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ABSTRACT: We show that probability distributions of
performance measures in a large class of polling models can
be effectively computed by numerically inverting transforms
(generating functions and Laplace transforms). We develop
new efficient iterative algorithms for computing the transform
values and then use the Fourier-series method to perform the
inversion. We also use this approach to compute moments.
The algorithms apply to the transient behavior of stationary or
nonstationary models as well as to the steady-state behavior of
stationary models. Our main focus is on computing exact tail
probabilities, but even for mean waiting times, our algorithm
is faster than previous algorithms for large models. The
computational complexity of our algorithm is O(N®) for
computing performance measures at one queue and O(N'**)
for computing performance measures at all queues, where N is
the number of queues and o is typically between 0.6 and 0.8.
We demonstrate effectiveness by computing performance
measures in an asymmetric 1000-queue system.

1. Introduction

Over the last thirty years a substantial literature on polling
models has evolved, as can be seen from [2], [5]-[12]. Polling
models have generated great interest because they have many
applications to the performance analysis of computer and
telecommunications systems. These applications include data
transfer from terminals on multi-drop lines to a central
computer, token passing schemes in local and wide area
networks, job scheduling in telephone switching systems and
scheduling moving arms in secondary storage devices.

Multidimensional transforms of performance measures of
interest have been derived for several basic polling models
with Poisson arrivals, general service-time and general
switchover-time distributions. These transform expressions
have been successfully exploited to derive means and
sometimes second moments, but we are unaware of them
being used to calculate the distributions themselves, higher
moments or asymptotic parameters. (However, approximate
distributions have recently been calculated by Federgruen and
Katalan [5].)

In this paper we show that these polling transforms often
can be quite easily computed and inverted numerically to
calculate distributions and any desired moments. We develop
a new efficient recursive algorithm for computing transform
values. Our operation count for computing moments and
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distributions is O(N%) for one queue and is O(N I+ay for all
queues of an N-queue system, where « is typically in the range
0.6 to 0.8. It appears that our algorithm is faster than other
available algorithms for mean waiting time and queue lengths.
To demonstrate, in Section 5 we consider an asymmetric
1000-queue system and compute the mean waiting time in less
than 5seconds, and several moments and tail probability
values in a few minutes, using a SUN SPARC-2 workstation.

We demonstrate the power of numerical inversion by
specifically considering the gated service model with
unlimited waiting space, but our approach applies to many
other models. In particular, it extends to all polling models
where the joint queue length process at polling instants of a
fixed queue is a multitype branching process with
immigration; see Resing [9] and an expanded version of this
paper to appear in Performance Evaluation. To perform the
numerical inversion, we use the Fourier-series method in
[1,3,4].

Computing full distributions instead of only means is
important because in many performance analysis applications
we really want to know high percentiles, such as the 95" or
99" In emerging high-speed communication networks there
is even great interest in very small tail probabilities, such as
107°, in order to provide an appropriate quality of service.
Hence, the ability to compute full distributions should
significantly increase the usefulness of polling models.
Moreover, simulation is usually quite effective for computing
means, but simulation has difficulty computing small tail
probabilities.

We compute all moments by numerical inversion, so that
our method is the same for the hundredth moment as it is for
the first moment. By contrast, previous results for higher
moments, such as by Konheim, Levy and Srinivasan {7], have
been via analytical differentiation of the transform, which
leads to cumbersome expressions. So far, analytical
differentiation has only provided results for the first two
moments, but we can easily compute even the hundredth
moment. Moreover, these higher moments are very useful for
performing numerical asymptotic analysis of the tail
probabilities [3].

Unlike for the first-in first-out (FIFO) discipline, for
polling models computing transient performance measures
tends to be easier than computing steady-state performance



measures, because we compute steady-state transforms by
computing transient transforms for a suitably large number of
queue visits. Here we compute both transient and steady-state
performance measures for polling models. The transient
performance measures are computed only at polling instants,
whereas the steady-state performance measures are computed
at both polling instants and arbitrary times. In the transient
case, the model need not be stationary; i.e., the arrival rate,
service-time distribution and switchover-time distribution can
change at polling instants. The nonstationary model allows us
to study the effect of a sudden overload. We are unaware of
any previous work on time-varying polling models.

