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Abstract

We study the multi-dimensional reflection map on the spaces D([0,7T],R¥) and D([0,c0), R)
of right-continuous R*-valued functions on [0,T] or [0,00) with left limits, endowed with variants
of the Skorohod(1956) M; topology. The reflection map was used with the continuous mapping
theorem by Harrison and Reiman (1981) and Reiman (1984) to establish heavy-traffic limit theorems
with reflected Brownian motion limit processes for vector-valued queue-length, waiting-time and
workload stochastic processes in single-class open queueing networks. Since Brownian motion and
reflected Brownian motion have continuous sample paths, the topology of uniform convergence
over bounded intervals could be used for those results. Variants of the M; topologies are needed to
obtain alternative discontinuous limits approached gradually by the converging processes, as occurs
in stochastic fluid networks with bursty exogenous input processes, e.g., with on-off sources having
heavy-tailed on periods or off-periods (having infinite variance). We show that the reflection map
is continuous at limits without simultaneous jumps of opposite sign in the coordinate functions,
provided that the product M; topology is used. As a consequence, the reflection map is continuous
with the product M; topology at all functions that have discontinuities in only one coordinate at
a time. That continuity property also holds for more general reflection maps and is sufficient to
support limit theorems for stochastic processes in most applications. We apply the continuity of the

reflection map to obtain limits for buffer-content stochastic processes in stochastic fluid networks.

Keywords: reflection map, heavy-traffic limit theorems, queueing networks, stochastic fluid net-
works, Lévy processes, the function space D, functional limit theorems, invariance principles, weak

convergence, Skorohod topologies, Skorohod M; topology, continuous mapping theorem.
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1. Introduction

This paper is motivated by the desire to better understand and manage the performance of
evolving communication networks. Network design and control is complicated by the “bursty”
traffic found on these networks. Network traffic measurements reveal features such as heavy-tailed
probability distributions, long-range dependence and self-similarity; e.g., see Park and Willinger
(2000).

Since communication networks and their components can often be modelled as queueing net-
works, insight may be gained by studying the impact of bursty traffic (modelled appropriately)
on the performance of queueing networks. One way to see the impact of bursty traffic on the
performance of queueing networks is to consider heavy-traffic limits. The burstiness can have
a dramatic impact on the heavy-traffic limits, changing both the scaling and the limit process;
e.g., see Konstantopoulos and Lin (1996, 1998) and Whitt (2000a,b). In fact, the limit process
can have discontinuous sample paths even when the converging stochastic processes have contin-
uous sample paths, but that presents technical challenges because such limits, obtained via the
continuous-mapping approach with reflection maps on the function space D = D([0,T],RF) of
right-continuous R¥-valued functions on [0, 7] with left limits, require a nonstandard topology on
the function space D.

In this paper we address some of those technical challenges. In particular, we establish con-
vergence to stochastic processes with discontinuous sample paths, such as reflected Lévy processes,
for sequences of appropriately scaled vector-valued buffer-content stochastic processes with con-
tinuous sample paths in general stochastic fluid networks (special queueing networks with random
continuous flow, designed to model traffic in communication networks). To establish these limits,
we use variants of the Skorohod (1956) M topology on the function space D, because the standard
Skorohod (1956) J; topology does not permit such limits.

In the present paper we show that the multi-dimensional reflection map is continuous on the
spaces D([0,T],R¥) and D([0,00), R¥) with appropriate versions of the M; topology under appro-
priate regularity conditions. In Whitt (2000a) we established functional central limit theorems
(FCLTSs), using the M; topology on D, for sequences of appropriately scaled exogenous cumulative
input processes with continuous sample paths, where the limit process has discontinuous sample
paths. With the continuity of the reflection map established here, those results yield FCLTs for

the buffer-content processes in the stochastic fluid networks, as we show in Section 10.



The burstiness of network traffic can be due to failures of network elements as well as to
the behavior of transmitting sources. Thus there is also interest in the performance of queueing
networks faced with service interruptions. In this paper, we also establish heavy-traffic FCLTs for
queueing networks with rare long service interruptions. The long service interruptions could be due
to server breakdowns (often called “vacations” in the literature) or unusually long service times,
as occur with heavy-tailed service-time distributions. In fact, Chen and Whitt (1993) obtained
such heavy-traffic FCLTs for single-class open queueing networks, extending corresponding heavy-
traffic FCLTs for single-class open queueing networks without service interruptions by Harrison
and Reiman (1981) and Reiman (1984), and heavy-traffic FCLTs for single queues with service
interruptions in Kella and Whitt (1990). However, there is an error in the proof in Chen and Whitt
that needs to be corrected.

The queueing network model considered by Chen and Whitt is standard except for the inter-
ruptions. To represent the interruptions, each station has a single server that is alternatively up
and down. To represent long rare service interruptions, the up and down times are allowed to be
of order n = (1—p)~2 and /n = (1—p)~", respectively, when the traffic intensity is p = 1 —n~"/2,
This scaling yields a limit process that is a multi-dimensional reflection of a multi-dimensional
Brownian motion plus a multi-dimensional jump process.

The FCLTs were proved in Chen and Whitt by applying the continuous mapping theorem with
the multi-dimensional reflection map, after establishing a FCLT for the basic net-input process.
However, the jumps in the limit process approached gradually in the converging processes make
it necessary to work with the M; topology. The need for the M; topology also arises in the one-
dimensional (single-queue) case considered by Kella and Whitt (1990), but the one-dimensional
reflection map into the buffer-content process is easily seen to be continuous, so that there is no
difficulty there. (There is a difficulty, however, if we consider the map into the two-dimensional
process representing both the buffer-content process and the nondecreasing regulator process; see
Example 4.3.) The error occurs in Proposition 2.4 of Chen and Whitt, which asserts that continuity
and Lipschitz properties in the uniform topology extend directly to the nonuniform J; and M;
topologies. (A complete statement appears here in Section 4.) We will show that the general idea
of Proposition 2.4 is correct and that the heavy-traffic FCLT with the M; topology in Theorem
4.1 of Chen and Whitt is also correct, provided that the topology on D is understood to be the
product M; topology. However, the required argument is much more complicated.

We show that the reflection map from D([0,T],R¥) into D([0,T], R?*), and from D([0, cc), R¥)



into D([0,00),R?*), is continuous at limits without simultaneous jumps of opposite sign in the
coordinate functions, provided that the product topology is used on the range. Thus the heavy-
traffic FCLT in Theorem 4.1 of Chen and Whitt is correct provided that the space D for the queueing
limit is understood to be endowed with the product topology. (The distinction between the standard
topology and the product topology does not arise with the uniform topology, because the space
D([0,T],R¥) with the uniform topology coincides with the space D([0,T],R!)* with the product
topology, where each component space is given the uniform topology.) Even though the corrected
heavy-traffic FCLT in Chen and Whitt is weaker than originally claimed, the conclusion is still
strong; it does not alter many applications. Even convergence in the product M; topology implies
convergence of all finite-dimensional distributions at all times that are almost surely continuity
points of the limit process.

Indeed, the greatest limitation of the FCLT theorem in Chen and Whitt is the requirement that
the scaled net-input processes converge in D([0, 7], R*) to a limit process which almost surely has
discontinuities in only one coordinate at a time. That assumption (made in (4.11) there) clearly
implies that the limit process almost surely has no simultaneous jumps of opposite sign in the
coordinate functions. In stochastic fluid networks and their limits, that condition is satisfied if the
exogenous input processes at the stations are mutually independent and if the component limit
processes have no common fixed discontinuities.

We also show that the reflection map is Lipschitz on the subset D; of functions in D without
simultaneous jumps of opposite sign in the coordinate functions, provided that a strong (standard)
M7 metric is used on the domain and a product M; metric is used on the range. For the heavy-
traffic FCLT in Chen and Whitt, and for the stochastic-fluid-network FCLT in Section 10, we only
use the continuity on D at limits in Dy, but the extra Lipschitz property is also useful to establish
bounds on the rates of convergence of stochastic processes; see Whitt (1974). Bounds on the rate of
convergence for the net input process translate immediately into corresponding bounds for the rate
of convergence of the normalized queueing processes, due to the Lipschitz property. Whitt (1974)
showed that a Lipschitz mapping on an underlying metric space induces an associated Lipschitz
mapping on the space of all probability measures on that space, using an appropriate metric on
the space of all probability measures inducing the topology of weak convergence, e.g., the Prohorov
metric, as on p. 237 of Billingsley (1968). Initial rates of convergence may be obtained from strong
approximations, e.g., as in Csorgd and Révész (1981).

It should be noted that having a discontinuous limit does not by itself imply that we need an



M; topology. An M; topology is only needed when the jumps in the limit process are approached
gradually in the converging processes. Many examples of discontinuous limits in the familiar J;
topology are contained in Jacod and Shiryaev(1987). Discontinuous limits for queueing processes
with the J; topology are contained in Whitt (2000b).

Here is how the rest of this paper is organized: In Section 2 we give a brief summary of D and
its topologies. In Section 3 we define the reflection map and state the main results. In Section 4 we
give counterexamples, showing the necessity of our new conditions. We prove the main results in
Sections 5-7. In Section 5 we establish properties of the instantaneous reflection map from RF to
R?* | which is the reflection map operating at a single time point. In Section 6 we study reflections
of parametric representations, as needed for the M; topologies. The key idea in obtaining positive
results is to establish conditions under which the reflection of a parametric representation of a
function in D is a parametric representation of the reflected function. In Section 7 we apply the
results in Sections 5 and 6 to prove the theorems in Section 3.

In Section 8 we discuss extensions to the space D([0,00),R¥). In Section 9 we discuss the
reflection map as a function of the reflection matrix as well as the net-input function. In Section 10
we establish limits for stochastic fluid networks, applying the reflection map with the continuous
mapping theorem. The first limit is a continuity result, showing that the buffer-content process is
a continuous function of the basic model data. The second limit is a heavy-traffic limit.

We primarily consider the standard reflection map introduced by Harrison and Reiman (1981),
but more general reflection maps have been considered subsequently; see Dupuis and Ishii (1991),
Williams (1987, 1995) and Dupuis and Ramanan (1999a,b). In Section 11 we also establish general
conditions for more general reflection maps to be Lipschitz with appropriate versions of the M;
topology. We apply the general results to treat the two-sided regulator, as in Chapter 2 of Harrison
(1985) and Berger and Whitt (1992).

For other work involving queues with the M; topology, see Mandelbaum and Massey (1995),
Harrison and Williams (1996), Kella and Whitt (1996), Puhalskii and Whitt (1997, 1998) and
Konstantopoulos (1999). The need to work with the product M; topology was recognized in
another context by Harrison and Williams (1996). For additional related references, see Chen and
Yao (2000), Kushner (2001) and Whitt (2000a,b, 2001). We conclude this introduction by defining
several special subsets of the function space D = D* = D([0,T], R*) that we will use in this paper.

We indicate where the subset is first defined.



Section 3: Dy = {z € D: either z(t) > z(t—) or z(t) < z(t—) for all ¢, with the inequality

allowed to depend upon t},

Section 3: D; = {z € D : z'(t) # x*(t—) for at most one i for all ¢, with the coordinate i allowed

to depend upon t},
Section 3: D, = {r € D :z'(t) > z'(t—) for all i and ¢},
Section 5: D, = {z € D : z is piecewise-constant with only finitely many discontinuities},

Section 6: D; = {z € D: z has only finitely many discontinuities and z is piecewise linear in

between discontinuities, with only finitely many discontinuities in the derivative},
Section 6: D,; =D,ND

Section 11: Dy, =D ND and D.1=D.ND
2. Background on D and its Topologies

In this section we give basic definitions related to the function space D; see Skorohod (1956) and
Whitt (2002) for more discussion. Let D = D* = D([0, T], R¥) be the set of all R¥-valued functions
= (z,...,2F) = {z(t),0 < t < T} on [0,7T] that are right continuous at all ¢+ € [0,7) and have
left limits at all ¢ € (0,7]. We assume that the functions are continuous at T, so that we regard 0
and T as continuity points. It is common to form functions in D from sequences {s; : j > 1} by
letting

Tn(t) = 8|py, 0<t<T, n>1, (2.1)

where |nt| is the greatest integer less than or equal to nt. To have z, in (2.1) continuous at 7'
for all n, we can let T' be irrational. Moreover, the continuity condition at 7" invariably causes no
problems in limits. Limiting stochastic processes typically will have no fixed discontinuities; i.e.,

letting Disc(x) denote the set of discontinuity points of a function z, we usually have
P(t € Disc(X)) =0 forall ¢,

where X is the random element of D. (Alternatively, we could allow the functions in D to be

discontinuous at 7.) We discuss the related space D([0,c0), R¥) with domain [0, c0) in Section 8.



For a = (a',...,a*) € R¥, let ||a| = Zle |a’| and, for z € D, let ||z|| = supg<<r{||lz(t)]|}. We
will use componentwise order in R¥; i.e., we say a1 < ag in RF if azi < a% inR for each 7,1 <14 <k.
For a,b € R, let a A b= min{a,b} and a V b = max{a,b}. For a,b € R, let [a,b] and [[a, b]] be the

standard and product segments, respectively, defined by
[a,b] ={aa+ (1 —a)b: 0<a<1} (2.2)

and

l[a,b]] = [a!,b'] x -+ x [a¥, b¥] . (2.3)

Note that [a?,b'] coincides with the standard closed interval [a® A b?, a® V b'].

For z € D, let 'y, and G, be the thin and thick completed graphs of z, defined by
Ty = {(z,t) € R¥ x[0,T]: z € [x(t—),z(t)]} (2.4)

and

Go = (1) €RE x [0,T]: z € [[2(t—), ()]} - (2.5)

Let < be an order relation defined on the graphs by having (z1,%1) < (22,%2) if either (i) t; < to
or (ii) t; = t9 and ||z(t1—) — 21]| < ||z(t1—) — 22||. The relation < is a total order on I'; and a
partial order on G,.

