Chapter 14

Queueing Networks

14.1. Introduction

In this chapter we continue applying the continuous-mapping approach
to establish heavy-traffic stochastic-process limits for queues, giving special
attention to the possibility of having unmatched jumps in the limit process.
Paralleling our application of the one-dimensional reflection map to obtain
heavy-traffic limits for single queues in Chapters 5, 8, 9 and 10, we now apply
the multidimensional reflection map to obtain heavy-traffic limits for queue-
ing networks. As before, we omit some proofs. These proofs plus additional
supporting material appear in Chapter 8 of the Internet Supplement.

For background on queueing (or stochastic) networks, see Kelly (1979),
Whittle (1986) and Serfozo (1999). For related discussions of heavy-traffic
limits for queueing networks, see Chen and Mandelbaum (1994a,b), Harrison
(1988, 2000, 2001a,b), Chen and Yao (2001) and Kushner (2001). The
literature is also discussed at the end of this chapter.

The (standard) multidimensional reflection map was used with the con-
tinuous mapping theorem by Harrison and Reiman (1981a,b) and Reiman
(1984a) to establish heavy-traffic limits with reflected Brownian motion
limit processes for vector-valued queue-length, waiting-time and workload
stochastic processes in single-class open queueing networks. Since Brown-
ian motion and reflected Brownian motion have continuous sample paths,
the topology of uniform convergence over bounded intervals could be used
for those results. Variants of the M; topologies are needed to obtain al-
ternative stochastic-process limits with discontinuous sample paths, such as
reflected Lévy processes, when the discontinuities in the sample paths of the
limit process are approached gradually in the sample paths of the converging
processes.
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However, unlike the one-dimensional reflection map, studied in Section
13.5 and applied in Chapters 5, 8, 9 and 10, the multidimensional reflection
map is not simply continuous, using either the SM; or W My topology on
D. Nevertheless, there is continuity with appropriate qualifications. In
particular, the multidimensional reflection map is continuous at limits in
the subset D; of functions without simultaneous jumps of opposite sign in
the coordinate functions, provided that the W M; topology is used on the
range. As a consequence, the reflection map is continuous in the WM,
topology at limits in the subset D; of functions that have discontinuities
in only one coordinate at a time. That continuity property also holds for
more general reflection maps and is sufficient to support limit theorems for
stochastic processes in most applications.

We apply the continuity of the reflection map to obtain heavy-traffic
limits for vector-valued buffer-content stochastic processes in single-class
open stochastic fluid networks and for vector-valued queue-length stochas-
tic processes in single-class open queueing networks. The M; topologies
play a crucial role in these stochastic-process limits. In the stochastic fluid
networks, just as in the single fluid queues in Chapters 5 and 8, the limit
processes for the properly-scaled exogenous cumulative-input processes may
have jumps even though the exogenous cumulative-input processes them-
selves have continuous sample paths. For example, this phenomenon occurs
when the exogenous cumulative-input processes at the nodes are associ-
ated with the superpositions of independent on-off sources, where the busy
(on or activity) periods and/or idle (off or inactivity) periods have heavy-
tailed probability distributions (with infinite variances). Thus, in order to
obtain heavy-traffic limits for properly scaled vector-valued buffer-content
stochastic processes in the stochastic fluid networks, we need to invoke the
continuous mapping theorem, using the continuity of the multidimensional
reflection map on D with appropriate My topologies.

Similarly, the M; topologies are needed to obtain heavy-traffic limits
for open single-class queueing networks with single-server queues, where the
servers are subject to rare long service interruptions. If the times between
interruptions and the durations of the interruptions are allowed to increase
appropriately as the traffic intensity increases in the heavy-traffic limit (with
the durations of the interruptions being asymptotically negligible compared
to the times between interruptions), then in the limit the interruptions oc-
cur instantaneously according to a stochastic point process, but nevertheless
the interruptions have a spatial impact, causing jumps in the sample paths
of the limiting queue-length process. Since these jumps in the limit pro-
cess are approached gradually in the converging processes, again the M;
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topologies are needed to obtain heavy-traffic limits for the properly-scaled
vector-valued queue-length stochastic processes.

Here is how this chapter is organized: We start in Section 14.2 by care-
fully defining the multidimensional reflection map and establishing its basic
properties. Since the definition (Definition 14.2.1) is somewhat abstract, a
key property is having the reflection map be well defined; i.e., we show that
there exists a unique function satisfying the definition (Theorem 14.2.1). We
also provide multiple characterizations of the reflection map, one alternative
being as the unique fixed point of an appropriate operator (Theorem 14.2.2),
while another is a basic complementarity property (Theorem 14.2.3).

A second key property of the multidimensional reflection map is Lipschitz
continuity in the uniform norm on D([0,T], R¥) (Theorem 14.2.5). We also
establish continuity of the multidimensional reflection map as a function
of the reflection matrix, again in the uniform topology (Theorems 14.2.8
and 14.2.9). It is easy to see that the Lipschitz property is inherited when
the metric on the domain and range is changed to dj, (Theorem 14.2.7).
However, a corresonding direct extension for the SM; metric ds does not
hold. Much of the rest of the chapter is devoted to obtaining positive results
for the M; topologies.

Section 14.3 provides yet another characterization of the multidimen-
sional reflection map via an associated instantaneous reflection map on R¥.
The alternative characterization is as the limit of the multidimensional re-
flection map defined on the subset D, of piecewise-constant functions in D
(Theorem 14.3.4). On D, the reflection map can be defined in terms of the
recursive application of the instantaneous reflection map on R*¥ (Theorem
14.3.1). The instantaneous reflection on R¥ can be calculated by solving
a linear program. Thus the instantaneous reflection map provides a useful
way to simulate piecewise-constant approximations to reflected stochastic
processes. We develop properties of the instantaneous reflection map that
help us obtain the desired M;j results (Theorem 14.3.2). In particular, we
apply a monotonicity result (Corollary 14.3.2) to establish key properties of
reflections of parametric representations (Lemma 14.3.4).

Sections 14.4 and 14.5 are devoted to obtaining the M; continuity results.
In Section 14.4 we establish properties of reflection of parametric represen-
tations. We are able to extend Lipschitz and continuity results from the
uniform norm to the M; metrics when we can show that the reflection of
a parametric representation can serve as the parametric representation of
the reflected function. The results are somewhat complicated, because this
property holds only under certain conditions.

The basic M7 Lipschitz and continuity results are established in Section
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14.5. In addition to the positive results, we give counterexamples showing
the necessity of the conditions in the theorems. Particularly interesting
is Example 14.5.4, which shows that, without the regularity conditions, the
fluctuations of the sequence of reflected processes can exceed the fluctuations
in the reflection of the limit, thus exhibiting a kind of Gibbs phenomenon (see
Remark 14.5.1). A proper limit in that example can be obtained, however,
if we work in one of the more general spaces E or F introduced in Chapter
15.

In Sections 14.6 and 14.7, respectively, we apply the previous results to
obtain heavy-traffic stochastic-process limits for stochastic fluid networks
and conventional queueing networks. In the queueing networks we allow
service interruptions. When there are heavy-tailed distributions or rare long
service interruptions, the M; topologies play a critical role.

In Section 14.8 we consider the two-sided regulator and other reflection
maps. The two-sided regulator is used to obtain heavy-traffic limits for single
queues with finite waiting space, as considered in Section ?? and Chapter 8.
With the scaling, the size of the waiting room is allowed to grow in the limit
as the traffic intensity increases, but at a rate such that the limit process
involves a two-sided regulator (reflection map) instead of the customary
one-sided one. Like the one-sided reflection map, the two-sided regulator
is continuous on (D', M;). Moreover, the content portion of the two-sided
regulator is Lipschitz, but the two regulator portions (corresponding to the
two barriers) are only continuous; they are not Lipschitz.

We also give general conditions for other reflection maps to have M;
continuity and Lipschitz properties. For these, we require that the limit
function to be reflected belong to D1, the subset of functions with discon-
tinuities in only one coordinate at a time. We conclude the chapter with
notes on the literature.

In Section 8.9 of the Internet Supplement we show that reflected stochas-
tic processes have proper limiting stationary distributions and proper limit-
ing stationary versions (stochastic-process limits for the entire time-shifted
processes) under very general conditions. Our main result, Theorem 8.9.1
in the Internet Supplement, establishes such limits for stationary ergodic
net-input stochastic processes satisfying a natural drift condition. It is note-
worthy that a proper limit can exist even if there is positive drift in some
(but not all) coordinates. Theorem 8.9.1 there is limited by having a special
initial condition: starting out empty. Much of the rest of Section 8.9.1 in the
Internet Supplement is devoted to obtaining corresponding results for other
initial conditions. We establish convergence for all proper initial contents
when the net input process is also a Lévy process with mutually independent
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coordinate processes (Theorem 8.9.6 there). Theorem 8.9.6 covers limit pro-
cesses obtained in the heavy-traffic limits for the stochastic fluid networks
in Section 14.6.

14.2. The Multidimensional Reflection Map

The definition of the multidimensional reflection map is somewhat indi-
rect. So we begin by motivating the definition. Since the multidimensional
reflection map arises naturally in the definition of the vector-valued buffer-
content stochastic process in a stochastic fluid network, we first define the
multidimensional reflection map in that special context.

14.2.1. A Special Case

We consider a single-class open stochastic fluid network with & nodes,
each with a buffer of unlimited capacity. We let exogenous fluid input come
to each of the k nodes. At each node the fluid is processed and released at
a deterministic rate. The processed fluid from each node is then routed in
a Markovian manner to other nodes or out of the network. The principal
stochastic process of interest is the k-dimensional buffer-content process.
The stochastic fluid network is a generalization of the fluid queue models in
Chapters 5 and 8 in the case of unlimited waiting space (buffer capacity).

A single-class open stochastic fluid network with Markovian routing
can be specified by a four-tuple {C,r, P, X(0)}, where C = (C*,...,C¥)
is the vector of exogenous input stochastic processes at the k nodes, r =
(rt,...,r*) is the vector of deterministic output rates at the k nodes, P =
(P,,;) is the k x k routing matrix and X(0) = (X'(0),...,X"(0)) is the
nonnegative random vector of initial buffer contents at the k nodes. The
stochastic process C' is an element of D%“ = D% X oo X D%, the subset of func-

tions in D = D* = D([0,T],R¥) that are nondecreasing and nonnegative
in each coordinate. The random variable C*(t) represents the cumulative
exogenous input to node ¢ during the time interval [0,¢]. It is natural to let
the sample paths of C? be continuous, but we do not require it.

When the buffer at node ¢ is nonempty, there is fluid output from node
1 at constant rate r;. When buffer ¢ is empty, the output rate equals the
minimum of the combined external (exogenous) plus internal input rate and
the potential output rate r; (formalized below). A proportion P;; of all
output from node ¢ is immediately routed to node j, while a proportion
pi=1— Z?:l P;; is routed out of the network. We assume that the routing
matrix P is substochastic, so that P; ; > 0 and p; > 0 for all 7,5. We also
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assume that P" — 0 as n — oo, where P" is the n'® power of P, so that all
input eventually leaves the network. (We can think of P as the transition
matrix of a transient k-state Markov chain.)

We now proceed to mathematically define the vector-valued buffer con-
tent process. We will work with column vectors. Hence it is convenient to
use the transpose of the routing matrix P. Let @) be this transpose, i.e.,
Q = P!, so that @ is a column-substochastic matrix. We start by defining a
potential buffer-content (or net-input) process, which represents the poten-
tial content at each node, ignoring the emptiness condition. The potential
buffer-content process is

Xt)=X0)+Ct)—I—-Q)rt, t>0, (2.1)

where the vectors are regarded as column vectors and the transpose Q! is
the routing matrix P. The component X*(¢) in (2.1) represents what the
content of buffer ¢ would be at time ¢ if the output occurred continuously at
rate 7/ from node j for all j, regardless whether or not station j had fluid to
emit. That is, the content vector X (¢) at time ¢, would be the initial value
X (0) plus the exogenous input C(t) minus the output 7¢ plus the internal
input Qrt.

We obtain the actual buffer content by disallowing the potential output
(and associated internal input) that cannot occur because of emptiness. We
use the componentwise partial order on D and RF; ie., ¢; = (cl,...,c}) <
co=(ch,...,c5)inRFifci < inRforalli, 1 <i<k,and z; <y in D
if z1(t) < zo(t) in R* for all ¢, 0 < ¢ < T. We then let the buffer content be

Z(t)=X(t)+ T -QY (), (2.2)

where X is defined in (2.1) and Y is the least possible element of Df (the
subset of functions in D¥ that are nonnegative and nondecreasing in each
coordinate) such that Z > 0. We call the map from X to (Y, Z) the reflection
map.

14.2.2. Definition and Characterization

We will prove that the vector-valued buffer-content process Z is properly
defined by (2.1) and (2.2) by showing that such a process Y is well defined
(exists and is unique). It turns out that the reflection map from X to Y and
Z is well defined, even if X does not have the special structure in (2.1).

More generally, we call the transposed routing matrix ) the reflection
matriz. Let Q be the set of all reflection matrices, i.e., the set of all column-
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stochastic matrices @ (with Q;?,]- >0 and Z§:1 Qg,j <1) such that Q" — 0
as n — 0o, where Q" is the n'® power of Q.

Definition 14.2.1. (reflection map) For any z € D* = D([0,T],R*) and
any reflection matriz QQ € Q, let the feasible regulator set be

U(z) E{wEDf:J;—{—(I—Q)wZO} (2.3)

and let the reflection map be R = (¢, ¢) : D¥ — D?* with regulator compo-
nent

y=1(z) = inf ¥(z) = inf{w: w € ¥(z)} , (2.4)

i.e.,

y'(t) = inf{w'(t) e R:w € U(z)} forall i and t, (2.5)

and content component
z=¢(z) =+ (T —-Q)y . (2.6)

It remains to show that the reflection map is well defined by Definition
14.2.1; i.e., we need to know that the feasible regulator set ¥(z) is nonempty
and that its infimum y (which necessarily is well defined and unique for
nonempty ¥(z)) is itself an element of ¥(z), so that z € D*¥ and z > 0.

To show that ¥(z) in (2.3) is nonempty, we exploit the well known fact
that the matrix I — () has nonnegative inverse.

Lemma 14.2.1. (nonnegative inverse of reflection matrix) For all Q € Q,
I — @ is nonsingular with nonnegative inverse

(I_Q)_1 :ZQn )
n=0

where Q° = I.

The key to showing that the infimum belongs to the feasibility set is
a basic result about semicontinuous functions. Recall that a real-valued
function z on [0, 7] is upper semicontinuous at a point ¢ in its domain if

limsup z(t,) < z(t)
tn—t
for any sequence {t,} with t, € [0,7] and ¢, — t as n — oo. The function
z is upper semicontinuous if it is upper semicontinuous at all arguments ¢
in its domain.
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Lemma 14.2.2. (preservation of upper semicontinuity) Suppose that {z :
s € S} is a set of upper semicontinuous real-valued function on a subinterval
of R. Then the infimum z = inf{zs : s € S} is also upper semicontinuous.

Recall that 1 = supgc,<; z(s), t > 0, for z € D'. Forz = (z',...,2%) €
D let 2t = ((«")T,..., (zF)1).

Theorem 14.2.1. (existence of the reflection map) For any x € D* and

QeQ,

I-Q) 7 (=2)" V0] € ¥(z) , (2.7)

so that ¥(zx) # ¢,
y = (s) € U(z) C Dk (2)

fory in (2.4) and
z=¢d(z)=z+(I—-Q)y>0. (2.9)

Proof. Using Lemma 14.2.1, it is easy to see that (2.7) holds, because
2+ I -Q)I-Q) '(-z)'Vvo>z+[(-2)'VO>z+(-z) >z-2>0

and (—z)TV 0 € D}. Let y be the infimum in (2.4). Since ¥(z) C Df,
necessarily y is nondecreasing and nonnegative. Since the elements of D?
are nondecreasing, right-continuity coincides with upper semicontinuity, so
we can apply Lemma 14.2.2 to conclude that y € D’Tc. It now remains to
show that x4+ (I — Q)y > 0. Fix ¢, i and ¢. By the definition of the infimum,
there exists w € U(x) such that w'(t) < y*(t) + € and w’ () > 3/ (t) for all ;.
Thus

k k
(1) + ' (1) = Y Qv (8) > &' () + w'(t) = Y Qjw (1) —e.
j=1 j=1

Since €, ¢ and ¢t were arbitrary,
z+(I-Qy>z+{IT—-Q)w=>0

so (2.8) holds and the proof is complete. =
We now characterize the regulator function y = v (z) as the unique fixed
point of a mapping 7 = 7, ¢ : Df — Df, defined by

m(w) = (Quw — )TV 0 (2.10)

for w € D’T“. For this purpose, we use two elementary lemmas.
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Lemma 14.2.3. (feasible regulator set characterization) The feasible regu-
lator set ¥(x) in (2.3) can be characterized by

U(z) ={we D? cw > w(w)}

for m in (2.10).