To understand tail probabilities such as for a steady-state
waiting time W, it is useful to exploit asymptotics such as

P(W > x) ~ oxPe ™ asx > oo,

(1.1)

where f(x) ~ g(x) means that f(x)/g(x) — 1 asx — co. In
the expanded version of this paper we study the asymptotics
(1.1) for polling models by numerically deriving the
parameters o, 3 and 1, using the moment approach in [3]. We
show that the asymptote (1.1) is often quite accurate and that it
reveals important properties of the polling disciplines. Our
experience indicates that, unlike FIFO, B =0 for M/G/1
polling models. Indeed, the pure-exponential asymptotics with
B = 0 typically holding with the FIFO discipline seems to be
the exception rather than the rule for other disciplines. When
B#0, we also do two-term asymptotic expansions, which
significantly improve the accuracy.

To indicate the kind of insights we can obtain, consider a
symmetric system (gated or exhaustive) with N queues, mean
switchover time r per queue and a fixed total server utilization.
First, for 7 = 0, if we increase N, then the mean waiting time
remains constant, but often the asymptotic parameter 1 in (1.1)
decreases, and the tail probabilities increase. Next, for a fixed
N, if we increase r, then the mean waiting time increases
significantly, but the asymptotic decay rate 1 decreases (and
the tail probabilities increase) only slightly. Finally, for r > 0
and N > 1, the mean waiting time is bigger for the gated
discipline than for the exhaustive discipline. However, the
reverse is true for higher-order moments and for small tail
probabilities.

Here is how the rest of this paper is organized. In Section
2 we develop new efficient algorithms for computing transient
and steady-state transforms for the gated service discipline.
We also show how the computational complexity (in the case
of mean waiting times) compares to that of previous
algorithms. In Section 3 we show how to extend our approach
to zero switchover times. There we derive a new iterative
algorithm for computing the steady-state transform values. In
Section 4 we indicate how we verify the accuracy of our
computations. In Section 5 we present an example with
1000 queues. In Section 6 we discuss how the number of
iterations to reach steady state depends on the number of
queues, their traffic intensities and the target precision.
Finally, in Section 7 we present an example in which we
analyze time-dependent behavior in a nonstationary model.
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2. The Gated Service Model

There are N queues indexed by i, 0 < i < N—1. Thereis a
single server that moves successively from queue i to queue
i+1 mod N, ie., fromitoi+1fori < N—2 and from N ~1
to 0. We assume that a gated policy is in use, so that the
server serves all customers at a queue that it finds upon arrival
there, but no new customers that arrive after the server.

Customers arrive at queue { according to a Poisson process
with the rate ;. Each customer at queue i requires a service
time that has  Laplace-Stielties  transform  (LST)

E}i(s) = J‘Me“*’dBi(t). The server has a switchover (reply)
time to go $rom queue i to queue i +1 mod N with LST R;(s).
The customer service times, server switchover times and
customer arrival processes are all mutually independent.

2.1 Transient Analysis

We assume that the system starts at time O with some
initial distribution of customers at the various queues and with
the server about to begin service at some queue. Let
Lim=Limor--->Limn_1) represent the vector of queue
lengths at the instant the server is about to begin service at
queue i after having visited m queues. For analysis, it is
significant that {L, ,,:m 2 0} is a discrete-time Markov chain.
Let piwm = (Pimlko,... . ky_1)) be the N-dimensional
probability mass function (pmf) of L, and let p; ,, be its N-
dimensional generating function, i.e.,

N-1

Pim(z) = E []25 @.1)

j=0
o o N-1
= E 2 szj p,‘,m(ko,»--’kN—l)
k=0  ky, =0 j=0

for an N-dimensional vector of complex variables
z = (29,...,2y-1). Itis known that we can express ﬁi,m (z)

in terms ofﬁi_l’m_l (z), e.g., see p. 105 of Takagi [12]. The

following is the transient analog of the steady-state equations

given in (5.231) of [12], which hold by the same argument.

