivative of Ŵ c(s), as needed for the scaling algorithm

in Section 3. Therefore, we use a numerical differentiation procedure. In particular, we use the

formula

hf ′(x) = ∆(1)x −
1

24
∆(3)x +

3

128
∆(5)x −

5

7168
∆(7)x + . . . (30)

where ∆
(1)
x = f(x + (h/2)) − f(x − (h/2)) and ∆(n+1)x = ∆

(n)
x+h/2 − ∆

(n)
x−h/2 for n ≥ 1, which is

based on Bessel’s interpolation formula; see equation III-C-11 on p. 100 of Kopal [14]. Formula

(30) is based on computing function values at x ± (2j + 1)h/2 for j = 0, 1, . . . , n. We found that
h = max{0.01|x|, 0.001) and n = 3 (8 points) is often satisfactory. We also ensure (by reducing h if
necessary) that each point in the derivative calculation is to the right of the rightmost singularity

of the transform (which is easy to calculate accurately since it is the negative of the asymptotic

exponential decay rate of the tail probability [7], [10]).

Numerical values of the tail probabilities and the scaling parameters α1 and α0 as a function

of the buffer size are given for the two cases N = 2 and N = 24 in Table 2. With standard

double precision and without scaling, the inversion algorithm would typically have errors of order

10−9 and hence all probabilities below 10−9 would have large relative errors. However, with the

scaling, the algorithm maintains accuracy to 10−20. (The accuracy was confirmed by independent

computations with roundoff control parameters ` = 1 and ` = 2.)

N = 2 N = 24
buffer tail tail
size prob. α1 α0 prob. α1 α0
200 .13564e-1 -.01363 .00777 .63603e-5 -0.1777 1.152
400 .36103e-3 -.01577 .00428 .63129e-7 -.01788 1.116
600 .96600e-5 -.01652 .00298 .97442e-9 -.01793 1.091
800 .25848e-6 -.01690 .00229 .18351e-10 -.01795 1.071
1000 .69165e-8 -.01714 .00186 .38679e-12 -.01797 1.054
1200 .18507e-9 -.01729 .00156 .87597e-14 -.01798 1.039
1400 .49522e-11 -.01741 .00135 .20840e-15 -.01799 1.026
1600 .13251e-12 -.01749 .00119 .51345e-17 -.01800 1.014
1800 .35457e-14 -.01756 .00106 .12971e-18 -.01801 1.003
2000 .94876e-16 -.01761 .00096 .33352e-20 -.01801 0.992

Table 2. Tail probabilities and scaling parameters α1 and α0 for the MMPP/D/1 model in Section 6

13

as a function of the numberN of sources and the buffer size. In these cases the rightmost singularity

of the transform Ŵ (s) is at −η for η = 0.0181047.

7. Scaling for Generating Functions

For generating functions, there is no analog of the small argument problem for Laplace trans-

forms in Section 3, but there is an analog to the small-or-large function values problem in Section 2,

and a minor modification of the same procedure applies.

Given the generating function q∗(z) =
∑

∞

k=0 qkz
k, we construct the scaled sequence {qα0,α1(k) :

k ≥ 0} by setting
qα0,α1(k) = α0α

k
1qk, k ≥ 0, (31)

which has generating function

q∗α0,α1(z) = α0q
∗(α1z) . (32)

The following theorem is the discrete analog of Theorem 2.1. For its statement, let q∗
′

(z) be

the derivative of q∗(z).

Theorem 7.1. Suppose that the sequence q is nonnegative and let z∗ be the radius of convergence

of the generating function q∗(z). For any λ, 0 < λ <∞, if the equation

α1q
∗
′

(α1)

q∗(α1)
= λ (33)

has a real root α1 in the interval (0, z
∗), then qα0,α1 in (31) is a bonafide probability mass function

with mean λ for α1 satisfying (33) and

α0 = 1/q
∗(α1) . (34)

Moreover, αq∗
′

(α)/q∗(α) is strictly increasing in α for positive α in (0, z∗), so that (33) has at most

one real root.

Proof. Note that
αq∗

′

(α)

q∗(α)
=

∑

∞

k=0 kα
kqk

∑

∞

k=0 α
kqk

,

so that it is the mean of the pmf qα(k) = Cαα
kqk, where the constant Cα is chosen to make the

total mass 1. Note that the ratio of pmf’s satisfies

qα2(k)

qα1(k)
=
Cα2α

k
2

Cα1α
k
1

which is increasing in k for α2 > α1, so that qα2 is larger than qα1 in the discrete likelihood ratio

ordering, which implies stochastic order and the ordering of the means.
�

14

Hence, if we want to calculate qk, then we would scale by (31) with α1 chosen to satisfy (33)

for λ = k.

