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Preface

0.1. What Is This Book About?

This book is about stochastic-process limits, i.e., limits in which a se-
quence of stochastic processes converges to another stochastic process. Since
the converging stochastic processes are constructed from initial stochastic
processes by appropriately scaling time and space, the stochastic-process
limits provide a macroscopic view of uncertainty. The stochastic-process
limits are interesting and important because they generate simple approxi-
mations for complicated stochastic processes and because they help explain
the statistical regularity associated with a macroscopic view of uncertainty.

This book emphasizes the continuous-mapping approach to obtain new
stochastic-process limits from previously established stochastic-process lim-
its. The continuous-mapping approach is applied to obtain stochastic-process
limits for queues, i.e., probability models of service systems or waiting lines.
These limits for queues are called heavy-traffic limits, because they involve a
sequence of models in which the offered loads are allowed to increase towards
the critical value for stability. These heavy-traffic limits generate simple ap-
proximations for complicated queueing processes under normal loading and
reveal the impact of variability upon queueing performance. By focusing on
the application of stochastic-process limits to queues, this book also provides
an introduction to heavy-traffic stochastic-process limits for queues.

0.2. In More Detail
More generally, this is a book about probability theory — a subject which
has applications to every branch of science and engineering. Probability the-

ory can help manage a portfolio and it can help engineer a communication
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network. As it should, probability theory tells us how to compute probabili-
ties, but probability theory also has a more majestic goal: Probability theory
aims to explain the statistical reqularity associated with a macroscopic view
of uncertainty.

In probability theory, there are many important ideas. But one idea
might fairly lay claim to being the central idea: That idea is conveyed by
the central limit theorem, which explains the ubiquitous bell-shaped curve:
Following the giants — De Moivre, Laplace and Gauss — we have come to
realize that, under regularity conditions, a sum of random variables will be
approximately normally distributed if the number of terms is sufficiently
large.

In the last half century, through the work of Erdés and Kac (1946, 1947),
Doob (1949), Donsker (1951, 1952), Prohorov (1956), Skorohod (1956) and
others, a broader view of the central limit theorem has emerged. We have
discovered that there is not only statistical regularity in the n'® sum as n
gets large, but there also is statistical regularity in the first » sums. That
statistical regularity is expressed via a stochastic-process limit, i.e., a limit
in which a sequence of stochastic processes converges to another stochas-
tic process: A sequence of continuous-time stochastic processes generated
from the first n sums converges in distribution to Brownian motion as n
increases. That generalization of the basic central limit theorem (CLT) is
known as Donsker’s theorem. It is also called a functional central limit
theorem (FCLT), because it implies convergence in distribution for many
functionals of interest, such as the maximum of the first n sums. The ordi-
nary CLT becomes a simple consequence of Donsker’s FCLT, obtained by
applying a projection onto one coordinate, making the ordinary CLT look
like a view from Abbott’s (1952) Flatland.

As an extension of the CLT, Donsker’s FCLT is important because it
has many significant applications, beyond what we would imagine know-
ing the CLT alone. For example, there are many applications in Statistics:
Donsker’s FCLT enables us to determine asymptotically-exact approximate
distributions for many test statistics. The classic example is the Kolmogorov-
Smirnov statistic, which is used to test whether data from an unknown
source can be regarded as an independent sample from a candidate distribu-
tion. The stochastic-process limit identifies a relatively simple approximate
distribution for the test statistic, for any continuous candidate cumulative
distribution function, that can be used when the sample size is large. In-
deed, early work on the Kolmogorov-Smirnov statistic by Doob (1949) and
Donsker (1952) provided a major impetus for the development of the gen-
eral theory of stochastic-process limits. The evolution of that story can be
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seen in the books by Billingsley (1968, 1999), Csorgd and Horvath (1993),
Pollard (1984), Shorack and Wellner (1986) and van der Waart and Wellner
(1996).

