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We establish some general structural results and denive some simple formulas descnbing the time-dependent performance
of the M,/G/o queue (with a nonhomogeneous Poisson arrival process). We know that, for appropriate initial conditions,
the number of busy servers at time ¢ has a Poisson distribution for each . Our results show how the time-dependent
mean function m depends on the time-dependent arrival-rate function A and the service-time distribution. For example,
when X is quadratic, the mean m(¢) coincides with the pointwise stationary approximation A(¢)E[S], where S is a service
time, except for a time lag and a space shift. It is significant that the well known insensitivity property of the stationary
M/G/» model does not hold for the nonstationary M,/G/~ model; the time-dependent mean function m depends on
the service-time distribution beyond its mean. The service-time stationary-excess distribution plays an important role.
When A is decreasing before time ¢, m(¢) is increasing 1n the service-time variability, but when X is increasing before time
t, m(t) is decreasing in service-time variability. We suggest using these infinite-server results to approximately describe
the time-dependent behavior of multiserver systems in which some arrivals are lost or delayed.

e want to gain a better understanding of the

behavior of queues with time-dependent
arrival rates. For example, we want to understand how
the peak congestion lags behind the peak arrival rate.
We begin here by considering a model for which very
nice analytical results are available, namely, the
M,/G/» model, which has a Poisson arrival process
with time-dependent deterministic arrival-rate func-
tion A = {\(t)}, independent and identically distrib-
uted (i.i.d.) service times that are independent of the
arrival process, and infinitely many servers.

Palm (1943) and Khintchine (1955) showed that
(for appropriate initial conditions) the number Q(¢)
of busy servers at time ¢ has a Poisson distribution
with a mean m(¢) that is easily expressed in terms of
the arrival rate function A and the service-time distri-
bution. Moreover, it is known that nice properties also
hold for M,/G/» networks, i.e., open networks of
./G/o queues with M, arrival processes. First, the
departure process from an M,/G/x queue is again M,
(nonhomogeneous Poisson); see p. 405 of Doob
(1953), Mirasol (1963), Newell (1966), Brown (1969),
Section 1 of Daley (1976), and Foley (1982, 1986).
Second, for appropriate initial conditions, the vector
Q1) = (Q\(1), . .., Qnt)) representing the number of
busy servers at each queue in an M,/G/« network at
time ¢ has independent Poisson marginals with a time-
dependent mean vector m(¢) = (m,(¢), .. ., m,(2)) that

can be expressed in terms of the vector arrival rate
function XA = (A1)} = {(\(2), ..., A(2))} and the
service-time distributions; see Section 4 of Kingman
(1969), Harrison and Lemoine (1981), Foley (1982),
and Keilson and Servi (1989). There is a long history
for these results, which is somewhat hard to trace
because essentially the same model appears under
many names, €.g., see subsection 9.6 of Cox and Miller
(1965).

The nice results for M,/G/x networks occur, in
part, because different customers do not interact. Hav-
ing infinitely many servers at each queue means that
the customers do not get in each other’s way; having
Poisson arrivals means that the arrival time of one
customer carrics no information about the arrival
times of other customers. Expressed more abstractly,
the nice results occur because the input (arrival times
and service times) can be represented as a Poisson
process or Poisson random measure on Euclidean
space; see Prékopa (1958), Foley (1982, 1986), Daley
and Vere-Jones (1988), pp. 26-31 of Serfozo (1990),
and Section | below. The various random quantities
of interest, such as Q,(¢), correspond to the Poisson
random number of points in a particular subset. Inde-
pendence occurs for different random variables when
the subsets are disjoint.

Our purpose in this paper and its sequels, Eick,
Massey and Whitt (1993a, b), is to show that a much
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better understanding of the time-dependent behavior
of M,/G/® models and M,/G/s/r models (with s
servers and r extra waiting spaces) can be obtained by
looking more carefully at the M,/G/® results. We
obtain remarkably informative simple formulas for
the M,/G /% system with special arrival rate functions
and special service-time distributions; e.g., see (14)
and (20).

The rest of this paper is organized as follows. In
Section 1 we review the basic M,/G/«~ theory.
In Section 2 we establish some stochastic compari-
sons and other general structural results for
M,/G/» models. In Section 3 we consider the special
case of polynomial arrival rate functions, focusing
especially on the quadratic case. In Section 4 we
consider step functions, and in Section 5 we consider
spikes (a constant times the indicator function of an
interval). The case of a step function embodies the
transient analysis of the stationary model. The spike
represents a sudden transient traffic surge. Finally, in
Section 6 we state our conclusions.

In Sections 1-3, we also introduce and investigate
various approximations for the mean number of busy
servers in the M,/G /o model. For example, in Section
3 we study Taylor series approximations, which are
equivalent to the uniform acceleration approximation
in Massey (1981, 1985) (see Remark 15). We are
interested in these approximations, not because they
are needed to calculate the time-dependent mean for
the M,/G/% model, but because they help us under-
stand the behavior of the M,/G /% model and to under-
stand corresponding approximations for the more
difficult M,/G/s/r model.