Proof. For each w € ¥(z), z+ (I —Q)w > 0 or, equivalently, w > Qw —z.
Since ¥(z) C D’T“, we must also have w > 7(y). On the other hand, ifw € D%“
and w > 7(y), then we must have w > Qw — z, so that w € ¥U(z). =

Remark 14.2.1. Semilattice structure. It is also easy to see that if y,ys €
U(z), then y; A yo € ¥(z); that makes U(z) a meet semilattice.

Lemma 14.2.4. (closed subset of D) With the uniform topology on D, The
feasible regulator set U(z) is a closed subset of DX, while D%“ is a closed subset
of D.

Theorem 14.2.2. (fixed-point characterization) For each Q € Q, the reg-
ulator map y = (x) = g(z) : D¥ — D%“ can be characterized as the unique

fized point of the map m =7y : Df — D%“ defined in (2.10).

Proof. We use a standard argument to establish fixed points of monotone
maps on ordered sets; e.g., see Section 3.8 of Edwards (1965). As before, we
use the componentwise partial order on R¥ and D*. It is immediate that
the map m in (2.10) is monotone. Note that

0<7(0)=(—z)"vo,

where 0 is used as the vector and vector-valued function with zero values.
Note that the functions 0 and 7(0) are both elements of DITC' Hence, the

iterates 7(0) = w(7" 1(0)) are elements of D¥ that are nondecreasing in
n. On the other hand, w > w(w) for any w € ¥(z) by Lemma 14.2.3.
Consequently, 7"(w) is decreasing in n for any w € ¥(z). Since ¥(x)
is nonempty by Theorem 14.2.1, there exists w € ¥(z). Since 0 < w,
7"(0) < 7™(w) < w for all n, so that 7™(0) is bounded above. It is easy to
see, using the addition and supremum maps, that = : (D,U) — (D, U) is also
continuous. Hence 7"(0) 1 w* in D%“ as n — 0o, where w(w*) = w*. Since

Df is a closed subset of D by Lemma 14.2.4, w* € D’T“. Since w* > w(w*),
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w* € U(z) too. Since the regulator y = 1(z) is the infimum by Definition
14.2.1, necessarily y < w*. Since 0 <y < w*,

(0) <7"(y) <y forall n.
Letting n — 00, we see that w* < y. Hence we must have y = w*. =

Theorem 14.2.3. (complementarity characterization) A function y in the
feasible regulator set U(x) in (2.3) is the infimum ¥(x) in (2.4) if and only
if the pair (y,z) for z =z + (I — Q)y satisfies the complementarity property

0 . .
/ Z'dy* =0, 1<i<k. (2.11)
0

Proof. We first prove that the infimum satisfies the complementarity prop-
erty. We will show that failing to satisfy the complementarity implies failing
the infimum property. Hence, suppose that (y,z) fails to satisfy the com-
plementarity property (2.11). Thus there is ¢ and j such that 27(¢) > 0 and
1) increases at t. We consider two cases:

Case 1. Suppose that 3/ (t) > y/(t—). There must exist €,d > 0 such that
Y (t) —y/(t—) > eand 27(s) > ¢, t < s <t+ 6. Let § be defined by

, Y (s), 0<s<t,
g](s): ’yj(S)—e, tS3<t+63
v (s), t+6<s,

with §* = y* for i # j. Then §j € D’Tc and z+ (I — Q)7 > 0, so that § € ¥(z),
gy <y and § # y, which implies that y is not the infimum.

Case 2. Suppose that 4/ (t) = 4/ (t—). Now there must exist €,d > 0 such
that 27(s) > eand 0 < 3/ (s)—17(t) < efort < s < t+d and 3/ (s)—17(t) > 0
for s > t. Now let § be defined by

' yi(s), 0<s<t,
P (s) =14 i), t<s<t+§,
y(s), t+6<s,

with §' =y’ for i # j. Again §j € D’Tc and z+ (I —Q)y > 0. Since § < y and
7 # y, y must not be the infimum. We now prove that the complementarity
property implies the infimum property. Invoking Theorem 14.2.2, it suffices



14.2. THE MULTIDIMENSIONAL REFLECTION MAP 561

to show that if (y, z) satisfies the complementarity property, then necessarily
y is the unique solution to the fixed point equation y = w(y). Thus let
v = mw(y). Since y € ¥(z), y > w(y) by Lemma 14.2.3, so that it suffices
to show that v = 7(y) > y. Suppose that y(¢t) > v(¢) for some ¢. Then
necessarily y(to) > v(to) for some ¢y that is a point of increase of y, but

y(to) > m(y)(to) implies that
z(to) = y(to) — (Qy — )(t0) > y(to) — 7(y)(t0) >0,

which contradicts the complementarity condition. =

14.2.3. Continuity and Lipschitz Properties

We now establish continuity and Lipschitz properties of the reflection
map as a function of the function xz and the reflection matrix Q). We use the
matriz norm, defined for any k£ x k real matrix A by

k
4] = max > i1 (212
=1

We use the maximum column sum in (2.12) because we intend to work with
the column-substochastic matrices in Q. Note that

[ A1 Az < [ A} - || A2

for any two k X k real matrices A; and As. Also, using the sum (or /1) norm

k
lull = fu] (2.13)
i=1

on R¥ we have
[ Aul] < [|A| - [Jl] (2.14)

for each k x k real matrix A and v € R*. Indeed, we can also define the
matrix norm by

|A|| = max{||Au|| : v € R, ||u|| =1}, (2.15)

using the sum norm in (2.13) in both places on the right. Then (2.12)
becomes a consequence. Consistent with (2.13), we let

||$||— JSup IIw |— ,Sup ZII-T (2.16)
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for z € D([0,T],R*). Combining (2.14) and (2.16), we have
[Az|| < [[All - [l (2.17)

for each k x k real matrix A and z € D([0,7],R¥).
We use the following basic lemma.

Lemma 14.2.5. (reflection matrix norms) For any k x k matriz Q € Q,

IRl <1, llQfl=v<1 (2.18)

and
IT-@ <2 (219)
=15
Example 14.2.1. Need for k-stage contraction. The standard example in
which Q7| =1 forallj,1<j<k—1 has Q};,  =1for 1 <i<k-—1,
QZ,1:7,0<7<1, andQ}fm-:0,2§i§k. Then QF = ~I and

Q| =1. =

We now show that m = 7 g in (2.10) is a k-stage contraction map on Df.
Recall that for € D, |z| denotes the function {|z(¢)| : ¢ > 0} in D, where
2(0)] = (& (D)., |a*(1)]) € RE. Thus, for & € D, [z[" = (ai['...., 2|1,
where |z°|T(t) = supg< < |27 (s)], 0 <t < T

Lemma 14.2.6. (7 is a k-stage contraction) For any Q € Q and wi,ws €

D%,

7" (w1) — 7" (wo) [T < Q" (Jwr —wo|")| for n>1, (2.20)
so that

|7 (w1) — 7" (wo) || < [[Q%]] - [lwr —wall < [lwr —wall (2.21)
forn>1 and

7" (w1) — 7™ (wa) | < llwy —wall for n>k,
where
IQ*l=v<1.

Hence

|7 (w) —¥(x)|| =0 as mn— oo .
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Proof. First,

T |(Quy —:L‘)T\/O— (Quwo —x)TV0|T

(Qui — 2)T — (Quz — 2)T!
|Qui — z — Qo + x|T
Q|’w1 - ’w2|T )

|7 (w1) — 7 (w2)]

IAIAIA

which implies (2.20) for n = 1. We prove (2.20) for arbitrary n by induction.
Suppose that it has been established up to n. Then

|7t (wr) — 7" wo)|T = |(Qn"(w1) — 2)T VO — (Qm(ws) — )T v O
< Qlr™(wr) — 7 (wa)|T < QM wy — woT,

using the induction hypothesis. Finally,

k
lzll =) |2*1(T)
i=1

so that (2.21) follows directly from (2.20). By the Banach-Picard contraction
fixed-point theorem, for any w € D¥,

|7 (w) —w*|| =0 as n — oo

geometrically fast, where w* is the unique fixed point of 7, but by Theorem
14.2.2 that fixed point is 1(z). =

We now establish inequalities that imply that the reflection map is a
Lipschitz continuous map on (D, || - ||). We will use the stronger inequalities
themselves in Section 77.

Theorem 14.2.4. (one-sided bounds) For any Q € Q and z1,z2 € D,
—(I = Q)™ 'm(z1 — w2) < P(x1) = (z2) < (I — Q) 'm(z2 — 1) (2:22)
where 1 (z) = (M (z1), ..., 01 (z¥) with 71 : D' — D' defined by
i (zt) = (#9)TVvO0.
Proof. Use the map 7, in (2.10). Assuming that

n—1

b(z1) < 7, ($(21) + Y Qim(z2 — 31)

1=0
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with 79 being the identity (which is true for n = 0), we have

P(z1) = 7o (P(21) = m(Qp(z1) —21)

< (@ (W) — o+ Qgczimm o)+ (w2 — 1)
< nﬂ@ﬁxwmn»ﬂm+§;Q%mm—xﬂ>

< nﬂQﬁA¢@ﬂ—xﬂ+§;Q%ﬂw—wﬂ

< ) + 3 Qe — 1)

=0

Letting n — 0o, we obtain the second inequality in (2.22). The first inequal-
ity in (2.22) follows by symmetry. =
We also have the following consequence.

k k
Corollary 14.2.1. (more bounds) For any Q € Q, x € D* and w € RY,

0 <9z +w) <p(z) <ple+w) +(I-Q) 'w.

Proof. Apply Theorem 14.2.4, letting x1 =z and zo =z +w. =
As a direct consequence of Theorem 14.2.4, we obtain the desired Lips-
chitz property.

Theorem 14.2.5. (Lipschitz property with uniform norm) For any Q € Q
and 1,12 € D,

I9(@) — bl < 1= Q) llos -
< Y1Q" - las
n=0
< el -l (2.2

where v = ||QF|| < 1, and

l¢(z1) = g(z)l < A+ =Q- T - Q7 Nlles — a2

2k
14— — . 2.24
(1412 ) o -2l (2.21)

A

IA
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Proof. Since

[e's) k—1 o0
>R >IN+ QM
n=0 n=0 n=0

we have

" k
Z“Qn“ < Z HQ “ < 1_

y (2.6) and (2.23),

[p(1) — d(z2)]] 21 — 22l + |1 = QI - [l(z1) — (o)

<
< QHII=QI- I =7 Dllzy — 22 . =

Remark 14.2.2. Alternate proof. Instead of applying Theorem 14.2.4, we
could prove Theorem 14.2.5 by reasoning as in Lemma 14.2.6 to get

75, (0) =7, (O)T < (T + Q4 -+ Q" Vs — ",
which implies that

[9p(z1) — p(x2)|" < (T — Q) |mwy — mof

and then (2.23). =

Remark 14.2.3. Lipschitz constant. The upper bounds in Theorem 14.2.5
are minimized by making @); ; = 0 for all 7,j. Let K* be the infimum of K
such that

|R(z1) — R(z2)|| < K||z1 — z2|| forall zy,z9 € D . (2.25)

We call K* the Lipschitz constant. The bounds yield K* < 2 when @; ; =0
for all 4,7, but the following example in shows that K* = 2 in that case.
Hence K* > 2 in general.

Example 14.2.2. Lower bound on the Lipschitz constant. Let k =1, Q =
0, .Tl(t) = O, 0 S 4 S 1, and o = —I[1/3,1/2) + I[l/?,l] in D([O, 1],R) Then
Y1 = 21 = 71, but yo = Ijy/31) and 22 = 2Ij1/97), so that [|z1 — zof = 2.
Hence K* > 2 for all Q.
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Example 14.2.3. No upper bound on the Lipschitz constant. To see that
there is no upper bound on the Lipschitz constant K* independent of @, let
z1(t) = 0,0 <t <2, and z9 = —I}; 9) in D([0,2],R), so that ||z; — zo| = 1.
Let @ = 1 — ¢, so that (2.6) becomes z = z + ey. Then 29 = 21 = y1 = 21,
but yo = 6_1]—[1,2], so that ||y; — yo|| = ¢7*

Example 14.2.4. No upper bound on the Lipschitz constant for ¢. To see
that the Lipschitz constant for the component map ¢ can be arbitrarily large
as well, consider the two-dimensional example with @11 =1 —¢€, Q21 =1
and QQ,Q = QLQ = 1/2, so that

(- Qt:(—l/z 1/2)'
<t
1,
¢

D(]0, 2], RQ) Then lz1 — :E2|| =1, but z{(t) = z4(t) =0, 0 <t < 2,
2} =€ 1y and 25 = € 'y o), so that [|z; — 2z = €~

We now summarize some elementary but important properties of the
reflection map.

Theorem 14.2.6. (reflection map properties) The reflection map satisfies
the following properties:

(i) adaptedness: For any x € D and t € [0,T], R(x)(t) depends upon z
only via {z(s) : 0 < s < t}.

(#) monotonicity: If 1 < x9 in D, then ¥(x1) > ¥(x2).

(i4i) rescaling: For each x € D([0,T],R¥), n € R, B3 > 0 and v nonde-
creasing right-continuous function mapping [0,T1] into [0,T], n+ B(z o) €
D([0,T}],R*) and

R(n+ Bz o)) = BR(B ' +z)0.
(1v) shift: For allz € D and 0 < t; <ty < T,

P(@)(t2) = p(x)(t1) +(b(2)(t1) + x(tr + ) — x(t1))(t2 — 1)

and
P(x)(t2) = ¢(p(2)(t1) + z(t1 +-) — x(t1)) (22 — 11)
(v) continuity preservation: If x € C, then R(z) € C.
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We can apply Theorems 14.2.5 and 14.2.6 (iii) to deduce that the re-
flection map inherits the Lipschitz property on (D, J;) from (D, U). Unfor-
tunately, we will have to work harder to obtain related results for the M;
topologies.

Theorem 14.2.7. (Lipschitz property with dj, ) For any Q € Q, there ezist
constants K1 and Ky (the same as in Theorem 14.2.5) such that

dy, (P(z1),9(z2)) < K1dy, (z1,22) (2.26)

and
d, (d(z1), p(x2)) < Kady, (21, T2) (2.27)

for all x1,29 € D.

Proof. The argument is the same for (2.26) and (2.27), so we prove only
(2.26). By the definition of d;, and Theorems 14.2.6(iii) and 14.2.5,

d, (P(x1),9(x2))

Aifeljf\{HlP(ivl) oA —1(x2)| VI[IA—ell}
= Aifelﬁ{ﬂiﬁ(ivl o) = tp(xz2)|| V [IA —ell}
)I\Ig/i;{K1||iB1 oA —zo| VA —el}
(K1V 1)y (z1,22) ,

IN

IA

which implies (2.26) because K1 > 1. =

Even when we establish convergence to stochastic-process limits with
continuous sample paths, we need maps on D to be measurable as well as
continuous at £ € C in order to apply the continuous mapping theorem on D.
From Theorem 14.2.5, it follows that the reflection map is measurable with
respect to the Borel o-field associated with the uniform topology (on both
the domain and range), but that does not imply measurability with respect
to the usual Kolmogorov o-field generated by the coordinate projections,
because the Borel o-field on (D, U) is much larger than the Kolmogorov o-
field. Indeed, the Borel o-field on (D, U) tends to be too large, causing severe
measurability problems; see Section 18 of Billingsley (1968). Fortunately,
Theorem 14.2.7 directly implies the desired measurability.

