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Abstract. We investigate the possibility of reliably predicting re-
sponse times in real time (e.g., at the time a job arrives) in the
M/G/1 processor-sharing queue. The proposed prediction is the
conditional mean given current state information. We consider
several forms of state information, always including the remain-
ing service requirement of the job of interest and the number of
other jobs in the system. We consider three cases for the other
jobs’ service requirements: First, we assume that all the remain-
ing service requirements are known; second, we assume that the
amount of completed work of each customer in service is known;
and third, we assume that nothing more is known. We thus are
able to study the value of different kinds of information. We calcu-
late the conditional mean and variance of the response time, given
the state information, by numerically inverting Laplace transforms.
We evaluate the reliability by looking at the ratio of the standard
deviation to the mean. This ratio tends to decrease as the remain-
ing service requirements or the number of jobs in service increase.
We establish this property theoretically by proving laws of large
numbers and central limit theorem refinements.
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CHAPTER 1

Predicting Response Times in Processor-Sharing

Queues

1.1 Introduction

In this paper we investigate the possibility of reliably predicting remaining
response times in a processor-sharing (PS) queue by exploiting system state in-
formation. The response time is the time until the job can complete service and
depart. With the PS discipline, each job receives service at rate 1/n when there
are n jobs in service. We consider a PS queue because it is often a good model for
computer and communication systems. The PS service discipline is a good approx-
imation for round robin (RR) disciplines used in computer operating systems. The
PS discipline may also be a reasonable approximation for head-of-the-line (per-flow)
fair-queueing service disciplines used in communication network routers when the
number of packets from each flow in the router is suitably small; e.g. see Demers,
Keshav and Shenker [8] and Parekh and Gallager [22]. We hope to be able to im-
prove customer satisfaction by informing customers upon job arrival and thereafter
about anticipated response times; see Hui and Tse [15], Katz, Larson and Larson
[17], Taylor [25] and references therein. Predicted response times might also be
used to help system managers determine when to add resources to increase the pro-
cessing rate and thereby reduce congestion, again improving customer satisfaction.
The system state information used in the prediction always includes the ser-

vice requirement of the job of interest (e.g., a new arrival), the number of other
jobs in service at that time and the model for future arrivals; i.e., the arrival rate
and service-requirement distribution in an M/G/1/PS model. Since the service
requirement of a new job may be unknown, we aim to describe the expected condi-
tional response time as a function of the service-requirement. If the new arrival is to
be informed, then the new arrival might be told the conditional expected response
time as a function of the service requirement of that job. The new arrival might
also be given some idea about the variability of this estimate, again as a function
of the service requirement of the new job.
We consider three cases for the service requirements of other jobs: First, we

assume that the remaining service requirements of all jobs are known; second, we
assume that the amount of completed work for each job in service is known; and
third, we assume that nothing is known beyond the number of other jobs. In the
last two cases, we use the distributions of the remaining service.
The main question we ask is: Is reliable prediction possible? By reliable predic-

tion, we mean two things: first, that the expected conditional response time given
the system state information can be computed and, second, that the variability
of the conditional response-time distribution is suitably small, i.e., the conditional
response-time distribution clusters sufficiently closely about the mean, so that a
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4 1. Predicting Response Times in Processor-Sharing Queues

point estimate such as the conditional mean is reasonably reliable. We focus on
this second issue by calculating the ratio of the standard deviation to the mean.
Fortunately, useful expressions have been derived for the conditional distribu-

tion of response times given state information in M/G/1/PS queues, but these
expressions are quite complicated. Even the desired expected values are available
only via Laplace transforms. Hence, a key component of our analysis is the nu-
merical inversion of Laplace transforms, drawing on Abate and Whitt [4], [5]; see
Abate, Choudhury and Whitt [1] for a review. Numerical transform inversion was
previously applied to PS queues by Braband [6], but not for the purpose of real-
time prediction. We show that the conditional mean can indeed be very efficiently
computed by numerical transform inversion. We show that the standard deviation
can also be efficiently computed and that the ratio of the standard deviation to the
mean tends to be reasonably small, especially as the conditional mean grows. We
also investigate how this ratio depends upon different information, revealing the
value of different kinds of information.
This paper is a sequel to Whitt [26], [27], [28], which recently investigated the