For the statement, let w be the wrap-around function

w(k) = k mod N .

Proposition 2.1. The generating function of the pmf p, ,, is
N-1

Pim(z) = few(z‘—l)( > A=Az Pwii-1ym-1(2)  (22)
j=0
where
y R N-1
2=(20s - 2i-2:Bu-n (X (M =X;2;)) 25 - Tn-1) -
j=0

Using (2.2) recursively m times, we arrive at the following
proposition. (It is justified by mathematical induction.)
Proposition 2.2. The generating function in (2.2) can be
expressed as



pw(z —m), O(Z( ))

plm(z) = HRw(z —k) {Z(k -A; Zj(k 1))

j=0
2.3)
where
" kD for I1#w(i-k)
= (2.4)
l(z(x 7Dy for 1= w(i-k)
Jj=0
and2° = 2.

The quantity p;-m).0 (z"™) in (2.3) is the transform of
the initial distribution and w(i —m) is the index of the first
queue polled. If the system is empty at 7 = 0, then
Pwi-mo(z) = 1 for all z. If ko = (koo.ko1:--kon-1)
represents a deterministic vector of initial queue lengths, then

Puii-m.0(2) = Hz‘“ : 2.5)

j=0
To compute each term of the m-fold product in (2.3), the
operation count is O(N) due to the presence of the two N-fold
sums in (2.3) and (2.4). We show below that the operation
count may be reduced to O(1) by introducing the auxiliary
variable

N-1

y® = 3 A=z (2.6)
j=0

We replace (2.3) and (2.4) by the following new set of

recursions:

Pim(z) = HRw(i—k)(y(k_l))ﬁw(i—m),o(z(m)) , (2.7
k=1
k-1) . i —
z}k) _ zj for I # w(i—k) 2.8)
B, (y* D) for I =w(i-k),
y O =y & h i Gy =iy . 29)

with initial conditions z® = z and

N-1
YO = 3 A-hz)
j=0
Note that the computation of (2.9) and IQW(HC) (y(k“ Dyin 2.7)
require O(1) operations, and so does the computation of (2.8)
since only one z variable changes. The total operation count in
computing p; ,(z) is thus O(m) and the total storage
requirement is O(N) since we have to store the vector z® and
the scalar y® in each step. By contrast, the total operation
count for the more straightforward recursions in (2.3) and (2.4)
is O(Nm) and storage requirement is O(N).

Once we get p; ,(z), we can compute distributions and
moments by numerical inversion. In particular, by inverting
pim(1,1,...,2;,...1) we get the marginal distribution at
queue j. This is one-dimensional inversion and is pretty fast.
So we can get marginal distributions at all queues even for
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pretty large N. (See Section2.3 on the computational
complexity). We can also compute joint distributions of, say,
queues0, 1 and 2 by inverting p;,(z¢.21,22,1,1,...1).
However, for joint distributions the computational complexity
grows exponentially with the number of dimensions [4].

For transient analysis we can even allow the system to be
time-varying. In particular we can allow each of the service
time LSTs B, (-), switchover time LSTs R ;(+) and arrival rates
A, to change as a function of m.

We can also get (and numerically invert) transforms
related to p; ,,(z). For this purpose, let p;,(z) = pim(Z)
where 7, = 1 fork #iandZ; = z. LetS;,,(s) be the LST of
the time spent by the server at queue i after having visited m
queues. By (5.11) of [12],

Sim(8) = Pim(Bi(s)) .