Corollary 14.2.2. (measurability) The reflection map R : D¥ — D% is
measurable, using the Kolmogorov o-field on the domain and range.
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Proof. The continuity established in Theorem 14.2.7 implies measurability
with respect to the Borel o-fields, but the Borel o-field on (D, J;) coincides
with the Kolmogorov o-field generated by the projection map; see Theorem
11.5.2. =

We now want to consider the reflection map R as a function of the
reflection matrix @) as well as the net input function x. We first consider
the maps m = 77, 5(0) in (2.10) and 9 = ¢q in (2.4) as functions of  when
@ is a strict contraction in the matrix norm (2.12), i.e., when ||Q| < 1.

Theorem 14.2.8. (stability bounds for different reflection matrices) Let
Q1,Q2 € Q with ||Q1]] =71 <1 and ||Q2]| =2 < 1. For alln > 1,

172 0, O] < (144« + 47 Yz (2.28)

and
1720, 0) = 720, O < (14t -+ HIELJG =L 5

so that
b, (@) < 17 (2.30)
-

and

b () — igu ()| < 12191 = Qe (2.31)

1 =7)d =)
Corollary 14.2.3. (continuity as a function of Q) If Q,, — Q in Q,
|Rq, (@) ~ Ro(a) -0 as n— oo

for each x € D.

Proof. Apply Theorem 14.2.8, noting that || Q|| = ||Q] f @n — Q. =
We now exploit the fact that any Q € Q can be transformed into another
matrix Q. in Q with ||Q«|| < 1 by letting

Q.=A1QA (2.32)

for a suitable strictly positive diagonal matrix A. We note that a non-
negative matrix ) is in Q if and only if |sp(Q)| < 1, where sp(Q) is its
spectrum (set of eigenvalues) and |sp(Q)| is its spectral radius (supremum
of the eigenvalue norms): There is one real eigenvalue equal to |sp(Q)| and
all other eigenvalues A (in general complex valued) satisfy |A| < |sp(Q)];
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e.g., see Seneta (1981). Next note that the transformation from @ to @, in
(2.32) leaves the eigenvalues unchanged: If A is an eigenvalue of @) with an
associated left eigenvector u, i.e., if u@Q) = Au, then

(uA)Q. = uA (A QA) = (uQA) = A(uA) ,
so that A is also an eigenvalue of (), with left eigenvector uA.

Lemma 14.2.7. (equivalence to a contractive reflection matrix) For any
Q € Q, there exists a positive diagonal matriz A such that ||Q«|| < 1 for Q.
in (2.32).

Proof. By Corollary 14.3.3 in Section 14.3 below, for any u € R¥, the map
7o(v) = (Qu — u)T has a unique fixed point in R¥. Let v be a vector in RF
such that 1+ Qv = v. Necessarily v > 1. Let A = diag(1/v?). Then

Av — Al =A(1+ Qu) — AL,
so that
1-Al=AQu=AQA ' =Q, .

Since0 <1 —-A1<1,||Q« <1. =
By Theorem 14.2.6(iii), we can relate the reflection maps R and R, .

Lemma 14.2.8. (reflections associated with equivalent reflection matrices)
Let @ and Q. be reflection matrices in Q related by (2.32) for some strictly
positive diagonal matriz A. Then

To. (A '2) = A" Ng(z) = {A 'z 2 € Vg(z)}

and
Rg, (A_l.’E) = A_lRQ (z)

for all x € D.

Proof. For any w € VYg(z),
0<z+(I-Quw = z+(I—-AQ.A Hw
= AN 'z 4+ (AATP—AQA Hw
= AA 2+ (I - Q)M w)) ,

so that A~'w € Vo, (A~'z), with w; < wy if and only if A~lw; < A wy,
so that ¥g, (A~1z) = Al4pg(z) and

AMlz=A"z+ (T -Q.)(A "),
so that ¢, (A1z) = A lyg(z). =
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Theorem 14.2.9. (continuity as a function of z and Q) If ||z, — z|| — 0
in D* and Q, — Q in Q, then

|Rg, (zn) — Rg(z)|| = 0 in D .

Proof. By Lemma 14.2.7, we can find a positive diagonal matrix A so
that Q, = A 'QA and ||Q.|| = v < 1. Since Q, — Q as n — 00, ||Qu«l|| =
Y — 7, where Q. = A~'Q,A with the same diagonal matrix used above.
Consider n sufficiently large that v, < 1. Since g« (A1z) = A lypg(x),
for such n we have

19Q. (#n) = (@)l = AL g, (za) — AA g (z)|
< Al 9. (A z0) — q. (A~ )|
< AN (A zs) = 9q,. (A )|
+ Q.. (A1) — 9. (A 2)|)) -
Thus, by (2.30) and (2.31),

%@, (2n) — Po(@)| <

I —, (1_7n)(1_'7)
M. - (1— . _
< 21, (Jon -l 4 L2200 10—
-
for A A
o = 1AM AL

1_7n

Hence,

||¢Qn(37n)—1/’Q($)||—>0 as nNn—>oo. =

14.3. The Instantaneous Reflection Map

In this section we introduce yet another characterization of the reflection
map. We represent the reflection map on D as the limit of reflections of
functions in D, the subset of piecewise-constant functions in D. (Recall
from Section 12.2 that any function in D can be approximated uniformly
by functions in D..) On the subset D., the reflection map reduces to an
iterative application of an instantaneous reflection map on R¥, which is of
interest itself.

The instantaneous reflection map describes how

(¥(0),2(0)) = (¥()(0), 4(=)(0))
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depends upon z(0) and characterizes the behavior of the full reflection map
at each discontinuity point. We will apply the instantaneous reflection map
to establish monotonicity results (in particular, Corollary 14.3.2 below),
which we will in turn apply to establish the M; continuity results. We use
the final Lemma 14.3.4 in the next section to study reflections of parametric
representations.

14.3.1. Definition and Characterization

Let the instantaneous reflection map be Ry = (¢g,%0) : RE — R?* | where
1o : R¥ — RF is defined by

Po(u) = inf{v € RE :u+ (I — Q)v >0}, (3.1)

where u; < up in RF if u} < w) in R, 1 <4 < k. It turns out that the
infimum in (3.1) is attained (so that we can refer to it as the minimum) and
there are useful expressions for it. Given the solution to (3.1), we can define
the other component of the instantaneous reflection map ¢ : RF — RF by

bo(u) = u+ (I — Q)tho(u) . (3.2)

The instantaneous reflection map is a version of the linear complemen-
tarity problem (LCP), which has a long history; see Cottle, Pang and Stone
(1992). Given a vector u € R¥ and a k x k matrix M, the LCP is to find a

vector v € R’i such that
u+ Mv >0 (3.3)

and
vi(lu+Mv); =0, 1<i<k. (3.4)

It turns out that the vector v satisfying (3.1) also satisfies (3.4) for M =
I — @ with Q € Q; see Corollary 14.3.1 below. Moreover, it turns out that
the LCP based on (u,M) has solutions for all vectors u for more general
matrices M than I — @ for ) € Q. Such generalizations provide a basis for
defining reflection maps in terms of other matrices, but we do not pursue
that generalization.

Since the instantaneous reflection map is defined on R* instead of D¥, it
is much easier to calculate. For example, we can calculate v satisfying (3.1)
by solving the linear program

min clv
subject to: u+ (I —Q)v >0 (3.5)

v>0
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for any strictly positive vector ¢ in R¥. We can thus simulate piecewise-
constant approximations to reflected stochastic processes by generating finitely
many linear programs. (We briefly discuss simulation some more at the end
of the section.)

Paralleling the stochastic network example used to motivate the defini-
tion of the reflection map in the beginning of Section 14.2, we can introduce
a discrete-time fluid-network model to motivate the instantaneous reflection
map. At each transition epoch there is an input and a potential output.
We might have an instantaneous nonnegative input vector u; and potential
instantaneous nonnegative output vector us which is routed to other queues
by the stochastic matrix ), so that the overall potential instantaneous net
input is

u=1u; — us + uQ . (3.6)
However, if the potential output us in (3.6) exceeds the available supply, then
we may have to disallow some of the output us. That can be accomplished
by adding a minimal (I — Q%)v to u in (3.6), which gives (3.1). In fact, as we
will show, the instantaneous reflection map in (3.1) and (3.2) is well defined
for any u € R¥, not just for u of the form (3.6).

Given the instantaneous reflection map Ry in (3.1) and (3.2) (which we
have yet to show is well defined), it is straightforward to define the associated
reflection map R on D.. For any z € D., the set of discontinuities is
Disc(x) = {t1,...,tm} for some integer m and some time points ¢; satisfying
andtp=0<1t; <--- <ty <T. Clearly we should have

P(z)(t:) = y(te) = Yo(z(ti1) +z(ti) —z(ti1)) +yltia)  (3.7)
and
¢(z)(t:) = 2(t:) = do(z(ti1) + z(t:) — z(ti-1)) (3-8)
for 0 < i < m, where z(t_1) = y(t_1) = z(t_1) = 0, and we let (y,z) be
piecewise constant with Disc(y, z) = Disc(x).

Theorem 14.3.1. (reflection map for piecewise-constant functions) For all
x € D, the reflection map defined by (3.1), (3.7) and (3.8) is equivalent to
the reflection map in Definition 14.2.1.

Proof. By induction, we can reexpress (3.7) as

y(ti) = tolz(ti-1) + =(ti) — z(ti-1)) + y(ti-1)
= min{v € RY : 2(t;_1) + x(t;) — z(ti1) + (I — Q)v > 0} + y(ti—1)
= min{v € RE : z(t;) + (I — Q)y(ti—1) + (I — Q)v > 0} + y(t;i—1)
= min{v > y(t;—1) : z(t;) + (I — Q)v > 0},
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which corresponds to Definition 14.2.1. =

Since D, is a subset of D, all the theorems in Section 14.2 apply to the
reflection map on D, in (3.7) and (3.8) by virtue of Theorem 14.3.1. The
instantaneous reflection map itself corresponds to the reflection map in (3.7)
and (3.8) applied to constant functions. Thus, from Section 14.2, we already
know that the instantaneous reflection map is well defined. However, we can
deduce additional structure of the reflection map by focusing directly on the
instantaneous reflection map.

We first establish upper and lower bounds on vg(u). For u € R, let

ut=uv0=(u!Vv0,...,uFV0) and u =uA0=(u'A0,...,uF AOD).

Lemma 14.3.1. (bounds on 1y(u)) For any u € R,
0< —(u7) <to(u) <—(I-Q) 'u™ .

Proof. Let v=—(I — Q')"'u~ and note that
ut (I -QY=u—T-QHYI-Q) v =u—u =u">0.

Then, by the definition of 1)y in (3.1), ¥9(u) < v, which establishes the upper
bound. By (3.2),

po(u) = u+ (I — Q")¢po(u) > 0.
Since ¥p(u) > 0 and Q > 0,
to(u) > —u+ Q'po(u) > —u ,

which implies the lower bound. =
We now establish an additivity property of 1.

Lemma 14.3.2. (additivity of o) If 0 < vy < ho(u) in RF, then
’(/)()(U) = Zpo(’u + (I - Q)’Uo) + vy -
Proof. By (3.1),

Po(u) = min{v € RE :u+ (I —Q)v >0}
= min{v €RY :u+ (I —Q)vo+ (I — Q)(v —vp) > 0}
= vp+min{v' €RE 1u+ (I —Q)vo + (I — Q)v >0}
= wvo+o(u+ (I —Q)vy),
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using the condition in the penultimate step. =

We now characterize the instantaneous reflection map in terms of a linear
map applied to the vector (ut, ™) in R?* involving the positive and negative
parts of the vector u. In particular, for any u € R, let

T(u)=u" + Qu~ (3.9)

and let T* be the k-fold iterate of the map T, i.e., T*(u) = T(T*"!(u)) for
k> 1 with T°(u) = u. Note that 7" is a nonlinear function from R¥ to R¥.

Theorem 14.3.2. (characterization of the instantaneous reflection map)
Let uy = T(up_1) for T in (3.9) and ug = u. Then, for any u € R¥,

ub > ub >0 (3.10)
and
0>u, >Q", forall n, (3.11)
so that
U, =0, Up = U >0 and o(up) >0 as n— 0. (3.12)
For eachn > 1,
n—1
tho(w) = = uy + o(un) (3.13)
k=0
and
n—1
un:u—(I—Q)Zu; , (3.14)
k=0

so that 1y in (3.1) is well defined with

po(u) == uy ==Y TF(u)~ (3.15)
k=0 k=0
and
do(u) = Upo = lim T™(u) . (3.16)

n—oo
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Proof. Since u, = u, | + Qu,_; by (3.9), Qu,,_; < u, < u'_,, which
implies (3.10) and Qu,,_; < u, < 0. By induction, these inequalities imply
(3.11). Since Q™ — 0 as n — 00, (3.10) and (3.11) imply the first two limits

in (3.12). By Lemma 14.3.1,

Yo(up) < —(I— Q) u, . (3.17)

Since u,, — 0, (3.16) implies the last limit in (3.12). Formula (3.13) follows
from Lemmas 14.3.1 and 14.3.2 by induction. From (3.9), u, — up—1 =
—(I — Q)u,,_,, from which (3.14) follows by induction. Since to(u,) — 0,
(3.13) implies (3.15), where the sum is finite. Moreover, (3.12)—(3.15) imply
that ueo = u + (I — @)t (u), which in turn implies (3.16). =

We can apply Theorem 14.3.2 to deduce the complementarity property
in (3.4). This corollary provides an alternative proof to half of Theorem
14.2.3.

Corollary 14.3.1. (complementarity) For any u € RF,
¢6(U)¢é(u) =0 forall 1.

Proof. If ¢)(u) > 0, then u, > 0 for all n by (3.10), which implies that
(u;)? = 0 for all n and 4 (u) = 0 by (3.15). On the other hand, if 1§ (u) > 0,
then u} < 0 for some k by (3.15), which implies that (u;)? = 0 for some F,
so that !, = 0 by (3.10). =

Theorem 14.3.2 implies the following important monotonicity property.

Corollary 14.3.2. (monotonicity) If u; < ug in RE, then

do(u1) < do(ug) and po(u1) > tho(us) -

We now apply Corollary 14.3.2 and Lemma 14.3.2 to show that there is
regularity in the reflection map when increments have a common sign in all
coordinates. First, it is elementary that, if > 0 and A > 0 in R¥, then

do(u+A)=u+A and Pu+A)=0.

The situation is more delicate when u > 0 but A »? 0, but we obtain
regularity when A < 0.

In particular, we now consider the instantaneous reflection map Ry ap-
plied to u — > A;, where v > 0 and A; > 0 for all i. We show that the
instantaneous reflection of u — >_1* | A; is the same as the m'? iteration of
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the iterative reflection introducing the increments A; one at a time (in any
order). Specifically, let

uj = go(uj—1 —4;), 1<j<m, (3.18)

with ug = u.

Theorem 14.3.3. (iterations of the instantaneous reflection mapping) If
u >0 and A; >0 for i > 1, then

do(u— Y Ay) = tm (3.19)
i=1
for un, in (3.18) and
¢0(u — Z Az) =Unm = Z on(ui_l — Az) (320)
i=1 i=1

for allm > 1.

Proof. We use induction on m. For m = 1, relations (3.19) and (3.20) hold
by definition. Suppose that (3.19) and (3.20) hold for all positive integers
up to m; we will show that they must also hold for m + 1. By Corollary
14.3.2,

m m+1

0 <dho(u—Y Ai) <tholu— Y A).

=1 i=1

By Lemma 14.3.2,

m+1 m+1
do(u— Y A)=vo(u— > Ai+ (I —QYm) +vm
i=1 =1

for v; = 1po(u — Zgzl A;) for 7 > 1. By the induction hypothesis,

m+1 m

¢0(“_2Ai) = z/)o(qso(u—ZAi)—AmH)ﬂm

= "/)O(Um - Am—f—l) + U = Ut -
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Moreover, by (3.2),

m+1 m+1 m+1

dolu— D A) = u—> A+ (T—-QVo(u— D A
i=1 =1 =1
m—+1

= u— Y Aj+ (T — Q" (Wo(um — Amy1) + vm)

=1
= um —App1+ (I — Q) (o (um — A1)
= Unt1 - ®

It is easy to see that the conclusion of Theorem 14.3.3 does not hold
even for m = 2 and k =1 when A; > 0 and Ay < 0.

