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HEAVY-TRAFFIC LIMITS FOR WAITING TIMES IN
MANY-SERVER QUEUES WITH ABANDONMENT1

BY RISHI TALREJA AND WARD WHITT

Columbia University

We establish heavy-traffic stochastic-process limits for waiting times
in many-server queues with customer abandonment. If the system is as-
ymptotically critically loaded, as in the quality-and-efficiency-driven (QED)
regime, then a bounding argument shows that the abandonment does not af-
fect waiting-time processes. If instead the system is overloaded, as in the
efficiency-driven (ED) regime, following Mandelbaum et al. [Proceedings
of the Thirty-Seventh Annual Allerton Conference on Communication, Con-
trol and Computing (1999) 1095–1104], we treat customer abandonment by
studying the limiting behavior of the queueing models with arrivals turned
off at some time t . Then, the waiting time of an infinitely patient customer
arriving at time t is the additional time it takes for the queue to empty. To
prove stochastic-process limits for virtual waiting times, we establish a two-
parameter version of Puhalskii’s invariance principle for first passage times.
That, in turn, involves proving that two-parameter versions of the composi-
tion and inverse mappings appropriately preserve convergence.

1. Introduction. In the past, heavy-traffic stochastic-process limits for wait-
ing times in queueing systems have been proven using Puhalskii’s invariance prin-
ciple for first-passage times [11] together with established stochastic-process limits
for queue-length processes; e.g., [1, 4, 13, 19]. For instance, for an n server system,
denoting the arrival, departure and number-in-system processes by A, D and X,
respectively, the virtual waiting time at time t can be represented as the following
first-passage time:

V (t) = inf{s ≥ 0 | D(t + s) ≥ X(0) + A(t) − (n − 1)}.(1.1)

When one attempts to incorporate an abandonment process L in the model, one
cannot simply write the virtual waiting time at time t (the waiting time of an infi-
nitely patient customer arriving at time t) as

V (t) = inf{s ≥ 0 | D(t + s) + L(t + s) ≥ X(0) + A(t) − (n − 1)},(1.2)

because the term L(t + s) may include customers that arrived to the system after
time t and then abandoned.
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When the system is asymptotically critically loaded in fluid scale, as in the
quality-and-efficiency (QED) regime, we show that abandonments do not affect
fluid and diffusion limits for the virtual waiting time. We do this by bounding the
virtual waiting time process from above and below by processes of the form (1.1)
and (1.2), respectively. These bounds are shown to be asymptotically equiva-
lent, giving us a limit for our virtual waiting time process. For the Markovian
M/M/n + M model in the QED regime, the virtual waiting time limit was first
stated in Theorem 3 of Garnett et al. [3], but the proof given there is not correct.
We give a correct proof here.

When the system is not asymptotically critically loaded in fluid scale, we must
be more careful. One way to address this problem, which was first suggested by
Mandelbaum et al. [7], is to consider the system with the arrival process stopped
at a fixed time t , so that the abandonment term in the first-passage time expres-
sion (1.2) does not include customers that arrive to the system after time t . We can
then use the invariance principle for first-passage times to get the desired limit for
the fixed t . To prove the full stochastic-process limit for virtual waiting times, how-
ever, we need a corresponding two-parameter limit for the queue-length process
with arrivals turned off and a two-parameter version of the invariance principle for
first-passage times. We establish these results here. We establish the two-parameter
version of Puhalskii’s invariance principle for first-passage times by proving that
two-parameter versions of the composition and inverse mappings are convergence-
preserving. This portion of our work is along the lines of [14] and Chapter 13
of [15].

We apply the two-parameter version of Puhalskii’s theorem to establish many-
server heavy-traffic stochastic-process limits for waiting times in the M/M/s +M

model in the efficiency-driven (ED) regime. As indicated above, the line of rea-
soning here was initiated by Mandelbaum et al. [7], which builds on the strong-
approximation approach in [6]. In [7] the need to turn off the arrival process to
properly treat customer abandonment was recognized, but the two-parameter ver-
sion of Puhalskii’s theorem needed to complete the argument was not stated or
proved. The statement and partial proof were developed in an unpublished manu-
script [8]. The most difficult step in proving the ED result is not establishing the
two-parameter generalization of Puhalskii’s theorem, but is instead establishing
the stochastic-process limit for the queue-length process with the arrival process
turned off, Proposition 6.2 here. Mandelbaum et al. [8] establish corresponding
results in the more general setting of “Markovian service networks” [6], but that
part of their work remains to be completed. Our task is made easier by considering
only the M/M/s + M model. Nevertheless, we believe that the results and line of
reasoning here apply to more general models.

We also establish the heavy-traffic limit for the steady-state waiting time in
the ED regime by a different argument. As should be anticipated, it is a normal
distribution centered at the fluid limit. We show that the variance has a simple
form, which is unclear a priori. Our result is a special case of the ED limit for the
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M/M/s +GI steady-state waiting time in (6.12) of Zeltyn and Mandelbaum [20].
Our proof is interesting because we use a stochastic-process limit to prove the one-
dimensional limit. For the QED regime, the limit for the steady-state waiting time
distribution is given in Theorem 3 of [3].

NOTATION. For a, b, c ∈ R, let a ∨ b ≡ max{a, b}, a ∧ b ≡ min{a, b}, [c]ba ≡
max{min{c, b}, a}, and a+ ≡ a ∨ 0.

For a complete separable metric space (CSMS) (S, d), we let C([0,∞), S) de-
note the set of continuous functions from [0,∞) to S and define C ≡ C([0,∞),R)

and CC ≡ C([0,∞),C). We endow these spaces with the topology of uniform
convergence over compact sets (u.o.c.). For x ∈ C([0,∞), S), let ‖x − y‖t ≡
sup0≤s≤t d(x(s), y(s)). A metric m inducing the topology of u.o.c. is

m(x,y) ≡
∫ ∞

0
e−t (‖x − y‖t ∧ 1) dt.(1.3)

Notice that m(xn, x) → 0 as n → ∞ if and only if ‖xn − x‖t → 0 as n → ∞ for
all t ≥ 0.

For a CSMS S , let D([0,∞), S) denote the set of right-continuous functions
from [0,∞) to S having left limits everywhere on (0,∞) (see [2] and [15]) and
let D ≡ D([0,∞),R) and DD ≡ D([0,∞),D). Let e denote the identity element
in D, i.e., e(t) = t for t ≥ 0, and let η denote the constant function 1, i.e., η(t) = 1
for t ≥ 0. We use (D, T ) to denote the space D with the topology T . We use
(DD, T1, T2) to denote the space DD with the topology T1 on the outside D space
and the topology T2 on the inside D space. We use J1 and M1 to denote Sko-
horod’s J1 and M1 topologies, respectively, and U to denote the topology of u.o.c.
as defined above. Note the spaces (DD,J1,M1) and (DD,J1, J1) are well-defined
topological spaces, but (DD,M1,M1) and (DD,M1, J1) are not, since the M1
topology has only been defined on the spaces D([0,∞),R

k), for k ≥ 1 (see Chap-
ter 12 of [15]).

We can identify functions in CC and DD as two-parameter functions x ≡ x(·, ·).
For x ∈ DD and s ≥ 0, we will often find it convenient to refer to x(s, ·) ∈
D([0,∞),R) as xs . We also work with product spaces such as D2

D ≡ DD × DD ,
where we assume the appropriate product topology. For x ∈ D, let ‖x‖S ≡
sup0≤s≤S |x(s)| and for x ∈ DD , let ‖x‖S,T ≡ sup0≤s≤S,0≤t≤T |x(s, t)|. (This is
consistent with our notation ‖x − y‖t used in (1.3); since S = R, we now have
a norm.) We will mainly be considering limit processes with continuous sample
paths. It is thus significant that for x ∈ CC convergence xn → x in (DD,J1, J1) or
(DD,J1,M1) is equivalent to xn → x in (DD,U,U), which, in turn, is equivalent
to ‖xn − x‖S,T → 0 for all S,T > 0; see Theorem 2.1 below.

Let ⇒ denote convergence in distribution. For a sequence of R-valued random
variables (Xn)n≥1, we write Xn = oP(f (n)) if

Xn

f (n)
⇒ 0 in R as n → ∞.
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Organization. In Section 2, we begin by proving various functions in DD are
convergence preserving. Some of these results are given in greater generality than
needed here. The additional generality may be useful in future work. In Section 3,
we use a simple bounding argument to prove heavy-traffic limits for virtual wait-
ing time processes when the abandonment process is asymptotically negligible in
fluid-scale. In Section 4, we use the results in Section 2 to prove heavy-traffic limits
for virtual waiting time processes assuming associated limits hold for basic queue-
ing process with the arrival process stopped. In Sections 5 and 6 we use the results
in Sections 3 and 4, respectively, to prove waiting-time stochastic-process limits
for the M/M/n + M model in the QED and ED limiting regimes. In Section 6.2,
we establish the heavy-traffic limit for the steady-state virtual waiting times in the
ED regime. Section 7 contains the proofs of lemmas used in Sections 3 and 6.

2. Functions in DD . In this section, we prove continuity results for functions
in DD . We focus on composition and inverse in Sections 2.1 and 2.2, respectively.
We use the results in Sections 2.1 and 2.2 to extend Puhalskii’s invariance principle
for first-passage times [11] to functions of two parameters in Section 2.3. We prove
continuity results for integral mappings in Section 2.4 and for a projection mapping
in Section 2.5. For our two-parameter results, the space can be either (DD,J1, J1)

or (DD,J1,M1), unless the M1 topology is explicitly assumed on the inside space,
but this usually does not matter because our limits will usually be assumed to be
in CC .

Let D2,0 be the subset of functions x in DD such that x(0,0) ≥ 0. Let D2,↑
and D2,↑↑ be the subsets of functions in D2,0 that are nondecreasing and strictly
increasing in each coordinate, respectively. Similarly, define C2,0 ≡ CC ∩ D2,0,
C2,↑ ≡ CC ∩ D2,↑ and C2,↑↑ ≡ CC ∩ D2,↑↑.

2.1. Composition. First, we show that, as in the one-parameter case, conver-
gence in DD to a point in CC is equivalent to uniform convergence over compact
sets. We need the following lemma, whose proof is an easy exercise in analysis.

LEMMA 2.1. Let (S, d) be a metric space. Let (xn)n≥1 and x be func-
tions from a compact set E ⊂ R

k to S , k ≥ 1, and let x be continuous. Then
supt∈E d(xn(t), x(t)) → 0 as n → ∞ if and only if for all sequences (tn)n≥1 ⊆ E

such that tn → t as n → ∞ we have xn(tn) → x(t) in S as n → ∞.

THEOREM 2.1. If x ∈ CC , then xn → x in (DD,J1, J1) or (DD,J1,M1) as
n → ∞ if and only if xn → x in (DD,U,U) as n → ∞.

PROOF. Let T be J1 or M1. Since x ∈ CC , the convergence xn → x in
(DD,J1, T ) is equivalent to convergence in (DD,U, T ). Therefore, for all T > 0,
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we have

sup
t∈[0,T ]

dT (xt
n, x

t ) → 0 as n → ∞,(2.1)

where dT is a metric on D inducing the topology T . By Lemma 2.1, (2.1) holds
if and only if for every T > 0, t ∈ [0, T ], and sequence (tn)n≥1 ⊆ [0, T ] such that
tn → t as n → ∞ we have x

tn
n → xt in (D([0, T ],R), T ). But since xt ∈ C for

each t ∈ [0, T ] this is equivalent to x
tn
n → xt in (D([0, T ],R),U) for all T > 0.