8. Scaling for Multidimensional Transforms

The scaling for Laplace transforms in Section 2 and generating functions in Section 7 extends

to multidimensional transforms, which may have some dimensions discrete (generating functions)

and other dimensions continuous (Laplace transforms). We illustrate in this section by discussing

the bivariate mixed case. Here we call the desired bivariate function that is a pdf in one dimension

and a pmf in the other dimension simply a pdf.

Given a bivariate function f(t, k) of a continuous variable t and a discrete variable k, let its

transform be

f̂(s, z) =

∫

∞

0

∞
∑

k=0

f(t, k)zke−stdt . (35)

We introduce the scaled function

fα(t, k) = α0e
−α1tαk2f(t, k) (36)

for α ≡ (α0, α1, α2), which has transform

f̂α(s, z) = α0f̂(s+ α1, α2z) . (37)

Theorem 8.1. Suppose that the bivariate function f is nonnegative. For any m1, 0 < m1 < ∞,
and integer m2, 0 < m2 <∞, if the pair of equations

− ∂
∂s
log f̂(s, z) |s=α1,z=α2 = m1 (38)

and

z
∂

∂z
log f̂(s, z) |s=α1,z=α2 = m2 (39)

has a solution (α1, α2) such that f̂α(s, z) is analytic for |z| < 1 and Re(s) > 0, then fα in (36) is
a bivariate pdf with means m1 and m2 in the two dimensions, provided that

α0 =
1

f̂(α1, α2)
. (40)

Proof. The arguments of Theorems 2.1 and 7.1 can be repeated. Recall that

−∂
∂s
log f̂(s, z) =

− ∂∂s f̂(s, z)
f̂(s, z)

15

and

z
∂

∂z
log f̂(s, z) = z

∂
∂z f̂(s, z)

f̂(s, z)
.

�

Unfortunately, however, it is not as easy to find the solution of the pair of equations (38) and

(39) as it is to find the solution of the single equation arising in the one-dimensional cases in

Sections 3 and 5. For practical purposes, we suggest using an iterative procedure. First fix α2 and

then find candidate values of α0 and α1, using the appropriate one-dimensional algorithm. Then

fix α1 and find new values of α0 and α2, again using the appropriate one-dimensional algorithm.

Then repeat, fixing α2, and so forth, stopping after a few iterations, since an exact solution is

not required. To speed up convergence, after a few initial search steps, the Newton-Raphson root

finding algorithm can be used.

The procedure just described seems often to be effective. In part, this is due to the function

f(α1, α2) here being monotone in each argument separately. However, to show that the multidi-

mensional case is indeed more complicated than the one-dimensional case, we now give an example

showing that a solution (to the mean equations) need not be unique in two dimensions.

Example 8.1. We consider a two-dimensional Laplace transform, i.e., the continuous-continuous

case. To demonstrate lack of uniqueness, consider the four-point probability distribution assigning

mass 1/4 to each of the points (3, 0), (2, 1), (1, 2) and (0, 3) in � 2 . Let the two means be m1 = 1

and m2 = 2. Then the two mean equations become

3x3 + 2x2y + xy2

x3 + x2y + xy2 + y3
= 1

and
3y3 + 2y2x+ yx2

x3 + x2y + xy2 + y3
= 2 ,

where x = e−α1 and y = e−α2 . These equations both reduce to the single equation

2x3 + x2y − y3 = 0 . (41)

Dividing through (41) by y3, we see that z ≡ x/y satisfies the equation

2z3 + z2 − 1 = 0 ,

which has one positive real root z = 0.65730. Hence (zy, y) is a solution to (41) for all y > 0.
�

It still remains to better understand the behavior of the system of equations (38) and (39)

in the multidimensional case. We conclude this section by giving a condition under which the

bivariate function is monotone in the arguments α1 and α2, but even this leaves open the questions

16

of existence, uniqueness and convergence. For our monotonicity result, we exploit the notions of

total positivity and multivariate likelihood ratio ordering, see Karlin and Rinott [13] and Whitt [21].