possibility and advantages of making reliable delay predictions in a queue with the
first-come first-served (FCFS) service discipline. Prediction with the PS discipline
is more difficult than with the FCFS discipline because, after conditioning on all
available state information, the remaining delay may be fully known with the FCFS
discipline, whereas with the PS discipline the remaining response times depend on
uncertain future arrivals and their uncertain service requirements. Just as in the
FCFS setting, with the PS discipline there tend to be two situations: first, when
the conditional mean is smaller and, second, when the conditional mean is larger.
When the conditional mean is smaller, the variability (as measured by the ratio of
the standard deviation to the mean) tends to be larger, but that variability tends
not to matter so much, since the response time is not long. In contrast, when the
conditional mean is larger, the variability tends to be much smaller (relatively, as
measured by the ratio of the standard deviation to the mean), so that when jobs
face long response times reliable prediction is possible.
We emphasize that reliable prediction depends critically upon exploiting system

state information. The steady-state response time distribution without condition-
ing tends to be approximately exponential, which we regard as not supporting
reliable prediction. For example, the unconditional steady-state response-time (ei-
ther conditioning or not conditioning upon the service requirement of the arrival)
in an M/G/1/PS queue is known to be asymptotically exponential in heavy traf-
fic, i.e., as ρ → 1 where ρ is the traffic intensity. In contrast, with conditioning,
the conditional response-time distribution when the conditional mean is large (due
to substantial work initially in the system) tends to be approximately normally
distributed with a smaller ratio of standard deviation to mean. To illustrate this
point, we consider a numerical example.

Example 1.1 [exN11] Consider the M/M/1/PS queue in which the service-
requirement cumulative distribution function (cdf) is exponential with mean 1. In
Figure 1 we display the ratio of the standard deviation (SD) to the mean (M) for
the steady-state conditional response time as a function of the arrival rate, which
here coincides with the traffic intensity ρ. We assume that the arriving job has
service requirement 2. The mean and variance of the steady-state response time
in the M/M/1/PS model were determined by Coffman, Muntz and Trotter [7].
Figure 1 shows that the ratio SD/M for the steady-state response time decreases
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to 1 as ρ→ 1, and stops there because it becomes infinite for ρ ≥ 1. By this mea-
sure of variability, the steady-state distribution is always at least as variable as an
exponential distribution. Consistent with the heavy-traffic limit to an exponential
distribution, the ratio approaches 1 as ρ→ 1.
In Figure 1 we also display SD/M ratios when we condition on there being

n − 1 other jobs each with remaining service requirement 1. We display the ratio
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Figure 1 The ratio of the standard deviation to the mean for the response
time as a function of the arrival rate: A comparison of the steady-state and
conditional response-time distributions.

SD/M as a function of ρ for the cases n = 1 and n = 20. The curves decrease as n
increases, so that the worst case is n = 1, corresponding to no other jobs being in
the system. Consistent with intuition, the ratio SD/M in the case n = 1 increases
with ρ, but it remains less than 1 for all positive ρ. Indeed, in equation (1.41)
below we prove in general (for any x) that the ratio SD/M is always less than 1 for
n = 1. Moreover, as n increases the curve decreases, showing that the reliability of
prediction improves significantly as n increases. In Theorem 1.9, we show that the
ratio decreases by the factor 1/

√
n as n increases.

Here is how the rest of this paper is organized: In Section 2 we review the
basic theory associated with the M/G/1/PS queue. In particular, we review the
Laplace transforms we use for numerical inversion and our other theoretical results.
In Section 3 we make stochastic comparisons showing how the conditional mean
response given the remaining service requirements of all jobs in service depends on
the service-requirement cdf of future arrivals. We show that the conditional mean
increases when the service-requirement cdf gets less variable in convex stochastic
order. Consequently, the case of deterministic service times serves as an upper
bound for any service-requirement cdf with the same mean. It is known that the
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unconditional steady-state mean is insensitive to the service-requirement cdf beyond
its mean. Hence, it can be anticipated that the effect above is counteracted by a
stochastic increase in the remaining service requirements of all jobs in service when
the service-requirement cdf gets more variable, which we also establish.
In Section 4 we prove that the conditional response-time distribution given all

remaining service requirements of jobs in service satisfies laws of large numbers and
central limit theorems as the service requirement of the designated job increases or
the number of other jobs increases. Our asymptotic results here are consistent with
(and are largely contained in) previous asymptotic results by Grishechkin [11], [12],
[13]. These asymptotic results show that the distribution clusters closely about the
mean and tends to be normally distributed when the conditional mean is large.
In Sections 5 and 6 we consider the other two cases in which, first, we condition

only upon the number of other jobs and, second, we condition upon the amounts of
completed work. We show how to compute the mean and variance of the conditional
response time by numerical transform inversion in these cases as well. In Section 7
we discuss technical issues arising in the numerical inversion. Finally, in Section 8
we draw conclusions.