Again, applying Lemma 2.1, this convergence holds if and only if for for each
S,T > 0, (t, s) ∈ [0, T ]× [0, S], and sequence ((tn, sn))n≥1 ⊆ [0, T ]× [0, S] such
that (tn, sn) → (t, s) as n → ∞ we have xn(tn, sn) → x(t, s) in R as n → ∞. But
then again by Lemma 2.1, this is true if and only if xn → x in (DD,U,U). �

We now show that addition and multiplication on D2
D are measurable and con-

tinuous at points in C2
C . In both cases, to prove measurability, we use Lemma 2.7

of [14], which we state here for completeness.

LEMMA 2.2 (Lemma 2.7 of [14]). The Borel σ -field on DD coincides with
the Kolmogorov σ -field, i.e., the σ -field generated by the coordinate projections.

Let addition on D2
D be defined pointwise: For x, y ∈ DD ,

(x + y)(s, t) ≡ x(s, t) + y(s, t).

THEOREM 2.2 (Continuity of addition in DD). Addition on D2
D is measurable

and continuous at points in C2
C .

PROOF. Measurability follows by Theorem 4.1 of [14]. The argument there
is based on Lemma 2.2. Continuity follows from Theorem 2.1 and the triangle
inequality. For each S,T > 0,

‖(xn + yn) − (x + y)‖S,T ≤ ‖xn − x‖S,T + ‖yn − y‖S,T . �

Similarly, define multiplication on DD by

(xy)(s, t) ≡ x(s, t)y(s, t)

for x, y ∈ DD .

THEOREM 2.3 (Continuity of multiplication in DD). Multiplication on D2
D is

measurable and continuous at points in C2
C .
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PROOF. Again, measurability follows using the same argument as in Theo-
rem 4.1 of [14]. Continuity at continuous limits follows from Theorem 2.1 and the
triangle inequality:

‖xnyn − xy‖S,T ≤ ‖xnyn − xny‖S,T + ‖xny − xy‖S,T

≤ ‖xn‖S,T ‖yn − y‖S,T + ‖y‖S,T ‖xn − x‖S,T .

Since xn → x, supn≥1 ‖xn‖S,T < ∞, and we have our result. �

Define the composition mapping ◦2 from DD × DD to D2,↑ by

(x ◦2 y)(s, t) ≡ x(s, y(s, t)).(2.2)

Notice that y only enters in the second argument of x. As usual, we require that the
internal function be in D2,↑. This is needed to ensure that the composition x ◦2 y

is an element of DD (see Example 13.2.1 of [15]). Alternatively, we can define the
composition mapping as a mapping from CC ×CC to CC . For each s ≥ 0, we have
(x ◦2 y)(s, ·) = x(s, y(s, ·)) = xs ◦ ys , where ◦ is the standard composition map
on D.

Then we have the following extension of Theorem 3.1 of [14] and Theo-
rem 13.2.2 of [15].

THEOREM 2.4 (Convergence preservation of ◦2).

1. The composition function ◦2 mapping DD × D2,↑ into DD defined in (2.2) is
measurable and continuous at each (x, y) ∈ CC × C2,↑.

2. The composition function ◦2 mapping CC × CC into CC is continuous.

PROOF. For part (1), measurability follows from Lemma 2.2 and the fact that
the composition mapping from D × D↑ to D is measurable (see Theorem 13.2.1
of [15] and page 232 of [2]). For both parts (1) and (2), we use the triangle inequal-
ity to prove continuity. For each S,T > 0, we have

‖xn ◦2 yn − x ◦2 y‖S,T ≤ ‖xn ◦2 yn − x ◦2 yn‖S,T + ‖x ◦2 yn − x ◦2 y‖S,T .

Let T ′ ≡ supn ‖yn‖S,T . Then the first term converges to zero since it is bounded by
‖xn − x‖S,T ′ → 0. The second term converges to zero since x ∈ CC . The mapping
in part (2) is measurable because it is continuous. �

We now give the main result of this subsection. It is an extension of Theo-
rem 13.3.3 of [15].

THEOREM 2.5 (Convergence preservation of ◦2 with nonlinear centering). Let
(xn, yn) ∈ (DD × D2,↑) ∪ (CC × CC) and y ∈ CC . Let x have continuous partial
derivative x′ with respect to its second parameter, i.e. x′(s, t) ≡ ∂x(s,t)

∂t
, and let

cn → ∞. If

cn(xn − x, yn − y) → (u, v) in D2
D,
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where u, v ∈ CC , then

cn(xn ◦2 yn − x ◦2 y) → u ◦2 y + (x′ ◦2 y)v in DD.

PROOF. We follow the proof of Theorem 13.3.3 of [15]. Let (xn, yn) ∈ DD ×
D2,↑; the other case can be proven analogously. Note that

cn(xn ◦2 yn − x ◦2 y) = cn(xn − x) ◦2 yn + cn(x ◦2 yn − x ◦2 y).

By our assumptions, we have(
cn(xn − x), cn(yn − y), yn

) → (u, v, y) in D3
D,

so, applying Theorems 2.2 and 2.4, gives us(
cn(xn ◦2 yn − x ◦2 yn) + (x′ ◦2 y)cn(yn − y)

) → u ◦2 y + (x′ ◦2 y)v.(2.3)

Now, for all S,T > 0,

‖cn(xn ◦2 yn − x ◦2 y) − cn(xn ◦2 yn − x ◦2 yn) − cn(x
′ ◦2 y)(yn − y)‖S,T

≤ ‖cn(x ◦2 yn − x ◦2 y) − cn(x
′ ◦2 y)(yn − y)‖S,T

(2.4)

= sup
0≤s≤S

0≤t≤T

∣∣∣∣cn

∫ yn(s,t)

y(s,t)
x′(s, u) du − cnx

′(s, y(s, t))
(
yn(s, t) − y(s, t)

)∣∣∣∣

≤ sup
0≤s≤S

0≤t≤T

∣∣∣( sup
y(s,t)≤u≤yn(s,t)

x′(s, u) − x′(s, y(s, t))
)
cn

(
yn(s, t) − y(s, t)

)∣∣∣.
The last expression goes to zero since x′ is uniformly continuous over bounded
intervals in its first parameter and cn(yn − y) → v in DD . Now, combining (2.3)
and (2.4) and using the triangle inequality gives us our result. �

2.2. Inverse with centering. We now move on to prove results about inverse
maps with linear and nonlinear centering in DD . The inverse we consider here is
the usual inverse applied to only the second argument. Let D2,u be the subset of
functions x in DD such that x(0,0) = 0 and x(s, ·) is unbounded above for each
s ≥ 0. As before, let D2,u,↑ ≡ D2,u ∩D2,↑ and D2,u,↑↑ ≡ D2,u ∩D2,↑↑. We define
the inverse map on the subset D2,u of D as follows. For x ∈ D2,u, let the inverse
of x be

x−1(s, t) ≡ inf{u ≥ 0 | x(s, u) > t}.
Notice that for each s ≥ 0,

(x−1)s = x−1(s, ·) = inf{u | x(s, u) > ·} = inf{u | xs(u) > ·} = (xs)−1,

where the inverse on the right is the standard inverse on D.
We then have the following result, which is analogous to Theorem 13.6.1

of [15], which is proved in Section 7.6.1 of [16]. The theorem exploits the M1
topology on the inner space D. Note the second condition of the theorem holds if
x ∈ CC , which will be the case when we apply the theorem below.
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THEOREM 2.6 (Convergence preservation of inverse). The inverse map on
(D2,u, J1,M1) is measurable and continuous at all x ∈ D2,u such that:

1. x−1(s,0) = 0 for all s ≥ 0,
2. x is right-continuous at 0, uniformly in s ∈ [0, S] for each S > 0, i.e., for all

S > 0 and ε > 0, there exists δ > 0 such that

sup
0≤s≤S

|xs(δ) − xs(0)| < ε.(2.5)

PROOF. Measurability follows by Lemma 2.2 and the fact that the inverse map
on D is measurable, by the argument in the proof of Theorem 13.6.1 of [15].

Suppose xn → x in (D2,u, J1,M1). Then, for each S > 0, there exists a se-
quence of increasing homeomorphisms on [0, S] such that

‖λn − e‖S ∨ sup
0≤s≤S

dM1

(
xs
n, x

λn(s)) → 0 as n → ∞.

It now suffices to show that (x−1
n )s → (x−1)λn(s) in (D,M1), uniformly in s ∈

[0, S]. To show this, we can use the same continuity argument as in the proof of
Theorem 13.6.1 of [15]. In particular, we can construct a sequence of functions x∗

n

in DD such that for n large enough (x∗
n)−1(s,0) = 0 for all s ∈ [0, S] and ((x∗

n)s)−1

is close to (xs
n)

−1 in (D,U) uniformly in s ∈ [0, S]. In order for that argument to
go through uniformly in s ∈ [0, S], we need the condition (2.5). The reason we
want (x∗

n)−1(s,0) = 0 for each s ∈ [0, S] is that if we have this property then
each M1 parametric representation of (x∗

n)s serves as a parametric representation
of ((x∗

n)s)−1 with the roles of the coordinates switched (see Lemma 13.6.8 of [15]).
Therefore, for large enough n,

sup
0≤s≤S

dM1

(
(x−1

n )s, (x−1)λn(s))

= sup
0≤s≤S

dM1

(
(xs

n)
−1,

(
xλn(s))−1)

≤ sup
0≤s≤S

dM1

(
((x∗

n)s)−1,
(
xλn(s))−1) + sup

0≤s≤S

dM1(((x
∗
n)−1)s, (xs

n)
−1)

≤ sup
0≤s≤S

dM1

(
((x∗

n)s)−1,
(
xλn(s))−1) + sup

0≤s≤S

‖((x∗
n)−1)s − (xs

n)
−1‖

= sup
0≤s≤S

dM1

(
(x∗

n)s, xλn(s)) + sup
0≤s≤S

‖((x∗
n)−1)s − (xs

n)
−1‖ → 0

as n → ∞. �

REMARK 2.1. Theorem 7.1 of [14], which proves continuity of the inverse
function in (D,M1), is incorrect. We need the limit process x to have the extra
property that x−1(0) = 0. This has been corrected in Section 13.6 of [15].
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We now prove convergence results for inverse with centering as in Section 13.7
of [15]. Here, we let the function e2 ∈ DD be defined as e2(s, t) = t for all s, t ≥ 0.
Also, for each T ≥ 0 define the maximum jump function JT :D → R by

JT (x) ≡ sup
0≤t≤T

{|x(t) − x(t−)|}.

THEOREM 2.7 (Inverse with linear centering). Suppose that cn(xn − e2) → x

in DD as n → ∞, where xn ∈ D2,u, x ∈ CC , y(0) = 0, and cn → ∞. Then
cn(x

−1
n − e2) → −x in DD as n → ∞.

PROOF. By the triangle inequality, for each S,T > 0,

‖cn(x
−1
n −e2)+x‖S,T ≤ ‖cn(x

−1
n −xn ◦2 x−1

n )+x‖S,T +‖cn(xn ◦2 x−1
n −e2)‖S,T .

Applying the composition map, ◦2 (Theorem 2.4) with the assumed convergence
and x−1

n → e2 (Theorem 2.6) gives us convergence of the first term above to 0.
Furthermore, by Corollary 13.6.2 of [15], we have

‖cn(xn ◦2 x−1
n − e2)‖S,T = cn sup

0≤s≤S

‖xs
n ◦ (xs

n)
−1 − e‖T

≤ cn sup
0≤s≤S

J(xs
n)−1(T )(x

s
n)

= sup
0≤s≤S

J(xs
n)−1(T )

(
cn(x

s
n − e)

)
.

Since cn(xn − e) → x and x is in CC , the last expression above converges to 0 as
n → ∞. This gives us our result. �

We now move on to inverse with nonlinear centering. The proofs of our next
two results, Theorems 2.8 and 2.9, follow the proof of Theorems 13.7.2 and 13.7.4
of [15] exactly, with results on composition and inverse maps in D there replaced
by our new results on composition and inverse maps in DD here.