Let (A?i,,,, (s) represent the LST of a cycle time that ends just
before a visit to queue i/ and after m queue visits overall
(m > N). Based on (5.39a) of [12],

Cim(s) = ﬁi,m( 1—s/A;) .
2.2 Steady-state Analysis

(2.10)

2.11)

The transient transforms of Section 2.1 converge to proper
steady-state values as m —> oo if the stability condition for this
model is satisfied. The stability condition is well known to be

> p; < 1, where p; = A;b; is the offered load at queue j and
=0

[]7 ; is the mean service time. The steady-state limit, if it exists,
has to be independent of the transform of the initial
distribution ﬁw(i_m),o(z(’")). This is possible only if z™
approaches a vector of all 1’s. We can apply Proposition 2.2
to obtain an explicit representation for the steady-state
transform p;(z) = 1i_1>n Pim(Z).

m—rca

Proposition 2.3. If L;, converges to a proper limit L; as
m —> oo, then its probability generating function is

N-1 w a

pi(z) = EHZ_/'LW = HRw(i—k)(y(kgl)) ,  (2.12)
j=0 k=1
k= for | # w(i—k)

2 = 1. 2.13)
B,%* Dy for I = w(i—k) ,

1
y® = & @G D — 2 k))

N-
with initial conditions 79 = z and y© = Z (A =4;z;).

j=0
Furthermore,
limz® = (1,1,...,1) (2.14)
k—os
limy® =0 (2.15)
k—>oo
lim Ry () = 1. 2.16)



To numerically compute p,(z), we truncate the infinite
product in (2.12) at k = I using the stopping criterion

|Ryi-n 0" -1l < & 2.17)

for some suitably small €. Other stopping criteria, based on
(2.14) or (2.15) may also be used. Note that in general I will
depend on the particular z value at which the transform is
needed. As in the transient case, the computational
complexity in computing each term in the product on the right
hand side of (2.12) is O(1) and the overall computational
complexity in computing one transform value is O (7).

In this paper we do all computations using double
precision arithmetic and typically aim for about 8-to-10 place
accuracy in the final answer. For this purpose, setting
e = 1072 or 107" in (2.17) is usually adequate.

Under the stability condition, the other transient transforms
in (2.10) and (2.11) also approach their steady-state values as
given below:

$i(s) = pi(Bi(s) (2.18)

and
Ci(s) = p;(1=s/A}) , (2.19)
where as before p;(z) = p;(Z) with Z, = 1 for k#i and

Z,‘ = Z.
We also have some steady-state transforms which do not
have transient counterparts. As on p. 109 of Takagi [12], the
steady-state number of customers at queue i at an arbitrary
time is
. N-1 N-1
Qi(z) = [(1- X pr)/h;i X ri]
k=0 k=0
B,(Mi=h2) A
—————[Pi(@)-pi(B; (A =2;2)] , (2.20)
z=B;(h;i—A;2)

where r; is the mean switchover time from queue i to queue
(i+1) mod N. As on p. 120 of [12], the LST of the waiting
time of an arbitrary customer at queue i is

N1
(1-3% po)
X

=0 [Bi(Bi(s)=pi(1=5/01)]

s=A; + Xié,-(s)

Wo(s) = 2.21)

N-1
g
k=0
2.3 Computational Complexity and Comparison With
Other Algorithms

Our inversion algorithm for the computation of
distributions and moments requires computation of the
transform at a number of complex values of z. In general,
computation of the k" moment requires computation of the
transform at (k! + 1) values, while computing one point of the
distribution requires computation of the transform at about 40/
values, where [ is a parameter for roundoff error control. For
8-to-10-place accuracy we need [ = 2 for the moment
computation and / = 1 for the distribution computation.
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In Sections 2.1 and 2.2 we have shown that the
computational complexity for computing one transform value
is O(m) in the transient case and O([I) for the steady-state
case, where m is the number of queue visits and 7 is the
number of iterations for convergence of the transform value,
determined by the stopping criterion (2.17). Hence, for all our
moment and distribution computations the complexity is O(m)
in the transient case and O(I) in the steady-state case.
Henceforth we only discuss the computational complexity of
the steady-state case since the transient computation is faster.

