AN ALGORITHM FOR PRODUCT-FORM LOSS NETWORKS
BASED ON NUMERICAL INVERSION OF GENERATING FUNCTIONS

Gagan L. Choudhury, ! Kin K. Leung * and Ward Whitt *

1 AT&T Bell Laboratories, Room 1L-238, Holmdel, NJ 07733-3030
2 AT&T Bell Laboratories, Room 1K-211, Holmdel, NJ 07733-3030
3 AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636

Abstract

We consider a family of product-form loss networks with
multiple classes of calls, each of which requires multiple trunks.
The calls can use multiple circuits on each trunk (the multi-rate
case). There can be upper-limit and guaranteed-minimum
sharing policies as well as the standard complete-sharing
policy. If all the requirements of a call cannot be met upon
arrival, then the call is blocked. We develop an algorithm for
computing the (exact) steady-state blocking probability of each
traffic class. The algorithm is based on the numerical inversion
of generating functions of the normalization constants and a
scaling approach for error control. The computational
complexity can often be reduced dramatically by exploiting
conditional decomposition based on special structure and by
appropriately truncating large finite sums. We show that the
proposed algorithm is effective by several numerical examples.

1. Introduction

We describe a new algorithm for calculating the (exact)
blocking probabilities in a large class of product-form loss
networks. In these networks, the blocking probabilities have
simple expressions in terms of normalization constants (or
partition functions). To calculate the blocking probabilities, we
calculate the normalization constants by numerically inverting
their generating functions (which we derive).

Following the approach in our previous paper [2], our
algorithm here uses the numerical inversion algorithm
developed by Abate and Whitt [1] and enhanced by Choudhury,
Lucantoni and Whitt [4], which is based on the Fourier-series
method. In [2], we developed a full algorithm for a class of
closed queueing networks. Now we develop a full version of
the numerical inversion algorithm for a class of loss networks.

Qur first contribution of this paper is to derive the
generating functions of the normalization constants for the loss
networks. Our second contribution is to develop an effective
static scaling algorithm to control the discretization error. As
with the closed queueing networks, the scaling is an essential
step since the normalization constant can be very large or very
small. The general principles for developing effective scaling
apply as before, but we cannot just apply the old scaling
algorithm. Here we develop a new scaling algorithm especially
tailored to the loss networks. We give a brief description here;
a more extensive treatment is given in [3].

0-7803-1820-X/94 $4.00 © 1994 IEEE

1123

In Section 2 we review the model and its product-form
steady-state distribution. In Section 3 we present the generating
functions and in Section 4 we describe the algorithm. We give
numerical examples in Sections 5-6. There we compare our
algorithm to previous algorithms, where applicable.

2. The Model and its Product-Form Solution

Loss networks involve trunks, circuits and classes of calls;
see Kelly [9] for a review. Consider a loss network with p
trunks and r classes of calls. Let the trunks be indexed by i and
the class of call by j. Let trunk i have K; circuits, 1 <i < p,
andlet K = (K, ..., K,) be the capacity vector. Each class-j
call requires a;; circuits on trunk i, where a;; is a nonnegative
integer. Let A be the p X r requirements matrix with elements
a;. Let the calls come from independent Poisson processes,
with class-j calls having arrival rate ;. (In forthcoming
papers, we treat state-dependent arrival rates and batch arrivals.)
Let the call holding times be mutually independent and
independent of the arrival processes. Let the mean holding time
of a type j call be t;. Thus the offered load of class j is
p; = A;t;. Each call is accepted if all desired circuits can be
provided; otherwise, the call is blocked and lost. All circuits
used by a call are released at the end of the call holding time.

Let the system state vector be m = (ny,...,n,), where n;
is the number of class j calls currently in process. Let S, (K) be
the set of allowable states, which depends on the capacity vector
K and the sharing policy P. The traditional loss network model
assumes complete sharing (CS) of the circuits on a trunk among
all competing traffic classes. However, it is often desirable to
consider other sharing policies to provide different grades of
service or to protect one traffic class from another. Thus, we
consider two other candidate trunk sharing policies: The first is
the upper limit (UL) policy, which provides upper limits on the
numbers of circuits that can be used by each class on each
trunk. The second is the guaranteed minimum (GM) policy,
which reserves specified numbers of circuits on each trunk for
each traffic class.