THEOREM 2.8 (Inverse with nonlinear centering). Suppose that cn(xn −λ) →
u as n → ∞ in DD , where xn ∈ D2,u, u ∈ CC , u(0) = 0, cn → ∞, and λ is ab-
solutely continuous with continuous positive derivative λ′ with respect to its second
parameter. Then

cn(x
−1
n − λ−1) → −u ◦2 λ−1

λ′ ◦2 λ−1 in DD as n → ∞,

where (u/v)(s, t) = u(s, t)/v(s, t), for s, t ≥ 0.
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2.3. Two-parameter version of Puhalskii’s theorem. Finally, we have our two-
parameter version of Puhalskii’s theorem. This is similar to Theorem 1 in [11] and
Theorem 13.7.4 in [15], which is an extension to the M1 topology. Note that the
limits x, y, u and v below are all continuous. Again, we omit the proof because it
is a direct analog of the proof of Theorem 13.7.1 in [15], using the results above.

THEOREM 2.9. Suppose that xn ∈ D2,u, yn ∈ D2,↑, cn → ∞,

cn(xn − x, yn − y) → (u, v) in D2
D,

where u, v ∈ CC , x ∈ C2,u and y ∈ C2,↑. Furthermore, suppose x is absolutely
continuous with a continuous positive partial derivative x′ with respect to its sec-
ond parameter, where x′ ∈ CC . Then

cn(x
−1
n ◦2 yn − x−1 ◦2 y) → v − u ◦2 x−1 ◦2 y

x′ ◦2 x−1 ◦2 y
in DD as n → ∞.(2.6)

REMARK 2.2. Although we require here that xs
n is unbounded for each s ≥ 0

and n ≥ 1, the proof goes through as long as the expressions on the left-hand side
of (2.6) exist as elements of DD . A sufficient conditions for this is supu≥0 xs

n(u) >

supu≥0 ys
n(u) for each s ≥ 0 and n ≥ 1.

REMARK 2.3. If we had defined the inverse process for x ∈ D2,u and y ∈ D2,↑
by

(x−1 ◦2 y)(s, t) ≡ inf{u ≥ 0 | x(s, u) ≥ y(s, t)},
then x−1 ◦2 y would not necessarily be an element of DD . However, if ys is piece-
wise constant for each s ≥ 0, then x−1 ◦2 y is an element of DD . In fact, if we
make the assumption that ys

n is piecewise constant for all s ≥ 0 and n ≥ 1, then the
theorem holds with this alternative definition of inverse (see the remark in [11]).
This will be useful in Section 4.

2.4. Integral mappings. We now prove continuity and measurability results
for integral mappings in DD , which are used to prove the two-parameter version
of our ED queue-length heavy-traffic limit below. We first state a continuity result
for the basic integral mapping for functions in DD , where the integration is with
respect to one of the parameters. It is analogous to Theorem 11.5.1 of [15], which
is for elements of D.

THEOREM 2.10. Let g : R → R be a uniformly continuous function and sup-
pose that xn → x in DD as n → ∞ and x ∈ CC . Then for the integral mapping
f :DD → DD defined by

f (x)(s, t) =
∫ t

0
g(x(s, u)) du,

we have f (xn) → f (x) in DD as n → ∞ and f (x) ∈ CC .
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PROOF. First, we show that f (x) ∈ CC . For each fixed s ≥ 0, f (x)(s, ·) is
clearly in C. Consider a sequence (sn)n≥1 ⊂ [0,∞) such that sn → s as n → ∞.
Then, for each T > 0, we have

‖f (x)(sn, ·) − f (x)(s, ·)‖T =
∥∥∥∥
∫ ·

0
g(x(sn, u)) − g(x(s, u)) du

∥∥∥∥
T

≤
∫ T

0
|g(x(sn, u)) − g(x(s, u))|du.

The last expression goes to 0 as n → ∞ by bounded convergence and continuity
of g. Since f (x) ∈ CC , by Theorem 2.1 it is enough to show that f (xn) → f (x)

in (DD,U,U). For each S,T > 0, we have

‖f (xn) − f (x)‖S,T ≤
∫ T

0
sup

0≤s≤S

|g(xn(s, u)) − g(x(s, u))|du.(2.7)

Since x ∈ CC , we have ‖xn − x‖S,T → 0 as n → ∞ for all S,T > 0. Thus, by the
uniform continuity of g, the right-hand side of (2.7) goes to 0 as n → ∞. �

We now give continuity results for regulator mappings that are generalizations
of the regulator mapping of Theorem 4.1 of [9].

THEOREM 2.11 (Continuity of regulator map in D). Consider the integral
representation

x(t) = y(t) +
∫ t

0
h(x(u),u) du, t ≥ 0,

where h : R × [0,∞) → R satisfies the following properties:

1. h(0, t) = 0 for all t ≥ 0.
2. For each T > 0, there exist c1, c2 > 0 such that, for each x1, x2 ∈ D and home-

omorphism λ on [0, T ] with strictly positive derivative λ′, we have∫ t

0
|h(x1(u), u) − h(x2(λ(u)), λ(u))|du

(2.8)

≤ c1‖λ − e‖T + c2

∫ t

0
|x1(u) − x2(λ(u))|du

for all t ∈ [0, T ].
This integral representation has a unique solution x, so that it defines a function
f :D → D mapping y into x ≡ f (y). The function f is continuous provided its
domain and range are both equipped with either: (i) the topology U or (ii) the
topology J1. Furthermore, if y ∈ C, then f (y) ∈ C.
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PROOF. That f is a well-defined map from D to D follows as in the proof of
Theorem 4.1 of [9]. To prove continuity in the topology of uniform convergence
over bounded intervals, notice that the condition (2.8) implies that there exists
c2 > 0 such that for any x1, x2 ∈ D we have∫ t

0
|h(x1(u), u) − h(x2(u), u)|du ≤ c2

∫ t

0
|x1(u) − x2(u)|du

for all t ≥ 0. The proof then follows using Gronwall’s inequality as in the proof of
Theorem 4.1 of [9]

We now show that f is continuous when both its domain and range are equipped
with the J1 topology. We mostly follow the proof of Theorem 4.1 of [9]. Let T > 0
be a continuity point of y ∈ D and suppose yn → y in D([0, T ],R) with the J1
topology. Then there exists a sequence of increasing homeomorphisms (λn)n≥1 of
the interval [0, T ] such that ‖λn − e‖t → 0 and ‖yn − y ◦ λn‖T → 0 as n → ∞.
It suffices to consider homeomorphisms (λn)n≥1 that are absolutely continuous
with respect to Lebesgue measure on [0, T ] having derivatives λ′

n satisfying ‖λ′
n −

1‖T → 0 as n → ∞. Then for N large enough so that inf0≤u≤T λ′
n(u) > 0 for all

n > N we have

|xn(t) − x(λn(t))|
≤ |yn(t) − y(λn(t))| +

∣∣∣∣
∫ t

0
h(xn(u), u) du −

∫ λn(t)

0
h(x(u),u) du

∣∣∣∣
≤ |yn(t) − y(λn(t))|

+
∣∣∣∣
∫ t

0
h(xn(u), u) du −

∫ y

0
h(x(λn(u)), λn(u))λ′

n(u) du

∣∣∣∣
≤ |yn(t) − y(λn(t))| + ‖λ′

n − 1‖T

∫ T

0
|h(x(λn(u)), λn(u))|du

+
∫ t

0
|h(xn(u), u) − h(x(λn(u)), λn(u))|du

≤ |yn(t) − y(λn(t))| + ‖λ′
n − 1‖T c1‖x‖T T + c1‖λn − e‖T

+ c2

∫ t

0
|xn(u) − x(λn(u))|du

for all n > N and 0 ≤ t ≤ T , where the last inequality follows from (2.8). Since
‖yn − y ◦ λn‖T , ‖λ′

n − 1‖T and ‖λn − e‖T converge to 0 as n → ∞, the result
follows by an application of Gronwall’s inequality.

Finally, the inheritance of continuity is straightforward as in the proof of Theo-
rem 4.1 of [9]. �

Note that the continuity of f : (D,J1) → (D,J1) established in Theorem 2.11
implies measurability using the Kolmogorov σ -field. We now extend Theo-
rem 2.11 to DD .
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THEOREM 2.12 (Continuity of regulator map in DD). Consider the integral
representation

x(s, t) = y(s, t) +
∫ t

0
h(x(s, u), s, u) du, t ≥ 0,

where h : R × [0,∞)2 → R satisfies the following properties:

1. h(0, s, t) = 0 for all s, t ≥ 0.
2. For each T > 0, there exist c1, c2 > 0 such that for each s1, s2 ≥ 0, x1, x2 ∈ DD ,

and homeomorphism λ on [0, T ] with strictly positive derivative λ′ we have∫ t

0
|h(x1(s1, u), s1, u) − h(x2(s2, λ(u)), s2, λ(u))|du

≤ c1|s1 − s2| + c2‖λ − e‖T + c3

∫ t

0
|x1(s1, u) − x2(s2, λ(u))|du

for all t ∈ [0, T ]. This integral representation has a unique solution x, so that
it defines a function f :DD → DD mapping y into x ≡ f (y). The function f

is measurable provided its domain and range are equipped with the topology
(DD,J1, J1) and continuous provided its domain and range are equipped with
the topology (DD,U,U). Furthermore, if y ∈ CC , then f (y) ∈ CC .

PROOF. Consider our integral representation for each fixed s ≥ 0. In other
words, consider the function f s :DD → D mapping y ∈ DD to the solution x ∈ D

of

x(t) = y(s, t) +
∫ t

0
h(x(u), s, u) du.

By Theorem 2.11, f s is a well-defined function that is continuous in the topology
of uniform convergence over bounded intervals. Therefore, our two-parameter in-
tegral representation has a unique solution since it has a unique solution for each
fixed s ≥ 0.

To show that for y ∈ DD , x ≡ f (y) is also in DD , consider a sequence
(sn)n≥1 ⊆ [0,∞) such that sn ↓ s as n → ∞. Since y ∈ DD , there exists a
family of homeomorphisms (λn)n≥1 on [0, T ] such that ‖λn − e‖T → 0 and
‖ysn − ys ◦ λn‖T → 0 as n → ∞. Again, it suffices to consider homeomorphisms
(λn)n≥1 that are absolutely continuous with respect to Lebesgue measure on [0, T ]
having derivatives λ′

n satisfying ‖λ′
n − 1‖T → 0 as n → ∞. Then for N large

enough so that inf0≤u≤T λ′
n(u) > 0 for all n > N we have

|x(sn, t) − x(s, λn(t))|
≤ |y(sn, t) − y(s, λn(t))|

+
∣∣∣∣
∫ t

0
h(x(sn, u), sn, u) du −

∫ λn(t)

0
h(x(s, u), s, u) du

∣∣∣∣
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≤ |y(sn, t) − y(s, λn(t))|
+

∣∣∣∣
∫ t

0
h(x(sn, u), sn, u) − h(x(s, λn(u)), s, λn(u))λ′

n(u) du

∣∣∣∣
≤ |y(sn, t) − y(s, λn(t))|

+
∣∣∣∣
∫ t

0
h(x(sn, u), sn, u) − h(x(s, λn(u)), s, λn(u))λ′

n(u) du

∣∣∣∣
≤ |y(sn, t) − y(s, λn(t))| + ‖λ′

n − 1‖T

∫ T

0
|h(x(s, λn(u)), s, λn(u))|du

+
∫ t

0
|h(x(sn, u), sn, u) − h(x(s, λn(u)), s, λn(u))|du

≤ |y(sn, t) − y(s, λn(t))| + ‖λ′
n − 1‖T c2‖xs‖T T + c1|sn − s|

+ c2‖λn − e‖T + c3

∫ t

0
|x(sn, u) − x(s, λn(u))|du

for n > N and 0 ≤ t ≤ T . The last inequality follows from conditions 1 and 2.
Since ‖ysn −ys ◦λn‖T , ‖λ′

n−1‖T , |sn−s| and ‖λn−e‖T converge to 0 as n → ∞,
the result follows by an application of Gronwall’s inequality. That left-hand limits
exist for x = f (y) follows using a similar argument.