Donsker’s FCLT also has applications in other very different directions.
The application that motivated this book is the application to queues:
Donsker’s FCLT can be applied to establish heavy-traffic stochastic-process
limits for queues. A heavy-traffic limit for an open queueing model (with
input from outside that eventually departs) is obtained by considering a
sequence of queueing models, where the input load is allowed to increase
toward the critical level for stability (where the input rate equals the maxi-
mum potential output rate). In such a heavy-traffic limit, the steady-state
performance descriptions, such as the steady-state queue length, typically
grow without bound. Nevertheless, with appropriate scaling of both time
and space, there may be a nondegenerate stochastic-process limit for the
entire queue-length process, which can yield useful approximations and can
provide insight into system performance. The approximations can be useful
even if the actual queueing systems do not experience heavy traffic. The
stochastic-process limits strip away unessential details and reveal key fea-
tures determining performance.

We are especially interested in the scaling of time and space that occurs
in these heavy-traffic stochastic-process limits. It is customary to focus
attention on the limit process, which serves as the approximation, but the
scaling of time and space also provides important insights. For example,
the scaling may reveal a separation of time scales, with different phenomena,
occurring at different time scales. In heavy-traffic limits for queues, the
separation of time scales leads to unifying ideas, such as the heavy-traffic
averaging principle (Section 2.4.2) and the heavy-traffic snapshot principle
(Remark 5.9.1).

We obtain these many consequences of Donsker’s FCLT by applying
the continuous-mapping approach: Various continuous-mapping theorems
imply that convergence in distribution is preserved under appropriate func-
tions, with the simple case being a single function that is continuous. The
continuous-mapping approach is much more effective with the FCLT than
the CLT because many more random quantities of interest can be repre-
sented as functions of the first n partial sums than can be represented as
functions of only the n'® partial sum. Since many heavy-traffic stochastic-
process limits for queues follow from Donsker’s FCLT and the continuous-
mapping approach, we see that the statistical regularity revealed by the
heavy-traffic limits for queues can be regarded as a consequence of the cen-
tral limit theorem.
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In this book we tell the story about the expanded view of the central limit
theorem in more detail. We focus on stochastic-process limits, Donsker’s the-
orem and the continuous-mapping approach. We also put life into the gen-
eral theory by providing a detailed discussion of one application — queues.
We give an introductory account that should be widely accessible. To help
visualize the statistical regularity associated with stochastic-process limits,
we perform simulations and plot stochastic-process sample paths.

However, we hasten to point out that there already is a substantial lit-
erature on stochastic-process limits, Donsker’s FCLT and the continuous-
mapping approach, including two editions of the masterful book by Billings-
ley (1968, 1999). What distinguishes the present book from previous books
on this topic is our focus on stochastic-process limits with nonstandard scal-
ing and nonstandard limit processes.

An important source of motivation for establishing such stochastic-process
limits for queueing stochastic processes comes from evolving communica-
tion networks: Beginning with the seminal work of Leland, Taqqu, Will-
inger and Wilson (1994), extensive traffic measurements have shown that
the network traffic is remarkably bursty, exhibiting complex features such
as heavy-tailed probability distributions, strong (or long-range) dependence
and self-similarity. These features present difficult engineering challenges
for network design and control; e.g., see Park and Willinger (2000) and Kr-
ishnamurthy and Rexford (2001). Accordingly, a goal in our work is to gain
a better understanding of these complex features and the way they affect
the performance of queueing models.

To a large extent, the complex features — the heavy-tailed probability
distributions, strong dependence and self-similarity — can be defined through
their impact on stochastic-process limits. Thus, a study of stochastic-process
limits, in a sufficiently broad context, is directly a study of the complex
features observed in network traffic. From that perspective, it should be
clear that this book is intended as a response (but not nearly a solution) to
the engineering challenge posed by the traffic measurements.

We are interested in the way complex traffic affects network performance.
Since a major component of network performance is congestion (queueing
effects), we abstract network performance and focus on the way the complex
traffic affects the performance of queues. The heavy-traffic limits show that
the complex traffic can have a dramatic impact on queueing performance!
We show that there are again heavy-traffic limits with these complex fea-
tures, but both the scaling and the limit process may change. As in the
standard case, the stochastic-process limits reveal key features determining
performance.
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The heavy-tailed distributions and strong dependence can lead to stochastic-
process limits with jumps in the limit process, i.e., stochastic-process lim-
its in which the limit process has discontinuous sample paths. The jumps
have engineering significance, because they reveal sudden big changes, when
viewed in a long time scale.