A strong (weak) parametric representation of z is a continuous nondecreasing (using the orders
on the graphs just defined) function (u,r) mapping [0,1] onto I'; (into G) such that 7(0) = 0 and
r(1) =T. Let II;(z) and II,,(z) be the sets of all strong and weak parametric representations of z.
(Note that we do not require that the strong parametric representations be one-to-one maps, but
we require more than r being nondecreasing. We do not allow “backtracking” as the parametric

representation passes over the portion of the graph corresponding to a jump.)

Let
diares) = ot Lo =V = ral)} (2.6
i=1,2
and
dy(z1,22) = inf uy —usg|| Vi|r—1r . 2.7
wlena) = inf el V= ol (2.7
7=1,2

Convergence z, — z as n — oo for a sequence or net {z, } is said to hold in the strong M; or SM;
(weak My or W M) topology if ds(xn,xz) — 0 (dy(zn,z) — 0) as n — oo. (It turns out that the
SM; topology is unchanged if we require that the strong parametric representations be one-to-one

maps. However, the weaker monotonicity property we have used seems easier to work with.)



In Whitt (2002) it is shown that d, in (2.6) is a metric, but d,, in (2.7) is not. It is also shown
that dy,(zn,z) — 0 as n — oo if and only if d,(z,, ) — 0 as n — oo, where d,, is a metric inducing

the product topology such as

dp(z1,20) = Y ds(ah, ah) . (2.8)
1<i<k

Thus, the W M, topology on D([0, T], R*) coincides with the product topology on the product space
DF = D! x ... x D!, where each coordinate D! is endowed with the SM; topology. We also have
the inequality

dp(z1,22) < kdy(z1,22) (2.9)

for all z1,z2 € D, but example 5.3.2 of Whitt (2002) shows that there is no inequality in the
opposite direction. When k = 1, d,, = d; = d),, but when k > 1, the SM; topology is strictly
stronger than the W M7 topology. Since the metrics coincide when k = 1, we write d for ds and
M, for SM; when k = 1.

The metrics ds and d), each make D an incomplete separable metric space for which the Borel
o-field generated by the open subsets coincides with the Kolmogorov o-field generated by the
coordinate projections. Even though d, and d, are incomplete, they are topologically equivalent to
complete metrics, so that D with each of these metrics is Polish (metrizable as a complete separable
metric space).

An important distinction between the strong and weak M; topologies on D is that linear
functions of the coordinates are continuous in the SM; topology, but not in the W M; topology.
For z € D¥ and n € R¥, let nz = le ntz® € D. Tn Section 5.9 of Whitt (2002) it is shown that
T, = z asn — oo in (D*, SM,) if and only if nz, — nz as n — oo in (D', M) for all € RE. We
will use this property in our counterexamples in Section 4.

The standard J; topology on D([0, T],R*) is induced by the metric
dp, (21,22) = jnf {{lw1 0 A — 22| VIIA —ell}, (2.10)

where e is the identity map, i.e., e(t) = t,0 < ¢t < T, and A is the set of all increasing homeo-
morphisms of [0,7]. Just like the SM; and WM topologies above, the standard J; topology on
D([0,T],R¥) is stronger than the product topology on the product space D([0,T],R!, J;)*. Thus
we could define analogous SJ; and W J; topologies, but we only discuss SJ; and call it J;. Theorem

5.4.3 of Whitt (2002) shows that

ds(z1,22) < dj, (z1,22) forall zy,z9 € D. (2.11)



Weaker topologies than SM; and WM; on D([0,T],R¥) are the SMy and WM, topologies.
The SM; topology is induced by the Hausdorff metric, denoted by mg, on the space of thin graphs
T';, while the W M, topology is the product topology, which is induced by the associated product
metric, defined as in (2.8) with mg playing the role of ds there. Whitt (2002) shows that the
SMs topology is also induced by a metric defined as in (2.6), where only 7 is required to be
nondecreasing instead of the entire parametric representation (u,r). With the SMs topology, the
parametric representations are allowed to “backtrack” as they pass over the portion of the graph
corresponding to a jump. In several places in the literature, including Chen and Whitt (1993), the
SM; topology is not defined correctly, because only r is required to be nondecreasing.

Convergence in the W M> topology (and thus in the SMy, W My, SM; and J; topologies) implies
local uniform convergence at each continuity point of a limit. It also implies convergence in the 1

metric on D, defined by
T
51, ) = / 21 () — zo ()| dt - (2.12)
0

We call the topology induced by the metric § on D the Ly topology.

Even though there are many possible topologies on D, there is only one relevant o-field. It
is significant that the Borel o-fields on D generated by the SMy, WM, Ji, SMs, WM, and L
topologies all coincide with the Kolmogorov o-field generated by the coordinate projections. Thus
continuity of a map from D¥ to D' with one of these topologies on the domain and another on the
range immediately implies measurability of the map for other combinations of the topologies on
the domain and range. However, note that the Borel o-field associated with the uniform topology
on D is strictly larger than the Kolmogorov o-field. Thus the uniform topology on D causes
measurability problems; see Section 18 of Billingsley (1968). When the uniform topology can be
used, it is possible to use non-Borel o-fields; see Pollard (1984).

3. The Main Results

The (standard) multi-dimensional reflection mapping was developed by Harrison and Reiman
(1981). There had been quite a bit of previous work on the one-dimensional reflection map, includ-
ing Skorohod (1961) and Benes (1963). Iglehart and Whitt (1970a,b) applied the one-dimensional
reflection map in order to obtain FCLTs for acyclic queueing networks. Prior to Harrison and
Reiman(1981), other work on multi-dimensional reflection had primarily assumed smooth bound-
aries. (For related early work, see Tanaka (1979) and Lions and Sznitman (1984).) For more on

the reflection map, see Reiman (1984), Chen and Mandelbaum (1991a-c), Chen and Whitt (1993)



and Chen and Yao (2000).

Informally, the reflection map transforms an RF-valued net-input function z into an R¥-valued
content function (using queueing terminology) z and an RF-valued regulator function y. There is
some freedom in the choice of initial conditions. Harrison and Reiman require that z(0) > 0, by
which we mean that z%(0) > 0 for 1 < i < k, which implies that z(0) = z(0) and y(0) = 0. (We let
0 and 1 represent the vectors (0,0,...,0) and (1,1,...,1), respectively. It will be clear from the
context that they should be elements of R¥.) Instead we allow 2*(0) < 0 for one or more i, so that
we have to allow y*(0) > 0 for some 5. Thus there may be an instantaneous reflection at time 0.
We study the instantaneous reflection map in Section 5.

The reflection map R = (¢, ¢) : D([0,T],R¥) — D([0, T], R?*) associated with a substochastic
matrix () (nonnegative with row sums less than or equal to 1) such that Q™ — 0 as n — oo, where

Q" is the n-fold product of @ with itself, maps z into (y,z) = (¢¥(x), ¢(x)) such that

z=z+ (T —-QYy >0, (3.1)
y is nondecreasing with y(0) >0 , (3.2)

and
y is the minimal function satisfying (3.1) and (3.2) . (3.3)

where Q! is the transpose of Q. We call Q = (Qi;) the reflection matrix. It is also natural to call Q
the routing matrix, because in applications the reflection map arises naturally when a proportion
Qi ; of all output from queue ¢ is routed to queue j; see Section 10. Existence and uniqueness
of the reflection map were established by Harrison and Reiman (1981), Reiman (1984) and Chen
and Mandelbaum (1991c). They also showed that the minimal element y is the componentwise

minimum: With D4 the subset of nondecreasing nonnegative functions in D and

U(z) ={w €Dy :x+ (I —Q"w >0}, (3.4)
y = inf ¥(z) (3.5)
y'(t) = inf{w'(t) ER:w e U(z)}, 1<i<k, 0<t<T. (3.6)

They also showed that the pair (y, z) is characterized by the complementarity property: Under
(3.1) and (3.2), (3.3) is equivalent to

/T AWdyi(t) =0, 1<i<k. (3.7)
0



For £k =1 and @ = 0, the reflection map has a relatively simple form, i.e.,
d(z)(t) = 2(t) = z(t) — inf{z(s) AO: 0 < s <t} (3.8)

and

P(x)(t) = y(t) = —inf{z(s) N0: 0 < s < t}. (3.9)

It is possible to consider more general reflection maps. First, the matrix I — Q' in (3.1) can
be replaced by a completely-S matrix; see Williams (1995) and references therein. Second, the
content-portion of the reflection map ¢ can map into other sets besides the nonnegative orthant
RE = [0, 00)*; see Williams (1987), Dupuis and Ishii (1991) and Dupuis and Ramanan (1999a,b).
We briefly consider such generalizations in Section 11.

We are interested in continuity and Lipschitz properties of the reflection map. As reviewed in
Chen and Whitt (1993), R = (¢, ¢) is Lipschitz continuous with the uniform metric. Chen and
Whitt give tight bounds on the Lipschitz constant which in general depends on the routing matrix
Q. The following is Proposition 2.3 of Chen and Whitt (1993). To express it we use the matrix

norm

k
|A")| = max ) |Af | (3.10)
7=
for real k X k matrices A. Since Q' is a k X k column-stochastic matrix, ||Q*| < 1 and ||(Q")*| < 1.

Theorem 3.1 For all 1,29 € D,

(1) = (@)l < T = Q)7 - llon — 22 <

=7 ||.’L‘1 —.1‘2” (3.11)
-

and
I6e2) = ol < (1417 = Q- I = @) Dller 2l < (14 72 ) v —aall, (312

where

y=I@Y <1, (3.13)

Remark 3.1 The upper bounds in Theorem 3.1 are minimized by making (); ; = 0 for all 4, j. Let
K* be the infimum of K such that

|R(xz1) — R(z9)|| < K||z1 — x2|| for all zy,20 € D . (3.14)

We call K* the Lipschitz constant. The bounds yield K* < 2 when Q;; = 0 for all 4, j, but the
example in Remark 2.1 of Chen and Whitt (1993) shows that K* = 2 in that case. That example

10



has k = 1, Q = 0, CCl(t) = 0, 0<t< 1, and Ty = —I[1/3,1/2) + I[1/2,1} in D([O, 1],R) Then

Y1 = 21 = 1, but yo = Ij1/31) and z2 = 21[1/21), so that ||z1 — 2o = 2.

Example 3.1 To see that there is no universal bound on the Lipschitz constant K* independent
of @, let 71(t) =0, 0 <t < 2, and 2 = —IJ; 5 in D([0,2],R), so that ||z1 —x2|| = 1. Let Q@ =1—¢,
so that (3.1) becomes

z=x+ey. (3.15)

Then 2z = 21 = y; = z1, but Yy = 6_11[1!2}, so that ||y1 — yo|| = €7 1.

Example 3.2 To see that the Lipschitz constant for the component map ¢ can be arbitrarily large
as well, consider the two-dimensional example with Q11 =1—¢€, Q21 =1 and Q22 = Q12 = 1/2,

so that

. o € —].
Let o} = —Ipi o], 3(t) = 0,0 <t < 2, and 2] = 25 = € 'Ijp ) in D([0,2],R?). Then ||z, — x5 = 1,

but 2} (t) = z4(t) = 0,0 <t < 2, 22 = 6_11[0!1) and 23 = 6_11—[0’2], so that ||z; — 2| = € 1.

The following are our main results, which we prove in Sections 5-7. Our first result establishes
continuity of the reflection map R (for an arbitrary reflection matrix @) as a map from (D, SM;)
to (D, L) and, under a restriction on the limit, as a map from (D, WM;) to (D, W M;). We will
give examples to show the necessity of the conditions.

Let Dy be the subset of functions in D without simultaneous jumps of opposite sign in the
coordinate functions; i.e., z € Dy if, for all ¢t € (0,7, either z(t) — z(t—) < 0 or z(t) — z(t—) > 0,
with the sign allowed to depend upon t. The subset D; is a closed subset of D in the J; topology
and thus a measurable subset of D with the SM; and WM; topologies (since the Borel o-fields
coincide). The space D; is the first of several subsets of D that we consider. We introduced all the

subsets of D at the end of Section 1.

Theorem 3.2 Suppose that z, — z in (D,SM;).
(a) Then
R(z,)(tn) = R(z)(t) in R (3.17)

for each t € Disc(x)¢ and sequence {t, : n > 1} with t, — t,

sup || R(zn)|| < oo, (3.18)
n>1

11



R(zn) — R(z) in (D,L) (3.19)

and

Y(zn) = P(z) in (D,WM) . (3.20)

(b) If in addition x € Dy, then
d(zn) = ¢(z) in (D,WM), (3.21)

so that
R(z,) — R(z) in (D,WM) . (3.22)

Under the extra condition in part (b), the mode of convergence on the domain actually can be

weakened.
Theorem 3.3 If z, — z in (D,WM;) and z € Dy, then (3.22) holds.

Remark 3.2 Interestingly, when = ¢ Dy, the limit of ¢(z,)(t,) for t, — ¢t € Disc(x) can fall
outside the product segment [[¢(z)(t—), ¢(x)(t)]] defined in (2.3); see Example 4.6 below. Thus the
asymptotic fluctuations in ¢(x,) can be greater than the fluctuations in ¢(z). The behavior here
is analogous to the Gibbs phenomenon associated with Fourier series; see Remark 5.1 of Abate and

Whitt (1992) and references cited there.

Example 5.3.1 of Whitt (2002) shows that convergence z, — x can hold in (D, W M;) but not
in (D, SMi) even when z € D;. Thus Theorems 3.2 (a) and 3.3 cover distinct cases. An important
special case of both occurs when z € Dy, where D1 is the subset of  in D with discontinuities in
only one coordinate at a time; i.e., z € Dy if t € Disc(x?) for at most one ¢ when ¢ € Disc(z), with
the coordinate 7 allowed to depend upon ¢. In Section 5.8 of Whitt (2002) it is shown that WM,
convergence z,, — T is equivalent to SM; convergence when z € D;.