Since the Borel σ -field on DD coincides with the Kolmogorov σ -field gen-
erated by the coordinate projections, in order to show measurability, it suffices
to show that the map f s defined above is measurable for each s ≥ 0. But f s

is simply the composition of the projection y �→ ys and the regulator map f s
1

on D defined in Theorem 2.11 with the function hs
1 : R × [0,∞) → R given by

hs
1(x, u) = h(x, s, u), for x ∈ R, u ≥ 0. Since both the projection y �→ ys and the

regulator map f s
1 are measurable, f s is measurable. Thus, f is measurable.

Continuity in the topology of uniform convergence over bounded intervals fol-
lows using the same argument as in Theorem 4.1 of [9], which uses Gronwall’s
inequality. To show that y ∈ CC implies x = f (y) ∈ CC is also straightforward
using Gronwall’s inequality. �

2.5. Projection mapping. Finally, we will be needing the following projection
lemma.

LEMMA 2.3. Let xn ∈ DD , x ∈ CC , and suppose xn → x in DD as n → ∞.
Define yn ∈ D by yn(t) ≡ xn(t, t) for all t ≥ 0. Then yn → y in D as n → ∞,
where y(t) ≡ x(t, t) for all t ≥ 0.

PROOF. Apply Theorem 2.1 and the fact that

‖yn − y‖T = sup
0≤t≤T

|xn(t, t) − x(t, t)|
≤ sup

0≤s,t≤T

|xn(s, t) − x(s, t)| = ‖xn − x‖T ,T → 0

as n → ∞. �
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3. Critically loaded. In this section and the next, we establish heavy-traffic
limits for virtual waiting times for general G/G/n+G queues, assuming we have
corresponding heavy-traffic limits for the basic arrival, queue-length, departure,
and abandonment processes, and the fluid limit of the queue-length process is
identically 1. In Section 5, we apply the main result of this section with the ba-
sic M/M/n + M QED result, Theorem 5.1, to obtain a proof of the QED virtual
waiting time result for the M/M/n + M model, Theorem 5.2.

There are a number of interesting waiting time performance measures that have
been studied in the literature. A customer’s potential waiting time is the amount of
time the customer spends waiting in queue if the customer were infinitely patient
(see [3]). Therefore, if W is the potential waiting time of a particular customer
and X is his patience (the amount of time he is willing to wait in the queue before
being served), then the customer’s actual waiting time is given by W ∧X. Another
waiting time performance measure of interest is customer waiting time conditional
on being served. An exact steady-state analysis of this performance measure in
the Markovian case using Laplace transforms appears in [18], but we do not deal
with it here. Our main focus is to study virtual waiting time processes, which are
continuous-time process analogs of potential waiting times. A virtual waiting time
process is a process (V (t), t ≥ 0), where V (t) is the potential waiting time of
a hypothetical customer arriving to the queue at time t .

We assume we are given a sequence of G/G/n+G models. In model n ≥ 1, let
Xn ≡ (Xn(t), t ≥ 0), An ≡ (An(t), t ≥ 0), Dn ≡ (Dn(t), t ≥ 0), Ln ≡ (Ln(t), t ≥
0) and Vn ≡ (Vn(t), t ≥ 0), where

Xn(t) ≡ number of customers in the system at time t,

An(t) ≡ number of customers that have arrived to the system by time t,

Dn(t) ≡ number of customers that have been served by time t,

Ln(t) ≡ number of customers that have abandoned by time t,

Vn(t) ≡ potential waiting time of a hypothetical customer

arriving at time t .

For each n ≥ 1, define processes

X̄n ≡ Xn

n
, Ān ≡ An

n
, D̄n ≡ Dn

n
, L̄n ≡ Ln

n
, V̄n ≡ Vn,

and

X̂n ≡ cn(X̄n − X̄), Ân ≡ cn(Ān − Ā), D̂n ≡ cn(D̄n − D̄),

L̂n ≡ cn(L̄n − L̄), V̂n ≡ cn(V̄n − V̄ ),

where X̄, Ā, D̄, L̄, V̄ ∈ C and cn → ∞ and n/cn → ∞ as n → ∞.
We then have the following result.
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THEOREM 3.1. Consider a sequence of G/G/n + G models and suppose

(Ān, D̄n, L̄n, X̄n) ⇒ (Ā, D̄, L̄, X̄) in D4(3.1)

as n → ∞, where Ā, D̄ and L̄ are continuous deterministic functions, D̄ has con-
tinuous positive derivative D̄′, L̄ = cη for some c ≥ 0, and X̄ ≡ 1. Furthermore,
suppose

(Ân, D̂n, L̂n, X̂n) ⇒ (Â, D̂, L̂, X̂) in D4(3.2)

as n → ∞ where Â, D̂, L̂ and X̂ are continuous processes. Then we have

V̂n ⇒ X̂+

D̄′ in D

as n → ∞ jointly with (3.1) and (3.2).

PROOF. Recalling the discussion about (1.1) and (1.2), first observe that for
each t ≥ 0 and n ≥ 1, we can bound the virtual waiting time process from above
and below by first-passage times:

V l
n(t) ≤ Vn(t) ≤ V u

n (t),(3.3)

where

V l
n(t) ≡ inf{s ≥ 0|Dn(t + s) + Ln(t + s)

(3.4)
≥ Xn(t) + Dn(t) + Ln(t) − (n − 1)},

V u
n (t) ≡ inf{s ≥ 0|Dn(t + s) ≥ Xn(t) + Dn(t) − (n − 1)}.(3.5)

For all n ≥ 1, define the first-passage-time processes Z̄l
n ≡ (Z̄l

n(t), t ≥ 0) and Z̄u
n ≡

(Z̄u
n(t), t ≥ 0), for n ≥ 1, where

Z̄l
n(t) ≡ inf{s ≥ 0|D̄n(s) + L̄n(s) ≥ X̄n(t) + D̄n(t) + L̄n(t) − (1 − 1/n)}

(3.6)
= inf{s ≥ 0|D̄n(s) + L̄n(s) ≥ X̄n(0) + Ān(t) − (1 − 1/n)},

Z̄u
n(t) ≡ inf{s ≥ 0|D̄n(s) ≥ X̄n(t) + D̄n(t) − (1 − 1/n)}

(3.7)
= inf{s ≥ 0|D̄n(s) ≥ X̄n(0) + Ān(t) − L̄n(t) − (1 − 1/n)}

for t ≥ 0. For the next step, define the processes Ū l
n ≡ Z̄l

n − e and Ūu
n ≡ Z̄u

n − e

for n ≥ 1. Then we see that the bounds on our virtual waiting time process (3.4)
and (3.5) can be written as V l

n = (Ū l
n)

+ and V u
n = (Ūu

n )+, for n ≥ 1. We would
then want to use the corollary of [11], along with the assumptions that X̄ ≡ 1 and
L̄′ ≡ 0 to get

cnV
l
n = cn(Z̄

l
n − e)+ ⇒ X̂+

D̄′ ,(3.8)

cnV
u
n = cn(Z̄

u
n − e)+ ⇒ X̂+

D̄′(3.9)
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in D as n → ∞. However, notice that the right-hand side of the condition in (3.7)
does not satisfy the conditions of the corollary. In particular, X̄n(0) + Ān − L̄n −
(1 − 1/n) is not necessarily a nondecreasing element of D for each n ≥ 1. There-
fore, we cannot deduce (3.9) directly. We can resolve this problem by using linear
interpolations that bound the original processes from above.

Notice from (3.7) that

Z̄u
n = D̄−1

n ◦ (
X̄n(0) + Ān − L̄n − (1 − 1/n)

) = D̄−1
n ◦ Ȳn,

where we define Ȳn ≡ (X̄n(0) + Ān − L̄n − (1 − 1/n)), for n ≥ 1. Since Ȳn is not
necessarily a nondecreasing element of D, Z̄u

n is not necessarily an element of D

(see Example 13.2.1 of [15]). Therefore, we construct linear interpolations D̃−1
n

and Ỹn of D̄−1
n and Ȳn, respectively, in such a way that

D̄−1
n (t) ≤ D̃−1

n (t) and Ȳn(t) ≤ Ỹn(t)

for all t ≥ 0, and D̃−1
n is nondecreasing, for each n ≥ 1. The construction can be

carried out as follows: when stepping down, linearly interpolate between the right
endpoint of the previous step and the midpoint of the next step. Similarly, when
stepping up, linearly interpolate between the midpoint of the previous step and
the left endpoint of the next step. We show how to construct the interpolation in
Figure 1.

Then, for each n ≥ 1, let Z̃u
n = D̃−1

n ◦ Ỹn, and notice that, since D̃−1
n is nonde-

creasing, we must have Z̄u
n(t) ≤ Z̃u

n(t) for t ≥ 0 so that

V u
n (t) ≤ Ṽ u

n (t) for t ≥ 0,(3.10)

where Ṽ u
n ≡ (Z̃u

n − e)+.
By Lemma 7.1, the error caused by these linear interpolations is asymptotically

negligible. Also, by our assumed limit (3.2) and Theorem 13.7.2 of [15],

√
n
(
D̄−1

n − D̄−1, Ȳn − (Ā − L̄)
) ⇒

(
−

(
D̂

D̄′

)
◦ D̄−1, Â − L̂

)
in D2

as n → ∞, jointly with (3.1) and (3.2). Therefore, using the converging together
lemma (Theorem 11.4.7 of [15]) gives us

√
n
(
D̃−1

n − D̄−1, Ỹn − (Ā − L̄)
) ⇒

(
−

(
D̂

D̄′

)
◦ D̄−1, Â − L̂

)
in D2

FIG. 1. Upper bound linear interpolation for step functions.
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as n → ∞, jointly with (3.1) and (3.2). Since the limit process in the last limit
belongs to C2, the limit holds in the stronger uniform topology. But since the
prelimit processes also belong to C2 the limit holds in C2. Using a version of the
composition result Theorem 13.3.3 of [15] for elements of C with the continuous
mapping theorem gives us

cnṼ
u
n ≡ cn(Z̃

u
n − e)+ = cn(D̃

−1
n ◦ Ỹn − e)+ ⇒ X̂+

D̄′ in C

as n → ∞. Then, using the bounds (3.10) and (3.3), gives us our result. �

A similar bounding argument does not work in the ED case, because the limits
of the bounding processes do not coincide.

4. Limits from stopped arrival processes. In this section, we prove heavy-
traffic limits for virtual waiting-times for G/G/n + G queues from associated
heavy-traffic limits for basic queueing processes with the arrival process stopped
at some time τ ≥ 0. The results here will be applied to the Markovian M/M/n+M

model in the ED limiting regime in Section 6.1.
We present results for one-dimensional virtual waiting times and virtual-

waiting-time processes, respectively, in the next two subsections.

4.1. One-dimensional virtual waiting times. To get one-dimensional limits for
the virtual waiting time at some fixed time τ ≥ 0, the idea is to stop the arrival
process to the system at time τ . We add the superscript τ to all processes defined
in Section 3 to denote the same processes but with the arrival process to the system
stopped at time τ . We then have for n ≥ 1,

V τ
n (t) = inf{s ≥ 0|Dτ

n(t + s) + Lτ
n(t + s) ≥ Xτ

n(0) + Aτ
n(t) − (n − 1)}

for τ, t ≥ 0, and Vn(t) = V t
n(t) for t ≥ 0.