Example 14.3.1. Need for common signs. To see the need for having A; >
0 in R* for all ¢ in Theorem 14.3.3, suppose that k = 2, Q is as in Example
14.5.4, u = (1,0), A1 = (3, —1) and AQ = (3, —10). Then ¢0(U—A1 —AQ) =
$o(—5,11) = (0,6), but go(do(u — A1) — Ag)) = (0,7). =

We can also deduce the following alternative characterization of the in-
stantaneous reflection map.

Corollary 14.3.3. (fixed-point characterization) For any u € RF, vp(u)
can be characterized as the unique solution v in R’i to the equation

v=m(v) = (Qu—u)T . (3.21)

Proof. We use the fact that
—Quy = uf — Uy,

drawing on (3.9). Then

n—1 +
(Qb(w) —w* = lim (QZ(—uk)—uo)

n—00
k=0
-1

n +
= lim ( u;—Zuk—u())
n—o0

k=0 k=1

n +
= lim —u+—E U,
n—»00 n k
k=0

= (—¢(u) +(u)" .

3
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By Corollary 14.3.1, the last expression equals (u): If 9*(u) > 0, then
¢*(u) = 0 and (—¢'(u) + ' (u)) = ¢*(u) > 0; if ¢'(u) > 0, then ¢’(u) = 0
and —¢'(u) + ' (u) < 0, so that (—¢*(u) + 9*(u))T = 0 = ' (u). It remains
to establish uniqueness. Suppose that v1 and vy are two solutions to equation
(3.21). Then

lor — w2 = [(Qu1 —u)" — (Quz —u) ™|

< [(Qv1 —u) — (Quz — w)|| = [|Q(v1 — v2|

Suppose that ||z|| = ||Qz||. Then, by induction, ||z|| = ||Q™z]| for all n > 1,
but Q™ — 0 as n — oo, so that we must have z = 0. Hence v; = v and the
solution to (3.21) is unique. =

14.3.2. Implications for the Reflection Map

We can now extend the reflection map defined on D, to D. We can
define R(z) for z € D by

R(z) = lim R(z,) (3.22)

n—oo

for z,, € D, with ||z, —z| — 0.

Theorem 14.3.4. (extension of the reflection map from D, to D) For all
x € D, the limit in (3.22) exists and is unique. Moreover, R is Lipschitz as
a map from (D, | - ||) to (D, |- ||) and satisfies properties (2.4)—(2.6).

Proof. For z € D given, choose z, € D, with ||z, — z|| = 0. Since
|zn —z|| — 0 for z,, € D, ||zp, —Zm|| = 0 as m,n — co. As noted above, we
can deduce the Lipschitz property of R on D. by applying Theorem 14.2.5.
By that Lipschitz property on D, ||[R(z,) — R(zp)|| < K||zn — zm|| — 0.
Since (D, || - ||) is a complete metric space, there exists (y, z) € D such that
|R(zn) — (v, 2)|| = 0. To show uniqueness, suppose that ||z, — z|| — 0 for
j =1,2. Then ||z1, — zon|| = 0 and ||R(z1,) — R(z2,)|| < K||z1n — Ton|| —
0, so that the limits necessarily coincide. Given that z, € D, so that
(Tn, Yn, 2n) satisfy (2.4), (2.6) and (2.11) with |[(zn, Yn, 2n) — (2, ¥, 2)|| = 0, it
follows that (x,y, z) satisfies (2.4), (2.6) and (2.11) too. (If (2.11) were to be
violated for (2%,y") for some 4, then it follows that (2.11) would necessarily be
violated by (z%, %) for some n, because there would exist an interval [a, b] in
[0, T] such that z*(t) > ¢ > 0 for a < ¢ < b and 3'(b) > y'(a).) Alternatively,
since there exists a unique solution to (2.4) and (2.6), it must coincide
with the one obtained via the limit (3.22). To directly verify the Lipschitz
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property on D given the Lipschitz property on D., for any x1,z2 € D, let
Zin, Ton € D, with ||z1, — z1|] = 0 and ||z2, — z2|| — 0. Then, for any
€ > 0, there is an ngy such that

| R(z1) — R(z2)||
K([|lz1 — zinll + |10 — 220l + (220 — 22])
K|z — 22| + 2K (||z1 — 210 + [[720 — 22])
K|z — x| + €

VAN VAN VAN VAN

for all n > ny. Since € was arbitrary, the Lipschitz property is established. =
From Theorems 14.2.6(iv), 14.3.1 and 14.3.2, we have the following re-
sult.

Lemma 14.3.3. (the reflection map at discontinuity points) For any x € D
andt, 0 <t <T,

P(z)(t) = y(t) = Yo(2(t=) + z(t) — z(t-)) + y(t-)

and

$(z)(t) = 2(t) = do(2(t—) + 2(t) — x(t-)) .

We can apply Lemma 14.3.3 to relate the set of discontinuity points of
R(z) to the set of discontinuity points of z, which we denote by Disc(z).

Corollary 14.3.4. (the set of discontinuity points) For any z € D,

Disc(R(z)) = Disc(z) .

Proof. By Lemma 14.3.3, we can write

2(t) = 2(t=) = x(t) —=(t=) + (I = Q)(y(t) —y(t-)) ,

where y'(t) — y*(t—) is minimal, 1 < ¢ < k. If z(t) — z(t—) = 0 (where
here 0 is the zero vector), then necessarily y(t) — y(t—) = 0, which then
forces z(t) — z(t—) = 0. On the other hand, if z(¢) — z(t—) # 0, then we
cannot have both z(t) — z(t—) = 0 and y(t) — y(t—) = 0, so we must have
t € Disc(R(x)). =

We obtain our strongest results for the case in which no coordinate of
z has a negative jump. Let D, be the subset of functions z for which
z(t) —z(t—) > 0 for all ¢.

[R(z1) = R(zin)|| + [ R(21n) — R(z2n) || + | R(2z2n) — R(z2)]]
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Corollary 14.3.5. (stronger result in D) For any z € D, we have ¢(z) €
C, ¢(z) € Di and

¢()(t) — () (t=) = (1) — =(—) -

Finally, we can apply Lemma 14.3.3 and Corollary 14.3.2 to show how
reflections of parametric representations perform. We consider the reflection
map applied to a times the increment as a function of a for 0 < a <1. We
will apply the following lemma in the next section.

Lemma 14.3.4. (instantaneous reflection at discontinuity points) Suppose
that © € D, t € Disc(z) and 0 < a < 1.
(a) If (t) > z(t—), then

p(x,t,@) = o(z(t=) +alz(t) —z(t=)]) +y(t=) = (z,1,0) = y(t—) (3.23)

and
bz, 1, @) = o(2(t—) +ofz(t) —z(t-)]) = $(z,1,0)+afe(t) —z(t-)] (3.24)
for0<a<1.

(b) If z(t) < z(t—) and 0 < a1 < ag <1, then
@B(x,t,al) < @(m,t, )

and R X
¢($7 ta al) Z (,b(l[»', ta C¥2)

for v in (3.23) and ¢ in (3.24).

We conclude this section by further discussing the possibility of using
the instantaneous reflection map to simulate reflected stochastic processes
in D*. Given a stochastic process X, we can approximate it by the associated
discrete-time stochastic process

Xn(t) = X(|nt|/n), t>0,

for some suitably large n. For each n, X,, has sample paths in D.. Given
that X has sample paths in D, it is easy to see that X,, — X in (D, J;)
w.p.1 as n — oco. We simulate X,, for suitably large n by generating the
random vectors X (k/n) — X((k — 1)/n) for & > 1. When X is a Lévy
process, X (k/n) — X((k — 1)/n) for £ > 1 will be IID random vectors with
an infinitely divisible distribution. When X is a stable Lévy motion, the
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random vectors will have a stable law. For discussion about simulation of
stable random vectors and processes, see Janicki and Weron (1993).

Given a sample path of {X(k/n) : kK > 1}, we can calculate the sample
path of the associated reflected process ¢(X,) by solving the linear comple-
mentarity problem (LCP) at each transition epoch k/n. Thus the substantial
literature on LCP can be applied; see Cottle, Pang and Stone (1992). For
example, as noted before, we can use linear programming to solve the LCP,
recognizing that only the trivial calculation associated with v = 0 in (3.1)
occurs whenever u > 0. (See (3.5) above.)

Instead of linear programming, we can also use Theorem 14.3.2 to do
the calculation. We can approximate ¢(u) by T™(u) for the map in (3.9).
Even though the operator T on R* in (3.9) must be applied many times
to calculate each instantaneous reflection, the algorithm can be effective,
because T itself is remarkably simple. By (3.10) and (3.16), " is an upper
bound for ¢(u), where u, = T™(u). Moreover, we can apply (3.17) to bound
the error ||lu; — ¢(u)||. Since

d(u) = d(un) = up + (I — Q)p(uy) ,

lug = d@)ll < Nlun — dlun) | < N1 = QI - I (un) |
< M =QI- I - Q@) gl -

So T™(u) = uy, provides an upper bound on ¢(u) via u," and an upper bound
on the error ||u,} — ¢(u)]| via u,, .

14.4. Reflections of Parametric Representations

In order to establish continuity and stronger Lipschitz properties of the
reflection map R on D with the M; topologies, we would like to have
(R(u), ) be a parametric representation of R(x) when (u, ) is a parametric
representation of z. We now obtain positive results in this direction. Proofs
appear in the Internet Supplement.

Theorem 14.4.1. (reﬂections of parametric representations) Suppose that
z €D, (u,r) € y(z) and r='(t) = [s-(t), s+ (2)].
(a) Ift € Disc(x)¢, then

R(u)(s) = R(z)(t) for s_(t) <s<sy(t) .
(b) If t € Disc(z), then
R(u)(s-(t)) = R(z)(t—) and R(u)(s4(t)) = R(2)(?) .
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(¢) If t € Disc(z) and x(t) > z(t—), then

u!(s) —ul (s (t))

(s4-(£)) — w (s (¢

() = )t-) + ) w0 o)

forany 5,1 <3<k, and
P(u)(s) = P(z)(t—) = P(z)(t) for s (1) <s<si(i),
so that

R(u)(s) € [R(x)(t=), R(x)(#)] for s () <s

IN

sy(t) .

(d) If t € Disc(x) and z(t) < z(t—), then ¢*(u) and ' (u) are monotone
in [s_(t), s4(t)] for each i, so that

R(u)(s) € [[R(z) (1), R(z) ()] for s-(t) <s<si(t) -

We can draw the desired conclusion that (R(u),r) is a parametric rep-
resentation of R(z) if we can apply parts (c) and (d) of Theorem 14.4.1 to
all jumps. Recall that D, (Ds) is the subset of D for which condition (c)
(condition (c) or (d)) holds at all discontinuity points of z. For z € Dy, the
direction of the inequality is allowed to depend upon ¢.

Theorem 14.4.2. (preservation of parametric representations under reflec-
tion) Suppose that x € D and (u,r) € I (x).

(a) If z € Dy, then (R(u),r) € II;(R(z)).

(b) If x € Ds, then (R(u),r) € II,(R(x)).

We also have an analog of Theorems 14.4.1 and 14.4.2 for the case x € D;
and (u,r) € I, (z).

Theorem 14.4.3. (preservation of weak parametric representations) If z €
D; and (u,r) € Iy (x), then (R(u),r) € I, (R(x)).

As a basis for proving Theorem 14.4.1, we exploit piecewise-constant
approximations.

Lemma 14.4.1. (left and right limits) For any x € D., (u,r) € Is(z) and

roi(t) = [s-(8), s+ (1)),
R(u)(s— (1)) = R(z)(t=) and R(u)(s¢(t) = R(z)(t) . (4.1)
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We now show that it is essential in Lemma 14.4.1 to have (u,r) € II;(z)
instead of just (u,r) € I, (z). We also show that we cannot improve upon
Lemma 14.4.1 to conclude that (R(u),r) € I, (R(z)) when (u,r) € II;(z).

Example 14.4.1. Impossibility of improvements. To demonstrate the points
above, let £ € D, and R be defined by

gt =Tjo1) =3I, 2% = Iy + 20

Qt:<g ;), so that I—Qz(_ll 01>

Then z' = 22 = Iip,1y, yl = 31[1,9) and y? = 101} ,9;- To see that the
conclusion of Lemma 14.4.1 fails when we only have (u,r) € I, (z), let a
parametric representation (u,r) in I, (z) be defined by

r(0) =0, r(1/3)=r(2/3) =1, r(1)=2
uwl(0) = w!(1/3) =1, w!(1/2) =u!'(1) = -3 (4.2)
u?(0) = u?(1/2) =1, w?(2/3) =w?(1) =2

with r, u! and u? defined by linear interpolation elsewhere. Notice that
[s—(1), 5+ (1)] = [1/3,2/3], ¢*(u)(1/2) = 0 and ¢*(u)(2/3) =1 > 0 = 2*(1).
Moreover, ¢?(u)(s) = 1 on [2/3,1].

Next, to see that we need not have (R(u),r) € II,(R(z)) when (u,r) €
[Is(z), let r be defined in (4.2) and let the parametric representation (u, )
in II;(x) be defined by

ur(0) = u'(1/3) = 1, w*(2/3) = u'(1) = =3

u?(0) = u?(1/3) = 1, ¥?(2/3) = v?(1) =2

with 7, u!, u? defined at other points by linear interpolation. Clearly (u,r) €
II,(x). Note that u’(s) > 0 for all s < 5/12. Then r(5/12) =1, u!(5/12) = 0
and u2(5/12) = 5/4. Clearly ¢(u)(5/12) = u(5/12) = (0,5/4), which is not
in [[(0,0),(1,1)]], the weak range of z = ¢(x). Further analysis shows that
¢'(u)(s) = 0 for s > 5/12, while ¢?(u) = u? on [0,1/3], ¢?(u)(5/12) = 5/4,
#*(u)(5/9) = $*(u)(1) = 0, with ¢?(u) defined elsewhere by linear interpo-
lation. Similarly, 1 has slope (12,0) over (5/12,5/9) and slope (12,90) over
(5/9,2/3), so that (u)(5/12) = (0,0), $(u)(5/9) = (5/3,0), H(u)(2/3) =
(u)(1) = (3,10) and ¢ is defined by linear interpolation elsewhere. =
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14.5. M; Continuity Results and Counterexamples

In this section we establish positive results and give counterexamples
showing that candidate stronger results do not hold.

14.5.1. M; Continuity Results

We first state continuity and Lipschitz properties of the reflection map on
D = D* = D([0,T],RF) with the M; topologies. Our first result establishes
continuity of the reflection map R (for an arbitrary reflection matrix @) as
a map from (D, SM;i) to (D, L), where L; is the topology on D induced
by the L1 norm

lallz, = /0 le(t)llde (5.1)

Under a further restriction, the map from (D, W M) to (D, W M) will be
continuous.

Recall that D, is the subset of functions in D without simultaneous
jumps of opposite sign in the coordinate functions; i.e., x € Dy if, for all
t € (0,T), either z(t) —z(t—) < 0 or z(¢t) — z(t—) > 0, with the sign allowed
to depend upon t. The subset Dy is a closed subset of D in the J; topology
and thus a measurable subset of D with the SM; and W M; topologies (since
the Borel o-fields coincide). The proofs of the main theorems here appear
in Section 8.5 of the Internet Supplement.

Theorem 14.5.1. (continuity with the SM; topology on the domain) Sup-
pose that x, — x in (D, SM).

(a) Then
R(z,)(tn) = R(z)(t) in R* (5.2)
for each t € Disc(z)¢ and sequence {t, : n > 1} with t, — t,
sup ||R(z,)|| < oo, (5.3)
n>1
R(zp) — R(z) in (D, L) (5.4)
and
P(@n) = (x) in (D,WM) . (5.5)
(b) If in addition x € Dy, then
so that

R(z,) — R(z) in (D,WM) . (5.7)
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Under the extra condition in part (b), the mode of convergence on the
domain actually can be weakened. However, little positive can be said if
only z,, —» z in (D, W M) without z € D;; see Example 14.5.3 below.