Just as with Dy above, D is a closed subset of (D, J;) and thus a Borel measurable subset of

(D, SM). Since Dy C Dy, the following corollary to Theorem 3.3 is immediate.
Corollary 3.1 If z, — z in (D,WM;) and z € D1, then R(z,) — R(z) in (D, W M).

We can obtain stronger Lipschitz properties on special subsets. Let D, be the subset of z in
D with only nonnegative jumps, i.e., for which z*(¢t) — z*(t—) > 0 for all i and ¢. As with Dy and
D; above, D, is a closed subset of (D, J;) and thus a measurable subset of (D, SM).

12



Theorem 3.4 There is a constant K (the same as associated with the uniform norm in (3.14))
such that
ds(R(z1), R(z2)) < Kdg(z1,2) (3.23)

for all x1,29 € Dy, and
dy(R(z1), R(z2)) < dw(R(z1), R(z2)) < Kdy(z1,22) < Kdg(z1,22) (3.24)
for all x1,x9 € D;.
We can actually do somewhat better than in Theorems 3.2 and 3.3 when the limit is in D .

Theorem 3.5 If
zn, =z in (D,SMp), (3.25)

where x € D4, then
R(z,) — R(z) in (D,SM) . (3.26)

4. Preliminary Results and Counterexamples

In this section we establish a few preliminary results and give counterexamples showing the
necessity of the conditions in Theorems 3.2-3.5. We first explain the error in Chen and Whitt
(1993). In Proposition 2.4 of Chen and Whitt (1993) a result is asserted that would imply that
(1, ) is Lipschitz with the J; and SM; metrics, but this assertion is incorrect. To restate the

erroneous proposition, let (D, U) denote D with the uniform metric and so forth.

Proposition 2.4 of Chen and Whitt (1993). If f:(D,U) — (D,U) is continuous (Lipschitz
with modulus K), then f : (D, J;1) — (D, J1) and f : (D, My) — (D, M) are continuous (Lipschitz
with modulus (K V 1)).

Upon a little reflection, it is evident (as pointed out by Nimrod Bayer and Anatolii Puhalskii
in personal communications) that this general assertion is false even if £k = 1, as can be seen from

the following example provided by Bayer.

Example 4.1 Let f(z)(t) = z(1) for ¢ > 1 and 0 otherwise. Clearly f : D([0,2],R,U) —
D([0,2],R,U) is Lipschitz. Let z(t) = I1 9)(t) and z,(t) = I} 4p-1,9)(t) for n > 2. Clearly z, — =
in D([0,2],R, J1), but f(z,)(t) = 0 for all £ and n, while f(z)(t) = z(t) = I;; o(t). Hence this

function f is not even continuous as a map from (D, J;) to (D, Ly). =
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Example 4.1 shows that, at minimum, the function f in Proposition 2.4 of Chen and Whitt
(1993) needs to have additional properties before such a conclusion can be reached. However,
the reflection map R = (1, ¢) does have important properties that make it possible to establish
the desired Lipschitz inheritance properties with appropriate qualifications. (Such properties were
established by Harrison and Reiman (1981) and Chen and Mandelbaum (1991a-c).)

Let x oy be the composition of z and -, i.e., (z o y)(t) = z(y(t)).

Lemma 4.1 Letn € R*, 8> 0 and v be a nondecreasing right-continuous function mapping [0, T1]
onto [0,T]. If z € D([0,T],R¥) and n + Bz(0) > 0, then n+ B(x o) € D([0,T1], RF) and

R(n+ pB(zovy)) =p6R (%—l—:z;) o. (4.1)

Proof. First note that the nondecreasing right-continuity property of ¥ makes z o~y right continu-
ous with left limits: If ¢, | ¢, then v(t,) | v(t) and (v, (tn)) — z(y(2)); if t, 1T ¢, then y(t,) 1 y(t—)
and z(y,(ty)) = z(y(t—)) = (z o v)(t—). Next note that 5(z o) and B(y o y) satisfy (3.1)—(3.7)
when we replace z by f(z o). =

The invariance under the time transformation «y in Lemma 4.1 makes the Lipschitz property for

the reflection map correct for the J; metric, using the proof given in Chen and Whitt (1993).

Theorem 4.1 Let R: D¥ — D?f be the reflection map defined in (3.1)-(3.3). There is a constant
K such that

dj, (R(z1), R(z9)) < Kdy, (z1,22) for all 1,25 € D([0,T),R¥) . (4.2)

Moreover, the Lipschitz constant is the Lipschitz constant K* associated with the uniform norm in

(3.10).

Proof. Using the argument in Proposition 2.4 of Chen and Whitt, applied specifically to R,

dp (R(z1), R(z2)) = If{||[R(z1) o A — R(@2)[| V A —e]}}

inf{[[R(z10A) — R(z2)[| V[ A —el}}

IN

inf { K - -
inf {Kllz1 0 A = 2af| V [|IA —ell}

< (K \Y l)dJl(xl,acg) = Kd]1($1,$2) ,
by the known Lipschitz property of R in (D, || -|). =
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We can also apply Theorem 4.1 to deduce measurability of the reflection map. This measura-
bility is needed to apply the continuous mapping theorem on D even when the limiting stochastic
process has continuous sample paths, e.g., as in Reiman (1984). The Lipschitz property in Theorem
3.1 implies that the reflection map is measurable on D using the Borel o-field generated by the
uniform topology on both the domain and range, but that Borel o-field is strictly larger than the
Kolmogorov o-field, so (contrary to the claim on p. 9 of Chen and Mandelbaum (1991c)) Theorem

3.1 does not imply the following result.

Corollary 4.1 The reflection map R : D¥ — D% is measurable, using the Kolmogorov o-field on

the domain and range.

For k = 1, the Lipschitz property of ¢ with the M; metric d also follows by the argument of
Chen and Whitt (1993), as has been known for some time.

Theorem 4.2 Let ¢ : D' — D' be the component of the reflection map in (3.8). There is a
constant K such that

d(p(x1), d(z2)) < Kd(z1,x2) for all x1,z9 € D', (4.3)

where d is the My metric. Moreover, the Lipschitz constant is the Lipschitz constant associated

with the uniform norm.

Proof. For k = 1, it is easy to see that for each x € D!, (¢(u),r) is a parametric representation
of ¢(x) whenever (u,r) is a parametric representation of z. (It is a consequence of Theorem 6.2

below.) Hence, if K is the Lipschitz constant for the uniform norm, with K > 1 by Theorem 3.1,

then
d x T = inf 'U,, _’U,, Villr —
W) b)) =, nf (=] VI o)
i=1,2
< inf ) — dlu) IV e —
= e {llg(u1) — P(ug)|| V |lr1 — r2||}
< inf ){KHul —u,2|| vV ||T'1 _ 7,2”}

(ui,ri)EH(wi
S Kd(.’L'l,JIQ). ]

However, other positive results for the M topologies evidently are harder to obtain. Indeed, the
following elementary example from Konstantopoulos (1999) shows that ¢ is not continuous in the

M> topology when k = 1. (As with My, for k = 1 the SMy and W M, topologies coincide.)
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Example 4.2 To see that ¢ is not continuous on D([0,2],R) in the M, topology, let x = —Ij; 9

and
2,00 =2,(1-3n"1 =0, z,(1-2n"") =1, z2,(1 —n"') =0,2,(1) = 2,(2) = -1, (4.4)

with z, defined by linear interpolation elsewhere. Then z,, — x as n — oo, but z(t) = ¢(x)(¢t) =0,

0 <t<2 while z,(1 —n"!) =1,s0 that z, A zasn—>o00. =

We now show that the reflection map is actually not continuous on D([0,7],R') with the SM;
topology. (This would not be a counterexample if we restricted attention to the component ¢

mapping z into z in (3.1) or, more generally, the W M; topology were used on the range.)

Example 4.3 To show that R = (¢, ¢) : (D(]0,2],R'), SM;) — (D([0,2],R?), SM;) is not contin-

uous for 1 = 1,2, let
(1) = 1= 2t~ Dy 1m)(0) — 21101 (4.5)
and

z(t)=1-2Ip9(1), 0<t<2. (4.6)

It is easy to see that d(z,,z) — 0 as n — oo,

zn(t) =1 =2n(t — DIy 14n)-1)(F) (4.7)
yn(t) = 2n(t — (1 + 20) )i (en)-1,10n-1) (&) + T n-12(8) (4.8)
2(t) = Ip,1)(t) and y(t) = I g(t) - (4.9)

We use the fact that any linear function of the coordinate functions, such as addition or subtraction,
is continuous in the SM; topology; see Section 5.9 of Whitt (2002). Note that z(t) + y(t) = 1,
0 <t <2, while

(1) +yn(t) = 1= 2n(t — DIy 1 eny-—1)(t) + 200 — (1+ (20) )i @ny-114n-1(#)  (4.10)

so that d(z, + yn,2 + y) #~ 0 as n — oo, which implies that (z,,y,) # (2,y) as n — oo in
D(]0,T),R?) with the SM; metric. However, we do have d(z,,z) — 0 and d(y,,y) — 0 as n — oo,

so the maps from z to y and z separately are continuous. =

Example 4.3 suggests that the difficulty might only be in simultaneously considering both maps
1 and ¢. We show that this is not the case by giving a counterexample with ¢ alone (but again in

two dimensions).
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Example 4.4 We now show that ¢ : (D([0,2],R?), SM;) — (D([0,2],R?), SM;) is not continuous.
We use the trivial reflection map corresponding to two separate queues, for which @ is the 2 x 2

matrix of 0’s. Let z. be as in Example 4.3, i.e.,

2 (t) = 1= 2n(t — DI}y -1y (8) — 2l 121 (4.11)

and let
2o (t) =2 =3n(t — DI in-1)(t) — 3I1n-19(t) - (4.12)

It is easy to see that ds((z.,z2), (z!,2?)) — 0 as n — oo, where

a'(t) =1—-2I9(t) and z*(t) =2— 31} 9(t) - (4.13)

(The same functions r,, and r can be used in the parametric representations of the two coordinates.)

Clearly ¢((z!,1?)) = (2, 2%), where

Z'(t) =Ijp1)(t) and 2°(t) =21 1(t) , (4.14)

while
Zp(t) = 1—2n(t — )11y () (4.15)
z(t) = 2= 3n(t— D114/ (1) - (4.16)

Note that 22! (t) — 2%2(t) = 0, 0 < t < 2, while
22014+ (2n)™Y) —22(1+ (2n) ™) = —22(1+ (2n) ") =—1/2 forall n. (4.17)

Hence ds (22} — 22,221 — 22) 4 0 so that dy((2},22),(2',2?)) /4 0 as n — oco. However, in this

example, ¢ is continuous if we use the W M; topology on the range. =

We now show that the reflection map is not continuous if the W M; topology is used on the
domain. Examples 4.3-4.5 show that we need to have both the strong topology on the domain and

the weak topology on the range.

Example 4.5 We show that neither 1 nor ¢ need be continuous when the W M; topology is

used on the domain, without imposing extra conditions. Consider D([0,2],R?) and let z' = T, ,2)>

Q= ( 1(/)2 1(/)2 ) : (4.18)
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Then the reflection map yields y'(t) = ' (z)(t) = 2°(t) = ¢'(z)(t) = 0,0 <t < 2, fori = 1,2
and y2 = ¢%(z) = 211 5)- Let the converging functions be TL = Ij14n-19) and T2 = =211 _p-19]
for n > 1. It is easy to see that x, — = as n — oo in WMy but that z, A x as n — oo in
SM;y, because (2z) + 22)(1) = —2, while (22! + 22)(t) = 0, 0 < ¢ < 2. The reflection map applied
to @, works on the jumps at times 1 —n~! and 1 +n~! separately, yielding y; = (4/3)I1_,-1 9,

= (8/3)[1—n-1,2), zl = Ijiyn-1,9 and 22(t) = 0,0 <t < 2. Clearly z} /4 2! and 4. /A ¢ as
n — oo for 4 = 1,2 for any reasonable topology on the range. In particular, conclusions (3.17) and
(3.19) - (3.22) all fail in this example.

Moreover, when we choose suitable parametric representations (uy,7y) € Il (z,) and (u,r) €
I, (z) to achieve z,, — = in WM, (R(u),r) is not a parametric representation for R(z). To be
clear about this, we give an example: We let all the functions u,, r,, u and r be piecewise-linear.
We define the functions at the discontinuity points of the derivative. We understand that the

functions are extended to [0,1] by linear interpolation. Let

r(0) =0, r(0.2) =r(0.8) = 1, r(1) = 2,

u'(0) = u!(0.4) =0, w'(0.8) =u!(1) =1,

u?(0) = u2(0.2) = 0, ©?(0.4) = v*(1) = -2,

m(0) =0, 7, (0.2(1 —n™ 1)) =r, (022 —n"1) =1—n""t,
rn(0.22+ 1Y) =1 (024 +n7 ) =1+ 07", r(1) =2,
0) =ul(022+n71)) =0, u:(024+n"") =ul(1) =1,

0) =u2(02(1 —n 1) =0, u2(02(2—n"1) =u2(1) = 2.

This construction yields (un,r,) € y(z,), n > 1, (u,r) € My(z), but (¢'(u),r) & H(¢'(x)),
because ¢! (z)(t) = 0,0 < t < 2, while ¢! (u)(1) = 1. Note that (u,r) € Iy (z), but (u,r) & ls(x). =

We now show that we need not have R(z,) — R(z) in (D,W M;) when z,, — z in (D,SM;)
without having the extra regularity conditions z € D,. A difficulty can occur when z°(t) — z* (t—) >

0 for some coordinate i, while 27 (t) — 27 (t—) < 0 for another coordinate j.