Much of the more technical material in the book is devoted to estab-
lishing stochastic-process limits with jumps in the limit process, but there
already are books discussing stochastic-process limits with jumps in the limit
process. Indeed, Jacod and Shiryaev (1987) establish many such stochastic-
process limits. To be more precise, from the technical standpoint, what
distinguishes this book from previous books on this topic is our focus on
stochastic-process limits with unmatched jumps in the limit process; i.e.,
stochastic process limits in which the limit process has jumps unmatched in
the converging processes.

For example, we may have a sequence of stochastic processes with con-
tinuous sample paths converging to a stochastic process with discontinuous
sample paths. Alternatively, before scaling, we may have stochastic pro-
cesses, such as queue-length stochastic processes, that move up and down
by unit steps. Then, after introducing space scaling, the discontinuities are
asymptotically negligible. Nevertheless, the sequence of scaled stochastic
processes can converge in distribution to a limiting stochastic process with
discontinuous sample paths.

Jumps are not part of Donsker’s FCLT, because Brownian motion has
continuous sample paths. But the classical CLT and Donsker’s FCLT do not
capture all possible forms of statistical regularity that can prevail. Other
forms of statistical regularity emerge when the assumptions of the classical
CLT no longer hold. For example, if the random variables being summed
have heavy-tailed probability distributions (which here means having infinite
variance), then the classical CLT for partial sums breaks down. Neverthe-
less, there still may be statistical regularity, but it assumes a new form.
Then there is a different FCLT in which the limit process has jumps!

But the jumps in this new FCLT are matched jumps; each jump cor-
responds to an exceptionally large summand in the sums. At first glance,
it is not so obvious that unmatched jumps can arise. Thus, we might re-
gard stochastic-process limits with unmatched jumps in the limit process as
pathological, and thus not worth serious attention. Part of the interest here
lies in the fact that such limits, not only can occur, but routinely do oc-
cur in interesting applications. In particular, unmatched jumps in the limit
process frequently occur in heavy-traffic limits for queues in the presence of
heavy-tailed probability distributions. For example, in a single-server queue,
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the queue-length process usually moves up and down by unit steps. Hence,
when space scaling is introduced, the jumps in the scaled queue-length pro-
cess are asymptotically negligible. Nevertheless, occasional exceptionally
long service times can cause a rapid buildup of customers, causing the se-
quence of scaled queue-length processes to converge to a limit process with
discontinuous sample paths. We give several examples of stochastic-process
limits with unmatched jumps in the limit process in Chapter 6.

Stochastic-process limits with unmatched jumps in the limit process
present technical challenges: Stochastic-process limits are customarily es-
tablished by exploiting the function space D of all right-continuous R¥-
valued functions with left limits, endowed with the Skorohod (1956) Ji
topology (notion of convergence), which is often called “the Skorohod topol-
ogy.” However, that topology does not permit stochastic-process limits with
unmatched jumps in the limit process.

As a consequence, to establish stochastic-process limits with unmatched
jumps in the limit process, we need to use a nonstandard topology on the un-
derlying space D of stochastic-process sample paths. Instead of the standard
J1 topology on D, we use the M; topology on D, which also was introduced
by Skorohod (1956). Even though the M; topology was introduced a long
time ago, it has not received much attention. Thus, a major goal here is
to provide a systematic development of the function space D with the M;
topology and associated stochastic-process limits.

It turns out the standard J; topology is stronger (or finer) than the M;
topology, so that previous stochastic-process limits established using the
J1 topology also hold with the M7 topology. Thus, while the J; topology
sometimes cannot be used, the M; topology can almost always be used.
Moreover, the extra strength of the J; topology is rarely exploited. Thus,
we would be so bold as to suggest that, if only one topology on the function
space D is to be considered, then it should be the My topology.

Even though our motivation comes from queueing models and their ap-
plication to describe the performance of evolving communication networks,
there are many other possible applications of stochastic-process limits with
jumps in the limit process. Indeed, stochastic-process limits with jumps in
the limit process can arise whenever there are abrupt changes. There are nat-
ural applications to insurance, because insurance claim distributions often
have heavy tails. There also are natural applications to finance, especially
in the area of risk management; e.g., related to electricity derivatives. See
Embrechts, Kliippelberg and Mikosch (1997), Adler, Feldman and Taqqu
(1998) and Asmussen (2000).