By the product-form model theory [8], the steady-state
probability mass function has the simple product form

nj

r p]
1

j=1 Myt

n(n) = g(K)™! M

with the normalization constant

r ny
[
% n;!

neSp(K) j=1 "

g(K) = ¢p(K) = @

We calculate the normalization constants by numerically
inverting the generating function

Gm=3 3 3 &

K,=0 K,=0 K,=0

I

3)

’ z,l,(" 3

where z=(z,,23,...,2,,) is a vector of complex variables. (For

UL and GM policies, there are extra variables in g and thus G.)
A generic formula for the blocking probability for class j is

r p!nJ

A
n;:

’p'}J
j=1-1 X II =

ne S (K) j=1

B /% G

n;! neS,(K) j=1
where §,(K) is the set of allowable states and S;(K) is the
subset of S, (K) in which another class j request is allowed.

Algorithms for computing the normalization constants, and
thus the blocking probabilities, have previously been developed
only for special cases. For the case of a single trunk and the CS
policy, Kaufman [7] and Roberts [14] developed an effective
recursion. Extensions of this recursion to networks were
derived by Dziong and Roberts [6], and Pinsky and Conway
[13], but they do not seem so effective. For a class of two-hop
tree networks, Mitra [11] performed an asymptotic analysis and
developed bounds, while Kogan [10] developed an algorithm
for that model by relating it to a closed queueing network.
Other algorithms for tree networks have been developed by
Tsang and Ross [16] and Ross and Tsang [15]. Our algorithm
applies to these tree networks as well and more; we discuss tree
network examples in Section 6. Chuah [5] recently developed a
recursive algorithm for a single trunk with the UL policy, which
evidently extends to two trunks.

3. Closed-Form Expressions for the Generating Functions

With the CS sharing policy, the set of allowable states is
Ses(K) = {neZ}: An’ < K}, where Z, is the set of
nonnegative integers and Z is its r-fold cartesian product. By
(4), the stationary blocking probability of an arbitrary type j
request is given by

B; =1 - g(K-Ae/)/g(K), &)

where e; is an r-dimensional row vector with a 1 in the j™ place
and 0’s elsewhere, and €] is its transpose.

We calculate B; in (5) by calculating g(K—Ae}) and g(K).
By (2) and (3), and changing the order of summation, we obtain

oo oo oo ©a r p’l :
Gmy=Y Y Y > II ;t-’—'—zf g
m=0 =0 KI:Z“U”/ szzumnil=l !
T 14 “ 14
= exp o; IT =% 7 T1 (1 —2z) . 6)
j=1 sl i=i

We now assume that, in addition to the overall capacity
constraint provided by K, an upper limit L; is imposed on

1124

class-j calls on trunk i for each (i,;) pair. Call trunk i the type-j
limiting trunk if LL,-j/a,-jj < [Li'j/a,-'jj forall 1 <i’ < p,
and let M; = L;/a;. Note that
Sy (KM) = {neZ;:An" <K, n £ M}. Let g(K,M)
be the normalization constant as a function of the pair (K,M).
Paralleling (5), the blocking probability with UL is

B; = 1 — g(K—Ae/ , M—e)/g(K,M) .)

Since (K,M) is of dimension p + r, so will be the
generating function of g(K,M). Let y=(y,,...,y,) be a
vector of complex variables which we will use for the last r
dimensions. Then, similar to the CS policy, we obtain the
generating function of g(K,M) in a compact form:

L Lo
11 l—z,»} [H I-y;

i=1 j=1

r P
G(z,y)= [} exp [Zp,-yj HZ?U} ®)
j=1 i=1
With the GM policy, a certain number of circuits on each
trunk are reserved for each type of call. To obtain a tractable
expression in this case, we assume that there is a vector
b =(b,,...,b,) such that a;; equals either b; or O for all i and
J. Moreover, we assume that the number of circuits guaranteed
for each type of call is the same for all trunks used by that call
class. Let M; be the capacity guaranteed to class j in each of its
required trunks. We continue to use M to denote the vector
(My,...,M,). Given K and M, let S, (K,M) be the set of
all allowable system states under the GM policy. Then

Sou(K,.M)={neZ]: Y, max(a;n;,&;M;)<K for i=1 to p}.
j=1
Let g(K,M) be the normalization constant. Paralleling (5)
and (7), the blocking probability now, by (4), is
B;=1- g(K—Ae},M—Be;)/g(K,M) . 9)

Similar to the CS and UL policies, we obtain the generating
function of the normalization constant for the GM policy as

7 4
exp(p; [T<") =y exp(p;y)” T2

L 1 r i=1 i=1

G(z,y)= {
i]} I*Z’,') j=1 , l—yj
5.) 5.
y; [Tz explp,y” T120"™)
i=1 i=1
+ }.