For each τ ≥ 0, we assume we have the limits

(Āτ
n, D̄

τ
n, L̄τ

n, X̄
τ
n) ⇒ (Āτ , D̄τ , L̄τ , X̄τ ) in D4(4.1)

as n → ∞, where Āτ , D̄τ , L̄τ and X̄τ are continuous deterministic functions and
D̄τ + L̄τ has continuous positive derivative (D̄τ + L̄τ )′. In addition, we assume
that

(Âτ
n, D̂

τ
n, L̂τ

n, X̂
τ
n) ⇒ (Âτ , D̂τ , L̂τ , X̂τ ) in D4(4.2)

as n → ∞, where Âτ , D̂τ , L̂τ and X̂τ are continuous processes.
Then if we define for each τ ≥ 0 the first-passage time processes Z̄τ

n ≡
(Z̄τ

n(t), t ≥ 0) for n ≥ 1, and Z̄τ ≡ (Z̄τ (t), t ≥ 0), where

Z̄τ
n(t) ≡ inf{s ≥ 0|D̄τ

n(s) + L̄τ
n(s) ≥ X̄τ

n(0) + Āτ
n(t) − (1 − 1/n)},

Z̄τ (t) ≡ inf{s ≥ 0|D̄τ (s) + L̄τ (s) ≥ X̄τ (0) + Āτ (t) − 1}
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for t ≥ 0, the processes Ū τ
n ≡ Z̄τ

n − e for n ≥ 1, and Ū τ ≡ Z̄τ − e, then we see
that for each τ ≥ 0 and n ≥ 1 our virtual-waiting-time processes can be written as
V τ

n = (Ū τ
n )+. We first prove a limit for the processes Ū τ

n and then use this limit
to prove our virtual-waiting-time heavy-traffic limits. For each τ ≥ 0, define the
process Û τ ≡ (Û τ (t), t ≥ 0) by

Û τ (t) ≡ X̂n(0) + Âτ (t) − D̂τ (Zτ (t)) − L̂τ (Zτ (t))

(D̄τ + L̄τ )′(Z̄τ (t))
.(4.3)

Note that Û τ is a continuous process.

LEMMA 4.1. For each τ ≥ 0, under the assumptions (4.1) and (4.2),

cn(Ū
τ
n − Ū τ ) ⇒ Û τ in D

as n → ∞, jointly with the limits (4.1) and (4.2), where Û is given in (4.3).

PROOF. Applying the corollary of [11], we get

cn(Ū
τ
n − Ū τ ) = cn[(Z̄τ

n − e) − (Z̄τ − e)] = cn(Z̄
τ
n − Z̄τ ) ⇒ Û

in D as n → ∞. �

THEOREM 4.1. For each τ ≥ 0, under the assumptions (4.1) and (4.2), we
have:

1. If X̄(τ ) = 1, then

V̂n(τ ) = cnŪ
τ
n (τ )+ ⇒ Û τ (τ )+ = X̂(τ )+

(D̄ + L̄)′(τ )
in R

as n → ∞, jointly with the limits (4.1) and (4.2).
2. If X̄(τ ) > 1, then

V̂n(τ ) = cn

(
Ū τ

n (τ )+ − Ū τ (τ )
) ⇒ Û τ (τ ) in R

as n → ∞, jointly with the limits (4.1) and (4.2), where Û τ (τ ) is given in (4.3).

PROOF. Part 1 follows immediately from Lemma 4.1 and the fact that
Z̄τ (τ ) = τ , X̄τ (τ ) = X̄(τ ), D̄τ (τ ) = D̄(τ ) and L̄τ (τ ) = L̄(τ ) for all τ ≥ 0.

For part 2, notice that the condition X̄(τ ) > 1 implies Ū τ (τ ) > 0. By
Lemma 4.1, we get the limit

Ū τ
n (τ ) ⇒ Ū τ (τ ) in R
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as n → ∞. Therefore, for each ε > 0 and 0 < δ < Ūτ (τ ), we have

P
[∣∣cn

(
Ū τ

n (τ )+ − Ū τ (τ )
) − cn

(
Ū τ

n (τ ) − Ū τ (τ )
)∣∣ < ε

]
= P[cn|Ū τ

n (τ )+ − Ū τ
n (τ )| < ε]

≥ P[Ū τ
n (τ ) > 0](4.4)

≥ P[Ū τ
n (τ ) > Ūτ (τ ) − δ]

≥ P[|Ū τ
n (τ ) − Ū τ (τ )| < δ] → 1

as n → ∞. Combining this limit with the convergence in Lemma 4.1 and Theo-
rem 4.1 of [2], we complete the proof. �

4.2. Virtual waiting time process. To get an associated limit for the virtual-
waiting-time processes, we again assume that the limits (4.1) and (4.2) hold, but
where the queueing processes are understood to be processes in DD indexed by
both τ and t . To be precise, for each n ≥ 1 we define the processes

X(2)
n ≡ (

X(2)
n (τ, t), τ, t ≥ 0

)
, A(2)

n ≡ (
A(2)

n (τ, t), τ, t ≥ 0
)
,

D(2)
n ≡ (

D(2)
n (τ, t), τ, t ≥ 0

)
, L(2)

n ≡ (
L(2)

n (τ, t), τ, t ≥ 0
)
,

so that

X(2)
n (τ, t) ≡ Xτ

n(t), A(2)
n (τ, t) ≡ Aτ

n(t),

D(2)
n (τ, t) ≡ Dτ

n(t), L(2)
n (τ, t) ≡ Lτ

n(t)

for τ, t ≥ 0 and n ≥ 1. Next, define the scaled processes

X̄(2)
n ≡ X

(2)
n

n
, Ā(2)

n ≡ A
(2)
n

n
, D̄(2)

n ≡ D
(2)
n

n
, L̄(2)

n ≡ L
(2)
n

n
,

and

X̂(2)
n ≡ cn

(
X̄(2)

n − X̄(2)), Â(2)
n ≡ cn

(
Ā(2)

n − Ā(2)),
D̂(2)

n ≡ cn

(
D̄(2)

n − D̄(2)), L̂(2)
n ≡ cn

(
L̄(2)

n − L̄(2)),
where cn → ∞ and n/cn → ∞ as n → ∞, and X̄(2), Ā(2), D̄(2) and L̄(2) are given
by

X̄(2)(τ, t) ≡ X̄τ (t), Ā(2)(τ, t) ≡ Āτ (t),
(4.5)

D̄(2)(τ, t) ≡ D̄τ (t), L̄(2)(τ, t) ≡ L̄τ (t).

Note that Ā(2), D̄(2), L̄(2) and X̄(2) are continuous deterministic functions and,
for each τ ≥ 0, D̄(2)(τ, ·) + L̄(2)(τ, ·) has continuous positive derivative. Then we
assume we have the limits(

Ā(2)
n , D̄(2)

n , L̄(2)
n , X̄(2)

n

) ⇒ (
Ā(2), D̄(2), L̄(2), X̄(2)) in D4

D(4.6)
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as n → ∞, and(
Â(2)

n , D̂(2)
n , L̂(2)

n , X̂(2)
n

) ⇒ (
Â(2), D̂(2), L̂(2), X̂(2)) in D4

D(4.7)

as n → ∞, where X̂(2), Â(2), D̂(2) and L̂(2) are given by

X̂(2)(τ, t) ≡ X̂τ (t), Â(2)(τ, t) ≡ Âτ (t),
(4.8)

D̂(2)(τ, t) ≡ D̂τ (t), L̂(2)(τ, t) ≡ L̂τ (t).

Note that X̂(2), Â(2), D̂(2), L̂(2) ∈ CC .
Next, define the processes Ū

(2)
n ≡ (Ū

(2)
n (τ, t), τ, t ≥ 0), for n ≥ 1, and the

process Û (2) ≡ (Û (2)(τ, t), τ, t ≥ 0) so that

Ū (2)
n (τ, t) ≡ Ū τ

n (t), Û (2)(τ, t) ≡ Û τ (t)(4.9)

for τ, t ≥ 0 and n ≥ 1. Then, as in Lemma 4.1, we have

LEMMA 4.2. Under the assumptions (4.6) and (4.7), we have

cn

(
Ū (2)

n − Ū (2)) ⇒ Û (2) in DD(4.10)

as n → ∞ jointly with the limits (4.6) and (4.7), where Ū (2) and Û (2) are given
by (4.9).

PROOF. The proof follows the proof of Lemma 4.1, except instead of using
Corollary 1 of [11] we use Theorem 2.9 here. �

Now define the projections Ū0
n ≡ (Ū0

n (t), t ≥ 0), for n ≥ 1, and Û0 ≡
(Û0(t), t ≥ 0) so that

Ū0
n (t) ≡ Ū (2)

n (t, t), Û0
n (t) ≡ Û (2)

n (t, t)

for t ≥ 0. Then we have

THEOREM 4.2. Under the assumptions (4.6), (4.7) and X̂(2) ∈ CC , we have
the following:

1. If X̄(τ ) = 1 for all τ ≥ 0, then

V̂n = cn(Ū
0
n )+ ⇒ (Û0)+ = X̂+

(D̄ + L̄)′
in D

as n → ∞, jointly with the limits (4.1) and (4.2).
2. If infτ≥0 X̄(τ ) > 1, then

V̂n = cn

(
(Ū0

n )+ − Ū0) ⇒ Û0 in D

as n → ∞, jointly with the limits (4.6) and (4.7).
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PROOF. The limit in Part 1 follows immediately from the limit (4.10) by
an application of the continuous mapping theorem with the projection map of
Lemma 2.3. The second equality then follows from the fact that Z̄t (t) = t ,
X̄t (t) = X̄(t), D̄t (t) = D̄(t) and L̄t (t) = L̄(t) for all t ≥ 0.

For Part 2, notice the condition infτ≥0 X̄(τ ) > 1 implies infτ≥0 Ū τ (τ ) > 0 so
that as in (4.4) we get for all ε > 0 and T > 0,

P
[∥∥cn

(
(Ū0

n )+ − Ū0) − cn(Ū
0
n − Ū0)

∥∥
T < ε

] → 1 as n → ∞.

Combining this limit with the limit (4.10) and the continuous mapping theorem
with the projection map of Lemma 2.3 completes the proof. �

5. QED. In this section and the next, we apply the results of the previous
two sections to prove heavy-traffic limits for virtual waiting times in the Markov-
ian M/M/n + M model in the QED and ED limiting regimes, respectively. We
assume that interarrival times, service times and patience times after time 0 are
mutually independent and independent of the initial conditions. To construct our
heavy-traffic limits, we consider a sequence of M/M/n + M models indexed by
n ≥ 1. The nth model has n servers, each with service rate μ, arrival rate λn, and
individual abandonment rate θ . The QED limiting regime of [5] is characterized
by the limit

lim
n→∞

√
n(1 − ρn) = β, −∞ < β < ∞,

where ρn ≡ λn/nμ is the traffic intensity in the nth model. Let the basic processes
associated with the models, i.e., Xn, An, Dn, Ln, Vn, X̄n, Ān, D̄n, L̄n, V̄n, X̂n, Ân,
D̂n, L̂n and V̂n, for n ≥ 1, be defined as in Section 3. For this QED case, under
initial conditions such that X̄n(0) ⇒ 1 in R as n → ∞, we will have the fluid limits

X̄ ≡ η, Ā ≡ μe, D̄ ≡ μe, L̄ ≡ 0, V̄ ≡ 0.(5.1)

Since X̄ ≡ η and L̄′ ≡ 0, the results of Section 3 apply.
We start with the following theorem (Theorem 2 of [3]) for all processes except

for Vn. See Theorem 7.1 of [9] for an alternative proof.