Theorem 14.5.2. (continuity with the WM; topology on the domain) If
Zn =z in (D, WM,) and x € Dy, then (5.7) holds.

Remark 14.5.1. Gibbs phenomenon. Interestingly, the limit of ¢(xy,)(t,)
for t, — t € Disc(x) can fall outside the product segment [[¢(z)(t—), d(z)(¢)]];
see Example 14.5.4 below. Thus the asymptotic fluctuations in ¢(z,) can
be greater than the fluctuations in ¢(z). The behavior here is analogous

to the Gibbs phenomenon associated with Fourier series; see Chapter 9 of
Carslaw (1930) and Remark 5.1 of Abate and Whitt (1992a).

Example 12.3.1 shows that convergence z,, — z can hold in (D, W M)
but not in (D,SM;) even when z € Ds;. Thus Theorems 14.5.1 (a) and
14.5.2 cover distinct cases. An important special case of both occurs when
z € D, where D; is the subset of z in D with discontinuities in only one
coordinate at a time; i.e., x € Dy if t € Disc(z?) for at most one i when
t € Disc(z), with the coordinate 7 allowed to depend upon ¢. In Section 12.7
it is shown that W M; convergence x,, — x is equivalent to SM; convergence
when x € D;.

Just as with D; above, D is a closed subset of (D, J;) and thus a Borel
measurable subset of (D, SMj). Since D; C Dj, the following corollary to
Theorem 14.5.2 is immediate.

Corollary 14.5.1. (common case for applications) If z,, — z in (D, W M)
and x € Dy, then R(z,) — R(z) in (D, WM).

We can obtain stronger Lipschitz properties on special subsets. Let
D, be the subset of z in D with only nonnegative jumps, i.e., for which
z'(t) — z*(t—) > 0 for all s and t. As with D, and D; above, D, is a closed
subset of (D, J;) and thus a measurable subset of (D, SM;).

Theorem 14.5.3. (Lipschitz properties) There is a constant K (the same
as associated with the uniform norm in (2.25)) such that

ds(R(xl),R(.Tz)) S de(.’l,‘l,wg) (58)
for all x1,z9 € D, and
dyp(R(z1), R(22)) < dw(R(z1), R(z2)) < Kdy(z1,22) < Kdg(z1,22) (5.9)

for all x1,z9 € Dy.
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We can actually do somewhat better than in Theorem 14.5.1 when the
limit is in D4.

Theorem 14.5.4. (strong continuity when the limits is in D) If
T, =z in (D,SM), (5.10)
where x € D, then
R(z,) — R(x) in (D,SM) . (5.11)

Our final result shows how the reflection map behaves as a function of
the reflection matrix ), as well as x, with the M7 topologies.

Theorem 14.5.5. (continuity as a function of (z, Q)) Suppose that Q, — Q
" Q(a) If , — x in (D¥, WMj) and z € Dy, then
R, (zn) = Rg(z) in (D*, WMy) . (5.12)
(b) If x, — x in (D*,SM) and x € D, then
R, (zn) — Rg(z) in (D?*,SM) . (5.13)

We can apply Section 12.9 to extend the continuity and Lipschitz results
to the space D([0,00), RF).

Theorem 14.5.6. (extension of continuity results to D([0,00),R¥)) The
convergence-preservation results in Theorems 14.5.1, 14.5.2 and 14.5.4 and
Corollary 14.5.1 extend to D([0,00), R¥).

Proof. Suppose that z,, — z in D([0, 00), R¥) with the appropriate topol-
ogy and that {t; : j > 1} is a sequence of positive numbers with ¢; €
Disc(z)¢ and t; — oo as j — oo. Then, r4;(z,) — 74;(x) in D([0, o0), RF)
with the same topology as n — oo for each j, where r; is the restriction map
to D([0,],R¥). Under the specified assumptions,

rt; (R(zn)) = Ry, (re; (zn)) — Ry (re; (z)) = 1t; (R(T)) (5.14)

in D([0,t,], R?*) with the specified topology as n — oo for each j, which

implies that
R(z,) — R(z) in D(]0,00), R%) (5.15)

with the same topology as in (5.14). =
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Theorem 14.5.7. (extension of Lipschitz properties to D([0, 00), R¥)) Let
R : D([0,00),R¥) — D([0,00),R?*) be the reflection map with function
domain [0,00) defined by Definition 14.2.1. Let metrics associated with do-
main [0,00) be defined in terms of restrictions by (9.1) in Section 12.9. Then
the conclusions of Theorems 14.2.5, 14.2.7 and 14.5.3 also hold for domain
[0, 00).

Proof. Apply Theorem 12.9.4. =

14.5.2. Counterexamples

We now return to the space D([0, 7], R¥) and present several counterex-
amples. We first show that the reflection map is actually not continuous on
D([0,T],R!) with the SM; topology. (This would not be a counterexample
if we restricted attention to the component ¢ mapping z into z in (2.6) or,
more generally, the W M; topology were used on the range.)

Example 14.5.1. Not continuous on (D,SM;). To show that
R=(y,9): (D([0,2],R"), SMy) — (D([0,2], R?), SM;1)
is mot continuous, let
Tp(t) =1 —2n(t — 1)1 140-1)(t) — 2111101 9(2)

and
(

It is easy to see that d(x,,z) — 0 as n — oo,
zn(t) =1 =2n(t — 1)1 142n)-1)(t) ,

yn(t) = 2n(t — (1 + 2n) " N4 @n)-1 140-1) () + Iipn—1,9(8)
z(t) = Ijp,1)(t) and y(t) = I o(t) -
We use the fact that any linear function of the coordinate functions, such

as addition or subtraction, is continuous in the SM; topology; see Section
12.7. Note that z(t) + y(t) = 1, 0 < ¢ < 2, while

2 (t)+yn(t) = 1=2n(t—1)I1 14 (on)-1)(8)+2n(t— (14+(2n) ) 14 20)-1,140-11 (1)

so that d(z, + yn, 2 +y) # 0 as n — oo, which implies that (z,,y,) /2 (2,7)
as n — oo in D([0,T],R?) with the SM; metric. However, we do have
d(zn,z) — 0 and d(yn,y) — 0 as n — oo, so the maps from z to y and z
separately are continuous. =
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Example 14.5.1 suggests that the difficulty might only be in simultane-
ously considering both maps 1 and ¢. We show that this is not the case by
giving a counterexample with ¢ alone (but again in two dimensions).

Example 14.5.2. ¢ is not continuous on (D?,SM;). We now show that
¢: (D([Oa 2]1R2)7 SMI) - (D([Oa 2]5 R2)1 SMl)

is not continuous. We use the trivial reflection map corresponding to two
separate queues, for which @ is the 2 x 2 matrix of 0’s. Let z. be as in
Example 14.5.1, i.e.,

.T,}L(t) =1- 2n(t - 1)1[1,1+n_1)(t) - 2I[1+n—1,2] (t)
and let

zp () = 2 = 3n(t — D)1 14p-1)(8) = 31101 .2)(2) -
It is easy to see that ds((z),72), (z',z%)) — 0 as n — oo, where

.’El(t) =1- 2][1,2] (t) and .T2(t) =2— 3[[1,2](t) .

(The same functions r,, and 7 can be used in the parametric representations
of the two coordinates.) Clearly ¢((z!,z?%)) = (2!, 2?), where

2'(t) =Ijpy)(t) and 2°(t) = 200 (t) ,
while

zrlz(t) = 1-2n(t- 1)1[1,1+(1/2n))(t)

Note that 22!(¢) — 22(¢) = 0, 0 < ¢ < 2, while
2201+ (2n) ) —22(1+(2n) 1) = =221+ (2n) 1) =—-1/2 forall n.

Hence ds (22} — 22,221 — 22) /4 0so that ds((z;, 22), (21, 22)) /A 0 as n — oo.
However, in this example, ¢ is continuous if we use the W M; topology on

the range. =

We now show that the reflection map is not continuous if the W M,
topology is used on the domain without imposing extra conditions.



14.5. M, CONTINUITY RESULTS 589

Example 14.5.3. The difficulty with the W My topology on the domain.
We show that neither 1 nor ¢ need be continuous when the W M; topology
is used on the domain, without extra conditions. Consider D([0, 2], R?) and
let z! = It 9) z? = —21[1 9] and

0 1/2
@= ( /2 0 ) '

Then the reflection map yields y'(t) = ' (z)(t) = 2'(t) = ¢'(z)(t) = 0,
0 <t<2 fori=12andqy? = %(z) = 2I;; 5. Let the converging
functions be z. = Iiyp-19) and T2 = —2Iy p-19 for n > 1. It is easy
to see that x, — = as n — oo in WM; but that z, A x as n — oo in
SM;, because (2r) + 22)(1) = —2, while (2z! + 22)(t) =0, 0 <t < 2. The
reflection map applied to z,, works on the jumps at times 1—n~! and 14n~!
separately, yielding yrlz = (4/3) [1-n-1,2]) Y (8/3) [1—-n—1,2]» zrlz = I[1+n—1,2]
and 22(t) = 0,0 <t < 2. Clearlyzn A2t andyn 74>y asn — oofori=1,2
for any reasonable topology on the range. In particular, conclusions (5.2)
and (5.4) — (5.7) all fail in this example.

Moreover, when we choose suitable parametric representations (uy,r,) €
Iy (zyn) and (u,r) € I, (z) to achieve z,, — = in WMy, (R(u),r) is not a
parametric representation for R(z). To be clear about this, we give an exam-
ple: We let all the functions uy, rp, u and r be piecewise-linear. We define
the functions at the discontinuity points of the derivative. We understand
that the functions are extended to [0, 1] by linear interpolation. Let

r(0) =0, r(0.2) =r(0.8) =1, r(1) =2,

u'(0) =u'(0.4) =0, w'(0.8) =u'(1) =1,

u?(0) = u*(0.2) = 0, w*(0.4) = u’(1) = —

m(0) =0, 7, (021 —n™ 1)) =7, (022 —n"") =1-n"",
(022 4+n1) =rp (024 +n71)) =14+n7L r(1) =2,
ul (0) = 1(0 224+n71) =0, uh (024 +n"H) =ul(1) =1,
u(0) = u2(0.2(1 —n~") =0, u2(0.2(2 —n"") =u2(1) = —2.
) €

n

This construction yields (uy,r, I, (z ) n > 1, (u,r) € Iy(z), but
(¢ (u), 7) & (¢! (), because ¢! (z)(t) =0, 0 < ¢ < 2, while ¢ (u)(1) = 1.
Note that (u,r) € I, (z), but (u,r) & II;(z ) .

We now show that we need not have R(z,) — R(z) in (D, W M;) when
zn — z in (D,SM;) without the extra regularity condition z € Ds. A
difficulty can occur when z'(t) — z*(t—) > 0 for some coordinate i, while
29 (t) — 27(t—) < 0 for another coordinate j.
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Example 14.5.4. Need for the condition x € Ds. We now show that the
condition £ € D; in Theorem 14.5.1 is necessary even when x, — z in
(D,SM;). In our limit z = (z',22), 2! has a jump down and z? has a
jump up at ¢ = 1. Our example is the simple network corresponding to two
queues in series. Let z = (z',22) and z, = (z1,22), n > 1, be elements of

D([0,2],R?) defined by

20 =2i(1) =1, al(l+nl)=zi(2) = -3

20)=a2(1) =1, a2(1+nY)=a2(2)=2,

with the remaining values determined by linear interpolation. Let the sub-
stochastic matrix generating the reflection be

Qt:(g é), so that I—Q:(_ll (1))

Then Zl = 22 = I[0,1)7 yl = 3_[[1,2],:1;2 = I[LQ] and
2(0) = z5(1) =1, z(1+(4n) 1) = 2,(2) =0
22000 = 22(1) =1, 22(1+ (4n)~1) =5/4, 22(1+2(3n)"1) = 22(2) = 0

with the remaining values determined by linear interpolation. Since z2(1 +
(4n)~1) = 5/4 for all n and 2%(t) < 1 for all ¢, 22 fails to converge to 22 in
any of the Skorohod topologies. We remark that the graphs Gy, of ¢(zn)
do converge in the Hausdorff metric to the graph Gy, of #(z) augmented
by the set {1} x [1,5/4]. This example motivates considering larger spaces
of functions than D, which we discuss in Chapter 15.

14.6. Limits for Stochastic Fluid Networks

In this section we provide concrete stochastic applications of the convergence-
preservation results for the multidimensional reflection map.

We consider the single-class open stochastic fluid network with Marko-
vian routing introduced in Section 14.2.
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Recall that the stochastic fluid network is characterized by a four-tuple
{C,r,Q, X(0)}, where C = (C!,...,C*) is the vector of exogenous cumula-
tive input stochastic processes at the k stations, 7 = (r!,..., %) is the vector
of potential output rates at the stations, P = (P; ;) is the routing matrix and
X(0) = (X*(0),...,X*(0)) is the nonnegative random vector of initial buffer
contents. The stochastic processes C? = {C7(t) : t > 0} have nondecreasing
nonnegative sample paths; C7(t) represents the cumulative input at station
j during the time interval [0,t]. A proportion P; ; of all output from station
1 is routed to station j, while a proportion p; = 1— Z?Zl P, j is routed out of
the network. We assume that P is substochastic so that P;; > 0,1 <j <k,
and p; > 0, 1 <1 < k. Moreover, we assume that P"* — 0 as n — oo, where
P" is the n'" power of P. The associated reflection matrix is the transpose
Q=P

As a more concrete example, suppose that the exogenous input to station
j is the sum of the inputs from m; separate on-off sources. Let (j,%) index
the i*" on-off source at station j. When the (4,4) source is on, it sends
fluid input at rate A;;; when it is off, it sends no input. Let B;;(t) be the
cumulative busy (on) time for source (j,i) during the time interval [0,1].
Then the exogenous input process at station j is

mj
CI(t) = XaBja(t), t>0.
i=1

Since Bj; necessarily has continuous sample paths, the associated exogenous
cumulative input processes C7 and C also have continuous sample paths in
this special case.

In general, given the defining four-tuple (C,r, @, X(0)), the associated
RF-valued potential buffer-content process (or net-input process) is

X(t) = X(0)+CF) — (I—Q)rt, t>0. (6.1)

where @ is the transpose P?. Since C7 has nondecreasing sample paths for
each j, the sample paths of X are of bounded variation. In many special
cases, the sample paths of X will be continuous as well.

The buffer-content stochastic process Z = (Z1,...,Z*) is simply ob-
tained by applying the reflection map to the potential buffer-content process
X in (6.1), in particular,

7= ¢(X) (6.2)

where R = (9, ¢) in (2.4)—(2.6). Again, we regard (6.2) as the definition.
This stochastic fluid network model is more elementary than the queue-
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length processes in the queueing network in the following Section 14.7, be-
cause here the content process of interest Z is defined directly in terms of
the reflection map, requiring only (6.1) and (6.2).

We now want to establish some limits for the stochastic processes. First,
we obtain a model continuity or stability result.

14.6.1. Model Continuity

For this purpose, we consider a sequence of fluid network models in-
dexed by n characterized by four-tuples (Cy, ry, Qn, X5 (0)). Let = denote
convergence in distribution.

Theorem 14.6.1. (stability for stochastic fluid networks) If
(Cn, X (0)) = (€, X(0))

in D(]0,00),R¥F) x R¥, where the topology is either SMy or WMy, rp — T
and @, — Q in Q as n — oo, then

(X0, Yn, Zn) = (X,Y,Z) as n—oo in D([0,00),R%*),

with the same topology, where X,, and X are the associated potential buffer-
content processes defined by (6.1), Y, and Y are the associated regulator
processes, and Z, and Z as the associated buffer-content processes, with

R(Xn) = (@[)(Xn)a(ﬁ(Xn)) = (YmZn)a n>1.