Example 4.6 We now show the need for the condition z € Dy in Theorem 3.2 (b). In our limit
z = (z',2?), z' has a jump down and z2 has a jump up at ¢ = 1. Our example is the simple

network corresponding to two queues in series. Let z = (z',2%) and z, = (z),22), n > 1, be
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elements of D([0,2], R?) defined by

z1(0)=z'(1-) =1, z'(1)=2z'(2) =-3

22(0) = 22(1-) =1, 22(1) =22(2) =2

7y (0) =2, (1) =1,  zp(14+n7") =2,(2) = -3
z7(0) =z3(1) =1, ai(l+n7')=23(2)=2,

with the remaining values determined by linear interpolation. Let the substochastic matrix gener-

Q:(g (1)), so that I—Qt:(_l1 ?)

Then 2" = 2° = I 1y, y' = 311193, 4> = Iy g and

ating the reflection be

(1) = 114 (4n)~Y) =21 (2) =0
2(1) =1, 22(1+(4n)"')=5/4, 22(1+2(8n)"')=22(2)=0

%

2(0) = n
with the remaining values determined by linear interpolation. Since z2(1 + (4n) ') = 5/4 for all
n and 22(t) < 1 for all ¢, 22 fails to converge to 22 in any of the Skorohod topologies. We remark
that the graphs Gy (;,) of ¢(zn) do converge in the Hausdorff metric to the graph G, of ¢(z)

augmented by the set {1} x [1,5/4]. This example motivates considering larger spaces of functions

than Dj; see the final chapter in Whitt (2002).
5. The Instantaneous Reflection Map

In this section we review and establish properties of the instantaneous reflection map, which is
applied at time 0 if 2¢(0) < 0 for some i and which can be used to characterize the behavior of the
full reflection map at discontinuity points. Indeed, we can use the instantaneous reflection map to
define the full reflection map on D. See Chen and Mandelbaum (1991a-c) for related material.

Let the instantaneous reflection map be Ry = (¢o, %) : R¥ — R%* | where 9y : R¥ — RF is
defined by

Po(u) = inf{v € RE :u+ (I — Q"v >0}, (5.1)

where u; < uo in RF if uz1 < ug in R, 1 <14 < k. The instantaneous reflection map is also known as
the linear complementarity problem, which has a long history; see Cottle, Pang and Stone (1992).
It turns out that the infimum in (5.1) is attained (so that we can refer to the minimum) and there
are useful expressions for it. Given the solution to (5.1), we can define the other component of the

instantaneous reflection map ¢ : R¥ — R¥ by

o) =u+ (I —Q")ho(u) - (5.2)
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We are motivated to consider the instantaneous reflection map i n (5.1) and (5.2) because it
describes the queue content associated with a potential instantaneous net input u. For example,
we might have an instantaneous input vector u; > 0 and potential instantaneous output vector ug
which is routed to other queues by the stochastic matrix ), so that the overall potential instanta-
neous net input is

u=1u; —us + usQ’ . (5.3)

However, if the potential output us exceeds the available supply, then we may have to disallow
some of the ouput uy. That can be accomplished by adding a minimal (I — Q%)v to u in (5.3),
which gives (5.1). In fact, as we will show, the instantaneous reflection map in (5.1) and (5.2) is
well defined for any u € R*, not just for u of the form (5.3).

We exploit the assumptions about the matrix @) through the following well known lemma.

Lemma 5.1 If Q is a substochastic matriz with Q™ — 0 as n — oo, then I — Q and I — Q' are

nonsingular with nonnegative inverses

I-Q7'=> Q" (5.4)
n=0
and -
T-Q)' =Y (@) =((T-@7). (5.5)
n=0

We first establish upper and lower bounds on 4y (u). For u € R¥, let
ut=uv0=(u!Vvo0,...,uFV0) and u =uA0=(u' AO,...,uF AD).
Lemma 5.2 For any u € R¥,

0< —(u") <gou) < —(I—-Q"N'u . (5.6)

Proof. Let v = —(I — Q")~'u~ and note that

Then, by the definition of ¢y in (5.1), 9y(u) < v, which establishes the upper bound. By (5.2),
do(u) = u 4+ (I — Q")abo(u) > 0.

Since 1p(u) > 0 and Q > 0,
o(u) > —u+ Q'4po(u) > —u,
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which implies the lower bound. =

We now establish an additivity property of .
Lemma 5.3 If 0 < vy < 1pg(u) in R¥, then
o(u) = o(u+ (I — Q")wo) +vo - (5.7)
Proof. By (5.1),

Po(u) = min{v € RE :u+ (I —Q")v >0}
= min{v € RE :u+ (I - Q"vo + (I — Q") (v — vy) > 0}
= vy +min{v' € RE :u+ (I — Q"vy + (I — Q) >0}

= wvo+vo(u+ (I —Q"Yvo) ,

using the condition in the penultimate step. =
We now characterize the instantaneous reflection map in terms of a map applied to the positive

and negative parts of the vector u. In particular, for any u € R¥, let
T(u) =u’ + Q™ (5.8)

and let T* be the k-fold iterate of the map T, i.e., T*(u) = T(T*~(u)) for k > 1 with T%(u) = u.
Note that T is a nonlinear function from R¥ to R*. The following result is essentially Lemma, 1 in

Kella and Whitt (1996).

Theorem 5.1 Let u, = T(un_1) for T in (5.8) and ug = u. Then, for any u € RF,

ulf | >ub >0 (5.9)
and
0>u, > (QY"uy forall n, (5.10)
so that
u, >0, u, > uUx >0 and ¢Po(u,) 20 as n— . (5.11)
For each n > 1,
n—1
o) = = uy + tho(un) (5.12)
k=0
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and

n—1
up =u— (I — QY Zu,; , (5.13)
k=0
so that 1y in (5.1) is well defined with
ho(w) == up == TH(u)” (5.14)
k=0 k=0
and
do(u) = U = nli)n;oT”(u) ) (5.15)

Proof. Since up, = u!_; + Q'u,_; by (5.8), Q'u,_; < u, < u_;, which implies (5.9) and
Q'u._, <wu,; <0. By induction, these inequalities imply (5.10). Since (Q!)" — 0 as n — oo, (5.9)

n—1 —=

and (5.10) imply the first two limits in (5.11). By Lemma 5.2,

o (un) < —(I— QY u, . (5.16)

Since u;, — 0, (5.15) implies the last limit in (5.11). Formula (5.12) follows from Lemmas 5.2 and
5.3 by induction. From (5.8), up — up—1 = —(I — Q")u,,_;, from which (5.13) follows by induction.
Since (un) — 0, (5.12) implies (5.14), where the sum is finite. Moreover, (5.11)—(5.14) imply
that ue = u + (I — Q')tpo(u), which in turn implies (5.15). =

We can apply Theorem 5.1 to deduce the complementarity property.
Corollary 5.1 For any u € R,
4 (u)ph(u) =0 for all i . (5.17)

Proof. If ¢i(u) > 0, then u?, > 0 for all n by (5.9), which implies that (u, )! = 0 for all n and
Ys(u) = 0 by (5.14). On the other hand, if ¥§(u) > 0, then u} < 0 for some k by (5.14), which
implies that (u})’ = 0 for some k, so that u’, =0 by (5.9). =

Theorem 5.1 implies the following important monotonicity property.
Corollary 5.2 If u; < ug in RE, then

do(u1) < do(u2) and ho(u1) > tho(u2) -

We now apply the instantaneous reflection map to give a constructive definition of the reflec-

tion map R on D. For that purpose, let D, be the subset of piecewise-constant functions in D
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with only finitely many discontinuities. Properties of D can often be established and/or better
understood by focusing on D.. Restriction to D, can capture properties of D because functions
in D can be approximated arbitrarily closely by functions in D,., as shown by Lemma 1 on p. 110
of Billingsley (1968), modified to allow the functions to have range R¥ instead of R!. (Given the
result for R'-valued functions, we can obtain the result for RF-valued functions by treating the
coordinates separately and taking the union of the k sets of discontinuity points.) We restate this

key approximation lemina.
Lemma 5.4 For any x € D, there exist x, € D¢, n > 1, such that ||z, — z|| = 0 as n — 0.

It is easy to define the reflection map on D, using the instantaneous reflection map on R¥. For
any z in D,, the set of discontinuity points is Disc(z) = {t1,...,t;,} for some positive integer m

and time points tg =0 < t; < -+ < ty, < T. Clearly we should have

Y(z)(ti) = y(ti) = o(z(ti-1) + z(ti) — z(ti-1)) +y(ti-1) (5.18)
and
#(z)(ti) = 2(ti) = po(2(ti—1) + z(t:) — z(ti-1)) (5.19)

for 0 < i < m, where 2(t_1) = y(t—1) = z(t—1) = 0. Thus we can make (5.18) and (5.19) the
definition on D.. We can then define R(z) for z € D by

R(z) = lim R(z,) (5.20)

n—00

for z,, € D, with ||z, —z|| — 0.

Theorem 5.2 For all z € D, (5.18) and (5.19) coincide with (3.1)~(3.3). For all z € D, the limit
in (5.20) exists and is unique. Moreover, R is Lipschitz as a map from (D,||-||) to (D,||-||) and
satisfies properties (3.1)—(3.7).

Proof. By induction, it follows that (5.18) and (5.19) are equivalent to (3.1)—(3.3) on D.: By

(5.18), (5.1) and the inductive assumption,
y(ts) = to(z(ti-1) +z(t:) — z(tim1)) +y(ti-1)
= min{v € RE : 2(t; 1) +z(t;) —z(ti 1) + (T — Qv > 0} +y(ti1)
= min{v € Rﬁ_ cx(t) + (I — Qt)y(ti_1) + (I — Qt)’u >0} +y(ti—1)

= min{v > y(t;i_1) : 2(t;) + (I — Q")v > 0}, (5.21)
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which corresponds to (3.1)—(3.3). Corollary 5.1 implies (3.7) on D.. Hence, for z € D given, choose
Zn € D, with ||z, — z|| = 0. Since ||z, — z|| = 0 for z,, € D, ||z, — || = 0 as m,n — oco. As
noted above, we can deduce the Lipschitz property of R on D, by applying Theorem 3.1. By that
Lipschitz property on D, ||R(zyn) — R(zm)|| < K||zn — Zm|| — 0. Since (D, | - ||) is a complete
metric space, there exists (y,z) € D such that ||R(z,) — (y, z)|| — 0. To show uniqueness, suppose
that ||z, —z|| = 0 for j = 1,2. Then ||z1, —z2,|| = 0 and ||R(z1,) — R(z2,)|| < K||z1n —z2n|| = 0,
so that the limits necessarily coincide. Given that z, € D,, so that (zn,yn, 2z,) satisfy (3.1)—(3.7)
with |[(zn,Yn,2n) — (z,y,2)|| = 0, it follows that (x,y, z) satisfies (3.1)—(3.7) too. (If (3.7) were
to be violated for (z¢,7%) for some i, then it follows that (3.7) would necessarily be violated by
(2%, %) for some n, because there would exist an interval [a, b] in [0, 7] such that z*(t) > € > 0 for
a <t <bandy'(b) > y'(a).) Alternatively, since there exists a unique solution to (3.1)-(3.7), it
must coincide with the one obtained via the limit (5.20). To directly verify the Lipschitz property
given the Lipschitz property on D., for any z1,z9 € D, let z1,, o, € D, with ||z1, —z1|| — 0 and

||z2n — x2|| — 0. Then, for any € > 0, there is an ng such that

[R(z1) — R(z2)[| < [[R(z1) — R(z1n)| + [|[R(z1n) — R(z20)[| + || R(z20) — R(z2)||
< K(llzr = 21nll + |l21n — 220l + 220 — 22]))
< Kllz1 — 22|l + 2K ([|z1 — 1a]l + |22 — 22]))
< Kllzy — 2l + €

for all n > ny. Since € was arbitrary, the Lipschitz property is established. =

From the above or directly from (3.1)-(3.7), we can establish basic additivity properties of the
reflection map. First, following Harrison and Reiman (1981) and Chen and Mandelbaum (1991c),
let ¢; denote the component of the reflection map on D([0,t],R¥) and, for any t1, 0 < t; < T, let

8, (2)(t) = 2ty +1) —z(t), 0<t<T—t . (5.22)
Lemma 5.5 For any x € D([0,T],R*) such that T —t; € Disc(z)¢,0<t; <T and 0 <t < T—ty,
or(@)(t +t1) = 1o, (b7 () (E1) + 61, (2))(2) - (5.23)
From Lemma 5.5 or from Theorem 5.2 and (5.18)—(5.19), we have the following result.
Lemma 5.6 Foranyz € D andt, 0 <t <T,
P(@)(8) = y(t) = po(2(t-) + 2(t) —2(t=)) +y(t-)
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and

$(z)(t) = 2(t) = do(2(t—) + 2(t) — z(t-)) .

We can apply Lemma 5.6 to relate the set of discontinuity points of R(x) to the set of discon-

tinuity points of z, which we denote by Disc(x).

Corollary 5.3 For any x € D,
Disc(R(z)) = Disc(z) . (5.24)

Proof. By Lemma 5.6, we can write
2(t) — 2(t-) = x(t) —z(t=) + (I - Q) (y() —y(t-)) , (5.25)

where 1%(t) — 4*(t—) is minimal, 1 < i < k. If 2(t) — z(t—) = 0 (where here 0 is the zero vector),
then necessarily y(t) — y(t—) = 0, which then forces z(¢f) — z(t—) = 0. On the other hand, if
z(t) — z(t—) # 0, then we cannot have both z(t) — z(t—) = 0 and y(¢) — y(t—) = 0, so we must
have t € Disc(R(z)). =

We obtain our strongest results for the case in which no coordinate of x has a negative jump,

ie., whenz € D,.
Corollary 5.4 For any x € D, we have ¥(z) € C, ¢(z) € D4 and
P(x)(t) — P(z)(t—) = z(t) — z(t—) - (5.26)

Finally, we can apply Lemma 5.6 and Corollary 5.2 to determine how reflections of parametric

representations perform. This is the key new result in this section.