THEOREM 5.1. Consider the sequence of M/M/n+M models defined above.
If X̄n(0) ⇒ X̄(0) in R as n → ∞, then we have the fluid limit

(Ān, D̄n, L̄n, X̄n) ⇒ (Ā, D̄, L̄, X̄) in D4(5.2)

as n → ∞, where the limit is given in (5.1). Furthermore, if X̂n(0) ⇒ X̂(0) in R

as n → ∞, then we have the diffusion limit

(Ân, D̂n, L̂n, X̂n) ⇒ (Â, D̂, L̂, X̂) in D4

as n → ∞, where X̂ is the unique solution to the stochastic differential equation

dX̂(t) = −μβ − μ
(
X̂(t) ∧ 0

)
dt − θ

(
X̂(t) ∨ 0

)
dt + √

μdB1(t) − √
μdB2(t),
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and

Â(t) ≡ √
μB1(t),

D̂(t) ≡ √
μB2(t) + μ

∫ t

0

(
X̂(s) ∧ 0

)
ds,

L̂(t) ≡ θ

∫ t

0

(
X̂(s) ∨ 0

)
ds

for t ≥ 0, where (B1,B2) is standard Brownian motion in two dimensions and is
independent of X̂(0).

Then, applying Theorem 3.1, we obtain:

THEOREM 5.2. Under the assumptions of Theorem 5.1,

V̂n ⇒ X̂+

μ
in D

as n → ∞, jointly with the limits in Theorem 5.1.

We can use Theorem 5.2 to get a heavy-traffic limit for potential waiting times
of customers in the queue (see [13]). Let Ŵn ≡ (

√
nW

�nt�+1
n , t ≥ 0), where Wi

n

denotes the potential waiting time of the ith customer to enter system n, for i ≥ 1,
n ≥ 1. Then using the fact that

W �nt�+1
n = Vn

(
T �nt�+1

n

)
, t ≥ 0,

where T i
n is the arrival time of the ith customer in the nth system, for i ≥ 1, n ≥ 1,

along with the continuous mapping theorem with the composition map, we get

COROLLARY 5.1. Under the assumptions of Theorem 5.1,

Ŵn ⇒ X̂(·/μ)+

μ
in D

as n → ∞, jointly with the limits in Theorem 5.1.

Finally, we prove convergence of steady-state virtual waiting times. The argu-
ment is given in the proof of Theorem 3 of [3], but we repeat it here for complete-
ness.

COROLLARY 5.2. There exist random variables X̂(∞) and V̂n(∞) such that

X̂(t) ⇒ X̂(∞) in R as t → ∞,(5.3)

V̂n(t) ⇒ V̂n(∞) in R as t → ∞(5.4)
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for n ≥ 1. Furthermore, under the assumptions of Theorem 5.1,

V̂n(∞) ⇒ X̂(∞)+

μ
in R

as n → ∞.

PROOF. We first recall from [3] that X̂(∞) is indeed well defined. Also, recall
from Theorem 2∗ of [3] that we can interchange the heavy-traffic and steady-state
limits of X̂n(t). We can use this fact to deduce the interchange for V̂n(t) as follows.
Note that each of the process Xn, n ≥ 1, possesses a stationary distribution since
it is simply a birth–death process that can easily be seen to be positive recurrent.
For each n ≥ 1, define Xn(0) to have this distribution so that we have a stationary
version of the process Xn. Because of the birth–death structure of the processes
Xn, n ≥ 1, for each t ≥ 0 and n ≥ 1, Vn(t) can be represented in terms of Xn(t) by

Vn(t) =
(Xn(t)−n)+∑

i=1

Xi,n,

where Xi,n represents the time between the (i − 1)th and ith departure (either an
abandonment or a service completion) from the queue in model n ≥ 1. Therefore,
for each n ≥ 1, V̂n must also be a stationary process so that V̂n(t) has the same
distribution for all 0 ≤ t < ∞. Thus, for each n ≥ 1, the random variable V̂n(∞)

defined in (5.4) is well defined with the same distribution as V̂n(t), for any fixed
t ≥ 0. Projecting the result of Theorem 5.2 onto a fixed t ≥ 0 and using the fact that
we can interchange the heavy-traffic and steady-state limits of X̂n(t) then gives us
our result. �

6. ED. We now study waiting-time asymptotics in the ED limiting regime
using the results of Section 4. We again have a sequence of M/M/n + M models
with n servers in model n ≥ 1, but now customers arrive to the system at the rate
λn ≡ nλ, for some λ > 0. In all the models, each server has service rate μ < λ and
each customer has abandonment rate θ . As in Section 5, we assume that interarrival
times, service times and patience times after time 0 are mutually independent and
independent of the initial conditions. Again, let the basic processes associated with
the models, i.e., Xn, An, Dn, Ln, Vn, X̄n, Ān, D̄n, L̄n, V̄n, X̂n, Ân, D̂n, L̂n and V̂n,
for n ≥ 1, be defined as in Section 3. Under initial conditions such that X̄n(0) ⇒ 1
in R as n → ∞, we will have the fluid limits

X̄ ≡ (q + 1)η, q ≡ λ − μ

θ
, Ā ≡ λe, D̄ ≡ μe,

(6.1)

L̄ ≡ θqe = (λ − μ)e, V̄ ≡ wη, w ≡ 1

θ
ln

(
λ

μ

)

for t ≥ 0.
We start by stating ED fluid and diffusion limits for An, Dn, Ln and Xn. These

appear in Theorem 2.1 and Corollary 2.1 of [17].
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THEOREM 6.1. Consider the sequence of M/M/n+M models defined above.
If X̄n(0) ⇒ X̄(0) in R as n → ∞, then we have the fluid limit

(Ān, D̄n, L̄n, X̄n) ⇒ (Ā, D̄, L̄, X̄) in D4(6.2)

as n → ∞, where the limit is given in (6.1). Furthermore, if X̂n(0) ⇒ X̂(0) in R

as n → ∞, then we have the diffusion limit

(Ân, D̂n, L̂n, X̂n) ⇒ (Â, D̂, L̂, X̂) in D4(6.3)

as n → ∞, where X̂ is the unique solution to the stochastic differential equation

dX̂(t) = −θX̂(t) dt + √
λdB1(t) − √

μdB2(t) − √
λ − μdB3(t),

and

Â(t) ≡ √
λB1(t),

D̂(t) ≡ √
μB2(t),

L̂(t) ≡ √
λ − μB3(t) + θ

∫ t

0
X̂(s) ds

for t ≥ 0, where (B1,B2,B3) is standard Brownian motion in three dimensions
and is independent of X̂(0).

6.1. Diffusion limit for virtual waiting time. We now prove a diffusion limit
for the virtual waiting-time process in the ED regime, Theorem 6.3. As discussed
in the Introduction, our result is a special case of Theorem 4.1 of [7], but they do
not provide a complete proof. We first state the following result, Proposition 6.1,
which gives us the limits (4.1) and (4.2) in the case of the M/M/n + M model
in the ED limiting regime. It is a special case of Theorems 3.1 and 3.2 of [7],
which are proven using strong approximation (see also [6]). The result is also a
special case of Theorems 2.1 and 2.2 of [12], which are proved using a different
approach. We will then combine Proposition 6.1 with Theorem 4.1 to obtain the
one-dimensional heavy-traffic limits for virtual waiting times, Theorem 6.2 be-
low. Afterward, we obtain heavy-traffic limits for virtual waiting time processes in
Theorem 6.3.

PROPOSITION 6.1. Consider the sequence of M/M/n + M models defined
above and fix τ ≥ 0. If X̄n(0) ⇒ X̄(0) in R as n → ∞, then we have the fluid limit

(Āτ
n, D̄

τ
n, L̄τ

n, X̄
τ
n) ⇒ (Āτ , D̄τ , L̄τ , X̄τ ) in D4

as n → ∞, jointly with the limit (6.2), where

X̄τ (t) ≡
⎧⎪⎨
⎪⎩

λe−θ(t−τ)+ − μ

θ
+ 1, t < τ + w,

e−μ(t−(τ+w)), t ≥ τ + w,

(6.4)
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Āτ (t) ≡ λ(t ∧ τ),(6.5)

D̄τ (t) ≡ μ
(
t ∧ (τ + w)

) + 1

μ

(
1 − e−μ(t−(τ+w))+)

,(6.6)

L̄τ (t) ≡ (λ − μ)(t ∧ τ) + λ

θ

(
1 − e−θ [t−τ ]w0 ) − μ[t − τ ]w0(6.7)

for t ≥ 0, where w ≡ (1/θ) ln(λ/μ). Furthermore, if X̂n(0) ⇒ X̂(0) in R as
n → ∞, then we have the diffusion limit

(Âτ
n, D̂

τ
n, L̂τ

n, X̂
τ
n) ⇒ (Âτ , D̂τ , L̂τ , X̂τ ) in D4

as n → ∞, jointly with the limit (6.3), where X̂τ is the unique solution to the
stochastic integral equation

X̂τ (t) = X̂τ (0) −
∫ t

0

[
μ1{s≥τ+w}X̂τ (s) − θ1{s<τ+w}X̂τ (s)

]
ds

+ √
λB1(t ∧ τ) − √

μB2

(∫ t

0

(
X̄τ (s) ∧ 1

)
ds

)
(6.8)

− √
θB3

(∫ t

0

(
X̄τ (s) − 1

)+
ds

)
,

and

Âτ (t) ≡ √
λB1(t ∧ τ),(6.9)

D̂τ (t) ≡ μ

∫ t

0
1{s≥τ+w}X̂τ (s) ds + √

μB2

(∫ t

0

(
X̄τ (s) ∧ 1

)
ds

)
,(6.10)

L̂τ (t) ≡ θ

∫ t

0
1{s<τ+w}X̂τ (s) ds + √

θB3

(∫ t

0

(
X̄τ (s) − 1

)+
ds

)
(6.11)

for t ≥ 0, where (B1,B2,B3) is standard Brownian motion in three dimensions
and is independent of X̂(0).

We omit the proof of Proposition 6.1 because it is a direct consequence of the
two-parameter version in Proposition 6.2 below. The distribution of X̂τ in (6.8)
is complicated because of the deterministic time transformation in the Brownian
motions, but existence and uniqueness follows from Theorem 2.11. Combining
Proposition 6.1 with part 2 of Theorem 4.1, we immediately obtain the following
one-dimensional result.

THEOREM 6.2. Under the assumptions of Theorem 6.1, for each τ ≥ 0,

V̂n(τ ) ⇒ X̂τ (τ + w)

μ
in R

as n → ∞, jointly with the limits in Proposition 6.1.
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We now establish a two-parameter version of Proposition 6.1.

PROPOSITION 6.2. Consider the sequence of M/M/n + M models defined
above. If X̄n(0) ⇒ X̄(0) in R as n → ∞, then we have the fluid limit(

Ā(2)
n , D̄(2)

n , L̄(2)
n , X̄(2)

n

) ⇒ (
Ā(2), D̄(2), L̄(2), X̄(2)) in D4

D

as n → ∞, jointly with the limit (6.2), where X̄(2), Ā(2), D̄(2) and L̄(2) are given
by (4.5) and (6.4)–(6.7). Furthermore, if X̂n(0) ⇒ X̂(0) in R as n → ∞, then we
have the diffusion limit(

Â(2)
n , D̂(2)

n , L̂(2)
n , X̂(2)

n

) → (
Â(2), D̂(2), L̂(2), X̂(2)) in D4

D

as n → ∞, jointly with the limit (6.3), where X̂(2), Â(2), D̂(2) and L̂(2) are given
by (4.8) and (6.8)–(6.10). Furthermore, (Â(2), D̂(2), L̂(2), X̂(2)) ∈ C4

C .

PROOF. The proof follows the same steps as the proof of Theorem 7.1 of [9]
except some extra care must be taken to apply the continuous mapping theorem
with our integral mapping. First, after centering, the system equation becomes

X(2)
n (τ, t) = X(2)

n (τ,0) + M
(2)
n,1(τ, t) − M

(2)
n,2(τ, t) − M

(2)
n,3(τ, t)

+ λn(t ∧ τ) − μ

∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds(6.12)

− θ

∫ t

0

(
X(2)

n (τ, s) − n
)+

ds

for τ, t ≥ 0, where the processes M
(2)
n,i ≡ (M

(2)
n,i (τ, t), τ, t ≥ 0) are defined for i =

1,2,3 by

M
(2)
n,1(τ, t) ≡ A

(
λn(τ ∧ t)

) − λn(τ ∧ t),

M
(2)
n,2(τ, t) ≡ S

(
μ

∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds

)
− μ

∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds,

M
(2)
n,3(τ, t) ≡ L

(
θ

∫ t

0

(
X(2)

n (τ, s) − n
)+

ds

)
− θ

∫ t

0

(
X(2)

n (τ, s) − n
)+

ds

for τ, t ≥ 0, and A, S and L are the unit Poisson processes generating arrivals,
departures and abandonments in the setting of Theorem 6.1.