In Eick, Massey and Whitt (1993a) we consider the
special case of M,/G/x queues with sinusoidal arrival
rate functions. We also apply those results to treat
M,/G/ models with general periodic arrival rate
functions using Fourier series. In Eick, Massey and
Whitt (1993b) we consider applications of the infinite-
server results to approximately describe the perfor-
mance of M,/G/s/r models. In Massey and Whitt
(1993) we establish additional results for M,/G/® net-
works. For other work on queues with time-dependent
arrival rates, see Brown and Ross (1969), Newell
(1973), Jagerman (1975), Duda (1986), Ong and
Taaffe (1989), Rolski (1989), Green and Kolesar
(1991), and Green, Kolesar and Svoronos (1991). For
work related to the M,/G /e queue in inventory theory,
see Hillestad and Carrillo (1980) and Carrillo (1991).

1. REVIEW OF THE M./G/~ THEORY

In this section, we review established results for
M,/G/o queues. To obtain simple formulas, we

assume that our M,/G/~ system started empty in
the distant past, i.e,, at t = —oo, (Thorisson 1985
has developed theoretical support for initializing
nonstationary models at { = —.) We have a non-
homogeneous  Poisson  arrival  process on
(—oo, ) with deterministic arrival rate function
A= {\1) —» < < »}. (We assume that \ is non-
negative, measurable, and integrable over any
bounded arrival.) Consequently, the number of
arrivals in any interval [s, ¢] has a Poisson distribution
with mean [} AMu) du.

The service times are i.i.d. and independent of the
arrival process. Let .S be a generic service-time random
variable and let G be its cumulative distribution func-
tion (cdf). An important role is played by a random
variable S, with the associated stationary-excess or
equilibrium-residual-lifetime cdf

Gl,(z)EP(S[.st)EL G(w)du, t=0, (1)

E[S]+o
where G'(¢) = 1 — G(¢). See Whitt (1985) and (16)
and (37) of Serfozo (1990). The moments of S, are
related to the moments of S by

E[SAH]
(k + DE[SY’
Let Q(¢) represent the number of busy servers at time

t and let m(¢t) = E[Q(:)]. Here is the basic
M,/G /o result.

E[St] = k=1 (2)

Theorem 1. For each t, O(t) has a Poisson distribution
with mean

m(1) = E[J:S AMu) du:| = E[Mz — SIHIE[S] (3)

The departure process 1s a Poisson process with time-
dependent rate function 6, where

5(1) = E[\z - S)]. (4)

Foreach t, Q(1) is independent of the departure process
in the interval (-, 1].

Proof. An appealing probabilistic proof used by
Prékopa, who credits the idea to a 1953 lecture by C.
Ryll-Nardzewski, exploits the fact that the arrival and
service times generate a Poisson random measure on
(—o0, ) X [0, ); i.e., put a point at (u, v) if there is
an arrival at time u with service time v. The number
of points in (a, b] X (¢, d] is then Poisson with mean
I5 Mu) du[G(d) — G(¢)]. The numbers of points in
two disjoint rectangles (a, ] X (¢, d,] and (a, b] X
(c2, 4], where ¢, < d, < ¢; < d», are independent
Poisson random variables because independent split-
ting of a Poisson process produces independent
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Poisson processes. Consequently, the number of
points in any finite collection of disjoint rectangles
are independent Poisson variables; this determines the
distribution of the Poisson random measure (see
Daley and Vere-Jones and pp. 27-31 of Serfozo). This
argument is also used by Foley (1982). Since Q(¢)
is just the number of pairs (u, v) with ¥ < ¢ and
u + v > ¢, see Figure 1, Q(¢) is Poisson with mean

m(t) = J: G(t — w)\u) du

- fo ) f Nuwdu dG(s) = EUS Mu) du]

= fo G(u)M? — u) du = E[N¢ — S,)]E[S],

which establishes (3). Similarly, we see that the num-
ber D(s, t) of departures in [s, ¢] is just the number of
pairs (u, v) with s < u + v < ¢, which is Poisson with
mean [} 6(u«) du, where

o(1) = J:" Mt = u) dG(u) = E[Mt — S)),

which establishes (4). The final independence property
in Theorem ! holds because the number of points in
disjoint sets are independent Poisson variables with a
Poisson random measure (see Figure 2).

Remark 1. Our assumptions in Theorem 1 do not
guarantee that m(z) in (3) is finite or that & in (4) is
integrable over bounded intervals. Sufficient condi-

. time
e —————
8 t

Figure 1. A possible realization of the Poisson ran-
dom measure for Theorem 1; the random
variables Q(t) and D(s, ¢) count the number
of points in the designated subset.
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Figure 2. Two disjoint sets in the plane for calculating
the joint distribution of the number of
departures in two disjoint time intervals for
Theorem 1 using the Poisson random mea-
sure; the random variables count the num-
ber of points in the designated subset.

tions are for either A to be integrable over (—, ¢] or
the service-time distribution to have bounded support.

Remark 2. Extensions to other initial conditions are
easy, but sometimes messy. For example, suppose that
the M,/G/ system starts out at ¢ = 0 with k customers.
In general, we need to know the remaining service
times of these customers. However, assuming that the
k customers all start service at t = 0, Q(¢) is
the independent sum of a Poisson random variable
with mean m(¢) in (3), where A(¢) = 0 for ¢ < 0, and
a binomial random variable with parameters &
and p = G‘(¢). If the initial number is random with
a Poisson distribution with mean 4, then the binomial
random variable is replaced by a Poisson random
variable with mean #G‘(r), in which case the overall
distribution is again Poisson.