Lemma 5.7 Suppose that © € D, t € Disc(z) and 0 < a < 1.
(a) If z(t) > z(t—), then

~ ~

P(z,t,a) = tho(2(t=) + afz(t) — z(t-)]) +y(t—) = P(=,1,0) = y(t-) (5.27)

and

~ ~

Oz, t,a) = do(2(t—) + a[z(t) — z(t—)]) = é(z,t,0) + a[z(t) — z(t—)] (5.28)

for0<a<l.

(b) If z(t) < z(t—) and 0 < a1 < ag <1, then
’&(-’E,t,a’l) < ’lﬁ(.’L‘,t,Olz) (529)
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and

~

$(z,t, 1) > Plz,t, 02) (5.30)

for ¢ in (5.27) and ¢ in (5.28).
6. Reflections of Parametric Representations

In order to establish continuity and stronger Lipschitz properties of the reflection map R in
(3.1)—(3.3) with the M; topologies, we would like to have (R(u),r) be a parametric representation
of R(z) when (u,r) is a parametric representation of z. We now obtain positive results in this

direction. (Proofs appears at the end of the section.)

Theorem 6.1 Suppose that x € D, (u,r) € I4(x) and r~1(t) = [s_(t), 54 (t)]-
(a) If t € Disc(x)¢, then

R(u)(s) = R(z)(t) for s_(t) <s<sy(t). (6.1)

R(u)(s—(t)) = R(z)(t—) and R(u)(s4(t)) = R(z)(t) . (6.2)

(¢) If t € Disc(z) and x(t) > z(t—), then

u(s) — uI(s_(t))
(s4(8)) — w (s (%))

3u)(s) = #a)e) + 5 JECRE ) (6:3)

forany j, 1 <j <k, and

so that
R(u)(s) € [R(z)(t—), R(z)(t)] for s_(t) <s<si(). (6.5)

(d) If t € Disc(z) and z(t) < x(t—), then ¢*(u) and 1*(u) are monotone in [s_(t),sy(t)] for
each i, so that

R(u)(s) € [[R(z)(t=), R(z)(D)]] for s-(t) <s<s4(t) . (6.6)

We can draw the desired conclusion that (R(u),r) is a parametric representation of R(x) if we
can apply parts (c) and (d) of Theorem 6.1 to all jumps. Recall that Dy (D) is the subset of D

for which condition (c) (condition (c) or (d)) holds at all discontinuity points of z.
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Theorem 6.2 Suppose that z € D and (u,r) € I4(z).
(a) If z € D, then (R(u),r) € II;(R(z)).
(b) If z € Ds, then (R(u),r) € IL,(R(x)).

We also have an analogs of Theorems 6.1 and 6.2 for the case z € D, and (u,r) € I, (z).
Theorem 6.3 If x € Dy and (u,r) € I, (x), then (R(u),r) € IL,(R(x)).
As a basis for proving Theorem 6.1, we exploit piecewise-constant approximations.
Lemma 6.1 For any x € D, (u,r) € Hs(x) and r~1(t) = [s_(t), s+ ()],
R(u)(s—(t)) = R(z)(t—) and R(u)(s4(t)) = R(z)(t) . (6.7)

In order to prove Lemma 6.1, we establish several other lemmas. First, the following property
of the reflection map applied to a single jump at time ¢ is an easy consequence of the definition of
the reflection map. We consider the reflection map applied to the jump in two parts. Given the

linear relationship in (3.1), it suffices to focus on only one of ¥ or ¢.

Lemma 6.2 For any b;,by e R¥, 0< <1 and0<t<T,
$(b1 + badjy 1) (u) = G(B(b1 + Bbalyy 1) (1) + (1 — B)bolpy 7)) (u) for t<u<T.

Lemma 6.3 For any by, by € R¥ and right-continuous nondecreasing nonnegative real-valued func-

tion a on [0,T] with a(0) =0,

q’)(bl + Otbg)(t) = ¢(b1 + Oé(t)bQI[O,T])(t), 0<t<T. (68)

Proof. Represent a as the uniform limit of nondecreasing nonnegative functions o, in D.. Then
(b1 + anba) — P(by + abs)|| — 0 as n — oo by the known continuity of ¢ in the uniform metric.
Hence it suffices to assume that a € D,. We then establish (6.8) by recursively considering the

successive discontinuity points of «, using Lemmas 6.2 and 5.5. =

Proof of Lemma 6.1. Any z € D, can be represented as

m

z = bily 1 (6.9)

=0
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for 0 =ty <ty <+ <t, <Tandb; € Rk for 0 < J < m. Thus t; is the jth discontinuity point
of z. Let [s_(tj),s+(¢;)] = r~'(¢t;) for each j. Since (u,r) € II;(z) instead of just II,(z), u can be

expressed as
m
u = Zajbj s (610)
j=0

where og(s) = 1 for all s and, for j > 1, a; : [0,1] — [0,1] is continuous and nondecreasing
with a;(s) =0, s < s_(t;) and a;(s) =1, s > s;(t;). We can now consider successive intervals

s_(t;),s4(t;)] recursively exploiting Lemma 6.3. First, for any s with 0 < s < s_(¢1).
i)y S+\tj

P(u)(s) = d(bolo,1))(s) = p(2)(0) = ¢o(=(0)) . (6.11)

Now assume that (6.7) holds for all j < m — 1 and consider s € [s_(tm), 4 (tm)]. By the induction

hypothesis and Lemmas 5.5 and 6.3,

P(u)(s) = H(¢() (tm—1) + AmbmI[s_(1,,),11)(8) = ¢(B(2) (tm—1) + m()bmT}s_(1,)1))(s) »  (6.12)

so that (6.7) holds for ¢,,,. =
We now show that it is essential in Lemma 6.1 to have (u,r) € II;(x) instead of just (u,r) €
II,(x). We also show that we cannot improve upon Lemma 6.1 to conclude that (R(u),r) €

IT,(R(x)) when (u,r) € IIs(x).

Example 6.1 To demonstrate the points above, let € D, and R be defined by
ot =Ioy) =3Ing. @ = Iy + 2y

Q:(g t), so that I—Qt:(_ll (i)

Then 2! = 2% = Tio,1y, yt = 31[1 9] and y? = 101[1,9- To see that the conclusion of Lemma 6.1 fails

(6.13)

when we only have (u,r) € II,,(z), let a parametric representation (u,r) in IT,(z) be defined by

r(0) =0, r(1/3)=7r(2/3)=1, r(1) =2
uwl(0) =w'(1/3) =1, u!(1/2) =u!'(1) = -3 (6.14)
u?(0) = u?(1/2) =1, «2(2/3) =u?(1) =2

with 7, u! and u? defined by linear interpolation elsewhere. Notice that [s_(1),s(1)] = [1/3,2/3],
#*(u)(1/2) = 0 and ¢?(u)(2/3) = 1 > 0 = 22(1). Moreover, ¢*(u)(s) = 1 on [2/3,1].
Next, to see that we need not have (R(u),r) € I, (R(z)) when (u,r) € II;(z), let r be defined

in (6.14) and let the parametric representation (u,r) in II;(z) be defined by

u'(0) =u'(1/3) =1, v'(2/3) =u'(1) = -3

u?(0) = u?(1/3) = 1, v?(2/3) = (1) = 2 (6.15)
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with 7, u!,u? defined at other points by linear interpolation. Clearly (u,r) € II;(z). Note that
uf(s) > 0 for all s < 5/12. Then r(5/12) = 1, u!(5/12) = 0 and u?(5/12) = 5/4. Clearly
¢d(u)(5/12) = u(5/12) = (0,5/4), which is not in [[(0,0), (1,1)]], the weak range of z = ¢(x). Further
analysis shows that ¢'(u)(s) = 0 for s > 5/12, while ¢?(u) = u? on [0,1/3], $?(u)(5/12) = 5/4,
$*(u)(5/9) = ¢*(u)(1) = 0, with ¢?(u) defined elsewhere by linear interpolation. Similarly, v
has slope (12,0) over (5/12,5/9) and slope (12,90) over (5/9,2/3), so that ¥(u)(5/12) = (0,0),
P(u)(5/9) = (5/3,0), ¥(u)(2/3) = (u)(l) = (3,10) and % is defined by linear interpolation

elsewhere. =

Proof of Theorem 6.1. (a) Since ¢t € Disc(z)¢, u(s) = z(t) for s_(t) < s < s4(t). Given
x € D with t € Disc(z)¢, it is possible to choose z, € D, such that ¢ € Disc(zy)¢ for all n and
||zn, — z|| = 0, by a slight strengthening of Lemma 5.4. By characterization (i) of M; convergence

in Theorem 5.6.1 of Whitt (2002), given (u,r) € II;(z), we can find (uy,r,) € II;(z,) such that
lun —ul| V]|rn—7|| >0 as n—oo.

Since R is continuous in the uniform topology, ||R(u,) — R(u)|| — 0 and ||R(z,) — R(z)|| — 0 as
n — oo. Let s, be such that r,(s,) =t. Since z,, € D, and t € Disc(zy,)¢, R(un)(sn) = R(z,)(t)
by Lemma 6.1. Since 0 < s, <1, {s,} has a convergent subsequence {s,, }. Let s’ be the limit of
that convergent subsequence. Since 7y, (sp,) = ¢ for all ny, we necessarily have s’ € [s_(t), s+ (¢)].
Since |R(un) — R(u)|| = 0, R(zn,)(t) = R(un,)(sn,) = R(u)(s"). Since we have already seen that
R(zy)(t) — R(z)(t), we must have R(u)(s') = R(z)(t). Since R(u) is constant on [s_(t), s1(t)], we
must have R(u)(s) = R(z)(t) for all s with s_(t) < s < s4(t).

(b) Since R maps D into D and C into C, R(x) is right-continuous with left limits, while
R(u) is continuous. Given t € Disc(z), we can find ¢, € Disc(z)¢ with ¢, T ¢t. We can
apply part (a) to obtain R(u)(sy(t,)) = R(x)(t,) — R(z)(t—), but si(t,) T s—(¢), so that
R(u)(s4(tn)) = R(u)(s—(t)). Hence, we have established the first claim: R(u)(s_(t)) = R(z)(t—).
Similarly, we can find ¢, € Disc(z)¢ with ¢, | t. Then we can apply part (a) again to obtain
R(u)(s—(tn)) = R(z)(tn) — R(z)(t). Since s_(tn) | s4(t), R(u)(s—(tn)) | R(u)s4(t)). Hence
R(z)(t) = R(u)(s4(t)) as claimed.

(c) We can apply Lemma 5.7(a). Since the increment z(¢) — z(¢—) is nonnegative in each

component,



and y(t) = y(t—). Similarly,

and tp(u)(s) = p(u)(s—(#)) for s_(t) < s < 54 (D).
(d) We apply Lemma 5.7(b). Each coordinate ¢(u) and v¢(u) is monotone in s over [s_(t), s+ (t)],
so that (6.6) holds.

Proof of Theorem 6.2. (a) We combine parts (a)—(c) of Theorem 6.1 to get (R(u),)(s) € T r(y)
for all s. Since R maps C into C, (R(u),r) is continuous. Also r is nondecreasing with r(0) = 0
and 7(1) = T because (u,r) € Is(z). Finally, (R(u),r) maps [0,1] onto T'p,) and (R(u),v) is
nondecreasing with respect to the order on I'p(,) because the increments of R(u) coincide with the
increments of u over each discontinuity in z because z € Dy, and (u,r) has these properties.

(b) We incorporate part (d) of Theorem 6.1 to get R(u) monotone over [s_(t),sy(t)] = r~1(¢)
for each t € Disc(z) = Disc(R(z)). This allows us to conclude that (R(u),r) € II,(R(z)). =

We now turn to the proof of Theorem 6.3. For the proof, we find it convenient to use a different
class of approximating functions. Let D; be the subset of all functions in D that (i) have only finitely
many jumps and (ii) are continuous and piecewise linear in between jumps with only finitely many
changes of slope. Let Dy; = Dy N Dy.

Analogous to Lemma 5.4, we have the following result.

Lemma 6.4 For any z € Dy, there ezist x,, € Dy, such that ||z, — z|| = 0 as n — oo.

Proof. For z € D, and € > 0 given, apply Lemma 5.4 to find z; € D, (with only finitely
many discontinuities) such that ||z — z1|| < €/4. The function z; can have discontinuities with
simultaneous jumps of opposite sign, but the magnitude of the jumps in one of the two directions
must be at most €/2. Form the desired function, say xs, from z;. Suppose that {t1,...,tx} =
Disc(z1). Suppose that z; has one or more negative jump at t;, none of which has magnitude
exceeding €/2. If z has a negative jump at t; in coordinate i for some i, then replace z} over
[ti—1,t;) by the linear function connecting z!(¢;_1) and z%(¢;). Similarly, if 1 has one or more
positive jumps at some time ¢; with all magnitudes less than €/2, then proceed as above. It is easy
to see that Disc(zy) C Disc(z1), o2 € Dyj and ||z — zof <e. =

We now show that limits of parametric representations are parametric representations when

|z, — z|| — 0.
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Lemma 6.5 If (i) ||z, —z|| = 0 as n — o0, (i) (un,rn) € Il,(zy) for each n, where z = s or w,
and (iii) ||un — ul| V ||lrn — ]| = 0 as n — oo where u and r are functions mapping [0, 1] into R¥

and R, respectively, then (u,r) € I1,(z) for the same z.