Fluid limit. Since for each n ≥ 1 we have X
(2)
n (τ, s) ≤ Xn(s) for all τ, s ≥ 0,

we have as in Lemma 4.5 of [9]

M
(2)
n,i

n
→ 0 in DD w.p. 1 for i = 1,2,3,(6.13)

jointly as n → ∞ using the FSLLN for Poisson processes. We only apply the
weaker FWLLN consequence.



2164 R. TALREJA AND W. WHITT

Then, using the integral map of Theorem 2.12 with the function h1 : R ×
[0,∞)2 → R defined by

h1(x, s, t) = −1{t≥s+w}μx − 1{t<s+w}θ(x − 1), x ∈ R, s, t ≥ 0,

X̄τ must satisfy the integral equation

X̄(2)(τ, t) = X̄(2)(τ,0) + λ(τ ∧ t) − μ
(
(τ + w) ∧ t

)
−

∫ t

0
1{s≥τ+w}μX̄(2)(τ, s) + 1{s<τ+w}θ

(
X̄(2)(τ, s) − 1

)
ds,

for τ, t ≥ 0. Lemma 7.2 shows that h1 satisfies the conditions of Theorem 2.12. It
is easy to see by inspection that this integral equation has solution given by (6.4).
We can now use (6.13) to get the limits for Ā

(2)
n , D̄

(2)
n and L̄

(2)
n jointly.

Diffusion limit. Using our two-parameter integral mapping (Theorem 2.10)
and two-parameter composition mapping (Theorem 2.4) with the continuous map-
ping theorem, we get the limits

M̂
(2)
n,i ≡ M

(2)
n,i√
n

⇒ M̂
(2)
i in DD for i = 1,2,3,(6.14)

jointly as n → ∞, where

M̂
(2)
1 (τ, t) ≡ B1

((
λ(τ ∧ t)

))
,

M̂
(2)
2 (τ, t) ≡ B2

(
μ

∫ t

0

(
X̄(2)(τ, s) ∧ 1

)
ds

)
,

M̂
(2)
3 (τ, t) ≡ B3

(
θ

∫ ·
0

(
X̄(2)(τ, s) − 1

)+
ds

)
.

Notice that X̄(2) ∈ CC so that the applications of the continuous mapping theorem
with Theorems 2.10 and 2.4 are justified.

By Lemma 7.4 and system equation (6.12), there exists a sequence of processes
Ĥn ≡ (Ĥn(τ, t), τ, t ≥ 0), n ≥ 1, such that

Ĥn ⇒ 0 in DD as n → ∞(6.15)

and

X(2)
n (τ, t) = X(2)

n (τ,0) + M
(2)
n,1(τ, t) − M

(2)
n,2(τ, t) − M

(2)
n,3(τ, t)

+ λn(τ ∧ t) − μ
(
(τ + w) ∧ t

)
n + √

nĤn(τ, t)
(6.16)

− μ

∫ t

0
1{s≥τ+w}X(2)

n (τ, s) ds

− θ

∫ t

0
1{s<τ+w}

(
X(2)

n (τ, s) − n
)
ds.
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Centering X
(2)
n (τ, t) by nX̄(2)(τ, t) in (6.16) and dividing by

√
n, we get

X̂(2)
n (τ, t) = X̂(2)

n (τ,0) + M̂
(2)
n,1(τ, t) − M̂

(2)
n,2(τ, t) − M̂

(2)
n,3(τ, t)

+ Ĥn(τ, t) − μ

∫ t

0
1{s≥τ+w}X̂(2)

n (τ, s) ds(6.17)

− θ

∫ t

0
1{s<τ+w}X̂(2)

n (τ, s) ds

for t ≥ 0.
Define the function h0 : R × [0,∞)2 → R by

h0(x, s, t) = −1{t≥s+w}μx − 1{t<s+w}θx, x ∈ R, s ≥ 0.

It follows from Lemma 7.2 with a = 0 that this function satisfies the conditions of
Theorem 2.12. Applying the continuous mapping theorem with the integral map of
Theorem 2.12 and the addition map of Theorem 2.2 to the limits (6.14) and (6.15)
gives us our limit for X̂τ

n . The limits for Â
(2)
n and L̂

(2)
n follow directly from the

limits for M̂
(2)
n,1 and M̂

(2)
n,3. Then, the limit for D̂

(2)
n follows from (6.17) and the

continuous mapping theorem with addition.
Theorems 2.4, 2.10 and 2.12 also show that the property of being in CC is

preserved with respect to applications of these two-parameter mappings. �

Now define the process X̂w ≡ (X̂w(t), t ≥ 0) so that

X̂w(t) ≡ X̂(2)(t, t + w).

Then, combining Proposition 6.2 with part 2 of Theorem 4.2 and simplifying Û0,
we obtain the following theorem.

THEOREM 6.3. Under the assumptions of Theorem 6.1, we have

V̂n ⇒ X̂w

μ
in D

as n → ∞, jointly with the limits in Theorem 6.1.

Finally, paralleling Corollary 5.1, we get the following corollary.

COROLLARY 6.1. Under the assumptions of Theorem 6.1,

Ŵn ⇒ X̂w(·/λ)

μ
in D

as n → ∞, jointly with the limits in Theorem 6.1.
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6.2. Steady-state virtual waiting time. We now prove convergence of steady-
state virtual waiting times under diffusion scaling in the ED limiting regime. It is
interesting that, although we are only proving a one-dimensional limit, our proof
uses convergence in D.

Just as in Corollary 5.2, we can define random variables Vn(∞), for n ≥ 1, in
the ED setting. From (2.26) of [17], we know that

Vn(∞) ⇒ w ≡ 1

θ
ln

(
λ

μ

)
in R(6.18)

as n → ∞. This result is obtained there by analyzing an ODE for the fluid limit of
the queue-length process with arrivals turned off. We now give a different argument
for (6.18) as well as a refinement. Let Qn(∞) denote the steady-state queue-length
(excluding customers in service) in system n ≥ 1. As in the proof of Corollary 5.2,
because of the birth–death structure of Qn, Vn(∞) can be represented directly in
terms of Qn(∞) by

Vn(∞) =
Qn(∞)∑

i=1

Xi,n,(6.19)

where Xi,n represents the time between the (i − 1)th and ith departure (either an
abandonment or a service completion) from the queue in model n ≥ 1. For each
n ≥ 1, the Xi,n are independent of each other and of Qn(∞), and each Xi,n is
exponentially distributed with mean 1/(nμ + iθ).

First, we prove the following lemma.

LEMMA 6.1. Let the triangular array (Xi,n) be defined as in (6.19). Then

√
n

(�n·�∑
i=0

Xi,n − c

)
⇒ B ◦ d in D

as n → ∞, where

c(t) ≡ 1

θ
ln

(
1 + θt

μ

)
, d(t) ≡ t

μ(μ + θt)

for all t ≥ 0, and B is standard Brownian motion.

PROOF. It can easily be verified that the asymptotic mean and variance of the
sum in (6.19) are c(t) and d(t)/n, respectively. Also, the triangular array (Xi,n)

satisfies Lyapunov’s condition. Therefore, the functional Lindeberg–Feller central
limit theorem applies to the partial sum sequence and we get our result; see Theo-
rem 4.1 of [10]. �

We now give our main result of the section. Note that one could erroneously
conclude from Theorem 6.3 that the limiting distribution of V̂n(∞) has variance
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(1/μ2)Var(X̂(∞)) = λ/(μ2θ). We see here that this is in fact not the case. What
is happening is that the numerator of the limit at a fixed t ≥ 0, X̂(2)(t, t + w),
corresponds to the diffusion-scaled number-in-system observed w units of time
after stopping the arrival process. This delay in observing the number-in-system
is crucial to the analysis and is the reason one can not simply use the steady-state
distribution of X̂.

THEOREM 6.4. Under the assumptions of Theorem 6.1,

V̂n(∞) ⇒ N

(
0,

1

θμ

)
in R

as n → ∞, where V̂n(∞) ≡ √
n(Vn(∞) − w).

PROOF. Let Qn ≡ (Qn(t), t ≥ 0), where Qn(t) is the number of customers
in the queue (excluding customers in service) at time t in model n ≥ 1. Note that
for each n, the process Qn possesses a stationary distribution since Qn = (Xn −
n)+ and Xn is simply a positive recurrent birth–death process. Redefine Qn(0)

to have this distribution so that we have a stationary version of the process Qn.
By Theorem 2.3 of [17], we have Q̄n(0) ⇒ q in R as n → ∞, so that applying
Theorem 6.1 and the continuous mapping theorem gives us the fluid limit for the
queue length process Q̄n(t) ⇒ qη, in D as n → ∞. Joining this convergence with
the convergence in Lemma 6.1 using Theorem 11.4.5 of [15] gives us

(√
n

(�n·�∑
i=0

Xi,n − c

)
, Q̄n

)
⇒ (B ◦ d, qη) in D2

as n → ∞. Projecting the second component on to a fixed t ≥ 0 gives us
(√

n

(�n·�∑
i=0

Xi,n − c

)
, Q̄n(t)

)
⇒ (B ◦ d, q) in D × R

as n → ∞. Applying Proposition 13.2.1 of [15] gives us

√
n

(
Qn(t)∑
i=0

Xi,n − c(Q̄n(t))

)
⇒ B(d(q)) in R(6.20)

as n → ∞. Then,

√
n

(
Qn(t)∑
i=0

Xi,n − c(q)

)
= √

n

(
Qn(t)∑
i=0

Xi,n − c(Q̄n(t))

)

+ √
n
(
c(Q̄n(t)) − c(q)

)
,
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where c(q) = w, for w in (6.18). To compute the limit of the second term above,
we use the Taylor approximation

c(Q̄n(t)) = c(q) + c′(q)
(
Q̄n(t) − q

) + c′′(q)
(
Q̄n(t) − q

)2 + · · ·
= c(q) + c′(q)

(
Q̄n(t) − q

) + oP(n−1/2−ε),

where 0 < ε < 1/2. The second equality above follows from the continuous map-
ping theorem and the fact that

n1/2+ε(Q̄n(t) − q
)2 = n−1/2+ε(√n

(
Q̄n(t) − q

))2 ⇒ 0 in R

as n → ∞. Observing that c′(q) = 1/λ gives us

√
n
(
c(Q̄n(t)) − c(q)

) = c′(q)Q̂n(t) + oP(n−ε) ⇒ 1

λ
Q̂(t) in R(6.21)

as n → ∞. Combining the limits (6.20) and (6.21) and using the continuous map-
ping theorem with addition we get

√
n

(
Qn(t)∑
i=0

Xi,n − c(q)

)
⇒ B(d(q)) + 1

λ
Q̂(t) in R

as n → ∞. Finally, since V̂n(∞) is distributed as the stationary distribution of the
left-hand side above, and the stationary distribution of the limit is normal with
mean 0 and variance

d(q) + 1

λ2 Var(Q̂) = q

μλ
+ 1

λθ
= 1

θμ
,

we get our result. �

7. Additional lemmas. We use the following lemma to show that the error
caused by our linear interpolations in the proof of Theorem 3.1 is asymptotically
negligible.

LEMMA 7.1. For the linear interpolations D̃−1
n and Ỹn of D̄−1

n and Ȳn, re-
spectively, we have for all T > 0,

√
n‖(D̃−1

n , Ỹn) − (D̄−1
n , Ȳn)‖T ⇒ 0 in R

as n → ∞, jointly with the limits in Theorem 5.1.