Remark 3. For interpretation, it is useful to relate
m(?) in (3) to the instantaneous offered load \(1)E[S),
because m(¢) would equal A(¢)E[S] if the arrival pro-
cess were homogeneous with constant arrival rate A(¢).
Following Green and Kolesar, we call A(¢)E[S] the
pointwise stationary approximation (PSA) for m(t);
also see Palm (1943), Massey (1981, 1985), and Whitt
(1991). The last expression in (3) says that PSA is
correct except for a random time lag in A(¢). Of course,
if X changes very little before f, then E[A(z — S.)] =
A(2) and mi(t) = A(t)E[S]. The formulas in (3) indicate
that, unlike PSA, the true formula for m(¢) involves

Copyright © 2001 All Rights Reserved
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averaging A before ¢ (as in subsection 5.3 of Whitt
1991).

Of course, given the relatively simple formula for
m(t) in (3), approximations such as PSA are not
important for calculating m(t) in the M,/G/» model.
We study these approximations, first, to develop a
better understanding of m(¢) in the M,/G/x model
and, second, to gain insight into the way correspond-
ing approximations will perform for the more com-
plicated M,/G/s/r model.

Remark 4. Throughout this paper, we assume that
the service-time distributions are not time dependent,
which is realistic for many applications, but the theory
extends to time-dependent, service-time distributions.
If the service-time distribution of an arrival at time ¢
has cdf G,, then the time-dependent mean is

m(t) = I Gt — w)Mu) du,

assuming, of course, that G¢{(z — u) is integrable (see
Brown and Ross 1969, Carrillo 1991, and Massey and
Whitt 1993).

Remark 5. Since the mean function m is a linear
function of the arrival rate function X (also see
Theorem 8), we can regard the M,/G/ model as a
linear system and apply linear system theory (e.g., see
Chapter 2 of Ziemer and Tranter 1976). The linear
system view is discussed further in Eick, Massey and
Whitt (1993a).

It is important to note that, even though Q(¢) has a
Poisson distribution for each ¢, Q = {Q(t): — » <
t < o} is not a Poisson process. However, it is not
difficult to determine the finite-dimensional distribu-
tions of Q. We illustrate with the case of the two-
dimensional distributions. For previous work on the
stationary model, see Riordan (1951) and Benes
(1957).{1

Let = denote equality in distribution. Let (x)" =
max{x, 0}. For random variables X and Y, let
Cov[X, Y] be the covariance, ie., Cov[X, Y] =
E[XY] — E[X]E[Y]. Recall that two random vari-
ables X and Y are associated if Cov[f(X), g(Y)] <0
for all nondecreasing real-valued functions fand g (see
p. 29 of Barlow and Proschan 1975).

Theorem 2. For u > 0 and for each t,
Cov[Q(1), Q(1 + u)]

= E[ f A(S) ds]
—(S—-u)*

= E[(Mt = (S = w)]ENS — u)']. (5

Moreover, Q(t) and Ot + u) are associated random
variables. Indeed,

[Q(), Ot + u)]
214G, w) + C(, ), B(t, u) + C(, w)), (6)

where A(t, u), B(t, w), and C(t, u) are independent
Poisson random variables with E[C(t, u)] = Cov(Q(1),
Q(t + u)). Consequently, ((t) and Qt + u) are
independent if P(S > u) = 0.

Proof. Let A(¢, u) be the number of arrivals up to
time 7 that depart in the interval [¢, ¢ + u); let B(t, u)
be the number of arrivals in (¢, f + u] that are still in
the system at time ¢ + u; and let C(¢, u) be the number
of arrivals up to time ¢ that are still in the system at
time ¢ + u. These random variables correspond to the
Poisson random numbers of points in the respective
subsets of (—oo, ] X [0, ) in Figure 3. Obviously,
Q(t) = A(t, u) + C(¢, u) and Q(t + u) = B(t, u) +
C(t, u). Since the subsets corresponding to A(z, u),
B(t, u), and C(t, u) are disjoint, the random variables
A(t, u), B(t, u), and C(¢, u) are independent.

From (6), it is easy to see that Q(z) and Q(t + u)
are associated; first condition on A(¢, «) and B(¢, u),
and then uncondition (see pp. 30-31 of Barlow and
Proschan). The covariance formula in (5) follows from
(6) and the fact that the variance of a Poisson random
variable equals its mean. In particular,

E[C(t, u)] = J: ANSHP(S>t+u~s)ds

= I AOP(S — ) >t — s5)ds

= E[Nt = (S — w)DIENS — w)'].

Moreover, when P(S > u) =0, E[C(t, u)] = 0, so that
P(C(¢t, u) = 0) = 1, which implies that Q(¢) and
Q(t + u) are independent.

Remark 6. In the homogeneous case with A(Z) = A(0)
for all ¢, (5) becomes

Cov[(Q(1), QU + )] = MO)E[(S — u).]
= MO)P(S. > u)E[S].

2. STOCHASTIC COMPARISONS AND OTHER
STRUCTURAL RESULTS

In this section, we establish some general results about
the way the mean function m in (3) depends on the
arrival rate function A and the service-time distribu-
tion G. Let <,, and <, denote the usual stochastic
ordering and convex stochastic ordering, respectively;

Capyright ©.2001.All.Rights Reserved
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Figure 3. Three disjoint sets in the plane for calculat-
ing the joint distribution of Q(¢) and
Q(t + u) for Theorem 2 using the Poisson
random measure; the random variables
count the number of points in the desig-
nated subset.