In some cases, the fluctuations in a stochastic process are so strong
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that no stochastic-process limit is possible with a limiting stochastic pro-
cess having sample paths in the function space D. In order to establish
stochastic-process limits involving such dramatic fluctuations, we introduce
larger function spaces than D, which we call £ and F. The names are cho-
sen to suggest a natural progression starting from the space C' of continuous
functions and going beyond D. We define topologies on the spaces E and
F analogous to the My and M; topologies on D. Thus we exploit our study
of the M topologies on D in this later work.

Even though the special focus here is on heavy-traffic stochastic-process
limits for queues allowing unmatched jumps in the limit process, many
heavy-traffic stochastic-process limits for queues have no jumps in the limit
process. That is the case whenever we can directly apply the continuous-
mapping approach with Donsker’s FCLT. Then we deduce that reflected
Brownian motion can serve as an asymptotically-exact approximation for
several queueing processes in a heavy-traffic limit. In the queueing chapters
we show how those classic heavy-traffic limits can be established and ap-
plied. Indeed, the book is also intended to serve as a general introduction
to heavy-traffic stochastic-process limits for queues.

0.3. Organization of the Book

The book has fifteen chapters, which can be roughly grouped into four
parts, ordered according to increasing difficulty. The level of difficulty is
far from uniform: The first part is intended to be accessible with less back-
ground. It would be helpful (necessary?) to know something about proba-
bility and queues.

The first part, containing the first five chapters, provides an informal
introduction to stochastic-process limits and their application to queues.
The first part provides a broad overview, mostly without proofs, intending
to complement and supplement other books, such as Billingsley (1968, 1999).

Chapter 1 uses simulation to help the reader directly experience the sta-
tistical regularity associated with stochastic-process limits. Chapter 2 dis-
cusses applications of the random walks simulated in Chapter 1. Chapter 3
introduces the mathematical framework for stochastic-process limits. Chap-
ter 4 provides an overview of stochastic-process limits, presenting Donsker’s
theorem and some of its generalizations. Chapter 5 provides an introduction
to heavy-traffic stochastic-process limits for queues.

The second part, containing Chapters 6 — 10, shows how the unmatched
jumps can arise and expands the treatment of queueing models. The first
chapter, Chapter 6 uses simulation to demonstrate that there should indeed
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be unmatched jumps in the limit process in several examples. Chapter 7
continues the overview of stochastic-process limits begun in Chapter 4. The
remaining chapters in the second part apply the stochastic-process limits,
with the continuous-mapping approach, to obtain more heavy-traffic limits
for queues.

The third part, containing Chapters 11 — 14, is devoted to the technical
foundations needed to establish stochastic-process limits with unmatched
jumps in the limit process. The earlier queueing chapters draw on the third
part to a large extent. The queueing chapters are presented first to provide
motivation for the technical foundations.

The third part begins with Chapter 11, which provides more details on
the mathematical framework for stochastic-process limits, expanding upon
the brief introduction in Chapter 3. Chapter 12 focuses on the function
space D of right-continuous R*-valued functions with left limits, endowed
with one of the nonstandard Skorohod (1956) M topologies (M; or Mj).
As a basis for applying the continuous-mapping approach to establish new
stochastic-process limits in this context, Chapter 13 shows that commonly
used functions from D or D x D to D preserve convergence with the M
topologies. The third part concludes with Chapter 14, which establishes
heavy-traffic limits for networks of queues.

The fourth part, containing Chapter 15, is more exploratory. It initi-
ates new directions for research. Chapter 15 introduces the new spaces
larger than D that can be used to express stochastic-process limits for scaled
stochastic processes with even greater fluctuations.

The organization of the book is described in more detail at the end of
Chapter 3, in Section 3.6.