Proof. Apply the continuous mapping theorem with the continuous func-
tions in (6.1) and (2.4)—(2.6), invoking Theorem 14.5.5 and Corollary 14.2.2.
Note that C,,, C, X,, and X have sample paths in D . First apply the linear
function in (6.1) mapping (Cy, 7, Qn, X, (0)) into X,;; then apply R map-
ping X, into (Y, Z,). For the special case of common @), we can invoke
Theorem 14.5.3 instead of Theorem 14.5.5. =

Remark 14.6.1. Sufficient conditions for SMy convergence. If P(C €
Dy) =1, ie.,if _ _
P(Disc(C*) N Disc(C?) =¢) =1 (6.3)

for all 4,5 with 1 < 4,5 < k and ¢ # j, then the assumed SM; convergence
C, = C is implied by W M7 convergence. Since C,, and C' have nondecreas-
ing sample paths, the condition C? = C? D([0,00), R, M;) is equivalent to
convergence of the finite-dimensional distributions at all time points ¢ for
which P(t € Disc(C?)) = 0, where Disc(C?) is the set of discontinuity points
of C*; see Corollary 12.5.1. =
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Remark 14.6.2. The case of continuous sample paths. As we have indi-
cated, it is natural for the cumulative input processes C, to have continuous
sample paths, but that does not imply that the limit C' necessarily must have
continuous sample paths. If C does in fact have continuous sample paths,
then so do X, Y and Z. Then, the SM; topology reduces to the topology
of uniform convergence on compact subsets. =

We can also obtain a bound on the distance between (X,,,Y,, Z,) and
(X,Y, X) using the Prohorov metric 7 on the probability measures on (D, SM).
For random elements X; and Xo, let (X7, X2) denote the Prohorov metric
in (2.2) applied to the probability laws of X; and Xs. The conclusion for
the case of common @) then is:

Corollary 14.6.1. (bounds on the Prohorov distance) For common Q,
there exists a constant K such that

T((Xn, Yo, Zn), (X, Y, Z)) < K7((Cn, Xn(0)), (C, X(0))) .
Proof. Apply Theorems 3.4.2 and 14.5.3. =

14.6.2. Heavy-Traffic Limits

We also can obtain heavy-traffic FCLTs for stochastic fluid networks
by considering a sequence of models with appropriate scaling. The scaling
allows for on-off sources with heavy-tailed busy-period and idle-period dis-
tributions, as in Section 8.5. The scaling also allows for strong dependence
in the input processes.

Theorem 14.6.2. (heavy-traffic limit) Consider a sequence of stochastic
fluid networks {(Cp,Tn,Qn, Xn(0)) : n > 1}. If there exist a constant H
with 0 < H < 1, an R¥-valued random vector X(0), vectors a,, € R, n > 1,
and a stochastic process C such that

(Cn, X, (0)) = (C,X(0)) in D([0,00),RF, WM;) x R¥ | (6.4)

where
Cn(t) =n H(Cy(nt) —apnt), t>0,
P(CeD,) =1, (6.5)

and
nl_H[an — (I —=Qn)rn] ¢ in RF ,
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then
(Xna Yﬂa Zn) = (X7 Ya Z)

in D([0,00),R¥, SM1) x D([0,00), R W M), where
(X, Yo, Z,) (1) = n~H (X, (nt), Yn(nt), Zy(nt)), t>0

X(t) =X(0)+C(t)+ct, t>0,
and (Y,Z) = R(X) for R in (2.4)—(2.6).

Proof. Since
n~H X, (nt) = n [ X, (0) + [Cp(nt) — cpnt] + [apnt — (I—Q%)rpnt], t>0,

X, =X in (DF,SM).

The proof is completed by applying the continuous mapping theorem, using
Theorem 14.5.5. For common @), we could use Theorem 14.5.2. =

Remark 14.6.3. Convenient sufficient conditions. In order for conditions
(6.4) and (6.5) to hold, it suffices to have X,,(0) be independent of {Cy(t) :
t > 0} for each n,

X,(0) = X(0) in R*,

and {Ci(t) : t > 0}, 1 < i < k, be k mutually independent processes for
each n, with

C, = C' in D([0,00),R',M;) for 1<i<k,

where P(t € Disc(C?)) = 0 for all i and ¢ (so that C* has no fixed discon-
tinuities). Then, almost surely, the limit process C has discontinuities in
only one coordinate at a time. Then convergence in the W M; topology is
actually equivalent to convergence in the SM; topology.

Remark 14.6.4. Convergence in the L1 topology under weaker conditions.
If condition (6.5) does not hold, but the limit in condition (6.4) holds in the
SM, topology, then we obtain the limit (Y, Z,) = (Y, Z) in D([0, c0), R%¥)
with the L, topology instead of the W M; topology, by Theorem 14.5.1(a).

Remark 14.6.5. The special case of Lévy processes. In many applications
the limiting form of the initial conditions can be considered deterministic;
i.e. P(X(0) =) =1 for some z € R¥. Then (Y,Z) is simply a reflection
of C, modified by the deterministic initial condition z and the deterministic
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drift ¢t. In Chapter 8 conditions are determined to have the convergence
Ci = C'. Then C' is often a Lévy process. When C is a Lévy process, Z
and (Y,Z) are reflected Lévy processes. In some cases explicit expressions
for non-product-form steady-state distributions have been derived; see Kella
and Whitt (1992a) and Kella (1993, 1996). =

Remark 14.6.6. Eziensions. Clearly, we can obtain similar results for
more general models by similar methods. For example, the prevailing rates
might be stochastic processes. The potential output rate from station j at
time ¢ can be the random variable R;(t). Then the net-input process in (6.1)
should be changed to

X(t)=X(0)+C1) - (I-Q"N8(1), t>0,

where S = (S1,...,S¥) is the RF-valued potential output process, having
. t .
Si(t) = / Ri(u)du, 1>0.
0

Similarly, with the on-off sources, the input rates during the on periods might
be stochastic processes instead of the constant rates A;; in (4.1). Extensions
of Theorems 14.6.1 and 14.6.2 are straightforward with such generalizations,
but we must be careful that the assumptions of Theorems 14.5.1-14.5.4 are
satisfied. =

As in Corollary 14.6.1, we can extend the heavy-traffic limit theorem to
obtain bounds on the Prohorov distance m beween the probability laws of
the random elements of the function space Dj.

Corollary 14.6.2. (bounds on the Prohorov distance in the heavy-traffic
limit) Suppose that Qn = Q, X, (0) =0 and

an=(I—Q)rn+n 19a
for all n. If eqnF4a holds, then there exists a constant K such that
W((Xn,Yn, Zn)a (X7 Y7 Z)) S KT‘-(C'IZ’ C) ’

where the SMy metric ds on D is used on the domain and the W My product
metric d, on D is used on the range.

Proof. Apply Theorems 3.4.2 and 14.5.3. =
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14.7. Queueing Networks with Service Interruptions

In this section we apply the continuous mapping theorem with the multi-
dimensional reflection map to obtain heavy-traffic limits for single-class open
queueing networks, where the queues are subject to service interruptions.
With light-tailed distributions (having finite variance) and with ordinary
(fixed) service interruptions, we obtain convergence to multidimensional re-
flected Brownian motion (RBM). However, with either heavy-tailed distri-
butions or rare long service interruptions (or both), we obtain convergence
to a limit process with jumps in the space (D,W M;) under appropriate
regularity conditions.

14.7.1. Model Definition

The model we consider has k single-server queues, each with unlimited
waiting space and the first-come first-served service discipline. Customers
arrive at each queue, receive service and then are routed to other queues or
out of the network. The servers at the queues are subject to service interrup-
tions, which occur exogenously. When an interruption occurs, service stops.
When the interruption ends, service resumes on the customer that was in
service when the interruption began. The customer’s remaining service time
is the same as it was when the interruption began.

We now specify the basic random elements of the model. Let A7(¢) be
the cumulative number of customers that arrive at queue j from outside
the network in the interval [0,#] and let S7(¢) be the cumulative number of
customers that are served at queue j during the first ¢ units of busy time at
that queue. (For the stochastic fluid network in Section 14.6, the exogenous
input process A7 assumed arbitrary real-values and often had continuous
sample paths. In contrast, here A7 and S7 are counting processes with values
in the nonnegative integers.) Successive service times are thus associated
with the queue instead of the customer. We call A = {A7 : 1 < j < k}, where
Al ={AI(t):t>0},and S = {87 :1 < j <k}, where §7 = {S7(t) : t > 0},
the arrival process and service process, respectively.

The routing of customers is determined by sequences of indicator vari-
ables {x;j(n) :n >1},1<i<kand1<j <k Wehave x;;(n)=1Iif
the n'® departure from queue i goes next to queue j. It is understood that
Xi,j(n) = 1 for at most one j, and if x; ;(n) = 1, then x;;(n) = 0 for all /
with [ # j. There is one other alternative: We can have yx; j(n) = 0 for all
4, 1 < j <k, which indicates that the n'" departure from queue 7 leaves the
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network. For each pair (i, 7), let
.« . n
R"(n) = in,j(l), n>1.
=1

Clearly, R/ (n) is the total number of customers immediately routed from
i to j among the first n departures from queue i. We call R = {R" : 1 <
i <k,1<j <k} with R% = {R"(n) :n > 1} the routing process.

Let the service interruptions be specified by sequences {(u},, d) : n > 1}
of ordered pairs of positive random variables, 1 < j < k. The variable uj,
specifies the duration of the n'™® up time (activity period) at queue j, while
the variable d}, specifies the duration of the n'® down time (inactivity period
or interruption) at queue j. To be concrete, we assume that the queues all
start at the beginning of the first up time. Then the epoch beginning the
(n+ 1)% up period at queue j is

n
T) =) (ul+d), n>1, T=
=1

We assume that T — oo w.p.1 as n — oo for each j, so that there are only
finitely many interruptions (up-down cycles) in any finite time interval.

Now define server-availability indicator processes I' = {I7 : 1 < j < k},
where I/ = {I/(t) : t > 0} with I/(t) = 1 if server j is up at time ¢ and
I’(t) = 0 if server j is down. Then we have

| 1 if T <t<Ti+ul,
r(t) =
0 if T]+ul,, <t<T!,
for some n.

We focus on the queue-length process Z = {Z7 : 1 < j < k} with
ZJ) = {Z)(t) : t > 0}, where Z/(t) is the number of customers at queue
j at time ¢ (including the one in service if any). We define Z in terms of
the model data, but the initial queue length must be included in the model
data. Let Z7(0) be the initial queue length at queue j, 1 < j < k, and let
Z(0) = (Z4(0),..., Z*(0)).

Thus the model data are the arrival process A, service process S, routing
process R, server-availability indicator process I and the initial queue-length
vector Z(0). We assume that the sample paths of A and S are right contin-
uous (as well as nonnegative and nondecreasing), so that (A4, S, R, I, Z(0))
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is a random element of
DF x D* x D¥ x DF x RF = D13k x RF

where D! = D([0, ), R).

We now construct associated stochastic processes that describe the model
behavior. First let U’(t) and D’ (t) represent the cumulative up time and
down time, respectively, at station j during the interval [0,¢]. These are
defined by

) t
Uj(t) E/O l{Ij(s)ZI}dS’ t Z 0 ,

and

Di(t)y=t-U’(t), t>0,
where 14 is the indicator function of the event A, ie., 14(z) =1ifz € A
and 14(z) = 0 otherwise. Let B7(t) be the cumulative busy time of the
server at queue j during the interval [0,%], i.e., the total amount of time
during [0, ¢] that the server at queue j is serving customers. The busy-time
process will be expressed in terms of the model data below. Then

YI(t) = U (t) — B/ (t), t>0, (7.1)
is the cumulative idle time of the server at queue j. Thus,
Bi(t)+YIt)+Di(t)=t, t>0, (7.2)

We can now define the queue-length process as

k
Zi(t) = Z7(0) + AT (t) + Y _ RM(SU(B(t)) — SU(BI(t)), t>0, (7.3)

=1

for 1 < j < k. Note that S7(B’(t)) gives the actual number of departures
from queue j during [0,¢], so that (7.3) expresses the basic conservation of
customers at each queue: The number of customers present at time ¢ equals
the initial number there plus the arrivals (external plus internal) minus the
departures.

To complete the process definition, we still need to specify the busy-time
process B. Since the FCFS discipline is used (any work-conserving discipline
would suffice here), we must have

. t
Bi(t) = /0 L2 5y50.05 (5115 - (7.4)

In (7.3) and (7.4) we have defined Z in terms of B and B in terms of Z.
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Theorem 14.7.1. (existence and uniqueness) There ezists a unique solu-
tion (Z, B) to equations (7.3) and (7.4). Equations (7.3) and (7.4) determine
a measurable mapping from D¥’ T3k xR* to D?* taking (A,S,R,I,Z(0)) into
(Z, B), using the Kolmogorov o-field on all D spaces.

Proof. Existence and uniqueness follow by doing an induction on the tran-
sition epochs of (A, S,I). (There necessarily are only finitely many such
transitions in any bounded interval.) From (7.4), it follows that the sample
paths of B are Lipschitz and thus continuous. Hence the sample paths of
(B, Z) do indeed belong to D?*. Finally, since (Z, B) over any interval [0, ]
depends only upon Z(0) and finitely many transitions of (A4, S, I) over [0, 1],
the map is measurable using the Kolmogorov o-field on all D spaces. =

We now want to show that the process pair (Y, Z) can be represented as
the image of the reflection map applied to an appropriate potential net-input
process X. For that purpose, let A = (A',...,\¥) and p = (p',..., u¥) be
nonnegative vectors in R* and let P = (P, ;) be a k x k nonnegative matrix.
We think of M as the long-run arrival rate to queue j, 1/u’ as the long-
run average service time at queue j, and P; ; as the long-run proportion of
departures from queue ¢ that are routed immediately to queue j, but these
definitions are not yet required. For each ¢ > 0, let

k
A (1) = Nt + ) [RY(SU(B (1)) — PiiS'(B'(1))]

&) = _
k
+ Z Pij[S*(B'(t)) — w'B'(t)] - [S/(B’(t)) — 1’ B (1)],(7.5)
k k
Pl = (Aﬂ' SRS uP> t4 D) = S PLDE)  (7.6)
and
X (t) = Z2(0) + & () + (1), 1<j<k. (7.7)

Let diag(p) be the k x k diagonal matrix with u° the (4,i) element.

Theorem 14.7.2. (reflection map representation) For all nonnegative vec-
tors A\, u € R* and all nonnegative k x k matrices P with P' = Q € Q,

Z =¢(X) and (X)=diag(pn)Y (7.8)

for Z in (7.3), X in (7.7), Y in (7.1) and (¢, p) the reflection map in
Definition 14.2.1 associated with the column-substochastic matriz Q = P;
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i.e.,
ZI(t) = XI(t) + Y (¢) ZPMM Yi(t), t>0, (7.9)
or, equivalently,
Z =X+ - Q)diag(p)Y (7.10)
and ©
/ Zi)dYIi(t) =0, 1<j<k, wp.l. (7.11)
0

Proof. First, (7.9) follows directly from the definitions (7.1)—(7.3) and
(7.5)—(7.7) by adding and subtracting. Since Z(t) > 0 and

| Z0arn = [ Z01me-anemnt
we have (7.11) as well. Theorem 14.2.3 implies that (7.9) and (7.11) are
equivalent to (7.8). =

14.7.2. Heavy-Traffic Limits

To establish heavy-traffic limits, we consider a sequence of models in-
dexed by n. As n — oo, we will let the traffic intensity at queue j in
model n, p}, approach the critical value 1 from below for each j. Since
the interruptions are exogenous, we can start by establishing a limit for the
cumulative-down-time process. Anticipating a limit for the scaled queue-
length processes

Zn=Zn(t)=nHZ,(nt), t>0, (7.12)

with 1/2 < H < 1, we assume that the sequences of up and down times
{(u% me d%,m) m > 1} in model n satisfy

{(n"ud o™ ) i m > 0,1 <5 <k} = {(ul,,d,) :m >0,1<j <k}

| | (7.13)
in (R?*)°° where 0 < H < 1, pJ > 0 and > ov_, ul, = 0o w.p.1 for each j.
We require that ujl > 0 so that in the limit there is no interruption at time
0. We require that > >, ul, = 0o so that in the limit there are only finitely
many interruptions in any bounded interval. The idea behind the scaling
in (7.13) is that the up times have proper limits in the scaling (7.12), while
the down times are asymptotically negligible. Thus, in the limit, there
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is a proper point process describing the occurrence of interruptions, but
these interruptions occur instantaneously. However, because of the down-
time scaling in (7.13), they have a spatial impact, causing jumps in the
process Z, with the scaling in (7.12). The standard Brownian motion case
has H = 1/2 in (7.12) and (7.13). For any value of H, 0 < H < 1, the
interruptions introduce extra jumps.