10
LIRS

-y ITz"
i=1

In [3], we also treat the case of mixed sharing policies.
Furthermore, it is possible to have UL and GM in the same
model (see a forthcoming paper).

4. The Numerical Inversion Algorithm

In this section, we briefly review the numerical inversion
algorithm; for background see [1,2,4] and for more details see
[3]. Throughout we use the notation in (3); thus our goal is to
calculate g(K) given G(z) where K and z are p-dimensional.

Dimension Reduction

Our
functions

approach
is to

to inverting p-dimensional generating
recursively perform p one-dimensional

inversions. Generally, the computational complexity is
exponential in p, but a dramatic reduction often occurs due to
special structure if we perform the one-dimensional inversions
in a good order. Details on the dimension reduction by
conditional decomposition are given in [2,3].

For example, the generating function for the UL policy in
(8) appears to require a (p+r)-dimensional inversion, but
exploiting special structure, the problem can be reduced to a
(p +1)-dimensional or even an p-dimensional inversion.
Specifically, if we invert all the z; variables first, then the
inversions for the different y; variables clearly can be done
separately. This reduces the dimensiontop + 1.

The Basic Algorithm

Given that the order of inversion has been specified, we
perform (up to) p one-dimensional inversions recursively. To
represent the recursive inversion, we define partial generating
functions by

, oo o j
g0z K= % - T g(K) Lz for 1<jgp, (1)
K, =0 K;=0 i=1
where z;=(zy,25,...,2;) and K;=(K;,K;,y,....K}) for
1<jsp. Let z, and K,,; be null vectors. Clearly,
K=K,, z=z,, g7 (z,.K,.1)=G(z) and

g(m(zo,Kl):g(K),

Let /; represent inversion with respect to z;. Then the step-
by-step nested inversion approach is

gV (21 . K)) = gV (2, Kju)], 1) <p, (12)

starting with j=p and decreasing j by 1 each step. Our program
implements this nested inversion in a recursive manner.

In each step we use the LATTICE-POISSON inversion
algorithm in [1] with modifications to improve precision and
allow for complex inverse functions as in [4]. We show below
the inversion formula at the j* step. For simplicity, we suppress
those arguments which remain constant during this inversion,
letting g;(K;)=g"""(z;_,,K;) and G,;(z;))=¢"(2; K};1).
With this notation, the inversion formula (12) is

1 L % /1
rik/L Ky - mik
g;(K;) = — = Gi(rje”" ")e - i, (13)
2LK;r57 k==K
where i = V=1 , I; is a positive integer and e; represents the

aliasing error, which is given by
e; = Y g;i(K; + 2nl,K)ri%.

n=1

(14)

To control the aliasing error in (14), we choose r; = 107%
for a; = v;/(21;K;). From (14), we see that a bigger Y;
decreases the aliasing error. Also, as explained in [4], the
parameter /; controls roundoff error, with bigger values causing
less roundoff error.

Scaling

When the inverse function is a probability, the aliasing error
e; can easily be bounded. In contrast, here the normalization
constants may be arbitrarily large and therefore the aliasing

1125

error e; may also be arbitrarily large. Thus, we scale the
generating function in each step by defining a scaled generating
function and associated scaled normalization constants by

G;(z))=0;G;(0,z;) and g;(K;)=01g; 0 g;(K;) (15)
where 0,5; and o; are positive real numbers. We invert this

scaled generating function after choosing 0.o; and o; so that the
errors are suitably controlled.

We choose the parameters ¢.g; and @; in (15) to control the
aliasing error

g = glg,.(Kj + 2nl;K;)1070" (16)

Since we are interested in ratios of normalization constants, we
focus on relative errors e; = ¢; /g;(K;), which is bounded by

PARESN - 107" . (17
= R 0.6
1/n
Let C; = max{ g;(K; + 2nl,K}) / §,(K;) }
n
1/n
= aflf’(fmnax{ g (K;+2nlK;) / g;(K;) } . (18)
oo B C»IO_Y’
Then |ej| € ¥ €107 < ——— = C;107". (19)
n=1 I—CJIO K

Note that C; in (18) is independent of 0.y;. We use the second
parameter 0.q; mainly to keep g;(K;) in (15) close to 1, so as to
avoid numerical underflow or overflow.