Proof. Since (u,r) is the uniform limit of the continuous functions (uy,ry), (u,r) is itself continu-
ous. Since r is the limit of the nondecreasing functions ry,, r is itself nondecreasing. Since r,,(0) =0
and r,(1) = T for all n, 7(0) = 0 and r(1) = T'. Since r is also nondecreasing and continuous, r
maps [0,1] onto [0,7]. Pick any s with 0 < s < 1. Then r(s) = t for some ¢, 0 < ¢ < T, and

rn(s) =t, — t as n — oo. Suppose that (u,,r,) € II;(z,) for all n. That means that
un(s) = an(s)zn(tn) + (1 — an(s))zn(tn—)

for all n. Since 0 < ap(s) < 1, there exists a convergent subsequence {ay, (s)} such that a,, (s) —
a(s) as ny — o0o. At least one of the following three cases must prevail: (i) ¢,, > t for infinitely
many ny, (ii) t,, = ¢ for infinitely many ny and (iii) t,, < ¢ for infinitely many ny. In case (i), we
can choose a further subsequence {ny; } so that Uny, (s) — z(t); in case (ii), we can choose a further
subsequence so that Uny,g (s) = a(s)z(t) + [1 — a(s)]z(t—); in case (iii) we can choose a further
subsequence so that Uny, (s) = z(t—). Since up(s) — u(s), the limit of the subsequence must be
u(s). Hence, (u(s),r(s)) € 'y for each s. Since (u,r) is continuous with 7(0) = 0 and r(1) = T,
(u,r) maps [0,1] onto I'y. Since (uy,r,) is monotone as a function from [0,1] to (I'y,, <) and
llwn, — ul| V ||rn, — || = 0, (u,7) is monotone from [0, 1] to (I'y, <). Hence, (u,r) € II;(z). Finally,
suppose that (up,r,) € Il (z,) for all n. By the result above applied to the individual coordinates,
(u'(s),7(s)) € T'yi and thus (u’,r) € II;(z?) for each 4, which implies that (u,r) € II,(z). =

Proof of Theorem 6.3. For z € D,, apply Lemma, 6.4 to find z,, € Dy such that ||z, —z| — 0.
Suppose that (u,r) € II,(z). Then it is possible to find u, such that (u,,r) € II,(z,) and
||, —u|] — 0: To do so, let un (s (t)) = zn(t—) and uy (s (t)) = z,(t), where [s_(t), s (t)] = r~1(¢)
for each t € Disc(zy,). Ift € Disc(zy,)¢, let uy,(s) = up(s4+(t)) for s_(t) < s < s(t); ift € Disc(zy,),
define u,, so that ||u, —u|| — 0. Given that (u,,r) € I (z,), we can apply mathematical induction
over the finitely many time points such that x, has a jump or a change of slope to show that
(R(up),r) € Iy(R(zy,)) for each n. We use Lemma 5.7 critically at this point. Finally, we apply
Lemma 6.5 to deduce that (R(u),r) € II,(R(x)). For that, we use the fact that |R(x,)—R(z)|| — 0
and ||R(u,) — R(u)|| — 0.
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7. Proofs of the Main Theorems

In this section we apply the results in Sections 5 and 6 to prove Theorems 3.2-3.5.

Proof of Theorem 3.2. (a) We first prove (3.17). Since z,, — z in (D,SM;), we can find

parametric representations (u,r) € Is(z) and (up, ) € s(zy) for n > 1 such that
[t —ull Vrn =7 = 0.

By Theorem 6.1(a), R(u)(s) = R(z)(t) for any s € [s_(t),s.(t)] = r 1(t), since t € Disc(z).
Moreover, by Corollary 5.3, t € Disc(R(z))¢. For any sequence {t, : n > 1} with ¢, — ¢, we can find
another sequence {t/, : n > 1} such that ¢, — ¢, t, € Disc(z,)¢ and ||R(zy)(t),) — R(zy)(ts)]] — 0 as
n — 00. (Here we exploit the fact that R(z,) € D for each n.) Consequently, R(z,)(t,) — R(x)(t)
if and only if R(z,)(t},) — R(z)(t). By Theorem 6.1(a) again, R(uy)(s,) = R(z)(t},) for any
sp € [s_(t)),s+ ()] = r,1(t,). Since 0 < s, < 1 for all n, any such sequence {s, : n > 1} has
a convergent subsequence {s,, : kK > 1}. Suppose that s,, — s’ as ny — oo. Since t}, — t as
n — oo and t, = rp,(sn,) — 7(s') as ny — oo, we must have s’ € [s_(t),s4(t)]. Then, since

1R (un) — R(u)|| =0,

R(zn, ) (tn,) = R(un,)(sn,) = R(u)(s') = R(z)(?) - (7.1)

Nk

Since every subsequence of {R(zy)(t,) : n > 1} must have a convergent subsequence with the
same limit, we must have R(zy)(t,) — R(z)(t) as n — oo, which we have shown implies that
R(zy,)(t,) — R(z)(t) as n — oo, as claimed in (3.17). Next we establish (3.18). For any z € D,
llz|| = supg<i<r l|lz()]| < 0o. Since ds(zn,r) — 0, ||[zn] — [|z|| as n — oo. Hence, it suffices to

show that there is a constant K such that
|R(z)|| < K||z|| forall zeD, (7.2)

but that follows from Theorem 3.1. We apply the bounded convergence theorem with (3.17) and
(3.18) to establish (3.19). We now turn to (3.20). Since 9(x,) and 1 (z) are nondecreasing in each
coordinate, the pointwise convergence established in (3.17) actually implies W M; convergence in
(3.20); see the Corollary to Theorem 5.6.1 in Whitt (2002).

(b) First, we use the assumed convergence z, — z in (D,SM;) to pick (u,r) € II;(z) and
(up,rn) € Us(zy), n > 1, with

|un —ul| V||rn — 7] — 0 . (7.3)
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Since R is continuous on (D, U), we also have ||R(u,) — R(u)|| — 0. By part (a), we know that
there is local uniform convergence of R(z,) to R(x) at each continuity point of R(z). Thus, by

Theorem 5.6.1(v) of Whitt (2002), to establish R(z,,) — R(z) in (D, W M), it suffices to show that

lim Tm wy(R (z,),t,6) =0 (7.4)

510 posoo
for each i, 1 < i < 2k, and t € Disc(R(z)), where
ws(x,t,6) = sup{||lz(t2) — [z(t1), z(t3)] : (t1,12,3) € A(t,6)} (7.5)
for
A(t,6) = {(t1, o, t3) : (E— ) VO <t <ty <ts < (t+6) AT} . (7.6)

(Since we are considering the i*® coordinate function R!(z,), the function z in (7.5) is real-valued
here.) Suppose that (7.4) fails for some ¢ and ¢. Then there exist € > 0 and subsequences {d;} and

{n} such that d; | 0, ny — oo and
ws(RY(zn,),t,0;) > ¢ forall & and mny . (7.7)
That is, there exist time points t1 5, , t2,, and t3,, with

(t — 5k) vV0O< b1y, < ton, <t3m, < (t + 5k) ANT (78)

and

1R (@n,) (t2,n,) — [BY (@, (t1,0,), B (@ (Eam, )]l > € - (7.9)
Since the values R'(z,,)(t) are contained in the values R'(uy,)(s) where (un,,7y,) € Is(zn, ), we
can deduce that there are points s;,, for 7 = 1,2,3 such that 0 < s1,, < s2;, < 835, < 1,

Tny, (Sjmg) = tjm, for j =1,2,3 and all ng, and

1R (uny ) (s2,n1) — [B () (81,4 )5 B () (83,0,)]]] > € - (7.10)

By (7.8) and (7.10), there then exists a further subsequence {n} } such that tim, — tand sjp0 — 8;

as ny, — oo for j =1,2,3, where 0 < 51 <59 <s3<1, Tl (sj,n:k) —r(s;) =t and
IR (u)(s2) — [R*(u)(s1), R*(u)(s3)]l| > €>0. (7.11)

However, by Theorem 6.2, (R(u),r) € II,(R(z)) since z € Dy, so that (R(u),r) € I4(R'(x)).
Hence (R'(u),r) € II;(R'(z)). Since R'(u) is monotone on [s_(t),s. ()], (7.11) cannot occur.
Hence (7.4) must in fact hold and R'(z,) — R'(z) in (D, My). Since that is true for all i, we must
have R(z,) — R(z) in (D, W M).
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Proof of Theorem 3.4. The proof is the same as for Theorem 4.2: Given that x € D, apply
Theorem 6.2(a) to get (R(u),r) € II4(R(x)) when (u,r) € Is(z). Given that x € Dy, apply
Theorem 6.3 to get (R(u),r) € II,,(R(z)) when (u,r) € I, (x).

Proof of Theorem 3.5. Suppose that =, — z in (D,SM;). By Theorem 3.2(a), we have
P(zy) — Y(z) in (D,WM;). Since z € Dy, (z) € C, by Corollary 5.4. Hence the WM,

convergence is equivalent to uniform convergence; i.e.,
Y(zn) = P(z) in D([0,T],RF,U) .
We can then apply addition with (3.1) to get
R(z,) = R(z) in D([0,T],R?**,SM;) . =

We now work toward the proof of Theorem 3.3. We base our proof on several elementary
lemmas, which we state without proof. The first two lemmas appear in Section 5.5 of Whitt
(2002). They are easy consequences of the local uniform convergence at continuity points, implied

by convergence in any of the Skorohod (1956) non-uniform topologies on D.

Lemma 7.1 If z,, — x in (D', M), t, — t in (0,T) and, for some ¢ > 0, z,(tn) — Tn(tn—) > ¢

for all n, then z(t) — z(t—) > c.

For z € D and t € Disc(x), let y(z,t) be the largest magnitude (absolute value) of the jumps in
z at time ¢ of opposite sign to the sign of the largest jump in z at time ¢. Let y(z) be the maximum

of y(z,t) over all t € Disc(z). We apply Lemma 7.1 to establish the next result.
Lemma 7.2 If z,, — = in (D,WM), then

lim y(z,) <v(z) .

n—00

We only use the following consequence of Lemma 7.2.
Lemma 7.3 If x,, — = in (D,WM;) and x € Dy, then y(x,) — 0.
We also use a generalization of Lemma 6.4, which is established in the same way.
Lemma 7.4 For any z € D, there ezist x, € Dy such that ||z, — z|| = y(z) as n = oco.
We combine Lemmas 7.2 and 7.4 to obtain the tool we need.
Lemma 7.5 If z,, - z in (D,WM) and = € Dy, then there ezists z}, € Dg; for n > 1 such that

|27 — znll = 0.
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Proof of Theorem 3.3. Given z, — z in (D, WM;), apply Lemma 7.5 to find z;, € Dy for
n > 1 such that ||z}, — z,|| = 0 as n — oo. Then, by the triangle inequality and Theorems 3.1 and
3.4,

dp(R(2r), R(z)) < dp(R(zn), R(zy)) + dp(R(2y,), R(z))
< |[R(zs) — R(zp)|| + dw(R(z},), R(z))
< Kllzg — 2| + Kdy (5, 2).
Since
dp(:c;v:v) < dp(wil,a:n)—}—dp(:cn,m)
<z — @all + dp(zn, @)
- 0,

dy(z),,z) — 0. Hence, d,(R(zy), R(z)) — 0 as claimed. =

8. The Function Space D([0, ), RF)

It is often convenient to consider the function space D([0, cc), R*) with domain [0, o) instead
of [0, T]. For a sequence or net {z,} in D([0,00),R¥), we define convergence z,, — x as n — oo in
D([0,00), R*) with some topology to be convergence z,, — x as n — oo in D([0,], RF) with that
same topology for the restrictions of z, and z to [0,%] for ¢ = ¢, for each ¢, in some sequence {#j}
with t; — 0o as k — oo, where {t;} can depend on z. It suffices to let ¢, be continuity points of
the limit function z; see Lindvall (1973), Whitt (1980) and Jacod and Shiryaev (1987).

Let ¢ : D([0,00),RF) — D([0,t], R¥) be the restriction map with ry(z)(s) = z(s), 0 < s < t.
Suppose that f : D([0,00),R¥) — D([0,00),R*) and f; : D([0,%],R¥) — D([0,],R¥) for ¢t > 0 are
functions with

filry(x)) = r:(f (2)) (8.1)

for all z € D([0,00),R¥) and all ¢ > 0. We then call the functions f; restrictions of the function f.
It is easy to see that the reflection maps on D([0,%],R*) are restrictions of the reflection map on

D([0,00), R*). Hence we have the following result.

Theorem 8.1 The convergence-preservation results in Theorems 3.2, 3.8 and 3.5 and Corollary

3.1 extend to D([0,00), RF).
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Proof. Suppose that z,, — z in D([0, co), R¥) with the appropriate topology and that {t; : j > 1}
is a sequence of positive numbers with ¢; € Disc(z)¢ and t; — 0o as j — oo. Then, 14, (z,) — 7, ()

in D(]0, 00), R¥) with the same topology as n — oo for each j and, under the specified assumptions,
Ti; (R(zn)) = Ry, (re;(zn)) = Re; (ry; (2)) = ri; (R(z)) (8.2)

in D([0,%;],R?*) with the specified topology as n — oo for each j, which implies that
R(z,) — R(z) in D([0,00),R%*) (8.3)

with the same topology as in (8.2). =

We now consider the extension of the Lipschitz properties to D([0, co), RF). For this purpose,
suppose that p; is one of the M; metrics on D([0,],R¥) for ¢ > 0, either d; or d,. As in Section 2
of Whitt (1980), an associated metric x4 can be defined on D([0, 00), R¥) by

(a1, m9) = /O " ety (re(n), ma (2)) A 1. (8.4)

The following result implies that the integral in (8.4) is well defined.