Sy, 8 (S s S if E[f(S)] < E[f(S)] for all
increasing (all convex) real-valued functions f such
that the expectations are well defined (see Ross 1983
and Stoyan 1983). (Throughout this paper we use
increasing and decreasing in the weak sense; we say
strictly increasing for the stronger property.) The
ordering <, (<) is a strong expression for the distri-
bution of one random variable being less (less variable)
than another.

The comparison results for m below immediately
imply stochastic comparisons for the random variable
0O(t) because two Poisson distributions with different
means are stochastically ordered. Indeed, if X, is
Poisson with mean o, where o, < a3, then P(X; = k)/
P(X, = k) 1s easily seen to be strictly increasing in k,
so that X; is less than X, in the likelihood ratio
ordering, which implies the usual stochastic ordering
(<.) (see Ross 1983).

In the following, the support of (the distribution of)
S plays an important role. We assume that this support
of S'is in the interval [0, o] where ¢ < %, which means
that G(¢) = 1. From (1) it follows that the support of
S, is in [0, ¢] too. From (3) it is apparent that m(¢)
depends on X only over the interval (¢ — o, t] when S,
has support in {0, ¢].

Theorem 3. Consider two M,/G /% models with a com-
mon arrival process but different generic service times
Sy and S>, both with support in [0, ¢]. Let A be
increasing (decreasing) over the interval (t — g, t].

The Physics of the M,/G/® Queue [ 735

a. I_fS] =y Sz, then 61(t) = ($) 62([)
b. I S, <. S,, then Si. <, (.) Sz, 50 that my(t) =
(=) ma(2).

Proof. Part a is an immediate consequence of (4) and
the definition of <,,. For part b, we use the fact that
S) <, S; implies E[S)] = E[S:] and S, <., S2., because
S, <, 8, is equivalent to E[S)] = E[S.] and
2 Gi(w) du < 7 G(u) du for all ¢ (eg, see
Theorem 3.3 and Section 5 of Whitt 1985). Finally,
apply (3) and the definition of <,,.

Remark 7. The conditions in Theorem 3 are neces-
sary and sufficient to have the conclusions for all A
increasing (decreasing) over the interval (¢ — o, ¢].

Remark 8. There are many results in the queueing
literature stating that the congestion increases in a
stationary model when the service-time distribution
becomes more variable, with the convex stochastic
ordering being a typical characterization of greater
variability; see Whitt (1984), especially Section 6, for
references and a discussion of exceptions. Results of
this kind for the stationary M/G/e queue appear in
Huffer (1987). Theorem 3b shows that the time-
dependent mean m(t) in the M,/G/> model has this
property provided that X is decreasing before ¢, but
m(t) is decreasing in the service-time variability when
A is increasing before . Theorem 3b shows that the
response of m(t) to service-time variability depends
on the shape of A.

We now consider the effect of changing A\. The
following is an elementary consequence of (3) and (4).

Theorem 4. Consider two M,/G/x systems with a
common service-time distribution having support in
[0, o] and two possible arrival rate functions X\
and .

a. Ifx(s) s \(8) fort — o < s <t, then 6,(1) < 6:(1).
b. If [i M(u) du < [ \(u) du fort — o < s <, then
m\(2) < my(t). If the distribution of S has a decreas-
ing right-continuous density, then 6,(t) < 6(¢) also.

Proof. We only discuss the last statement. If S has a
decreasing right-continuous density, then the distri-
bution of S is the stationary-excess of another non-
negative random variable $* which has support in
[0, o]. By (3) and (4), then

&(t) = ‘E:—[%S:;—]' El:l:; AMu) a’u:|,

so that the proof is the same as for m().

Corollary 1. In an M,/G/o system with S having
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support in [0, o],
inf {MS)E[S]) <= m(z) < sup {A()E[S]}

o<yl t~o<ys]

and similarly for 5(¢).

Remark 9. When X is monotone over [t — g, 1],
Corollary 1 gives direct comparisons between m(t)
and PSA, i.e., A\(1)E[S] (see Remark 3). In particular,
PSA is too high when X is increasing and too low
when A is decreasing.

We now relate the shape of A to the shape of m
and 6.

Theorem 5. Consider an M,/G /o system with S hav-
ing support in [0, o). Then m and 5 have the following
properties.

a. If, for any s < t, \ is increasing (decreasing) on
[s — a,t], then both m and § are increasing (decreasing)
on [s, t], and for all r belonging to [s, t],

m(r) < (=) Mr)E[S] and &(r) < (Z)A(r).

b. If; for any s < t, \ is convex (concave) on [s — o, t},
then both m and 6 are convex (concave) on [s, t], and
Jor all r belonging to [s, t],

m(r)=(s)Nr—E[S.])E[S]and 6(r) = (<)A\(r— E[S]).

Proof. These results are elementary consequences of
(3) and (4). For part b, apply Jensen’s inequality.

Corollary 2. If X is unimodal with a maximum at t,,
then the maximum of m occurs after .

Remark 10. Since a linear function is both concave
and convex, part b of Theorem 5 implies that

m(1) =M1 - E[S.)E[S] (N

when A is linear on (¢t — g, t]. An expression equivalent
to (7) is

m()=(M2) = N (D)E[S]E[S]

N (ELST] .

= NOELS]- 5>

(8)
see (2). More generally, (7) and (8) represent /inear
approximations for m(t) when M\ is approximately
linear before ¢. (The linear approximation for m(¢) in
(7) was previously discussed by Newell 1973, p. 31.)
We call (7) LIN-S for the linear approximation with
time shift, and we call (8) LIN-D for the linear approx-
imation with derivative. An obvious refinement of (8)
is to take the maximum of (8) and zero, and we do
this.