Hence, our main goal is to choose ¢; so that C; << 10", of
course, in general we do not know g;(K;) and thus we do not
know C;. However, we aim to achieve C; << 10" by roughly
controlling the growth rate of g;(K;), or its fastest growing
term, exploiting the structure of the generating function.

For the CS policy we choose scaling parameters o;,
1 € i € p, so that they satisfy the unequalities 0 < o; < 1 and

>
j=1

Once the scaling variables o; have been obtained, we obtain
og; recursively starting with i = p by

P

I1

J
k=1

i-1
o []ri¥a; SK;,1<i<p. (20)
k=1

» r » i-1
IT ook = exp =Yoo [T TIr 21
k=i j=1 k=1 k=1

To find a maximal vector (0., ..., o,) satisfying (20), we
start with { = p and successively decrease i. We use the fact
that the left side of (20) is monotone in ;. When i = [, the
values of o; for i 21 + 1 are known. We approximate by
acting as if o; = 1 for { £ /~1 and find o, satisfying the
constraint for i = [in (20). When we are done we obtain a
maximal vector; i.e., if any «; is less than 1, then at least one
constraint in (20) is necessarily satisfied as an equality. Hence,
we cannot increase the vector without violating a constraint.
However, in general there may be many maximal vectors. We
could obtain alternative, perhaps more balanced, scaling vectors

(ay,...,0,) by iterating, letting a; for i < /-1 be the old

value instead of 1, but we have not found this refinement to be
necessary. We discuss the (largely heuristic) derivation of (20)
and (21) in [3].

For the UL policy the generating function in (8) has a form
similar to the CS generating function in (6) if we treat the y;
variables like the z; variables. Thus the scaling for UL is
straightforward extension of CS scaling in (20) and (21). The
generating function for the GM policy in (10) is more
complicated. Hence, for scaling only, we treat GM by acting as
if it were UL. For each class j on each resource i, we use the
upper limit obtained by subtracting the guaranteed minima of all
other classes from the capacity. We then use the UL scaling
with these upper limits. This procedure is exact for two classes,
but a heuristic approximation for more than two classes.

Other Algorithm Issues

As can be seen from (13), the inversion formula in each
dimension is a sum of 2/;K; terms. If K; is large, then it is
natural to look for ways to accelerate convergence of the finite
sum. For this purpose, we find that truncation is effective. The
inversion formula in each step is a weighted sum of generating
function values evaluated over equidistant points along the
circumference of a circle. The weights are complex numbers,
but they have constant amplitude. As the capacities K; grow,
the amplitude of the generating function typically becomes
unevenly distributed along the circumference of the circle.
There are several local maximum points and the amplitude
drops sharply away from these points. If we can identify all the
relative maximum points, and then consider only those points
around them that have non-negligible relative amplitude, we can
obtain a significant reduction in computation. A general
procedure is developed in [3].

In order to compute the blocking probability for each of the
r classes, the computational complexity is O(r?), because
r + 1| normalization constant values have to be calculated and
the computation required for each is O(r). However, for large
capacity vectors K it is possible to compute the r + I
normalization constants simultaneously with the bulk of the
computations shared, so that the required computation for all
normalization constants is only slightly more than for one. This
reduces the overall complexity from 0(r¥) to O(r).

We now roughly analyze the computational complexity of
the inversion algorithm. For simplicity, assume that the
capacity of each resource is K. Let Cp represent the
computational complexity for sharing policy P, where P may be
CS, UL or GM. The main computational burden is carrying out
the p-fold nested inversion in (13). Other work, such as finding
the scale parameters is insignificant compared to that. A
straightforward application of our algorithm in the CS case to
compute one normalization constant would require O(K?)
evaluations of the generating function, each of which would
involve O(r) work. In order to compute the blocking
probability for each class, we need to compute r + 1
normalization constants, but we have just shown that all this
work can be done in time O(1) by sharing the bulk of the
computation (requiring storage only of O(r)). Without further
enhancements, this yields Ccs = O(rK?).