Additional material is contained in an Internet Supplement. The Inter-
net Supplement has three purposes: First, it is intended to maintain a list of
corrections for errors found after the book has been published. Second, it is
intended to provide supporting details, such as omitted proofs, for material
in the book. Third, it is intended to provide supplementary material related
to the subject of the book. Pointers to the Internet Supplement will be pro-
vided throughout the book. The initial contents of the Internet Supplement
appear at the end of the book in Appendix B. The Internet Supplement is
available online:

http://www.research.att.com/~ wow/supplement.html
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0.4. What is Missing?

Even though this book is long, it only provides introductions to stochastic-
process limits and heavy-traffic stochastic-process limits for queues.

There are several different kinds of limits that can be considered for
probability distributions and stochastic processes. Here we only consider
central limit theorems and natural generalizations to the functions space
D. We omit other kinds of limits such as large deviation principles. For
large deviation principles, the continuous-mapping approach can be applied
using contraction principles. Large deviations principles can be very useful
for queues; see Shwartz and Weiss (1995). For a sample of other interesting
probability limits (related to the Poisson clumping heuristic), see Aldous
(1989).

Even though much of the book is devoted to queues, we only discuss
heavy-traffic stochastic-process limits for queues. There is a large literature
on queues. Nice general introductions to queues, at varying mathematical
levels, are contained in the books by Asmussen (1987), Cooper (1982), Hall
(1991), Kleinrock (1975, 1976) and Wolff (1989).

Queueing theory is intended to aid in the performance analysis of com-
plex systems, such as computer, communication and manufacturing systems.
We discuss performance implications of the heavy-traffic limits, but we do
not discuss performance analysis in detail. Jain (1991) and Gunther (1998)
discuss the performance analysis of computer systems; Bertsekas and Gal-
lager (1987) discuss the performance analysis of communication networks;
and Buzacott and Shanthikumar (1993) and Hopp and Spearman (1996)
discuss the performance analysis of manufacturing systems.

Since we are motivated by evolving communication networks, we discuss
queueing models that arise in that context, but we do not discuss the context
itself. For background on evolving communication networks, see Keshav
(1997), Kurose and Ross (2000) and Krishnamurthy and Rexford (2001).
For research on communication network performance, see Park and Willinger
(2000) and recent proceedings of IEEE INFOCOM and ACM SIGCOMM:

http:/ /www.ieee-infocom.org/2000/

http://www.acm.org/pubs/contents /proceedings/series/comm,/

Even within the relatively narrow domain of heavy-traffic stochastic-
process limits for queues, we only provide an introduction. Harrison (1985)
provided a previous introduction, focusing on Brownian motion and Brow-
nian queues, the heavy-traffic limit processes rather than the heavy-traffic
limits themselves. Harrison shows how martingales and the Ito stochastic
calculus can be applied to calculate quantities of interest and solve control
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problems. Newell (1982) provides useful perspective as well with his focus
on deterministic and diffusion approximations. Harrison and Newell show
that the limit processes can be used directly as approximations without con-
sidering stochastic-process limits. In contrast, we emphasize insights that
can be gained from the stochastic-process limits, e.g., from the scaling.

The subject of heavy-traffic stochastic-process limits remains a very ac-
tive research topic. Most of the recent interest focuses on networks of queues
with multiple classes of customers. A principal goal is to determine good po-
lices for scheduling and routing. That focus places heavy-traffic stochastic-
process limits in the mainstream of operations research.

Multi-class queueing networks are challenging because the obvious sta-
bility criterion — having the traffic intensity be less than one at each queue
— can in fact fail to be sufficient for stability; see Bramson (1994a, b). Thus,
for general multi-class queueing networks, the very definition of heavy traffic
is in question. For some of the recent heavy-traffic stochastic-process limits,
new methods beyond the continuous-mapping approach have been required;
see Bramson (1998) and Williams (1998a,b).

Discussion of the heavy-traffic approach to multi-class queueing net-
works, including optimization issues, can be found in the recent books
by Chen and Yao (2001) and Kushner (2001), in the collections of papers
edited by Yao (1994), Kelly and Williams (1995), Kelly, Zachary and Ziedins
(1996), Dai (1998), McDonald and Turner (2000) and Park and Willinger
(2000), and in recent papers such as Bell and Williams (2001), Harrison
(2000, 2001a,b) and Kumar (2000). Hopefully, this book will help prepare
readers to appreciate that important work and extend it in new directions.
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