Theorem 8.2 Let py be one of the My metrics on D([0,t],RF). For all 1,22 € D(]0,00),RF),
pi(z1,z2) as a function of t is right-continuous with left limits. Moreover, ui(z1,z2) is continuous

at t whenever 1 and xo are both continuous at t.

We prove Theorem 8.2 by applying the following two lemmas. Let D, = D.([0, 00),R¥) be the
subset of piecewise-constant functions in D with only finitely many discontinuities in any finite

interval.

Lemma 8.1 Suppose that x1,79 € D.([0,00), RF).
(a) For any t > 0, there exists 6 > 0 such that

Pty (71, T2) = pgy (T1,32) fort —0 <ty <ty <t

and fort <t; <ty <t+96.

(b) If, in addition, z1 and x2 are continuous at t, then there exists § > 0 such that

pty (T1,x9) = pgy (21,29) fort —0 <t1 <tg <t+96 .
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Proof. Since the arguments are similar for the different cases, we only do the first part of (a). The
condition implies that there is an interval (t—d,¢) on which both z; and z, are constant. Let ¢; and
to be such that t —§ < ¢1 < to < t. Let II;(z) denote the appropriate parametric representations of
z for the domain [0,¢]. (Recall that the parametric representations themselves have domain [0, 1].)

Let || - ||; denote the uniform norm over [0,¢]. For € > 0 given, let (u;,r;) € Iy, (z;) be such that
lur —ually V [lr1 — roll1 < pey (@1, 22) + €
Now construct (u},r}) € Iy, (z;) by letting, for some v with 0 <y < 1,

ui(s) = ui(s/7) and ri(s) = ri(s/7)

for 0 < s <~. Then let u(1) = z;(t2), r,(1) = t2 and let u} and r] be defined by linear interpolation

elsewhere. This construction yields
lut — sl V(I = ralls = llur — ol V[Ire — rally

so that
pita (w1, w2) < luy —ullL V [Iry = rolly < pey (w1, 22) + €
Since € was arbitrary, p(z1,22) < py, (z1,22). We now establish the inequality in the other direc-

tion. For € > 0 given let (u;,7;) € II4,(z;) be such that
Jur —uzll1 V{1 —rally < ity (21, 2) + € .

Let t* be a point in the interval (¢ — §,¢1). Since r; is continuous with r;(1) = t2, we can find s;
such that r;(s;) = t* for i = 1,2. Let s* = (51 V s2 +1)/2 and let ri(s*) = ¢; for i = 1,2. Let
ri(s) = ri(s) for 0 < s < s; and let 7 be defined on (s;, s*) and (s*,1) by linear interpolation. Then
Il —rh)l1 = |lr1 — r2ll1 and (ui, 7)) is a legitimate parametric representation of z; on both [0,1,]
and [0,t2]. Then

up — uglly V|| — rhlli = llur —ually V [Jr1 — o1
I 1V [lry — 5l = | lla V| I
so that

pey (21, 22) < [lur — w21 V|7 — rhlls < gy (@1, 22) + €

Since € was arbitrary, uy, (21, z2) < pg,(21,22), and the proof is complete. =

Lemma 8.2 For any z1,72 € D = D([0,00),RF), t > 0 and € > 0, there exist Ti,e, T2, € D such
that

|ps(z1, ) — ps(Z1,c,22,c)| <€ for 0<s<t.
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Proof. By the triangle inequality,
ps(T1,2) < ps(T1,e,Tae) + ps(T1, T1c) + ps(T2, T2,c)
< ps(@re, o) + 121 — T1elle + |22 — 22l

for 0 < s < t. By the basic approximation lemma, Lemma 5.4, we can choose z1 . and z2 . for
any given ¢ and € so that ||z1 — z1,¢||s + ||z2 — T2,]lt < €. A similar inequality holds in the other
direction. =

We then can establish the following result, paralleling Lemma 2.2 and Theorem 2.5 of Whitt
(1980). For (iii), see Theorem 5.6.1(ii) of Whitt (2002).

Theorem 8.3 Suppose that u and g, t > 0 are the SMy metrics on D(]0,00), R¥) and D([0,1], R).

Then the following are equivalent for x and x,, n > 1, in D([0, 00), R¥).
(i) w(zn,z) — 0 as n — oo;
(ii) pi(re(zn),re(x)) = 0 as n — oo for all t & Disc(x);

(iii) there exist parametric representations (u,r) and (un,rn) of € and x, mapping [0,00) into the
graphs such that

lup —ulle V{rn —rlle =0 as n— o0
for each t > 0.
We now show that the Lipschitz property extends from D([0,%],R*) to D([0,00), RF).

Theorem 8.4 If a function

f : D(]0,00),R*) = D([0, 00), RF) (8.5)
has restrictions
fe : D([0, T],R¥) — D([0, T], RF) (8.6)
satisfying
p2t(fi(re(w1)), fr(re(z2))) < Kpa(ri(wi),ri(ze)) forall >0, (8.7)

where w4 and pgy are two metrics on D([0,t],R*) (defined consistently for all t > 0) and K is
independent of t, then

p2(f(z1), f(z2)) < (K V 1pa(z1,32) , (8.8)

where 1 and ps are the associated metrics on D([0,00),RF) in (8.4).
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Proof. By (8.4) and (8.7),

muwmﬂm»=:Amfmumum»mummwuw
=.K2tMAmmﬁ»ﬁmmmwuw
< [ e Runatrion),r(az)) A 1l
0

< (KV1) /Ooo e w1 t(re(z1), re(z2)) A 1]dt

< (KVl)/ﬂ(CEl,.’Eg). n

Corollary 8.1 Let R: D([0,00),R¥) — D([0,00), R?*) be the reflection map with function domain
[0,00) defined by (3.1)-(3.7). Let metrics associated with domain [0,00) be defined in terms of
restrictions by (8.4). Then the conclusions of Theorems 3.4, 4.1 and 4.2 also hold for domain
[0, 00).

9. The Reflection Map as a Function of the Reflection Matrix

In this section we discuss the behavior of the reflection map as a function of the reflection matrix
Q@ as well as the net-input function z. We will apply the results here in our limits for stochastic
fluid networks in the next section.

Let Q be the set of all k£ x k reflection matrices (substochastic matrices @ such that Q™ — 0 as

n — o0). Let m; o : D — D be the map defined by

m2,@(y) = (Qy —2)T V0, (9.1)

where z1(t) = Supg<s<;Z(s), 0 <t < T. The map myq is used to establish Theorem 3.1; see
Harrison and Reiman (1981) and Chen and Whitt (1993). Let Rg = (9q, ¢g) be the reflection

map in (3.1)—(3.3) as a function of @ as well as z.

Theorem 9.1 Let Q1,Q2 € Q with [|QL] =71 <1 and |Q4|| =2 < 1. For alln > 1,

I o, O < (1 475+ + 47 lal (9.2)
and
I720,(0) = 72, O < (1 4+ [ NGB (0.3
so that
W@wmsfg% (9.4)
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and

I - 197 — Q4]
o, (z) — Yo, (z)]| < . 9.5
(o) — b @)l < (T Sy 9:5)
Proof. First
Ik, ) = (=) v 0] < J2]] - (9.6)
Next, by induction,
I, O = 1(Qj7%.q,(0) —2)" v O
< Q5 Iz ; () + el
< Ayl el = ()l (9.7)
Similarly, by induction (assuming (9.3) for n)
1m0, (0) = w5 b, O] < Q577 g, (0) — Q4. (0)]
< 1Q17 g, (0) — Q43 o, (0)I] + 1Q577 g, (0) — Q377 o, (0)]
< 1Q1 = @3- llell /(1 = 7) + Q4 - Il g, (0) — 75, (0) ]
< (Tye e +99)IQ — Q4 llzll /(1 =) - (9-8)

Finally, since |7} 5(0) — %q(z)|| — 0 as n — oo, the final two bounds (9.4) and (9.5) follows. =
Theorem 9.2 If ||z, — || — 0 in D* and Q,, — Q in Q, then

|Rg, (tn) — Rg(z)|| =0 in D?* . (9.9)

Proof. As in Harrison and Reiman (1981), we can find a positive diagonal matrix A so that

Q) = A7'Q'A and Q]| = v < 1. Since @n = Q as n = oo, |Q},|| = yn — 7, where Q]

nx —
A1Q! A with the same diagonal matrix used above. Consider n sufficiently large that v, < 1.

Since g+ (Az) = Apg(z), for such n we have
Q. (2n) = P(@)| = AT Aq, (za) — A Agg(x)]|
< AT Q. (Azn) — o, (Az)|

< ATHI(1Qn. (Azn) — 9q,. (Az)|
+ [4Qn. (Az) — g, (Az)]]) . (9-10)
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Thus, by (9.4) and (9.5),

Az, — A Az - nx — &«
Q. (z0) — do(@)]| < ||A1||(|| 2o — Az |lAe] - @ Q||>

1= (1=7)1—7)

M, -(1—7,) 10, —
l—y
for
—1 .
a, — 1A AL
1—,
Hence,
%@, (zn) —¥@(z)| 20 as n—oo. =
Now we obtain corresponding results with the M; topologies.
Theorem 9.3 Suppose that Q, — Q in Q.
(a) If x, = z in (D¥, WM,) and = € D,, then
Rg, (z,) — Rg(z) in (D*,WM) . (9.12)
(b) If z,, — x in (D*,SM;) and © € D, then
R, (zn) = Rg(z) in (D*,SMy) . (9.13)

Proof. We only prove the first of the two results, since the two proofs are essentially the same. If
zn — ¢ in (D, WM,) with z € Dy, then we can find z;, € D, for n > 1 such that ||z, —z}|| = 0
by Lemma 7.5. By Theorem 3.1

I1RQ, (zn) — Rq, ()l < Knllzn — 23]l = 0 (9-14)

because K, — K < oco. By Theorem 6.3, (Rg(u),r) € II,(R(z)) when z € D,. So, for any
e > 0 given, let (u,r) € I (z) and (up,r,) € Hy(x)) such that ||u, —ul| V [|r, — 7|| < e. Then
(Ro(u),7) € u(Rq()), (Ra, (tn), ra) € Ty(Ra, () for n > 1 and

[1RQ, (un) — Ro(u)|| < K(e+[|Qn — Ql)) (9.15)
by Theorem 9.2 and (9.11), so that

Rg, (zh) = Rg(z) in (D*,WMy) . (9.16)
Combining (9.14), (9.16) and the triangle inequality with the metric d,, we obtain (9.12). =
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10. Limits for Stochastic Fluid Networks

In this section we provide concrete stochastic applications of the convergence-preservation re-
sults. Following Kella and Whitt (1996) and references therein, we characterize a single-class
open stochastic fluid network with Markovian routing by a four-tuple {4, r, @, X(0)}, where A =
(AL, ..., A¥) is the vector of exogenous input stochastic processes at the k stations, r = (r!,..., %)
is the vector of potential output rates at the stations, @ = (Q; ;) is the routing matrix and
X(0) = (X(0),...,X*(0)) is the nonnegative random vector of initial buffer contents. The stochas-
tic processes A7 = {A7(t) : t > 0} have nondecreasing nonnegative sample paths; A’(t) represents
the cumulative input at station j during the time interval [0,¢]. When the buffer at station j is
nonempty, there is fluid output from station j at constant rate r;. When the buffer is empty, the
output rate is the minimum of the net (exogenous plus internal) input rate and r;. A proportion
Q;,; of all output from station ¢ is routed to station j, while a proportion ¢; = 1 — E?Zl Qi is
routed out of the network. We assume that () is substochastic so that @); ; > 0, 1 < j < k, and
¢ >0, 1 <4< k. Moreover, we assume that Q" — 0 as n — oo, where Q" is the n'® power of Q,
as in the definition of the reflection map.

As a more concrete example, suppose that the exogenous input to station j is the sum of the
inputs from m; separate on-off sources. Let (j,%) index the i*" on-off source at station j. When the
(j,1) source is on, it sends fluid input at rate A;;; when it is off, it sends no input. Let Bj;(t) be
the cumulative on time for source (j,i) during the time interval [0,%]. Then the exogenous input

process at station j is

mj
Al(t) =" XjiBja(t), t>0. (10.1)
=1

Since Bj; necessarily has continuous sample paths, the exogenous input processes A7 and A also
have continuous sample paths in this special case.

Given the defining four-tuple (4,7, @, X (0)), the associated R*-valued potential net-input pro-
cess is

X(t)=X0)+A{t)— (T -QYrt, t>0. (10.2)

where Q' is the transpose of Q). Indeed, proceeding formally, we regard (10.2) as a definition. Since
AJ has nondecreasing sample paths for each j, the sample paths of X are of bounded variation. In
many special cases, the sample paths of X will be continuous as well.

The buffer-content stochastic process Z = (Z1,...,Z¥) is simply obtained by applying the
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reflection map to the net-input process X in (10.2), in particular,
Z = ¢(X) , (10.3)

where R = (1, ¢) in (3.1)-(3.7). Since the potential output vector is (I — Q*)rt, the definition
(3.1)-(3.7) is very natural here, just as for the instantaneous net input in (5.3). Again proceeding
formally, as in Harrison and Reiman (1981), we regard (10.3) as a definition. This stochastic fluid
network model is more elementary than the queue-length processes in the queueing network in Chen
and Whitt, because the content process of interest Z is defined directly in terms of the reflection
map, requiring only (10.2) and (10.3).

We now want to establish some limit theorems for the stochastic processes. First, we obtain
a model continuity or stability result. For this purpose, we define a sequence of fluid network
models indexed by n characterized by four-tuples (4,7, @n, X, (0)). Let = denote convergence

in distribution.