1126

However, we can use truncation to reduce K to K and, with
special structure, we can reduce p to p <<p. So, finally, we get

Ces = O(KD) 22)
where K < K and K << K for large K
7 < p and p << p with special structure . (23)

In contrast, the algorithm in [6] and [13] has Cg=0(rK?).
Similarly, for the other two policies (exploiting conditional
decomposition as described in Section 3.1), we get

CuL = Cay = O(FK™™) (24)

for K and p in (23).

In all cases the storage requirement is O(r), which is
relatively low.

5. Examples of a Single Trunk

We now give several examples. All computations are done
on a SUN SPARC-2 workstation.

Our first numerical example is the classical resource-sharing
model involving a single trunk and the CS sharing policy. We
present a brief summary of results here; details are reported in
[3]. As a basis for comparison, we also implemented the
recursive algorithm of Kaufman [7] and Roberts [14] and the
uniform asymptotic approximation (UAA) of Mitra and
Morrison [12]. For the specific set of model parameters, when
the number of circuits in the trunk (denoted by K) can be
handled by the recursion algorithms, results of the inversion and
recursion algorithms agreed well beyond eight significant digits.
However, when K exceeds a certain value, the recursions either
had numerical underflows or overflows, or took too long to run.
On the other hand, our inversion results agreed closely with
UAA, and, as expected, the agreement improves as K increases.
In this example, we also checked the accuracy of the inversion
algorithm by running it twice, with [, land /; = 2. Our
algorithm took less than half a second for this example.

We continue to consider a single trunk, but now with the UL
and GM sharing policies as well as the CS policy. The
generating functions for the UL and GM policies are given in
(8) and (10), and the blocking probabilities are given in (7) and
9).

We first consider a smaller example, for which we can apply
a direct algorithm (developed in Section 6 of [3]) as well as the
inversion algorithm. We let the capacity be K = 150 and
consider 5 classes. The 5 classes require 1,2,3,4 and 5 circuits
per call, respectively, and the corresponding offered loads are
20,15,12,10 and 9. For UL, the class limits are 20,30,50,60
and 70. For GM, the corresponding guaranteed minima are
5,18,25,36 and 40.

The blocking probability for each class and each sharing
policy is shown in Table 1. The direct and inversion algorithms
agreed to at least 12 digits in each case. This example thus
serves to validate the generating functions and both algorithms.
For this smaller example, the inversion algorithm runs in less
than a second while the direct algorithm runs in minutes.

sharing class

policy 1 2 3 4 5

Ccs 0.060513 0.118849 | 0.174972 | 0.228857 | 0.280487
UL 0.1760450 | 0.214567 | 0.162187 | 0.195747 | 0.239105
GM 0.148226 0.254277 | 0.285198 | 0.216798 | 0.244159

Table 1. Blocking probabilities for K = 150.

Next we consider a larger example with capacity K = 600
and 10 classes, for which the inversion algorithm runs in
seconds, while the direct algorithm can no longer run in
reasonable time. Class j requires j units, 1 < j < 10. The
vector of offered loads for the 10classes is
(30,25,20,18,16,14,13,12,11,10). The vector class limits
with the UL policy is (30,50,60,80,90,100,110,120,
130,140), while the associated vector of guaranteed minima for
the GM policy is (5,10,20,30,40, 50,60,70,80,100).

The blocking probabilities for classes 1, 2 and 10 for each
sharing policy are given in Table 2. For the CS policy, the
inversion algorithm was validated by applying the Kaufman [7]
and Roberts [14] recursion. For the UL and GM policies, the
inversion was validated by performing two separate inversions
with the parameters /; = 1 and [, = 2. There was agreement
to at least 11 digits in each case.

sharing class

policy 1 2 10
CS 0.0427417 | 0.0838918 | 0.3613882
UL 0.1455476 | 0.1706272 | 0.3199203
GM 0.0973615 | 0.1861317 | 0.1865667

Table 2. Blocking probabilities for K = 600.

6. Examples of Networks with Special Structure

Many networks have special structure allowing drastic
dimension reduction. We consider here two such structures, to
be referred to as structure A and B, but clearly others are also
possible.

In structure A, commonly referred to as a tree network, class
J calls require a;; circuits on trunk i, where a;; is allowed to be
non-zero only for at most two values of i, one of which has to
be p. If both the non-zero values of a,; are 1 then that
corresponds to a single-rate tree network, considered by Mitra
[11] and Kogan [10]. Tsang and Ross [16] considered the
multi-rate case in which the two non-zero values of a;; are the
same but may be bigger than 1. Ross and Tsang [15] allow the
two possible non-zero values of a;; to be either the same or one
of them to be zero. We consider a further generalization in that
we allow the two values of a; to be different, without
necessarily requiring one of them to be zero. Furthermore, all
the earlier work was restricted to the CS policy, whereas we
allow the UL and GM sharing policies.