A key measure of the computational complexity is the
dependence of 7 upon N, the number of queues. In Section 6
we show that I = O(N®) where o is in the range 0.6 to 0.8.
So for all our computations also the complexity is O(N®).
This is for computing performance measures at one queue.
For computation at all queues the complexity is O(N oy,
For the computation of mean waiting times at gated or
exhaustive systems the algorithm by Sarkar and Zangwill [10]
has been widely reported to be the fastest. The computational
complexity of that algorithm is O(N?) (same complexity for
one queue and all queues) and hence is considerably slower
than ours for large N.

Recently Konheim, Levy and Srinivasan [7] developed an
algorithm for computing the mean and second moment of the
waiting time with complexity O(N) for one queue and O(N?)
for all queues. Since o0 < 1 we are somewhat faster than this
algorithm as well. The algorithm in [7] may be extended to
higher moments as well but would involve pretty cumbersome
expressions. Of course, the main focus of our paper is on
computing distributions, for which no previous work has been
reported.

It is to be noted that both our method and the method in [7]
are iterative, so that the convergence becomes slow as the total
server utilization p approaches I. Dependence of I on p is
discussed in Section 6. By contrast, the computational
complexity in [10] does not critically depend on p. Hence, for
p sufficiently close to 1, the algorithm in [10] would be faster.
However, our algorithm does work adequately even at
p = 0.95.

3. Zero Switchover Times

As the switchover times approach zero, the average cycle
time approaches zero and many transient and steady-state
quantities defined as averages at polling instants (such as
number in system, server visit time, etc.) also approach zero
since there are infinitely many polling instants in finite time
whenever the system is empty. However, the steady-state
queue length and waiting time, whose transforms are given by
(2.20) and (2.21), remain non-trivial and well defined. We
show that both these quantities can readily be computed by our
iterative-transform  calculation and transform-inversion
method. We explicitly do it only for the waiting time but a
very similar treatment is possible for the queue length. There
has been a considerable literature focusing on the case of zero
switchover times and the relationship between zero and non-



zero switchover times, e.g., [2], [9], [11], but there has not
been any previous attempt at transform inversion.

We assume that the mean switchover time r, = r and that
r = 0. In this section we consider strictly cyclic polling and
so the steady-state waiting times and queue lengths in the
limiting system as r; approaches zero are well defined.
However, for non-strictly-cyclic polling (such as polling
tables) the limiting system is not well defined unless
something more is specified. In [2] the extra specification
involves the fixed quantities p; = llzin%) ri/R, where R is the

—

total switchover time and r; is the switchover time between
pseudostations k and k +1. (Pseudostation k is the k% station
polled in the polling table. The same station may appear more
than once in the polling table, each time as a different
pseudostation). Note that the quantities p; add up to one and
essentially p, represents the probability that at the instant of a
new message arrival an an empty system the server is in transit
between pseudostations k and k+ 1.

For the cyclic polling system considered here, note that
(2.21) may be written as

N-1
(1-3 pi) PN -
- = (B (s)—p;(1=s/\;
W,’(J‘)z k=0 _ pl( z(s)) Pz( S. z) (31)
s —A; + A;Bi(s) Nr

Asr — 0,R;(s) — 1forall i and s. Therefore, from (2.12),
p;(z) —» 1 for all i and z. So both the numerator and
denominator of (3.1) approach zero. Applying L’Hospital’s
rule to (3.1), we get

N-1

Wi(s) = [(1= 3 pe)/(s = hi + A;Bi(s))]
k=0
95 (B;(s)) 9pi(=5/h) |
dr oo - ar =0
X . 3.2)

N
Taking logarithms on both sides of (2.12) yields

log pi(z) = ¥ log Ry @* 1) .
k=1

Taking derivatives on both sides with respect to r we get,

af’i(z)_ aiéw(%k)(y(k_l))

oo a
Aar oy r — (3.3)
pi(z) k=1 Ryg_p(y )

Asr — 0,p;(z) = 1 and I}W(i_k)(y(""”) — 1. Hence, we
get

aRw(i—k)(y(k“l)) l
- . Ir=0

ar 34)