Theorem 5b shows how LIN-S should perform
when the arrival rate function is primarily concave or
convex before time 7. Note that LIN-S agrees with
PSA in Remark 2 except for a time lag of E[S.] =
E[S](c?+ 1)/2, where ¢? is the squared coefficient of
variation (variance divided by the square of the mean)
of §. Also note that this time lag E£[S,] is independent
of A when X is linear. Similarly, LIN-D agrees with
PSA except for a space shift of

N(DE[S?)/2=N(1)(cl + INE[S])Y/2.

When X is approximately linear before ¢, the error
in PSA for the mean m(¢) is

|m(e) = MOE[S]

= | Mt~ E[SDE[S] - MOE[S]]

=N (DE[S]ELS] 9
and the relative error is

|m(t) = ME[S]]

m(t)
~ 1M~ E[SDE[S] = MOE[S] |
AMOE[S]
1IN ()]
~[ 0 ]E[S(,]. (10)

(An exact expression for the error in (9) is given
by Theorem 10.) Also note that if we consider
PSA as an approximation for the average m =
(b — ay™' [h m(t) dt over some time interval [a, b],
then the error is still given by (9) when X is ap-
proximately linear before b; the relative error
is then approximately \'(f)E[S.]/X, where A =
(b—ay™" fi\) dt.

Example 1. Suppose that A(¢) = ¢ for ¢ = 0, but
A(¢) = 0 for £ < 0, and that the service-time distribu-
tion is exponential with mean 1. Then (7) and (8) do
not hold exactly, but we anticipate that LIN-S and
LIN-D will perform well for suitably large ¢. (For this
example, LIN-S and LIN-D agree.) Moreover, to
illustrate an infinite-server approximation for an
M,/M/s/0 loss model, we consider the cases s = 20
and 50. (The “exact” values of mf(t) for these
M,/M/s/0 models were computed using the algo-
rithm described in Section 1 of Eick, Massey and
Whitt 1993b.) For ¢ < 20, the case s = 50 corresponds
approximately to an infinite-server model, as can be
seen by considering the stationary model with A = 20
and s = 50.

First, we can see the effect of the initial nonlinearity
by comparing LIN-S with the exact results for s = 50

Capyright ©.2001_All Rights Reserved




in Table I. Indeed, the error due to the initial nonlin-
earity decreases for ¢ above 1, reaching 12% at¢ = 2
and 2.5% at ¢ = 3.

For the case s = 20, we begin to see the effect of the
blocking for ¢ = 12. LIN-S has an error of only 8% at
t = 18, but 14% at ¢t = 20. For this example, PSA is
consistently an inferior approximation, but it is useful
together with the linear approximation, because they
bracket the exact value; i.e., for the infinite-server
model, A(¢) = m(t) = A(t — 1) for all ¢, because A is
increasing and convex (see Theorem 5).

Our next results describe the derivative of m(¢).

Theorem 6. If the departure rate function 6 in (4) is
integrable in a neighborhood of t, then the mean
Junction m in (3) is absolutely continuous with respect
to a Lebesgue measure in a neighborhood of t, with
density

m'(1) = M1) = 8(2). (11)

If, in addition, \ is continuous and bounded on [a, b),

Table 1
A Comparison Between Infinite-Server
Approximations and Exact Values for the Mean
Number of Busy Servers at Time ¢, m(?), in an
M,/M/s/0 Loss Model With Arrival Rate
Function M(¢) = ¢ for 1 = 0 and A(¢) =0 for 1 < 0,
for Example 1. (For these times, the case s = 50
corresponds to an infinite-server (IS) model, while
s = 20 shows the effect of blocking. The service-
time distribution is exponential with mean 1.)

Time m(t) Exact
t= 1) —_ LIN-S = LIN-D
IS-PSA s=20 s=50 Ae—-1)
0.1 0.005 0.005 0.0
0.5 0.107 0.107 0.0
1.0 0.368 0.368 0.0
1.5 0.724 0.724 0.5
2.0 1.14 1.14 1.0
2.5 1.58 1.58 1.5
3.0 2.05 2.05 20
4.0 3.02 3.02 3.0
5.0 4.0t 4.01 4.0
6.0 5.00 5.01 5.0
8.0 7.00 7.00 7.0
10.0 9.00 9.00 9.0
12.0 10.98 11.00 11.0
14.0 12.84 13.00 13.0
15.0 13.69 14.00 14.0
16.0 14.46 15.00 15.0
17.0 15.13 16.00 16.0
18.0 15.72 17.00 17.0
19.0 16.22 18.00 18.0
20.0 16.65 19.00 19.0
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where (t — o, t] C (a, b), then § is continuous and m
is continuously differentiable at t.

Proof. Note that

Ot + h) — Q@)
= [A(t + h) — A(1)] = [D(t + h) — D(1)],

where {A(t):t = 0} and {D(¢):t = 0} are the arrival and
departure counting processes. Since these counting
processes are Poisson (the first by assumption and the
second by Theorem 1), we can take exceptations and
write

1+h
m(t + h) — m(t) = f [A (1) — &(u)] du.

By assumption, [ Mu) du < oo, so that the expec-
tation is well defined, but possibly —oc. The assump-
tion on 6 rules out —o, The integral representation
expresses the first conclusion. By the bounded con-
vergence theorem, E[A(z — §)] is continuous in ¢ if A
is continuous and bounded in the specified way.