To treat the cumulative down-time process, let N7 = {N7(t) : t > 0} be
the counting process associated with the limiting up times, i.e.,

m
Nj(t)zmax{mZO:Zufgt}, t>0,
=1

and let DJ be the random sum

Ni(t) '
Dity= Y d, t>0. (7.14)
=1
Let D, = (D},...,D¥) be the normalized cumulative-down-time processes

associated with model n, defined by

D/,

(t)=n"IDi(nt), t>0, 1<j<k, (7.15)

where D%(t) is the cumulative down time in [0,¢] associated with the se-
quence {(whm,dhm) : m > 0}. As before, let Disc(z) be the set of discon-
tinuities of .

Here is the basic down-time result.

Theorem 14.7.3. (cumulative down-time limit) If (7.13) holds with

Pl >0)=1,

m=1
and
k k
P | (Dise(D) NDisc(D)) =¢ | =1, (7.16)
i
then
D, =D in D([0,00),RF, SM) . (7.17)

for D in (7.14).
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Proof. First apply the Skorohod representation theorem to replace the
convergence in distribution by convergence w.p.1 (without introducing new
notation for the special versions). Then it is elementary that D7, (t) — D(t)
for each ¢ ¢ Disc(D?). Since D7, and D’ are nondecreasing, this implies
convergence in D([0,00), R, M;) by Corollary 12.5.1. By Corollary 12.6.1,
condition (7.16) allows us to strengthen the resulting W M; convergence in
D* to SM; convergence. =

Henceforth we make the conclusion (7.17) in Theorem 14.7.3 part of the
conditions; e.g., see (7.20) below. Thinking of the interruptions as exoge-
nous, we can assume that the up-and-down-time processes and, thus, the
cumulative-down-time processes D,, are independent of the rest of the model
data. Thus the limit (7.17) will hold jointly with the assumed limit for the
rest of the model data using the product topology by virtue of Theorem
11.4.4. Then strengthening the convergence to overall SM; convergence can
be done by imposing conditions on the discontinuities, paralleling condition
(7.16).

We now introduce scaled random elements of D associated with the
sequence of models for the main limit theorem. Let

A,(t) = n (A, (nt) — \ynt), t>0,
S,(t) = n H(Sp(nt) — pant), t>0,
R.(t) = n Z(R,(nt)—Punt), t>0, (7.18)

where ), and p, are nonnegative vectors in R¥ and P, = (P,(i,5)) is a
nonnegative k x k matrix with transpose P! = @Q,, in Q. Let the associated
scaled processes for which we want to establish convergence be Z,, in (7.12)
and

x
3

—~~
o~

n~HY, (nt)
n~H(B™(nt) —nt), t>0. (7.19)

3]
3
—

o~

Theorem 14.7.4. (heavy-traffic limit with rare long interruptions) Suppose
that

(An,Sn, Ry, Dy, Z,(0)) = (A,S,R,D,Z(0)) as n— o (7.20)

in D(]0, 00), R¥* T3k W) x RE for (An,S,,Ry) in (7.18), D, in (7.15)
and Zy, in (7.12) with 0 < H < 1, where

P((A,S,R,D)eD;)=1.
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If, in addition, there exist vectors A and p in R¥ and a matriz P with P* € Q
such that
A=A pp—=p>0 and P — P in Q (7.21)

and

c nl_H< p,n—FZp,n )—)c’ as m— oo (7.22)

with —o0 < ¢ < 00, 1 < j <k, then

(Zn,Yn,Bn) = (Z,Y,B) in D([0,00),R*, WM)) (7.23)
for
Z = ¢(X), Y = diag(u")p(X),
X = Z0)+&+7,
k
& = Al+ Z[Ri’j ou'e+ P ;S — S
=1
n = ce+ (I —P"diag(u)D
B = -D-Y. (7.24)

Proof. As usual, we start by applying the Skorohod representation the-
orem to replace the assumed convergence in distribution in (7.20) by con-
vergence w.p.l for alternative versions, without introducing special notation
for the alternative versions. We first want to show that, asymptotically, the
servers are busy all the time. For that purpose, we establish a FWLLN for
the cumulative-busy-time process with spatial scaling by n~!. To do so, we
establish a FWLLN for all the processes with spatial scaling by n~!. For
that purpose, let

(An(t),8n(t), Rn (1), D), Zn(0), B (t), Yu(t), Zn(t))
= n"" (An(nt), Sn(nt), R (nt), Dn(nt), Zy(0), Bu(nt), Ya(nt), Zy(nt)) .
Conditions (7.20) and (7.21) imply that

(A,,8,,R,,, D, Z,(0)) = (Ne, pe, Pe,0e,0e) as n — oo

in (Dk2+3k, U) x Rk, ie., with the topology of uniform convergence over
bounded intervals. Then note that {B,, : n > 1} is relatively compact
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by the Arzela-Ascoli theorem (Theorem 11.6.2) because B,, is uniformly
Lipschitz: For 0 < t; < t9,

|Bn(t2) — Bn(t1)| = \n_an(ntQ) — n_an(nt2)| S |t2 — t1| .

Hence, {B,} has a convergent subsequence {Bnk} in C([0,T],RF,U) for
every T. Suppose that

B, -B as ny—»oo in (DFU).
Then, from Theorems 14.2.5 and 14.7.2,
(an,?nk) — (0,0) in (D*,U) as ny— co.

As a consequence of (7.2), we must have BJ = e, ie., Bj(t) =1t t >0,
1 < j < k. Since the limit is the same for all subsequences, we have

(Zn, Y, Bp) = (0,0,e) as n—oo in (D*.U),

where e is the vector-valued function, equal to e in each coordinate. Now
we return to the processes with spatial scaling by n~. Let

&) = n g (nt)
k
= n AL (nt) — Mnt] + ) n TR (n[n ' S (n[n ' B (nt)])])

=1

—Pu(i, j)n(n™1 S}, (n[n ™" By, (nt))))]

k
+ Z P (i, j)n M [S}, (n[n ™" B}, (nt)]) — pfnn™' B, (nt)]]
| (S (B nt)) — pn(n B (D)
m,(t) = n Tni(nt)

k
= n'™f (/\% — ph + Z%Pn(i,j)> t
=1
. . k . .
DI (nt) — S i P f)n D )
=1

and

X5,(t) = n~ "X (nt) = 0~ (Z](0) + &, (nt) + i (nt), >0,
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so that we have

k
§9n = A%—FZRWOS%OB%
=1
k . . . .
+an(zaj)siz OB:m - S"ZLOB-’ZL ’
i=1

k
m, = de+pDi =Y puiP(i,j)D},
=1

for ¢y, in (7.22),

Xn,=2Z,0)+&,+mn,, (7.25)
Z, = ¢Qn( n)a Y, = diag(lln)w@n (Xn) (7'26)

and
B,=-Y,—-D,. (7.27)

Since ple, e € Ci+, the subset of functions in C that are nonnegative and
strictly increasing, we can apply the composition map plus addition to get
X, — X in D(]0,00), R¥, SM;); see Theorem 13.2.3. Then we can apply
Theorem 14.5.5 with (7.25) and (7.26) to get the desired limit (7.23) with
the limit processes in (7.24).

Remark 14.7.1. The natural sufficient condition. The natural sufficient
condition for the limit in condition (7.20) in Theorem 14.7.4 is to have the
k? + 3k processes A%, S}, Ry and D), 1 <i <k, 1< j <k, be mutually
independent and for the limit processes to have no fixed discontinuities, i.e.,
for P(t € Disc(V)) =0 for all V and t > 0, where V is one of the coordinate
limit processes above. =

Remark 14.7.2. The heavy-traffic condition. Note that (7.22) can be rewrit-
ten as
1-H
n (A — (I = Qn)pn) — €

so that (7.21) and (7.22) together imply that
A=I-Q)u, (7.28)

which is a version of the traffic rate equation associated with a Markovian
network having external arrival rate vector A and routing matrix P. Then
u is the net (external plus internal) arrival rate at each queue, and the
asymptotic traffic intensity at each queue is 1. Thus, we see that indeed
Theorem 14.7.4 provides a heavy-traffic limit.



606 CHAPTER 14. QUEUEING NETWORKS

Remark 14.7.3. A simple sequence of models. We have allowed the vectors
An, W and the routing matrix P, all to vary with n. For applications
it should usually suffice to let only A, vary with n. More generally, it
should suffice to let the service processes S, and the routing processes R,
be independent of n. Then it is natural to have y and P be independent
of n. Moreover, the arrival processes could be made to depend on n only
through a single sequence of scaling vectors {a, : n > 1} in R* with a,, —
1=(1,...,1) as n — co. We could start with a single arrival process A,
where
Al (t)=n"H[A (nt) — Int], t>0,

and
Al = A in DF. (7.29)

We can then let
Al(t)= Al(alt) and M, =alN (7.30)
so that by (7.29) and (7.30),
A, = A
for A, in (7.18) and (7.30). With the single-vector parameterization, since

k
S OBV e

i=1
k
= ni7f (aﬁ;/\j — N+ N -+ ZuiP(i,j)> , (7.31)
i=1
condition (7.21) holds if and only if (7.28) holds and
ntHd —1) = o,
in which case

cd=n"Hol —1)N 5N =¢ as n—ooo. =

We now establish the corresponding limit with fixed up and down times.
We now assume that the up and down time sequence {(ufn,dy) : m > 1,1 <
0 < k} is independent of n when we consider the family of models indexed
by n. Then instead of the limit in Theorem 14.7.3, we assume that D, = D
in D([0, 00), R¥, SM), where

DJ(t) = n H(DI(nt) — (1 —v)nt), t>0, (7.32)

where 0 < 4 < 1,1 < j < k. Then 17 is the proportion of up time at queue
j.
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Theorem 14.7.5. (heavy-traffic limit with fixed up and down times) Sup-
pose that the assumptions of Theorem 14.7.4 hold with Dy, in (7.15) replaced
by (7.32) and (7.22) replaced by

k
— (vn' N zuzuzpna,j)) Sl

=1

with —0o < ¢ < 00, 1 < j < k. Then the conclusions of Theorem 14.7.4
hold with By, in (7.19) replaced by

B! (t) =n H(Bi(nt) —vint), t>0, 1<j<k,, (7.34)

and &7 in (7.24) replaced by

k
¢ =Al+ ZRi’j op'v'e + P, ;S ov'e — ST o le. (7.35)
=1

Proof: 'I:he proof isA essentiall}: the same as for TheAzorem 14.7.4, except
now (D, B,,) — (D, B), where D/(¢) = (1 —v;)t and BI(¢) = v7¢t, ¢t > 0. =

Remark 14.7.4. The common case. The common case has scaling expo-
nent H = 1/2 and (A, S, R, D) Brownian motion, in which case (Z,Y) is re-
flected Brownian motion. The special case without down times is the heavy-
traffic limit for a single-class open queueing network in Reiman (1984a).
Theorem 14.7.5 also includes convergence to reflected stable processes when
the interarrival times and service times are IID in the normal domain of
attraction of a stable law with index o, 1 < @ < 2; then H =1/a. =

14.8. The Two-Sided Regulator

In this section we establish continuity and Lipschitz properties for the
two-sided regulator (or reflection) map, which arises in heavy-traffic limits
for single queues with finite waiting room (or buffer space); see Section 2.3
and Chapter 5. We also show that the continuity and Lipschitz properties of
the multidimensional reflection map with the M; topologies extend to other
more general reflection maps, such as those considered by Dupuis and Ishii
(1991), Williams (1987, 1995) and Dupuis and Ramanan (1999a,b).
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14.8.1. Definition and Basic Properties

Anticipating the more general reflection maps to be introduced later
in the section, we allow the two-sided regulator to depend on the initial
position as well as the net-input function. The initial position will be a
point s in the set S = [0,¢]. Specifically, we let the two-sided regulator
R: S x D([0,T],R) — D([0,T],R%*) be defined by

R(S,.’L‘) = (¢(8,I),'L/)1(8,$),1/)2(8,I)) = (Z,y1,y2) ’
where S = [0, ],

z=s+z+y —vy2,

0<z2(t)<e¢, 0<t<T,

y1(0) = —((s +z(0)) A0)~ and 2(0) =[c—s—z(0)]",
y1 and Yy are nondecreasing ,

T T
/ A(B)dyr () =0 and / e — 2(8)]dya(t) = 0 . (8.1)
0 0

The two-sided regulator can also be defined using with the elementary in-
stantaneous reflection map

Ro = (¢0,%0.1,%0.2) : [0,¢] x R — R?

defined by
do(s,u) = (s+u)VOAc,
Poi(s,u) = —(s+u) ,
Poo(s,u) = [s+u— qt, (8.2)

where again s is the initial position in S = [0, ¢] and u is the increment. We
now can define the reflection map R = (¢, 1,19) : S x D, — D2 recursively
by letting

2(ti) = ¢(2(0-),2)(t;) = dolz(ti 1), z(t;) —x(ti 1))
1(t:) = h(2(0-),2) () = tho(z(ti-1),z(ti) — z(ti-1)) +y1(ti-1)
Ya(ti) = Pa(2(0-),7)(t:) = vho2(2(ti-1), z(ti) — z(ti-1)) + y2(ti—{B,3)

where t1,...,t, are the discontinuity points of z with {p =0 <t; < --- <
tm < T, z'(t—1) =0 for all i and z(¢t_1) = 2(0—) € S is the initial position.
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We let (z,y1,y2) be constant in between discontinuities. Finally, we define
R:S x D — D3 by letting

R(s,z) = lim R(s,z,) (8.4)

n—00
for z, € D, with ||z, — z|| — 0.
Theorem 14.8.1. (two-sided regulator) There ezists a unique reflection

map R : S x D — D3 defined by (8.2) , (8.3) and (8.4), which coincides
with the reflection map defined by (8.1). For any (s1,%1), (s2,22) € S x D,

(51, 1) — P(s2, 2)[| < 2([|s1 — sall + [lz1 — z2]) - (8.5)
If ||sp — 8|l = 0 in S and ||z, —z|| = 0 in D, then
197 (sn;2n) — (s, 2)| = 0 for j=1,2, . (8.6)

Proof. First existence and uniqueness of the reflection map on D, defined
by (8.2) and (8.3) is immediate from the recursive definition. It is then easy
to see that (8.1) is equivalent to (8.2) and (8.3) on S x D.; apply induction on
the successive discontinuity points. We will show that there exists a unique
extension of (8.2) and (8.3) to S x D specified by the limit in (8.4). For that
purpose, we establish the Lipschitz property (8.5) when z1,z9 € D.. We
use induction over the points at which at least one of these functions has a
discontinuity. Suppose that ||s; — sa|| + ||z1 — z2]| = €.

Ay =51+ x1(tn) — 82 — T2(tn)
and
Fn = Zl(tn) — Zg(tn) .
We are given that |A,| < € for all n. By induction we show that
A, —e<I, <A,+e€ forall n, (8.7)
from which the desired conclusion follows. Since
zi(0) = (s+z;(0)) VO A ¢,

(8.7) holds for n = 0. Suppose that (8.7) holds for all nonnegative integers
up to n. Then, by considering the possible jumps at t,+1, we see that

0< An+1 + € if ZQ(tn+1) =c or Zl(tn+1) =0
I‘n—|—1 S 5
Lp+Apy1 — Ap < Apy1 + € otherwise,
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and

0>Ap1—¢€ if 2o(tpt1) =0 or z1(thy1) =c
Fn—|—1 Z .
Tn+Apy1 — Ap > Apy1 — e otherwise.