Since we are going to let r — 0, we specify how the
switchover times depend on r. Let the switchover-times be
iid. random variables, each distributed as r times a fixed
random variable with mean 1, i.e., be X, = rX; where X isa
nonnegative random variable with mean 1 and finite higher-
order moments. Since
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—srX,
aEgr fr:O _ E(—lee_”X’),r:o - ~s. (35
aéwi— (S)
_(ar—k)‘lr=o =-s. 3.6)
Combining (3.4) and (3.6), we get
35, w
pz(z) ir_() - _ Ey(k—l) . 3.7

ar

k=1

Now we can use the same iterations given by (2.12)—(2.16)
9b:(2) |
or
needed in (3.2). Then the stopping criterion (2.17) has to be
replaced by the following stopping criterion derived from

(2.15): Stop at k = I whenever

but replace (2.12) with (3.7) above to compute r=0 @S

ly®| < ¢ (3.8)
for suitably small €. Noting that
9pi(z ap;

pi(2) =—&(1,1,...,l,z,l,...,l)Withzappearingin
ar ar

the i place, we can thus readily compute (3.2) which gives
the steady-state waiting time transform.

We believe that the iteration we have just derived for
obtaining steady-state transform values with zero switchover
times is new. Note that the computational complexity in the
zero switchover time case is the same as in the non-zero
switchover time case and is faster than alternative algorithms
(for mean waiting time and queue length computation).

4. Accuracy Verification

Since we are unaware of any published numerical results
on second or higher moments for the models in this paper, an
important consideration is the verification of the accuracy of
our computations.

We implemented the algorithms in Ferguson and
Aminetzah [6] and Sarkar and Zangwill [10] to verify our
mean computations. However, these alternatives do not apply
to the example in Section 5 with 1000 queues, because these
algorithms are too slow. Even for the mean computation we
use transform inversion. Hence, the fact that the transform
inversion is accurate for means leads us to believe that it is
accurate in other cases as well.

For steady-state performance measures the fact that the
transforms converge with an error specification of about
10712210713 shows that the transforms are being computed
accurately. Our experience with the transform inversion
algorithms in other contexts tells us that if the transform is
being computed accurately, it is most likely inverted
accurately as well.

In the special case of N=1 and zero-switchover time, the
gated discipline should match exactly an M/G/1 queue with
FIFO service for which alternate Pollaczek-Khintchine
transform expressions are available. We did observe that our
results satisfy this consistency check.



As explained in [4], there is a parameter / for controlling
round-off error. Typically /=1 is sufficient for the distribution
computation and /=2 is sufficient for moment computation.
Different values of / correspond to different contours on the
complex plane. Hence, if two computations are done using
different values of [ and they agree up to, say 8 decimal places,
then it is very likely that they are both accurate up to that
many places. We verify all computations in this paper using
/=1 and 2 for distributions and / =2 and 3 for moments. In all
cases the agreement is good.

For these reasons, we are confident that the accuracy of all
computations to be shown are high (8 or more decimal places),
even though we do not show all the numerics up to that many
places. All computations were done on a SUN SPARC-2
workstation using double-precision arithmetic.

5. An Example with 1000 Queues

We first consider an asymmetric 1000-queue system with
gated service discipline. All queues are assumed to have the
same service time distribution, a two-stage Erlang (E,)
distribution with mean 1 and coefficient of variation 0.5. All
switchover times are assumed to be zero. The arrival rates at
queues 0,1, ...,999 are

2%x107* + 2ix107° for0<i <500 g D
2x107% + 2(1000—i)x 1075 for 501 < i < 999 .

Formula (5.1) makes the smallest arrival rate 2x107% at
queue 0, the largest arrival rate 1.2x107° at queue 500, and
the overall server utilization p = 0.7.

We show below the first three moments and three points of
the steady-state waiting-time distribution seen by an arbitrary
customer at queue 0.