1.2 Basic M/G/1/PS Theory

In this section we review the basic M/G/1/PS theory. This theory was first
developed by Kitaev and Yashkov [20] and Yashkov [29]; see Yashkov [30], [31]. A
convenient reference is Ott [21], which contains extensions and complements. (See
Grishechkin [14], Kitaev [19] and Zwart and Boxma [32] for other recent work on
PS queues.) The M/G/1/PS queue has one server, unlimited waiting space, the
processor-sharing (PS) service discipline, a Poisson arrival process with rate λ and
independent and identically distributed (iid) service requirements having a cdf G
with kth moment mk. Throughout we assume that m1 < ∞. We will sometimes
also assume that m2 < ∞ or m3 < ∞ as well. Let g be the associated service-
requirement probability density function (pdf), Gc(t) ≡ 1 − G(t) the associated
complementary cdf (ccdf), and Ge the associated stationary-excess (or equilibrium
residual-life) cdf, i.e.,

Ge(t) =
1

m1

∫ t

0

Gc(u)du, t ≥ 0 . (1.1)

We use the assumption that m1 < ∞ to ensure that Ge is a proper cdf. The kth
moment of Ge is mek = mk+1/(k+1)m1. Thus, if m2 <∞, then me1 <∞, but in
general we do not require it.
For the service-requirement pdf g (and similarly for any other pdf), let ĝ be the

associated Laplace transform (LT) of g and the Laplace-Stieltjes transform (LST)
of the associated cdf G, i.e.,

ĝ(s) =

∫ ∞

0

e−stg(t)dt =

∫ ∞

0

e−stdG(t) , (1.2)

with only the second definition applicable if the cdf G does not have a pdf.
With the PS discipline, the workload (unfinished work) process is the same as

for the first-come first-served discipline. Let W be the steady-state workload cdf
and ŵ its LST, which is given by the classical Pollaczek-Khintchine formula

ŵ(s) =

∫ ∞

0

e−stdW (t) =
1− ρ

1− ρĝe(s)
, (1.3)
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where ĝe(s) is the LST of the stationary-excess cdf Ge in (1.1), which requires that
ρ ≡ λm1 < 1. Even though we are not concerned with steady-state behavior, the
LST ŵ plays a role.
In fact, the key quantity related to W is the nondecreasing function (corre-

sponding to a non-probability measure)

R(t) =
W (t)

1− ρ = 1 +
∞
∑

n=1

ρnGn∗e (t) , (1.4)

where Gn∗e (t) is the n-fold convolution of the cdf Ge in (1.1), with LST

r̂(s) =
ŵ(s)

1− ρ =
1

1− ρĝe(s)
=

∞
∑

n=0

ρnĝe(s)
n . (1.5)

Unlike W , R(t) is well defined for all ρ > 0 and all t > 0. For ρ ≥ 1, R(t)→∞ as
t→∞, but that will not pose a problem. We establish the key supporting property
here.

Lemma 1.2 [le21] For all ρ > 0 and t > 0, and for all service-time cdf ’s G,
there is an n0 ≡ n0(G, ρ, t) such that Gn∗e (t) < ρ−n for n ≥ n0, so that R(t) < ∞
for R in (1.4).

Proof We need to bound the probability P (Sn ≤ t) where Sn is the sum of
n i.i.d. random variables distributed as Ge. We bound this probability above by
a probability P (S′n ≤ t) where S′n is the sum of n i.i.d. scaled Bernoulli random
variables each stochastically smaller than Ge. In particular, we choose ε and put
1 − p ≡ Ge(ε) probability at 0 and p ≡ 1 − Ge(ε) probability at ε. For ρ given,
where without loss of generality we assume that ρ > 1, choose ε sufficiently small
so that 1− p ≡ Ge(ε) < ρ−1. This choice is always possible because Ge(t) has the
pdf m−1Gc(t), i.e., Ge(t)→ 0 as t→ 0. With the choices made so far,

P (Sn ≤ t) ≤ P (S′n ≤ t) ≤ P (S′′n ≤ k)

for k an integer satisfying k > t/ε, where S ′′n is a standard binomial random variable
with parameters n and p. Thus, for all n sufficiently large (in the last step),

P (S′′n ≤ k) =
k
∑

j=0

(

n

j

)

(1− p)n−jpj ≤ (k + 1)
(

n

k

)

(1− p)n−k < ρ−n .