One bivariate pdf f1(t1, t2) is said to be less than or equal to another f2(t1, t2) in the multivariate

likelihood ratio (MLR) order if

f1(x)f2(y) ≤ f1(x ∧ y)f2(x ∨ y)

for all vectors x ≡ (x1, x2) and y ≡ (y1, y2), where x ∧ y = (x1 ∧ y1, x2 ∧ y2), x1 ∧ y1 = min{x1, y1}
x∨ y = (x1 ∨ y1, x2 ∨ y2) and x1 ∨ y1 = max{x1, y1}, and we write f1 ≤lr f2. A single bivariate pdf
f is said to be totally positive of order 2 (TP2) if f ≤lr f .
Theorem 8.2. Consider a nonnegative bivariate function f(t1, t2) of two continuous variables t1

and t2. If, in addition, f is TP2, then the bivariate function

(−∂
∂s2
log f̂(s1, s2) ,

−∂
∂s2
log f̂(s1, s2)

)

|s1=α1,s2=α2

is increasing in α1 and α2.

Proof. Given the extra conditions, the proof is the two-dimensional generalization of the proof

of Theorem 2.1. Given that f is TP2, MLR order is equivalent to the ratio fα2(x)/fα1(x) being

decreasing in the vector x; see Theorem 3 of [21]. The MLR order implies stochastic order, which

in turn implies an ordering of the means.
�

9. A Two-Dimensional Queueing Network Example

Consider the two-dimensional transform

g̃(z1, z2) =
∞
∑

n1=0

∞
∑

n2=0

g(n1, n2)z
n1
1 z

n2
2 =

exp
(

∑2
j=1 ρj0zj

)

Πqi=1

(

1−∑2j=1 ρjizj
) . (42)

This is the generating function of the normalization constant in a closed queueing network with

two chains; see [5] for details. Obtaining the normalization constant can be computationally very

intensive and many algorithms have been proposed; e.g., the convolution algorithm. However, in

[5] it was shown that under many conditions numerical transform inversion is the most efficient

procedure. But a difficulty is scaling. We show below how our scaling procedure in this paper

works in that context.

We work with the scaled generating function

g̃α(z1, z2) = α0g̃(α1z1, α2z2) . (43)

17

The scaling parameters α1 and α2 are obtained from the two equations

ni = zi
∂

∂zi
log g̃(z1, z2)|z1=α1,z2=α2

= αi



ρi0 +
q
∑

j=1

ρij

1−∑2k=1 ρkjαk



 for i = 1, 2 . (44)

We must solve the pair of nonlinear equations in (44). As suggested earlier, we can fix α2 and

search for the value α1 that satisfies the equation for i = 1. Next, fixing α1 at the value obtained,

we search for the value α2 that satisfies the equation for i = 2. We do this repeatedly until

convergence is achieved based on some prescribed error criterion. We observed that this procedure

indeed converges, but the rate of convergence becomes slow as n1 and n2 increases. By contrast,

the two-dimensional Newton-Raphson method (see Press et al. [18], Chapter 9) converges very fast

(less than 10 steps), provided that we start not too far from the root. So we initially use the search

procedure a few times and then the Newton-Raphson method.

Here is an example with generating function (42). It corresponds to a closed queueing network

with two single-server queues, one infinite-server queue and two chains. The parameters are:

ρ1,0 = 1 , ρ2,0 = 1 , ρ1,1 = 1 , ρ2,1 = 2 ,

ρ1,2 = 2 , ρ2,2 = 3 .

The results for several values of the chain populations n1 and n2 are displayed in Table 3.

n1 n2 gn1,n2 α1 α2 α0
3 2 0.243883E+04 0.240070 0.104428 0.806627E-01
30 20 0.627741E+33 0.294397 0.130311 0.589928E-02
300 200 0.973460E+331 0.299451 0.133032 0.564701E-03
3000 2000 0.235196E+3318 0.299945 0.133303 0.562179E-04

Table 3. Numerical results for the normalization constant gn1,n2 in a closed queueing network with

two chains.

The accurate computation in the last case would be challenging by any alternative algorithm. Our

algorithm uses Euler summation in each dimension and took only seconds. Accuracy was checked

by performing two independent computations with two sets of inversion parameters.

18

10. Conclusions

We have shown how to scale one-dimensional Laplace transforms (Sectons 2 and 3), one-

dimensional generating functions (Section 7) and multidimensional transforms (Section 8) of non-

probability functions in order to control the aliasing and round-off errors in applications of the

Fourier-series method of numerical transform inversion. The scaling also applies to compute very

small values of probability functions. The strategy is to transform the original function into a pdf

or pmf and transform the inversion point to the mean. The required equation in one dimension

is usually easy to solve, but as noted at the end of Section 3 a solution does not always exist.