Performance Ist 2nd 3rd
Measure Moment Moment Moment
’» Value 3.497866 |45.64751 1008.372
Performance
Measure |Pr(W > 10)|Pr(W > 20)| Pr(W > 30)
Value 0.1023567 | 0.02536360 0.00706867
Table 1. Numerical results for the steady-state waiting-time

distribution in the 1000-queue example.

The mean was computed in less than 5 seconds, all
3 moments were computed in about 30 seconds, and the
distribution values were computed in about 5 minutes. By
contrast, we estimated that the algorithm in [10] would have
needed 3.5 hours to compute just the mean and the algorithm
in [6] would have taken substantially longer, again to compute
just the mean.
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6. Rate of Convergence to Steady State

All our steady-state computations have a complexity O(7)
where [ is the number of iterations needed to satisfy (2.17) in
computing one transform value. In this example we study
numerically how I depends on the number of queues, N, server
utilization, p, and error criterion, €. The number I also
depends on several other parameters, such as the service-time
and switchover-time distributions, whether the computation is
for mean or for higher moments, and so on. However, those
factors have been observed to be less critical than N, p and €.

‘We consider the average number of iterations needed per
transform value in computing the mean steady-state waiting
time in a symmetric system with gated service discipline, zero
switchover time and a gamma service-time distribution with
mean 1 and squared coefficient of variation 2. We investigate
how [ grows with N for fixed p and €; here p = 0.7 and
e=10""2,  We found that J(20) =500, while
I1(100) = 2000. A crude approximation would be
I(N) = 25N, but the growth is actually slower than linear. It
appears that I = O(N®) where oo = 0.77. We experimented
with several other cases and in the range of 1 to 100 queues we
have found that consistently / = O(N®) for o between 0.6
and 0.8.

Next we fix N at 10, € at 10~ % and show in Table 2 how /
grows with p.

p| 0204 06 | 07 0.8 0.9 0.95
I 73 118 | 196 | 270 | 413 | 824 | 1604
Table 2. Number of iterations required as a function of the

traffic intensity p.

Clearly I approaches o as p approaches 1. The growth rate
is slower than —1/log p and faster than 1/(1-p). This
appears to be the case in other examples as well.

Finally, we fix N at 10, p at 0.8 and show in the table
below how I grows with €. I appears to grow roughly linearly
with —log €.

e | 1078 | 10710 | 10712 | 107

1{172

297 413 530

Table 3. Number of iterations as a function of the specified

error € in the stopping criterion.

7. An Example with Time-Varying Behavior

In this example we consider transient and time-varying
behavior of a polling system. This example is motivated by
the fact that in many polling systems some overload control
action is taken whenever the cycle time (or the weighted sum
of several successive cycle times) exceeds a threshold. The
threshold is chosen large enough so that it is unlikely to be



exceeded under normal traffic conditions. We do not study the
effect of any overload-control mechanism, but rather study
how the transient cycle times behave under a sudden surge of
overload and specifically how the probability of exceeding a
large threshold changes during and after the overload. We
consider a symmetric 10-queue system with a gated service
discipline. The switchover time is a 4-stage Erlang (E,)
distribution with mean 0.1 and squared coefficient of variation
0.25. The service time is a 2-stage Erlang (E,) distribution
with mean 1 and squared coefficient of variation 0.5. The
arrival rate is time-varying and it changes from cycle to cycle
so that the instantaneous offered load p (the product of total
arrival rate and mean service time) changes with cycle
number. In particular, the instantaneous offered load p during
cycle kis 1.2 for 5 < k < 10 and is 0.8 otherwise.

We let the threshold be 40. When the offered load is
stationary with p = 0.8, the threshold is 8 times the mean
cycle time, and the probability of exceeding it would be
8.862472x10™* (this value we obtain from the steady-state
analysis). Let C, represent the length of the nt cycle. In
Figure 1 we show how the time-dependent cycle-time tail
probabilities P(C, > 40) evolve with n under the time-
varying load. Both during and after the overload, the
probability of exceeding the threshold remains much higher
than the steady-state value. This demonstrates that the
observed cycle time should be a good indicator of an overload.
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