In structure B, evidently not considered earlier, for each
class j calls, a;; is allowed to be non-zero for at most 3 values of
i, one of which has to be ¢ and the other two have to be k and

1127

g+ kforl <k<g-1.

In structure A, divide the traffic classes according to the
trunks they use by letting l=r,<r,<r,<...<r,_;=r; then
class j uses trunks k and p if ry_;+1<j<r,. Similarly, in
structure B, let I=rq<r;<r,...<r,_;=r. traffic class j uses
trunks k, ¢ and g +k if r,_;+1<j<r,. By (6), the generating
functions for structures A and B with Poisson arrivals and the
CS policy are, respectively,

Tk
ay _ay,
exp(Y, P;z,")

-1 .
J= k-t

~

1
G(z) = 25
@ =11 - (25)
o o0 X Pyttt
j=ry_;+1
and G(z) = ! 26
=2, i (—en(-2,.0 @0

In (25), if we fix z,,, then each term within the product becomes
independent of others and requires one-dimensional inversion.
The overall inversion thereby is two-dimensional. In (26) if we
fix z, each term within the product is independent of the others
and requires two-dimensional inversion. The overall inversion
thereby is three-dimensional.

We first provide numerical examples for structure A. We
start with the single-rate tree network example on p.235 of
Mitra [11] using the CS policy. Here a;; = 1 whenever it is
non-zero, ry = k, r = 7 and p = 8. The capacity vector is
K = (30,30,20,20,15,15,15,134). By inverting z, to z
analytically in (25) with p =8, the blocking probabilities can be
obtained by one-dimensional inversion (i.e., inverting zg) in a
fraction of a second. The results are displayed in Table 3. We
see that our results are between the lower and upper bounds
(denoted by LB and UB) by Mitra’s method [11] in each case.
Interestingly the results are very close to the mean of the two
bounds, which Mitra suggested as an estimate. The last column
of Table 3 also shows results of a more challenging example
where the values of p;’s and K;’s are increased by 100 times.

class Mitra example larger example
J|p; LB inversion UB inversion
1| 35§ 0.2201 | 0.220749 | 0.2214 0.144901
2 | 30 | 0.1333 | 0.134067 | 0.1347 0.029743
3 | 25 | 0.2801 | 0.280729 | 0.2813 0.201814
4 | 17 | 0.0880 | 0.088875 | 0.0896 0.028701
5| 20 | 0.3302 | 0.330783 | 0.3313 0.251658
6 | 15 | 0.1805 | 0.182201 | 0.1828 0.033965
7 9 | 0.0257 | 0.026632 | 0.0274 0.028701

Table 3. Blocking probs. in the tree network with CS policy.

We now consider more general tree networks with non-CS
policies and multiple rates, for which existing methods do not
apply. We allow more than one class to use a non-common
trunk and the requirements of each class for the two trunks not
to be identical.

This example has 6 trunks, with the sixth trunk being the
common trunk. The capacity vector is K=(15,25,25,30,

20,90). Our example has 15 classes, with class j using trunks
[j/3] and 6 (possibly at a 0 level), where [x] is the least integer
greater than or equal to x (i.e., classes 1,2 and 3 use trunks 1 and
6, classes 4,5 and 6 use trunks 2 and 6, etc.).

The specific offered loads and requirements for each class
are given in Table 4. We consider both the CS and UL sharing
policies. The limits for the UL policy are also given in Table 4.
(These are not used with the CS policy.) The blocking
probability for each class is given in Table 4.

model parameters blocking probabilities
Jopeilanmi | Lom | @6 | Loy cs UL
1110 1 10 0 0 | 0.328927 | 0.333529
2110 0 0 1 15 0.004393 | 0.036827
3110 1 10 1 15 0.331579 | 0.333777
4 5 1 10 1 10 | 0.109389 | 0.104160
5 5 2 15 2 15 0.219572 | 0.225724
6 5 2 15 1 10 | 0216223 | 0.225384
7 4 1 8 1 8 0.112727 | 0.114086
8 4 3 16 3 16 0.326724 | 0.330792
9 4 3 16 1 10 0.320927 | 0.330258
10 3 1 7 1 7 0.061176 | 0.025887
11 3 4 15 4 15 0.236906 | 0.347366
12 3 4 15 1 8 0.226213 | 0.347187
13 2 1 6 1 6 0.075576 | 0.046674
14 2 5 13 5 13 0.433225 | 0.465534
15 2 5 13 1 5 0.422868 | 0.465049

Table 4. Blocking probability in a multi-rate
tree network with the CS and UL sharing policies.