Clearly these two inequalities imply (8.7). For general x € D, we have
defined R(z) by the limit in (8.4). To show that the limit actually exists,
given z € D choose z,, € D, such that ||z, —z|| = 0. Hence ||z, — || = 0
as n,m — 0, where z,,z,, € D.. By the Lipschitz property on D, above,
|R(s, zn) — R(s,zm)| < 2|z, — xm| — 0. Since (D, | - ||) is complete,
there exists z € D such that ||R(s,z,) — 2|| — 0. Let R(s,z) = z. To
establish uniqueness of the limit in (8.4), suppose that ||z}, —z| — 0 where
zjn € D, for j = 1,2. By the triangle inequality, |21, — Z2,4]| = 0. Then
by the Lipschitz property ||R(s,z1,) — R(s,z2n)|| < 2||z1,n — 22, — 0, so
that the two limits must agree. To establish the Lipschitz property of ¢ on
S x D let sq,s9,21 and o be given and choose z1 4, z2, € D, such that
|z1,n —z1]| = 0 and ||z2, — z2|| = 0. By the Lipschitz property on S x D¢,

1p(s1521,n) — P82, 22,0) || < 2|51 — 82| + |21,0 — 220[) -

Letting n — oo yields (8.5). To establish the remaining results, we reduce
the remaining results to previous established results for the one-sided re-

flection map over subintervals. Suppose that s and z are given. By above,
z = ¢(s, ) is well defined. Let

t1 =inf{t > 0: either z(t) <eor z(t) > c—e¢)

for some € with 0 < € < ¢ — € < ¢, with ¢; = T 4+ 1 if the infimum is not
attained. Clearly z(t) = s + z(t) and y1(t) = y2(t) = 0 for 0 < ¢ < ¢y if
t1 > 0. For simplicity, suppose that z(¢1) < e. Then let

tom = inf{t tlom—1 <t < T, Z(t) >c— 6}
with t9,, =T + 1 if the infimum is not attained, and
tom+1 = inf{t ttoy <t < T, Z(t) < 6}

with t9,+1 = T 4 1 if the infimum is not attained. Since z € D, there are
finitely many points 0 < t; < --- < t,,, < T such that the infima above
are attained. It suffices to apply the one-sided reflection map over each
of the subintervals [0,¢1), [t1,t2),-.-, [tm—1,tm) and [t,T]. Suppose that
|sn —s| — 0 and ||z, — z|| — 0 as n — oco. By (8.5), ||zn — z|| = 0. Thus,
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for all n sufficiently large, only the one-sided reflection map need be applied
over each of the subintervals [0,¢1), [t1,t2),..., [tm,T]. Hence, from (2.23) in
Theorem 14.2.5, we can deduce that (8.6) holds. Moreover, from Theorem
14.2.3, we can deduce the complementarity in (8.1). Indeed, with the other
conditions there, the complementarity property characterizes the reflection
map. =

We have already seen that the Lipschitz bound in (8.5) is tight for the
one-sided reflection map in Example 14.2.2, so it is tight here as well. Unlike
for the one-sided reflection map in Chapter 13 and the multidimensional
reflection map in Section 14.2, the regulator maps 1, and 19 here need not
be Lipschitz.

Example 14.8.1. Counterexample to the Lipschitz property for i1 and 1.
To see that 1; and 12 need not be Lipschitz, suppose that ¢ > € and, for
1=1,2,let z; = :z;zT + 7, where

n—1
21 (t) = Y el piryon.r) (1) + (¢ + ) Loiz1yr/onT) (B)]

i=0
n—1
zh(t) = Z[(C + €)1pir/on,1)(t) + cl2i1)7/20,17 ()]
i=0
and
n—1
git) = z5=—Y (2c+ €)clgirnyrjont(t), 0<t<T.
i=0
Then
=] — 2}l = llz1 — 32l =€, |l2s — 2] =0,

y1(t) =0,0<t<T, but

n—1
y2(t) = ZGI[(QH—I)T/Qn,T} (t)
i=0
so that
ly1 — y2ll = lly2ll = ne =nllz1 — 22| 200 as n—o00. =

Reasoning just as for Theorem 14.2.7 and Corollary 14.2.2, we have the
following consequences of Theorem 14.8.1.
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Theorem 14.8.2. (Lipschitz and continuity with dj,) For the two-sided
regulator map R = (¢,11,1%9) in (8.1),

dy (P(s1,21), $(s2,72)) < 2(dy, (21, 22) + |51 — 52])
for all s1,s9 € [0,c] and x1,z9 € D. If s,, =& s and dj, (zn,x) — 0, then

dj, (R(sp,zn), R(s,2)) >0 as n— 0.

Corollary 14.8.1. (measurability) The two-sided regulator map R : S X
D — D3 is measurable, using the Kolmogorov o-fields on both the domain
and range.

14.8.2. With the M; Topologies

We now establish results for the two-sided reflection map with the M;
topologies. At the same time, we show how M; results can be obtained
for other reflection maps, but we proceed abstractly without going into the
details.

We assume that the general reflected process has values in a closed subset
S of R¥. We assume that we are given an instantaneous reflection map ¢y :
SxRE — §. The idea is that an initial position sg in S and an instantaneous
net input u are mapped by ¢ into the new position s1 = ¢o(so,up) in S.
In many cases ¢g(sg,up) will depend upon (sg,up) only through their sum
S0+ ug, but we allow more general possibilities. It is also standard to have S
be convex and ¢g(s,u) = s+u if s+u € S, while ¢o(s,u) € 0S if s+u &S,
where 38§ is the boundary of S, but again we do not directly require it. Under
extra regularity conditions, ¢y corresponds to the projection in Dupius and
Ramanan (1999a).

As in Section 14.3, we use ¢y to define a reflection map on D, =
D.(]0,T],R¥). However, we also allow dependence upon the initial posi-
tion in S. Thus, we define ¢ : S x D, — D, by letting

(]5(2(0—),.7))(72) = Z(tz) = qﬁo(z(ti_l),w(ti) — :L‘(ti_l)), 0 < 1 <m y (8.8)

where t1,...,t,, are the discontinuity points of z, withtp =0 < t; < --- <
tm < T, z*(t_1) =0 for all s and z(t_;) = 2(0—) € § is the initial position.
A standard case is 2(0) = 0 for all s and 2(0) = z(0—). We let 2 be constant
in between these discontinuity points.

We then make two general assumptions about the instantaneous reflec-
tion map ¢y and the associated reflection map ¢ on S x D, in (8.8). One is
a Lipschitz assumption and the other is a monotonicity assumption.
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Lipschitz Assumption. There is a constant K such that

[p(s1,21) = ¢(s92,22)[| < K([l21 — 22| V [|s1 = s2f])

for all s1,s9 € S and z1,z9 € D,, where ¢ is the reflection map in (8.8).
We now turn to the monotonicity. Let e; be the vector in Rf with a 1 in
the i*® coordinate and 0’s elsewhere. Let ¢}(s,u) be the j*®® coordinate of
the reflection. We require monotonicity af all these coordinate maps, but we
allow the monotonicity to be in different directions in different coordinates.

Monotonicity Assumption. For all 59 € RF,i,1<i<kandj,1<j<
k, #(s0,ae;) is monotone in the real variable a for o > 0 and for a < 0.

Just as in Theorems 14.3.4 and 14.8.1, we can use the Lipschitz assump-
tion to extend the reflection map from D, to D. The proof is essentially the
same as before.

Theorem 14.8.3. (extension of general reflection maps) If the reflection
map ¢ : S X D.— D, in (8.8) satisfies the Lipschitz assumption, then there
exists a unique extension ¢ : S x D — D of the reflection map in (8.8)
satisfying ||¢(s,zn) — ¢(s,z)|| = 0 if s € S, z, € D, and ||z, — z|| — 0.
Moreover, ¢ : S x D — D inherits the Lipschitz property.

We now want to establish sufficient conditions for the reflection map to
inherit the Lipschitz property when we use appropriate M; topologies on
D. From our previous analysis, we know that we need to impose regularity
conditions. With the monotonicity assumption above, it is no longer suffi-
cient to work in D,;. We assume that the sample paths have discontinuities
in only one coordinate at a time, i.e., we work in the space D;. We exploit
another approximation lemma.

Let D, be the subset of D. in which all discontinuities occur in only
one coordinate at a time, i.e.,

Dc,l = DcﬂDl .

The following is another variant of Theorem 12.2.2, which can be established
using it.

Lemma 14.8.1. (approximation in D) For all © € Dy, there exist x, €
D¢1, n > 1, such that ||z, — x| — 0.

We are now ready to state our M; result.
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Theorem 14.8.4. (Lipschitz and continuity properties of other reflection
maps) Suppose that the Lipschitz and monotonicity assumptions above are
satisfied. Let ¢ : S x D — D be the reflection mapping obtained by extending
(8.8) by applying Theorem 14.8.3. For any s € S, x € Dy and (u,r) €
Iy (z), (P(s,u),r) € y(p(s,z)). Thus there exists a constant K such that

dp(d(s1,21), H(s2,72)) dw(p(s1,71), d(s2,22))
K (dw(z1,72) V [[s1 — s2]|)
K(ds(z1,72) V [|s1 — s2]|) (8.9)

ININ N

for all s1,s0 € S and x1,x2 € D1. Moreover, if s, — s in Rt and z, —> z
in (D, W M) where x € D1, then

&(Snyzn) = d(s,z) in (D, WMy) . (8.10)

Proof. By Theorem 14.8.3, the extended reflection map ¢ : S x D — D
is well defined and Lipschitz in the uniform norm. For any z € D;, apply
Lemma 14.8.1 to obtain z, € D.; with ||z, — z|| = 0. Since z € Dy,
the strong and weak parametric representations coincide. Choose (u,r) €
II;(z) = II,(z). Since ||z, —z|| = 0 and z,, € D, 1, we can find (uy,r,) €
IIs(zy) = Hy(zy) such that ||u, — ul| V||t — 7|| = 0. Now, paralleling
Theorem 14.4.2, we can apply the monotonicity condition on D, ; to deduce
that (P(s,un),rn) € My(p(s,zy)) for all n. (Note that we need not have
either ¢(s,x) € Dy or ¢(s,z,) € D1, but we do have ¢(s,z,) € D.. Note
that the componentwise monotonicity implies that (¢(s,ur), ) belongs to
Ty (¢(s, zy)), but not necessarily to IIs(¢(s, z,)).) By the Lipschitz property
of ¢,

(s, un) = ¢(s,w)[| V[lrn =[] = 0. (8.11)

Hence, we can apply Lemma, 8.4.5 of the Internet Supplement to deduce
that (¢(s,u),r) € I, (¢(s,z)). We thus obtain the Lipschitz property (8.9),
just as in Theorem 14.5.3. Finally, to obtain (8.10), suppose that s, — s in
S and z, — z in (D, SM;) with z € D;. Under that condition, by Lemma
14.8.1, we can find z], € D1; C D; such that ||z, — z}|| — 0. Since ¢ is
Lipschitz on S x (D, U), there exists a constant K such that

[¢(sn,2n) — dsn, 2n) || < Kllzn — 23|l = 0. (8.12)
By part (a), there exists a constant K such that

du(B(sm, 2n), B(s,7)) < K(ds(an, ) V[lsn —s) = 0. (8.13)
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By (8.12), (8.13) and the triangle inequality for dj,, we obtain (8.10). =

We now combine Theorems 14.8.1 and 14.8.4 to obtain continuity and
Lipschitz properties for the two-sided regulator with the M; topology. From
(8.2) it is immediate that the monotonicity condition is satisfied.

Theorem 14.8.5. (Lipschitz and continuity of the two-sided regularity with
the M topology) Let ¢ : [0,c] x D' — D! be the content portion of the two-
sided regulator map defined by (8.1). Then

d(p(s1,71), P(s2,72)) < 2(d(w1,72) V |81 — 52)

for all x1,z9 € D', where d is the My metric. Moreover, if s, — s in [0,c]
and d(zn,z) — 0, then

R(Sp,zn) — R(s,z) in (D3 WM) .

We can apply Theorem 14.8.5 to obtain heavy-traffic limits for the queue-
ing examples in Section ?? and Chapter 8.

For other reflection maps, we need to verify the Lipschitz and mono-
tonicity assumptions above. Evidently the Lipschitz assumption is the more
difficult condition to verify. However,

Dupuis and Ishii (1991) and Dupuis and Ramanan (1999a,b) have estab-
lished general conditions under which the Lipschitz assumption is satisfied.

14.9. Chapter Notes

There is now a substantial literature on heavy-traffic limits for queue-
ing networks, as can be seen from the books by Chen and Yao (2001) and
Kushner (2001). Much of their attention and much of the recent interest is
focused on multiple customer classes and control (e.g., routing and sequenc-
ing in the networks). We do not discuss either of these important issues.
Multiple customer classes and control in settings requiring the M; topologies
remain important directions for research.

This chapter is primarily based on the papers by Harrison and Reiman
(1981a), Reiman (1984a), Chen and Whitt (1993) and Whitt (2001). Heavy-
traffic stochastic-process limits for acyclic networks of queues were obtained
by application of the one-dimensional reflection map by Iglehart and Whitt
(1970a,b). The multidimensional reflection map and multidimensional re-
flected Brownian motion were defined by Harrison and Reiman (1981a,b).
Related early work on multidimensional reflection was done by Tanaka
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(1979) and Lions and Sznitman (1984). Reiman (1984a) applied the multidi-
mensional reflection map to establish heavy-traffic limits with multidimen-
sional reflected Brownian motion limit processes for single-class open queue-
ing networks. Corresponding limits using the M; topologies for single-class
open queueing networks with rare long service-interruptions, as in Section
14.7, were stated by Chen and Whitt (1993), but that paper contains errors.
In particular, it failed to identity the conditions needed in the theorems es-
tablishing continuity and Lipschitz properties with the M; topologies here
in Section 14.5. The corrected continuity and Lipschitz results in Section
14.5 as well as their application to obtain heavy-traffic limits for stochas-
tic fluid networks in Section 14.6 come from Whitt (2001). Heavy-traffic
stochastic-process limits for a single queue with service interruptions were
obtained previously by Kella and Whitt (1990); those limits produce very
tractable approximations, exploiting stochastic decomposition properties;
also see Kella and Whitt (1991, 1992c).

In addition to the seminal papers by Harrison and Reiman (1981a) and
Reiman (1984a), our discussion of the multidimensional reflection map in
Section 14.2 draws upon Chen and Mandelbaum (1991a,b,c). The indirect
definition of a reflected process is originally due to Skorohod (1961, 1962).
Hence the reflection map is sometimes called the solution of a Skorohod
problem. (See also Bene§ (1963) for early focus on one-dimensional reflec-
tion.) The Lipschitz bounds for the reflection map with the uniform norm
in Theorem 14.2.5 come from Chen and Whitt (1993), but there are rela-
tively obvious errors in the proof there that are corrected by Lemma 14.2.6
and Theorem 14.2.4 here. (Remark 14.2.2 indicates the intended argument.)
Theorem 14.2.4 itself is Lemma 2 from Kella and Whitt (1996). The stability
results in Theorems 14.2.8 and 14.2.9 are from Whitt (2001).

The instantaneous reflection map and its connection to the linear comple-
mentarity problem are discussed by Chen and Mandelbaum (1991c). The
book by Cottle, Pang and Stone (1992) gives a thorough overview of the
linear complementarity problem. Theorem 14.3.2 is essentially Lemma 1
in Kella and Whitt (1996). Most of Sections 14.3-14.6 come from Whitt
(2001).

The results on the two-sided regulator and other reflection maps in Sec-
tion 14.8 are from Berger and Whitt (1992b) and Whitt (2001). The two
sided regulator and its application to Brownian motion are discussed in
Chapter 2 of Harrison (1985). More general reflection maps have been
studied by Williams (1987, 1995), Dupuis and Ishii (1991) and Dupuis and
Ramanan (1999a,b). Some heavy-traffic stochastic-process limits for multi-
class queueing networks require methods different from the continuous-mapping
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approach; see Bramson (1998) and Williams (1998a,b).

For recent developments, see Bell and Williams (2001), Chen and Yao
(2001), Harrison (2000, 2001a,b), Kumar (2000), Kushner (2001) and Markowitz
and Wein (2001).
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