Theorem 10.1 If (A,, X,(0)) = (4, X(0)) in D([0,00),R¥) x R*, where the topology is either
SM; or WMy, ry = 1 and Qp, — Q in Q as n — oo, then

(Xn,Yn,Zp) = (X,Y,Z) as n—o00 in D([O,oo),R3k),

with the same topology on D, where X, and X are the associated net-input processes defined by
(10.2), Y, and Y are the associated regulator processes, and Z, and Z as the associated buffer-

content processes, with

R(Xn) = (¥(Xn), p(Xn)) = (Yn, Zn) -

Proof. Apply the continuous mapping theorem with the continuous functions in (10.2) and (3.1)-
(3.7), invoking Theorem 9.3. Note that A,, A, X, and X have sample paths in D, . First apply
the linear function in (10.2) mapping (Ap,n, @n, Xn(0)) into X, ; then apply R mapping X, into

(Y., Z,)- For the special case of common @, we can invoke Theorem 3.4 instead of Theorem 9.3. =
Remark 10.1 If P(A € Dy) =1, ie, if
P(Disc(AY) N Disc(A?) = ¢) =1 (10.4)

for all 4,5 with 1 < 4,5 < k and ¢ # j, then the assumed SM; convergence A, = A is implied
by W M; convergence. Since A, and A have nondecreasing sample paths, the condition A% = A’
D(]0,00),R, M;) is equivalent to convergence of the finite-dimensional distributions at all time

points ¢ for which P(t € Disc(A?%)) = 0, where Disc(A?) is the set of discontinuity points of A*. =
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Remark 10.2 As we have indicated, it is natural for A, to have continuous sample paths, but
that does not imply that the limit A necessarily must have continuous sample paths. If A does in
fact have continuous sample paths, then so do X, Y and Z. Then, the SM; topology reduces to

the topology of uniform convergence on compact subsets. u

Remark 10.3 We can also obtain a bound on the distance between (X,,Y,, Z,) and (X,Y, X)
using the Prohorov metric 7 on the probability measures on (D, SMi); see p. 237 of Billingsley
(1968) and Whitt (1974). For random elements X; and Xo, let m(X7, X3) denote the Prohorov
metric applied to the probability laws of X7 and X». The statement then is: For common @, there

exists a constant K such that
For common @, we apply Theorem 3.4. =

We also can obtain heavy-traffic FCLTs for stochastic fluid networks by considering a sequence

of models with appropriate scaling.

Theorem 10.2 Consider a sequence of stochastic fluid networks
{(An, 7, Qn, Xn(0)) : n > 1}. If there exist a constant ¢ > 0, an R¥-valued random vector X (0),

vectors o, € R¥, n > 1, and a stochastic process A such that
n~ A, (nt) — aynt, X,,(0)] = [A(),X(0)] as n— o0 (10.6)

in D([0,00), RF, W M) x R¥ | where

P(AeDy) =1, (10.7)

and
nt* o, — (I —Q)r,] > a in RF (10.8)

then
0 Xp(nt), Ya(nt), Zn(nt)) = (X(1),Y(£), Z(t)) as n— oo (10.9)

in D([0, 00), R¥, W M;) x D([0, 00), R2*, W M), where
X(t) = X(0) + A(t) + a(t), t>0, (10.10)

and (Y, Z) = R(X) for R in (3.1)—(3.3).
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Proof. Since
n~ 91X, (nt) = n X, (0) + [An(nt) — aynt] + [apnt — (I — QL)rpnt], >0, (10.11)

n 1X,(nt) = X(t) in (D¥,WM) . (10.12)

The proof is completed by applying the continuous mapping theorem, using Theorem 9.3. For

common (), we could use Theorem 3.3. =

Remark 10.4 In order for condition (10.6) to hold, it suffices to have X, (0) be independent of
{A,(t) : t > 0} for each n,
X,(0) = X(0) in RF,

and {A!(t):t >0}, 1 <i <k, be k mutually independent processes for each n, with
n"I[AL (nt) —aint] = A" as n—oo in D([0,00),R', M) (10.13)

for 1 <4 < k. If also P(t € Disc(A%)) = 0 for all 4 and ¢ (so that A’ has no fixed discontinuities).
then, almost surely, the limit process A has discontinuities in only one coordinate at a time, so that
the assumed convergence in the W M; topology is actually equivalent to convergence in the SM;

topology.

Remark 10.5 If condition (10.7) does not hold, then we obtain (10.9) with (Y,, Z,) = (Y, Z) in
D([0,00), R?¥) with the L; topology instead of the W M; topology, by Theorem 3.2(a).

Remark 10.6 In many applications the limiting form of the initial conditions can be considered
deterministic; i.e. P(X(0) = ¢) = 1 for some ¢ € Rf. Then (Y, Z) is simply a reflection of A,
modified by the deterministic initial condition ¢ and the deterministic drift «(¢). In Whitt (2000a)
conditions are determined to have the convergence A’ = A’. Then A’ is often a Lévy process.
When A is a Lévy process, Z and (Y, Z) are reflected Lévy processes. See the references in Whitt
(2000a) and Kella and Whitt (1996) for more on these processes. In some cases explicit expressions
for non-product-form steady-state distributions have been derived; see Kella and Whitt (1992) and
Kella (1993, 1996). =

Remark 10.7 Clearly, we can obtain similar results for more general models by similar methods.

For example, the prevailing rates might be stochastic processes. The potential output rate from
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station j at time ¢ can be the random variable R;(¢). Then the net-input process in (10.2) should
be changed to
X(t) = X(0)+A®) —(I-Q)S8(), t>0, (10.14)

where S = (S%,...,S%) is the Rf-valued potential output process, having
. t .
Sit) = / Ri(u)du, 1>0. (10.15)
0

Similarly, with the on-off sources, the input rates during the on periods might be stochastic processes
instead of the constant rates \;; in (10.1). Extensions of Theorems 10.1 and 10.2 are straightforward
with such generalizations, but we must be careful that the assumptions of Theorems 3.2-3.5 are

satisfied. =
11. Other Reflection Maps

In this section we show that the continuity and Lipschitz properties of the reflection map
extend to more general reflection maps, such as those considered by Dupuis and Ishii (1991),
Williams (1987, 1995) and Dupuis and Ramanan (1999a,b). We assume that the reflected process
has values in a closed subset S of R¥. We assume that we are given an instantaneous reflection
map ¢g : S X R¥ — S. The idea is that an initial position sy in S and an instantaneous net input u
are mapped by ¢¢ into the new position s1 = ¢g(sp,up) in S. In many cases ¢g(sg, ug) will depend
upon (sg,ug) only through their sum sy 4+ ug, but we allow more general possibilities. It is also
standard to have S be convex and ¢o(s,u) = s+ u if s + u € S, while ¢o(s,u) € S if s+u & S,
where 95 is the boundary of S, but again we do not directly require it. Under extra regularity
conditions, ¢y becomes the projection in Dupius and Ramanan (1999a).

As in Section 5, we use ¢g to define a reflection map on D, = D.([0,T], R*). However, we also

allow dependence upon the initial position in S. Thus, we define ¢ : S X D, — D, by letting
P(2(0-),2)(t:) = 2(t:) = ¢o(2(ti-1), z(ti) — z(ti-1)), 0<i<m, (11.1)

where t1,...,t, are the discontinuity points of z, with¢g = 0 < t; < --- < t, < T, z'(t_1) = 0
for all 4 and z(t_1) = 2(0—) € S is the initial position. A standard case is z!(0) = 0 for all 4 and
z(0) = z(0—). We let z be constant in between these discontinuity points.

We then make two general assumptions about the instantaneous reflection map ¢y and the
associated reflection map ¢ on S x D, in (11.1). One is a Lipschitz assumption and the other is a

monotonicity assumption.
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Lipschitz Assumption. There is a constant K such that

[p(s1,21) = ¢(sg, 22)|| < K ([l — o[ V [|s1 — s2])

for all s1,s89 € S and z1,x2 € D, where ¢ is the reflection map in (11.1).

We now turn to the monotonicity. Let e; be the vector in R¥ with a 1 in the i*® coordinate
and 0’s elsewhere. Let (;S%(s, u) be the 5 coordinate of the reflection. We require monotonicity af
all these coordinate maps, but we allow the monotonicity to be in different directions in different

coordinates.

Monotonicity Assumption. For all so € R¥, 4,1 < i < kand j, 1 < j <k, q%(so,aei) is
monotone in the real variable « for o > 0 and for a < 0.
Just as in Theorem 5.2, we can use the Lipschitz assumption to extend the reflection map from

D, to D. The proof is essentially the same as before.

Theorem 11.1 If the reflection map ¢ : S x D, — D, in (11.1) satisfies the Lipschitz assumption,
then there exists a unique extension ¢ : S x D — D of the reflection map in (11.1) satisfying
(s, zn) — (s, 2)|| = 0 if s € S, x, € D, and ||z, — z|| = 0. Moreover, ¢ : S x D — D inherits

the Lipschitz property.

We now want to establish sufficient conditions for the reflection map to inherit the Lipschitz
property when we use appropriate M; topologies on D. From our previous analysis, we know
that we need to impose regularity conditions. With the monotonicity assumption above, it is no
longer sufficient to work in Ds;. We assume that the sample paths have discontinuities in only one
coordinate at a time, i.e., we work in the space D;. We exploit another approximation lemma. Let
D, be the subset of D, in which all discontinuities occur in only one coordinate at a time, i.e.,

D.; = D.ND;. The following is another variant of Lemma, 5.4, which can be established using it.
Lemma 11.1 For all x € D1, there exist xn, € D1, n > 1, such that ||z, — x| — 0.
We are now ready to state our M; result.

Theorem 11.2 Suppose that the Lipschitz and monotonicity assumptions above are satisfied. Let

¢ : S x D — D be the reflection mapping obtained by extending (11.1) by applying Theorem 11.1.
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For any s € S, z € Dy and (u,r) € Iy(z), (H(s,u),r) € Iy(é(s,z)). Thus there exists a constant
K such that

dp(b(s1,21), P(52,72)) < duy(P(51,21), P52, 2)) < K(ds(1,72) V |51 — 52]]) (11.2)

for all s1,s0 € S and z1,79 € D1. Moreover, if s, — s in R* and z, — z in (D,W M) where
T € D1, then
&(sn,xn) = d(s,z) in (D,WM) . (11.3)

Proof. By Theorem 11.1, the extended reflection map ¢ : § x D — D is well defined and
Lipschitz in the uniform norm. For any x € D, apply Lemma 11.1 to obtain z,, € D.; with
||xn — x| — 0. Since x € Dy, the strong and weak parametric representations coincide. Choose
(u,r) € Il(z) = (). Since ||z, —z| — 0 and z,, € D1, we can find (uy, ) € I (zy,) = y(zy)
such that ||u, — u|| V ||rp, — r|| = 0. Now, paralleling Theorem 6.2, we can apply the monotonicity
condition on D.; to deduce that (¢(s,up),r,) € IL,(P(s,z,)) for all n. (Note that we need
not have either ¢(s,z) € Dy or ¢(s,z,) € D1, but we do have ¢(s,z,) € D.. Note that the
componentwise monotonicity implies that (¢(s,u,), ) belongs to I, (¢(s, £, )), but not necessarily

to IIs(¢(s,zy,)).) By the Lipschitz property of ¢,
[p(s,un) — @(s,w)|| V [|rn — 7] = 0. (11.4)

Hence, we can apply Lemma 6.5 to deduce that (¢(s,u),r) € IL,(p(s,z)). We thus obtain the
Lipschitz property (11.2), just as in Theorem 3.4, by applying the argument in Theorem 4.2.
Finally, to obtain (11.3), suppose that s, — s in S and =, — x in (D, SM;) with € D;. Under
that condition, by the analog of Lemma 7.5 (for D; instead of D,), we can find z;, € D1; C D,

| = 0. Since ¢ is Lipschitz on S x (D, U), there exists a constant K such that

such that ||z, — 2|

16 (s Zn) = G(sm, )| < Kllzn — 23] =0 . (11.5)
By part (a), there exists a constant K such that
dw(B(sn,70), 8(s,7)) < K(ds(an,z) Vsn —sl)) = 0. (11.6)

By (11.5), (11.6) and the triangle inequality with d,, we obtain (11.3). =
To give one concrete application of Theorem 11.2, we consider the two-sided regulator, R :

D([0,T],R) — D([0,T], R3*) defined by R(z) = (¢(x), 11 (), 42(z)) = (2,91, y2), where
Z2=ZT+Y—Y2,
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0<z2(t)<e¢, 0<t<T,
y1(0) = —(z(0) A0)™ and y2(0) = [c — z(0)]" ,
y1 and vy are nondecreasing ,

/ A(B)dyi(t) =0 and / e — 2(8)ldys(t) = 0, (11.7)
0 0

as in Chapter 2 of Harrison (1985) and in Section 4.5 of Berger and Whitt (1992). Since the domain
is one-dimensional, here we have D = D! = D; and D, = D, 1. The two-sided regulator can also
be defined using (11.1) with the elementary instantaneous reflection map ¢y : [0, ] x R — R defined
by

do(s,u) =(s+u)VOAcC. (11.8)
From (11.8), it is immediate that the monotonicity assumption is satisfied. Berger and Whitt
proved that the reflection map ¢ : [0,c] x D' — D! in this case is Lipschitz in the uniform norm

with Lipschitz constant 2. (They showed that the maps v and 1), are continuous but not Lipschitz
on (D,U).) Thus we have the following result.

Theorem 11.3 Let ¢ : [0,c] x D' — D! be the two-sided requlator map defined by either (11.7) or
(11.8) and Theorem 11.1. Then

d(P(s1,21), P(s2,72)) < 2(d(z1,22) V 51 — $2) (11.9)
for all x1,z9 € Dl, where d is the M1 metric.

For other reflection maps, we need to verify the Lipschitz and monotonicity assumptions above.
Evidently the Lipschitz assumption is the more difficult condition to verify. However, Dupuis and
Ishii (1991) and Dupuis and Ramanan (1999a,b) have established general conditions under which

the Lipschitz assumption is satisfied.
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