Moreover, for pathological examples (e.g., a bimodal function with the mean located in a deep

troff) the mean may not be a good inversion point. However, examples in Sections 4–6 show that

the procedure in one dimension is typically very effective.

As shown in Section 8, the scaling extends to multidimensional transforms, but the resulting

scaling equations are more complicated. The scaling equations seem easy to solve in examples,

as illustrated by the queueing network example in Section 9, but the multidimensional scaling

equations still need to be better understood.

19

References

[1] J. Abate, G. L. Choudhury, D. M. Lucantoni and W. Whitt, “Asymptotic analysis of tail

probabilities based on the computation of moments,” Ann. Appl. Prob. 5, 983–1007 (1995).

[2] J. Abate and W. Whitt, “Transient behavior of regulated Brownian motion, I: starting at the

origin,” Adv. Appl. Prob. 19, 560–598 (1987).

[3] J. Abate and W. Whitt, “The Fourier-series method for inverting transforms of probability

distributions,” Queueing Systems 10, 5–88 (1992).

[4] N. Akar and E. Arikan, “A numerically efficient method for the MAP/D/1/K queue via rational

approximations, Queueing Systems 22, 97–120 (1996).

[5] G. L. Choudhury, K. K. Leung and W. Whitt, “Calculating normalization constants of closed

queueing networks by numerically inverting their generating functions,” J. ACM 42, 935–970.

(1995).

[6] G. L. Choudhury, K. K. Leung and W. Whitt, “An inversion algorithm to calculate blocking

probabilities in loss networks with state-dependent rates,” IEEE/ACM Trans. Networking 3,

585–601 (1995).

[7] G. L. Choudhury and D. M. Lucantoni, “Numerical computation of the moments of a proba-

bility distribution from its transform, Oper. Res. 44, 368–381 (1996).

[8] G. L. Choudhury, D. M. Lucantoni and W. Whitt, “Multidimensional transform inversion with

applications to the transient M/G/1 queue,” Ann. Appl. Prob. 4, 719–740 (1994).

[9] G. L. Choudhury, D. M. Lucantoni and W. Whitt, “Numerical transform inversion to analyze

teletraffic models,” in The fundamental Role of Teletraffic in the Evolution of Telecommuni-

cation Networks, Proceedings of the 14th International Teletraffic Congress, J. Labetoulle and

J. W. Roberts (eds.), Elsevier, Amsterdam, 1b, 1043–1052 (1994).

[10] G. L. Choudhury, D. M. Lucantoni and W. Whitt, “Squeezing the most out of ATM,” IEEE

Trans. Commun. 44, 203–217 (1996).

[11] G. L. Choudhury and W. Whitt, “Non-probability approximations to a deterministic service-

time distribution with applications to traffic modeling in high-speed networks,” AT&T Labo-

ratories, 1996.

20

[12] G. Honig and U. Hirdes, “A method for numerical inversion of Laplace transforms,” J. Comp.

Appl. Math. 10, 113–132 (1984).

[13] S. Karlin and Y. Rinott, “Classes of orderings of measures and related correlation inequalities:

I. multivariate totally positive distributions,” J. Multivariate Anal. 10, 467–498 (1980).

[14] Z. Kopal, Numerical Analysis, second ed., Wiley, New York, 1961.

[15] C. A. O’Cinneide, “Euler summation for Fourier series and Laplace transform inversion,”

Stochastic Models, to appear.

[16] R. Piessens and R. Huysmans, “Algorithm 619, automatic numerical inversion of the Laplace

transform,” ACM Trans. Math. Software 10, 348–353 (1984).

[17] L. K. Platzman, J. C. Ammons and J. J. Bartholdi, III, “A simple and efficient algorithm to

compute tail probabilities from transforms,” Oper. Res. 36, 137–144 (1988).

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, FOR-

TRAN version, Cambridge University Press, Cambridge, England, 1988.

[19] S. M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, New York,

1983.

[20] M. Shaked and J. G. Shanthikumar (1994) Stochastic Orders and Their Applications, Academic

Press, New York.

[21] W. Whitt, “Multivariate monotone likelihood ratio and uniform conditional stochastic order,”

J. Appl. Prob. 19, 695–701 (1982).

21