PROOF. Notice that for each T > 0 our construction gives us

‖D̄−1
n − D̃−1

n ‖T = JT (D̄−1
n ) and ‖Ȳn − Ỹ‖T = JT (Ȳn),(7.1)
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which both converge to 0 as n → ∞ since D̄−1
n and Ȳn are continuous by (5.2) and

Corollary 13.7.3 of [15]. Therefore, by (7.1), we have
√

n‖(D̃−1
n , Ỹn) − (D̄−1

n , Ȳn)‖T

= √
n sup

0≤t≤T

∥∥(
D̃−1

n (t) − D̄−1
n (t), Ỹn(t) − Ȳn(t)

)∥∥∞

= √
n sup

0≤t≤T

max{|D̃−1
n (t) − D̄−1

n (t)|, |Ỹn(t) − Ȳn(t)|}

= √
nmax{‖D̃−1

n − D̄−1
n ‖T ,‖Ỹn − Ȳn‖T }

= √
nmax{JT (D̄−1

n ), JT (Ȳn)}
= max

{
JT

(√
n(D̄−1

n − D̄−1)
)
, JT

(√
n
(
Ȳn − (Ā − L̄)

))} ⇒ 0

in R as n → ∞, since the processes D̂ and Â− L̂ are continuous. Here, we assume
the maximum norm ‖ · ‖∞ on R

2 without loss of generality. �

The following lemma shows that the regulator map used in Proposition 6.1 sat-
isfies the conditions of Theorem 2.12.

LEMMA 7.2. For a ∈ R, the function ha : R × [0,∞)2 → R defined by

ha(x, s, t) = −1{t≥s+w}μx − 1{t<s+w}θ(x − a), x ∈ R, s, t ≥ 0,

satisfies the conditions of Theorem 2.12.

PROOF. ha clearly satisfies condition 1 of Theorem 2.12. We now show ha

satisfies condition 2 of Theorem 2.12. Fix T > 0, s1, s2 ≥ 0, x1, x2 ∈ DD , and an
increasing homeomorphism λ on [0, T ] having strictly positive derivative λ′. We
then have∫ t

0
|ha(x1(s1, u), s1, u) − ha(x2(s2, λ(u)), s2, λ(u))|du

=
∫ t

0

∣∣−1{u≥s1+w}μx1(s1, u) − 1{u<s2+w}θ
(
x1(s1, u) − a

)
+ 1{λ(u)≥s2+w}μx2(s2, λ(u)) + 1{λ(u)<s2+w}θ

(
x2(s2, λ(u)) − a

)∣∣du

≤ μ

∫ t

0

∣∣1{u≥s1+w}x1(s1, u) − 1{λ(u)≥s2+w}x2(s2, λ(u))
∣∣du

+ θ

∫ t

0

∣∣1{u<s1+w}x1(s1, u) − 1{λ(u)<s2+w}x2(s2, λ(u))
∣∣du

+ θa

∫ t

0

∣∣1{u<s1+w} − 1{λ(u)<s2+w}
∣∣du
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≤ μ

∫ t

0

∣∣1{u≥s1+w} − 1{λ(u)≥s2+w}
∣∣|x2(s2, λ(u))|du

+ μ

∫ t

0
1{u≥s1+w}|x1(s1, u) − x2(s2, λ(u))|du

+ θ

∫ t

0

∣∣1{u<s1+w} − 1{λ(u)<s2+w}
∣∣|x2(s2, λ(u))|du

+ θ

∫ t

0
1{u<s1+w}|x1(s1, u) − x2(s2, λ(u))|du

+ θa

∫ t

0

∣∣1{u<s1+w} − 1{λ(u)<s2+w}
∣∣du

≤ μ‖xs2
2 ‖T + θ(‖xs2

2 ‖T + a)
∣∣λ−1(

(s2 + w) ∧ T
) − (

(s1 + w) ∧ T
)∣∣

+ (μ + θ)

∫ t

0
|x1(s1, u) − x2(s2, λ(u))|du

≤ μ‖xs2
2 ‖T + θ(‖xs2

2 ‖T + a)

× (∣∣λ−1(
(s2 + w) ∧ T

) − λ−1(
(s1 + w) ∧ T

)∣∣ + ‖λ−1 − e‖T

)
+ (μ + θ)

∫ t

0
|x1(s1, u) − x2(s2, λ(u))|du

≤ μ‖xs2
2 ‖T + θ(‖xs2

2 ‖T + a)‖(λ−1)′‖T (|s2 − s1| + ‖λ − e‖T )

+ (μ + θ)

∫ t

0
|x1(s1, u) − x2(s2, λ(u))|du,

where the last inequality follows from the mean value theorem. Since

‖(λ−1)′‖T ≤ 1

inf0≤s≤T λ′(s)
< ∞,

this completes the verification of condition 2 of Theorem 2.12. �

We now prove the approximations used in the proof of Proposition 6.2. First,
we have the following lemma, which is essentially a two-parameter version of
Theorem 10.1 of [6].

LEMMA 7.3. In the context of Section 6, if X̂n(0) ⇒ X̂(0) in R as n → ∞,
then for all S,T > 0,

∥∥X̄(2)
n − X̄(2)

∥∥
S,T = oP

(
1

n1/2−ε

)
.
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PROOF. For each n ≥ 1, define the process Ȳn ≡ (Ȳn(τ, t), τ, t ≥ 0) by

Ȳn(τ, t) ≡ |X̄n(0) − X̄(0)| +
∣∣∣∣λn

n
(t ∧ τ) − λ(t ∧ τ)

∣∣∣∣
+ 1

n

∣∣A(
λn(t ∧ τ)

) − λn(t ∧ τ)
∣∣

+ 1

n

∣∣∣∣S
(
nμ

∫ t

0

(
X̄(2)

n (τ, s) ∧ 1
)
ds

)
− nμ

∫ t

0

(
X̄(2)

n (τ, s) ∧ 1
)
ds

∣∣∣∣
+ 1

n

∣∣∣∣R
(
nμ

∫ t

0

(
X̄(2)

n (τ, s) − 1
)+

ds

)

− nμ

∫ t

0

(
X̄(2)

n (τ, s) − 1
)+

ds

∣∣∣∣.
Then we have for all ε > 0

‖Ȳn‖S,T = oP

(
1

n1/2−ε

)
,(7.2)

by the assumed limit X̂n(0) ⇒ X̂(0) in R as n → ∞, the assumption λn = nλ, the
limits (6.14), and Theorem 2.2. Now by the integral representation (6.12), for each
n ≥ 1 we have∣∣X̄(2)

n (τ, t) − X̄(2)(τ, t)
∣∣

≤ Ȳn(τ, t) +
∣∣∣∣
∫ t

0
μ

(
X̄(2)

n (τ, s) ∧ 1
) + θ

(
X̄(2)

n (τ, s) − 1
)+

ds

−
∫ t

0
μ

(
X̄(2)(τ, s) ∧ 1

) + θ
(
X̄(2)(τ, s) − 1

)+
ds

∣∣∣∣
≤ Ȳn(τ, t) + (μ + θ)

∫ T

0

∣∣X̄(2)
n (τ, s) − X̄(2)(τ, s)

∣∣ds

for all τ, t ≥ 0, where the second inequality follows from the fact that the function

h(s) = −μ(s ∧ 1) − θ(s − 1)+

is Lipschitz. This implies

∥∥X̄(2)
n − X̄(2)

∥∥
S,T ≤ ‖Ȳn‖S,T + (μ + θ)

∫ T

0

∥∥X̄(2)
n − X̄(2)

∥∥
S,s ds.

Applying Gronwall’s inequality then gives us∥∥X̄(2)
n − X̄(2)

∥∥
S,T ≤ e(μ+θ)T ‖Ȳn‖S,T .

The result now follows from (7.2). �

We use the following approximation in (6.16).
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LEMMA 7.4. Under the assumptions of Proposition 6.1, for all S,T ≥ 0,

sup
0≤τ≤S

0≤t≤T

∣∣∣∣μ
∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds + θ

∫ t

0

(
X(2)

n (τ, s) − n
)+

ds

− μ
(
(τ + w) ∧ t

)
n −

∫ t

0
1{s≥τ+w}μX(2)

n (τ, s)(7.3)

− 1{s<τ+w}θ
(
X(2)

n (τ, s) − n
)
ds

∣∣∣∣ = oP

(√
n
)
.

PROOF. The key is to show that for each τ ≥ 0 and ε > 0 the first and last
times X

(2)
n (τ, ·) hits n are within oP(1/n1/2−ε) of τ + w (see Figure 2). Fix T >

τ +w. By Lemma 7.3, for all δ1, δ2 > 0, there exists N > 0 such that for all n ≥ N

P[Aδ1
n ] > 1 − δ2,(7.4)

where A
δ1
n is the event

Aδ1
n ≡ {∥∥X̄(2)

n − X̄(2)
∥∥
S,T < δ1n

−1/2+ε}.
On A

δ1
n we have for all 0 ≤ τ ≤ S,

inf
{
s ≥ 0|X(2)

n (τ, s) < n
} ≥ Bτ

l ,(7.5)

sup
{
s ≥ 0|X(2)

n (τ, s) > n
} ≤ Bτ

u,(7.6)

FIG. 2. The process Xτ
n deviating from the process nX̄τ .



WAITING TIMES IN MANY-SERVER QUEUES WITH ABANDONMENT 2173

where

Bτ
l ≡ inf

{
s ≥ 0

∣∣∣n(
λe−θ(s−τ)+ − μ

θ
+ 1

)
− δ1n

1/2+ε < n

}
,(7.7)

Bτ
u ≡ inf

{
s ≥ 0|ne−μ(s−(τ+w))+ + δ1n

1/2+ε < n
}
.(7.8)

It can then be easily checked by manipulating the inequalities in (7.7) and (7.8)
that

sup
0≤τ≤S

|Bτ
l − (τ + w)| = oP

(
1

n1/2−ε

)
,

sup
0≤τ≤S

|Bτ
u − (τ + w)| = oP

(
1

n1/2−ε

)
.

We now show that

sup
0≤τ≤S

0≤t≤T

∣∣∣∣μ
∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds

− μ
(
(τ + w) ∧ t

)
n − μ

∫ t

0
1{s≥τ+w}X(2)

n (τ, s) ds

∣∣∣∣ = oP

(√
n
)
.

The approximation for the second integral in (7.3) can be shown using the same
procedure and this will complete the proof. Let 0 < ε < 1/2. By (7.5) and (7.6),
for all c > 0 there exists N ′ large enough so that for all n ≥ N ′, (7.4) holds and on
the event A

δ1
n we have for all τ, t ≥ 0∣∣∣∣

∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds −

((
(τ + w) ∧ t

)
n +

∫ t

0
1{s≥τ+w}X(2)

n (τ, s) ds

)∣∣∣∣
≤

∣∣∣∣
∫ t

0

(
X(2)

n (τ, s) ∧ n
)
ds

−
(∫ t

0
1{s<τ+w}nds +

∫ t

0
1{s≥τ+w}X(2)

n (τ, s) ds

)∣∣∣∣
≤

∫ τ+w

τ+w−c/n1/2−ε

(
n − X(2)

n (τ, s)
)+

ds

+
∫ τ+w+c/n1/2−ε

τ+w

(
X(2)

n (τ, s) − n
)+

ds

≤
∫ τ+w

τ+w−c/n1/2−ε

∣∣X(2)
n (τ, s) − nX̄τ (s)

∣∣ds

+
∫ τ+w+c/n1/2−ε

τ+w

∣∣X(2)
n (τ, s) − nX̄τ (s)

∣∣ds

≤ cδ1
n1/2+ε

n1/2−ε
< cδ1n

1/2.
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By (7.4), the above holds with probability greater than 1 − δ2, giving us our result.
�
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