Here are simple applications of Theorem 6.

Corollary 3. If the distribution of S is deterministic
(G = D), then m'(t) = AMt) — Mt — S)as. If X is
unimodal with maximum (minimum) at t., then m
has a maximum (minimum) at t, = t, + x, where
0 < x < S and If, in addition, \ is continuous, then
Xt = Mt — S). Furthermore, if \ 1s continuous and
X attains an extreme value over [ty — S, ty + S] at t,,
then m’(t) = 0 for some t in [t,, 1) + S].

Corollary 4. If S has an exponential distribution
(G = M), then
m(r)

m'(t) = A1) — E—[TS:]-

Remark 11. Corollary 4 implies that for the M,/M/ o
model PSA will be too high (low) precisely when m(f)
is increasing (decreasing). Moreover, PSA and
m(t) will coincide precisely when m’(¢) = 0. In
linear system theory, the differential equation in
Corollary 4 corresponds to the low-pass RC filter
(see pages 50 and 55 of Ziemer and Tranter).

Theorem 6 suggests comparing 6(¢) and »(z). When
A is monotone, such comparisons follow from (3), (4),
and established comparisons between the distributions
of § and §.. For this purpose, recall that the distribu-
tion of S is new worse than used in expectation
(NWUE) if

E[S] < E[S—1|S>1{] forall ¢. (12)
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The distribution is new better than used in expectation
(NBUE) if the inequality in (12) is reversed.

Theorem 7. Suppose that X is increasing (decreasing)

in(t—s,t] for s> o and that (11) is valid at t. If the

distribution of S is NWUE, then

m(t)<(=)8(1)E[S] and m'(t)<@(1)-2L
E[S]

If the distribution of S is NBUE, then the inequalities

are reversed.

Proof. The NWUE property in (12) implies that
S <, S.. The NBUE property implies S =,, S. (see
Theorem 3.1 of Whitt 1985). Finally, apply (3)
and Theorem 6.

In examples, the arrival rate function A may be
represented as the sum of two or more pieces, e.g., a
linear piece plus a sinusoidal piece. It is significant
that the decomposition is inherited by m. Moreover,
this remains true for subtraction, so that we can regard
the map from A to m as a linear operator on a function
space, with the appropriate function space depending
on the structure assumed for A. For example, if the
function space is L., = L. (—, ), the space of
bounded measurable real-valued functions on (—o,
) with the supremum norm |- ||, then the operator
is bounded. We can thus say two mean functions are
close when the corresponding arrival rate functions
are close.

Theorem 8. If an arrival rate function N for an
M,/G/o model can be represented as X = a)\, +
a\, for arrival rate functions \, and constants a,,
then m = aym, + am,, where m, is the time-
dependent mean function associated with \, via (3).
Consequently, if \ is bounded on (—%, ®), then the
map in (3) taking X into m is a bounded linear operator
on the space L.. with the supremum norm |- |. and
[m) = malle < |A = Mol ETS].

Proof. Without loss of generality, suppose that a, and
a, are positive. (Otherwise, move the negative term to
the other side.) The Poisson process with arrival rate
function A may be split into two independent Poisson
processes with arrival rate functions @;A, and a\, by
thinning with probability a,\(¢)/A(2) at time ¢ (see
Theorem 2.8 of Serfozo). The sum of two independent
Poisson random variables is again Poisson. We apply
Theorem 1 to treat m,,. The operator properties then
follow easily from (3).

A result closely related to Theorem 8 gives the mean
of an M,/G/% model when the service-time distribu-

tion is a mixture; then the system is equivalent to the
sum of independent A/,/G/x systems with reduced
arrival rate functions and the component service-time
cdf’s.

3. POLYNOMIAL ARRIVAL RATE FUNCTIONS

We discussed linear arrival rate functions and linear
approximations in Remark 10. Now we consider more
general polynomial arrival rate functions and poly-
nomial approximations. Recall that we examine
approximations in this relatively simple M,/G/« set-
ting primarily to gain insight into corresponding
approximations for the more difficult M,/G/s/r
model.

From (2) and (3), we see that we can write down an
explicit expression for m(¢) in terms of A and the
moments of .S when X is a polynomial. However, in
the queueing context A must be positive in the interval
(t — o, t] when S has support in [0, ¢]. To avoid this
qualification, in this section we regard (3) as the
definition of m(¢) without insisting that A be positive
in ({ — a, t]. When X is indeed not positive every-
where in (¢ — g, t], the results may still be useful as
approximations.

First consider the quadratic arrival rate function

At =a + bt + ct’. (13)

The principal case in (13) is when the coefficients a
and b are positive, but ¢ is negative. Then A first
increases and then decreases, attaining a maximum of
a + (b*/2c) at time 1, = —b/2¢. From (3) and (13), we
obtain the following nice formula.

Theorem 9. Suppose that \ is quadratic as in (13). If
E[S?] < w, then

m(t) = Mt = E[S)E[S] + ¢ Var(S)E[S].  (14)

From (14), we obtain a general principle: If \ s
approximately quadratic before time t, then m(t)
is approximately equal to the PSA value \N()E[S]
except for a time lag of E[S.] = E[S1(ci + 1)/2 and a
space shift by

cVar(S,)E[S] = c[(E[S?)/3) — (E[S*P/4E[S))).

Asin the linear case, the time lag £[S.] is independent
of the coefficients a, b, and ¢ in (13). (This does not
hold for higher polynomials.) For given first two
moments of S, the magnitude of the space shift is
increasing in E[S?).