We are concerned with the response time T (x) of a new arrival with service re-
quirement x, but we want to consider T (x) conditional on various types of state
information. We will initially condition on the number n of jobs that are in service
when this new arrival joins and the remaining service requirements of the n−1 other
jobs in service. Let xj denote the remaining service requirements of the j

th job al-
ready in service, 1 ≤ j ≤ n−1. Without loss of generality, let the remaining service
requirements be ordered, so that x0 ≡ 0 < x1 < · · · < xn−1. Let T0(x) denote the
conditional response time given that there are no more arrivals. In a prediction, we
may want to announce T0(x) as the minimum possible response time given current
state information. It may be useful in addition to the conditional mean and other
summary statistics such as the conditional standard deviation. Given xj for all j,
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we can calculate T0(x). (It is deterministic.) In particular, given xj , 1 ≤ j ≤ n− 1,

T0(x) =

k
∑

j=1

(n− j + 1)(xj − xj−1) + (n− k)(x− xk) , xk ≤ x < xk+1 . (1.6)

It is important to note that the conditional distribution of T (x) has an atom (pos-
itive probability mass) at T0(x), which corresponds to the event of no arrivals in
the interval [0, T0(x)]; i.e.,

P (T (x) = T0(x)|x, n, xj , 1 ≤ j ≤ n− 1) = e−λT0(x) . (1.7)

However, it is easy to see that, aside from the atom at T0(x), the conditional
distribution of T (x) has a pdf. This follows from the fact that the probability of m
new arrivals in [0, T0(x)] has a Poisson probability and, conditional on there being
m arrivals, their locations in [0, T0(x)] are distributed as m i.i.d. uniform random
variables. These uniform distributions smooth out the conditional distribution of
T (x) giving it a pdf.
For the following discussion, let the remaining times x1, . . . , xn−1 be unordered

and let xn = x. Let Tn(x) ≡ [T (x)|n, x1, . . . , xn] be a random variable with the
conditional cdf. It is significant that the effects of the n different jobs initially in
the system can be decomposed into separate independent components, i.e.,

Tn(x) ≡ [T (x)|n, x1, . . . , xn] d=
n
∑

j=1

Tj(xj , x) , (1.8)

where
d
= denotes equal in distribution and the n random variables Tj(xj , x) are

mutually independent, distributed as a random variable T (xj ∧x, x), with xj ∧x =
min{xj , x},

T (x, x)
d
= T1(x) ≡ [T (x)|1, x] (1.9)

and, for xj < x,

T1(x)
d
= T (xj , x) + T1(x− xj) , (1.10)

where the two random variables on the right are independent; see Ott [21].
We now give an intuitive explanation of formulas (1.8)–(1.10). The idea is to

separate the effects of the n customers initially in the system. For this purpose, it is
helpful to think of the PS discipline as the limit of the round robin (RR) discipline
as the allocated quantum of service per round becomes negligibly small. Then the
customers in the system are being served separately. Also, because of the M/G/1
model assumptions, the input during different round robin quanta are independent
and identically distributed. Then T (xj , x) is the delay xj ∧ x imposed upon the
designated customer with service requirement x by customer j plus the additional
delays imposed upon the designated customer by arrivals when customer j is in
service (before receiving xj ∧ x service) or when these new arrivals themselves are
in service. A new arrival with service requirement S arriving when customer j has
completed u units of service, 0 < u < xj ∧ x, will impose an additional S ∧ (x− u)
of delay upon the designated customer.
Thus equation (1.10) is intuitively clear: we can divide the time to reduce the

service requirement of a single job by x into the time T (xj , x) required to achieve
the first xj reduction, including delays caused by all new arrivals during that period,
and then adding the remaining time T1(x−xj). Note that T (xj , x) = T (xj ∧ x, x).
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With this interpretation, it is immediate that T (x, y) is stochastically increasing
in y and, as y →∞, T (x, y) approaches the first passage time Tx,0 for the M/G/1
workload to go from x to 0, which has Laplace transform