We obtain the generating function for CS from (6). Itis
5 6
G(z) = exp | X, P;2A] Z6” /H(l—z,-) . (27)
j=1 i=1

We employ conditional decomposition to reduce the dimension
from 6 to 2; i.e., for any fixed value of z4, the generating
function can be represented as a product of 5 factors with z;
appearing only in the i™ factor. We obtain the generating
function for the UL policy from (8):

15 6 15
G(z.y)=exp(X, 0,3, 2101 267)/ TT (1 =z [T (1-;). (28)
j=1 i=1 j=1

Conditional decomposition reduces the dimension from 21 to 3.
As with the CS policy, we first invert z4, then we invert the
other z; variable in each factor. For any fixed values of the two
z variables, the generating function can be represented as a
product of 15 factors with y; appearing only in the j™ factor.

The computation of all blocking probabilities took several
seconds. We can increase the numbers of classes, trunks and
capacities each by factors of ten and still carry out the
computations in several minutes using truncation.

References

[11 ABATE, J. and WHITT, W. 1992. The Fourier-series
method for inverting transforms of probability
distributions. Queueing Systems 10, 5-88.

1128

{2]

(3]

(4]

(5]

(6]

[7]

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CHOUDHURY, G. L., LEUNG, K. K. and WHITT, W.
1993. Calculating Normalization Constants of Closed
Queueing Networks by Numerically Inverting Their
Generating Functions. J. ACM to appear.

CHOUDHURY, G. L., LEUNG, K. K. and WHITT, W.
1994. An Algorithm to Compute Blocking Probabilities
in Multi-Rate Multi-Class Multi-Resource Loss Models.
Adv. Applied Prob. to appear.

CHOUDHURY, G. L., LUCANTONI, D. M. and
WHITT, W. 1994, Multidimensional Transform
Inversion With Applications to the Transient M/G/1
Queue. Ann. Appl. Prob. to appear.

CHUAH, M. C. 1993. General Pricing Framework for
Multiple Service, Multiple Resource Systems. AT&T
Bell Laboratories, Holmdel, New Jersey.

DZIONG, Z., and ROBERTS, J. W. 1987. Congestion
Probabilities in a Circuit-Switched Integrated Services
Network. Perf. Eval. 7,267-284.

KAUFMAN, J. S. 1981. Blocking in a Shared Resource
Environment. IEEE Trans. Commun. COM-29, 1474-
1481.

KELLY, F. P. 1979. Reversibility and Stochastic
Networks, Wiley, New York.

KELLY, E. P. 1991. Loss Networks. Ann. Appl. Prob.
1, 319-378.

KOGAN, Y. 1989. Exact Analysis for a Class of
Simple, Circuit-Switched Networks with Blocking. Adv.
Appl. Prob. 21,952-955.

MITRA, D. 1987. Asymptotic Analysis and
Computational Methods for a Class of Simple, Circuit-
Switched Networks with Blocking. Adv. Appl. Prob.
19, 291-239.

MITRA, D., and MORRISON, J. A. 1993. Erlang
Capacity and Uniform Approximations for Shared
Unbuffered Resources. AT&T Bell Laboratories,
Murray Hill, New Jersey.

PINSKY, E., and CONWAY, A. E. 1992
Computational Algorithms for Blocking Probabilities in
Circuit-Switched Networks. Ann. Opns. Res. 35, 31-41.

ROBERTS, J. W. 1981. A Service System with
Heterogeneous User Requirements. Perf of Data
Commun. Systems and their Applications, G. Pujolle
(Ed.), North-Holland Publishing, 423-431.

ROSS, K. W, and TSANG, D. 1990. Teletraffic
Engineering for Product-Form Circuit-Switched
Networks. Adv. Appl. Prob. 22, 657-675.

TSANG, D., and ROSS, K. W. 1990. Algorithms to
Determine Exact Blocking Probabilities for Multirate
Tree Networks. IEEE Trans. Commun. 38, 1266-1271.