Paralleling the linear approximations LIN-S
and LIN-D in (7) and (8) we suggest the quadratic
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approximations QUAD-S

”( )

m(t) = Nt — E[S.)E[S]+—— Var(S,)E[S] (15)

and QUAD-D

N(H)E[S?]
——T—]E[S]

m(t) = [)\(l) - N()E[S.] +

N'(DE[S?]

= M)E[S] - 6

’ 2

N(ELSY 6
2
for more general arrival rate functions.

Formula 16 is based on taking the first three terms
of the Taylor series expansion of A(t — S,) about f.
The following theorem treats the general case and
gives an explicit probabilistic expression for the
remainder term. In our expressions a key role is played
by the k-fold iterate of the stationary-excess operator
in (1), ie, S® = (S% "), (see Whitt 1985). Let
A* denote the kth derivative of the arrival-rate
function A.

Theorem 10. For any n = 0, suppose that \ is
(n + 1)-times differentiable and the (n + 1)" deriva-
tive is Riemann integrable on [t — x, 1] for all x,
0<x<o. IfE[S™?] < o and E[|A\P (1 — S$*))|] <
o, 0<sk<n+ 1, then m(t) = mft) + R(t), n =0,
where

_ n _ jA(J)(t)E[SJH]
mnm—jgo( T

and

E[S?H—Z]

R,,([) = (__1)n+1E[)\(n+l)(t — m_'

St )

Remark 12. Note that Theorem 10 can be regarded
as a probabilistic generalization of Taylor’s theorem
and (3) can be regarded as a probabilistic generaliza-
tion of the fundamental theorem of calculus.

Remark 13. Note that approximation PSA, LIN-D,
and QUAD-D introduced in Remarks 2 and 10
and (16) are the Taylor series for n = 0, 1, and 2,
respectively.

Remark 14. From Theorem 10, we see that the Taylor
series for m(¢) is absolutely convergent (assuming that
A has bounded derivatives of all orders) if and only if

5 INA)IES”]
=+ 1)

For example, if S is exponential with mean 1, then
E[S'] = (E[S])! = j!, so that the Taylor series is
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absolutely convergent then if and only if

im0 N < co.

Remark 15. It is significant that the Taylor series
approximation for (¢) in Theorem 10 can be inter-
preted as a uniform acceleration asymptotic expansion
for m(?), as in Massey (1981, 1985). In particular, we
construct a family of systems indexed by ¢ and let
¢ — 0. In system e, the service time is S, = &S (which
has stationary-excess (S.). = &S,) and the arrival rate
of time 7 is A,(¢) = \(2)/e. Then

m1) = E[N(t — (S)]E[S]
= E[Nt — eS)E[S]. (17)

From (17), we see that if A is bounded (or, more
generally, if the limit of the expectations is the expec-
tation of the limit), then m.(¢) — A#)E[S] as ¢ — 0,
so that PSA is asymptotically correct as ¢ — 0. More
generally, under the conditions of Theorem 10, we
obtain an asymptotic expansion in powers of ¢. For
example,

m{1) = (A1) —
”(I)

MN(OE[(S.).]

E[(SXDELS] + O
(18)
= (7\(t) = eN(NE[S.]

+ e 2 s PELS) + 06

Before proving Theorem 10, we state a consequence.

Corollary 5. Assume the conditions of Theorem 10.

a. If (=1y"']\"*Y s positive (negative), then m(t) =
(=) my(t);
b. If (= 1)™'\*D s increasing (decreasing), then

E[Sn+2] )
(n+2)°

c. If (—1)"']\*D is convex (concave), then

m(t) = (<) my(1)

m(t) < () mut) + (_l)n+l)\(n+l)(t)

E[sn+2]
(n+2)!°

In order to prove Theorem 10, we need two lemmas.

+ (-])n+1>\(n+l)(l — E[S£n+2]])

Lemma 1. Suppose that [ is differentiable with a
Riemann integrable derivative on [t — x, t] for
all x > 0. If E[S] < o, E[|f(1 = S)|] < ® and
ET|f'(t = S| < o, then

E[f() - [tz = S)]
E[S] '

E[f'(t = Sol =
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Proof. We apply the fundamental theorem of the
calculus and Fubini’s theorem (with the moment con-
ditions) to get

E[f(ty - ft = )] = EU; St =5 ds]

= j: P(S=s)f(t—23)ds
= E[f"(t - SJES].

We also need expressions for the moments of
the iterated stationary-excess variables. Let (n), =
nn—1...(n—k+1).

Lemma 2. Forn=1andk = 1, if E[S""] < o, then
S has a proper distribution and

nE[S™)

E[(S)] = 1+ K.ELST

Proof. Use (2) plus induction on # and k.

Proof of Theorem 10. Apply Taylor’s theorem to
obtain

n X(J)([)(_S‘))J

>\([ - S(,) = j§0 _]' + rn(z)s
where
rt) = f _ (—’%9;;1)‘?— [N"Xu) = X7X0)] d

~Se 1, _an
=J: « Sne! 4 N d

I R )
~—J;S( p A — 8. do,

using integration by parts and the change of variables
v = S, + u. The result then follows from Lemmas 1
and 2 and induction on #. Indeed, for n = 0,

Ro = E[ry(1)]

4
= E[fs A = S8,) a’v:l = E[AV(t — SP)E[S.],
by virtue of Lemma 1 with f(z) = [5 A\ (v —
S.) dv. (The moment conditions in Theorem 10 imply
the moment conditions in Lemma 1.) Given that the
result has been established for all £k < n — 1, it suffices
to show that

(=1yYA"()E[S™]
(n+ 1)

+ Rn(t) = Rn—l([)

or
E( — SU)]

E[(S™
E[Sn+2]
but this follows from Lemma 1 using f(¢) = A"(¢).

We use Lemma 2 to obtain E[SU"] = E[S™?)/
(n+ 2)E[S™').

=(n+2)

(A1) = E[N(z = S¢D)]),

4. STEP FUNCTIONS

We now consider arrival rate functions of the form

b
R - 19

for b = 0, which corresponds to the transient behavior
of a stationary model starting out empty. It also covers
the more general case of an instantaneous shift in rates
of a homogeneous arrival process (b = 0) by virtue of
Theorem 8. Hence, we restrict attention to (19) with
b=0.

From (3) and (19), we see that

m(t) = MO)P(S. < 1)E[S]. (20)

Formula 20 obviously provides a remarkably clear
description of the approach to steady state. Asin Abate
and Whitt (1987) and Mitra and Weiss (1989),
m(t)/m() is a cdf, indeed, the cdf of S. Iis
moments are given in (2). The first moment E[S,] =
(2 + 1)/2 is one useful representation of the notion
of relaxation time. From it, we see that the approach
to steady state is slower when the service-time distri-
bution is more variable.

For the case of deterministic service times, S, is
uniform on [0, 1], so that

0, t<0
m() = M0}, 0st=<| 20
\O), =1

Moreover, since A in (19) is increasing and the deter-
ministic distribution is a lower bound in the con-
vex stochastic order, (21) is an upper bound for m
for all service-time distributions with mean 1 (see
Theorem 3). Moreover, by Theorem 3, as the service-
time distribution increases in the convex stochastic
order, m decreases, so that steady state is approached
more slowly.

In addition to the transient start-up of a stationary
model represented by (19) with b = 0, we can consider
the transient shut-down behavior of a stationary
model characterized by an arrival rate function of the
form

-0 58
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Since the homogeneous Poisson process with rate A(0)
is the sum of the arrival rate functions in (19) with
b = 0 and (22), we can apply Theorem 8 to immedi-
ately obtain

m(t) = M0-)P(S, > 1)E[S]. (23)

More generally, we can consider the effect of turning
off an arbitrary arrival process at time ¢. For this
purpose, let

):(u) _ {}\(u), u<t (24)

0, U=t

The following is an elementary consequence of (3)
and Theorem 2.

Theorem 11. The mean function wm associated with
arrival rate function X in (24) satisfies m(u) =
Cov[Q(t), Q(t + u)], where Q(t) is the number of busy
servers at time t in the M,/G /% model with arrival rate
function \.

Note that (23) is covered by Theorem 11 and
Remark 6.

5. SPIKES

In this section, we consider arrival rate functions of
the form

_JN0), O=s:i<s
M) = {0, otherwise. (25)

These arrival functions are of interest to represent
transient traffic surges, which can be added to other
arrival rate functions by virtue of Theorem 8. They
are also of interest for piecewise constant approxima-
tions of general arrival rate functions.

From (3) and (25), we see that

m(t) = NO)P(t — s < S, < 1)E[S]. (26)
As s — o0 in (25), (26) approaches (20).

6. CONCLUSIONS

Unlike almost any other queueing model with time-
dependent arrival rates, the M,/G /e model 1s remark-
ably amenable to analysis. As illustrated here, the
M,/G /% theory can be applied to obtain simple for-
mulas that provide considerable insight into the time-
dependent congestion, e.g., (7) and (8) in the linear
case, (14) in the quadratic case, and (20) and (23) in
the step function case. Simple formulas for sinusoidal
arrival rates are given in Eick, Massey and Whitt
(1993a).

In contrast to the steady-state distribution of the
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number Q(¢) of busy servers in a stationary M/G/o
model, the time-dependent distribution in an
M,/G/» does not have the insensitivity property,
i.e., the distribution of Q(¢) depends on the service-
time distribution beyond its mean. From (3) and the
other formulas here, it is clear that the service-time
stationary-excess distribution in (1) plays a vital role.
Indeed, if the arrival rate function is sufficiently
smooth so that we can use the quadratic approxima-
tion (14), then the lag in peak congestion behind the
peak arrival rate is approximately equal to the mean
of the service-time stationary-excess distribution, i.e.,
E[S.] = E[S)(c + 1)/2; see (2), (3), and (14).

When the arrival rate function X is nearly constant
before ¢, the mean number of busy servers at time ¢,
m(t), is approximately equal to A(¢)E[S], which is
the pointwise stationary approximation (PSA, see
Remark 2), but as A changes more before ¢, m(¢)
begins to differ more from A(¢)E[S]. Then there tends
to be a pronounced lag and the extremes of m(¢)
tend to become less extreme than the extremes of
ADE[S] (e.g., see (14)).

We believe that the simple formulas here, such as
(14) for the quadratic case and (20) in the step function
case, can quickly provide a rough idea about the time-
dependent congestion in light-to-moderately loaded
M,/G/s/r models. More generally, the infinite-server
results can serve as a basis for more sophisticated
approximations for these systems. Infinite-server
approximations for loss models are investigated in
Eick, Massey and Whitt (1993b).
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