f̂x0(s) ≡ Ee−sTx,0 = e−xζ(s) , (1.11)

where

ζ(s) = s+ λ− λb̂(s) , (1.12)

with b̂(s) being the busy-period transform, which satisfies the Kendall functional
equation

b̂(s) = ĝ(s+ λ− λb̂(s)) ; (1.13)

e.g., see Section 4 of Abate and Whitt [3].
To specify the Laplace transforms, let

t̂1(s|x) = Ee−sT1(x) . (1.14)

From (1.10), we have

t̂(s|xj , x) ≡ E[e−sT (xj ,x)] =
t̂1(s|x)

t̂1(s|x− xj)
for xj ≤ x . (1.15)

From (1.8) and (1.15), we obtain

[T6]t̂n(s|x) ≡ E[e−sTn(x)] ≡ E[e−sT (x)|n, x1, . . . , xn = x]

=

n
∏

j=1

t̂(s|xj ∧ x, x) =
n
∏

j=1

(

t̂1(s|x)
t̂1(s|x− [xj ∧ x])

)

. (1.16)

Hence, to specify the conditional distribution of Tn(x) and its Laplace transform
t̂n(s|x), it suffices to specify the distribution of T1(x) which in turn is characterized
by its Laplace transform t̂1(s|x) in (1.14). As in (1.16) of Ott [21], t̂1(s|x) is
characterized by the differential equation

∂

∂x
log t̂1(s|x) = −(s+ λ) + λGc(x)t̂1(s|x) + λ

∫ x

0

t̂1(s, x)

t̂1(s, x− y)
dG(y) . (1.17)

We now turn to means and variances, again following Ott [21]. First,

ET1(x) = B
(1)(x) ≡

∫ x

0

R(u)du (1.18)

for R in (1.4) and

V ar T1(x) = B
(1)(x)2 − 2B(2)(x) , (1.19)

where

B(2)(x) =

∫ x

0

B(1)(x− u)dB(1)(u) . (1.20)

Second, by (1.10),

[WC4]ET (xj ∧ x, x) = ET1(x) −ET1(x − (xj ∧ x))

= B(1)(x)−B(1)(x− (xj ∧ x)) =
∫ x

x−(xj∧x)
R(u)dx(1.21)
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and

[WC5]V ar T (xj ∧ x, x) = V ar T (x)− V ar T (x− (xj ∧ x))
= B(1)(x)2 −B(1)(x − (xj ∧ x))2

−2B(2)(x) + 2B(2)(x− (xj ∧ x)) . (1.22)

We now turn to the mean and variance of Tn(x). Let mn(x) ≡
m(x, n, x1, . . . , xn−1) and vn(x) ≡ v(x, n, x1, . . . , xn−1) be the conditional mean
and variance of T (x), i.e.,

mn(x) ≡ ETn(x) ≡ E[T (x)|x, n, x1, . . . , xn−1] . (1.23)

By (1.8) and (1.18)–(1.22),

mn(x) = nB
(1)(x)−

n−1
∑

j=1

B(1)(x− (x ∧ xj)) (1.24)

and

[WA11]vn(x) =



nB(1)(x)2 −
n−1
∑

j=1

B(1)(x− (x ∧ xj))2




−2



nB(2)(x)−
n−1
∑

j=1

B(2)(x − (x ∧ xj))



 , (1.25)

where B(1) and B(2) are given in (1.18) and (1.20). Thus we can calculate the mean
directly by numerically inverting its LT

m̂n(s) ≡
∫ ∞

0

e−sxmn(x)dx = nB̂
(1)(s)−

n−1
∑

j=1

e−s(x∧xj)B̂(1)(s) , (1.26)

where

B̂(1)(s) =
r̂(s)

s2
=

1

s2(1− ρĝe(s))
. (1.27)

There is some loss of accuracy in doing a single inversion for mn(x), because mn(x)
has a discontinuous derivative (see Section 7.2), but this usually should not be a
serious problem.
The variance in (1.25) requires more steps. We can calculate the second term

vn2(x) ≡ −2



nB(2)(x) −
n−1
∑

j=1

B(2)(x− (x ∧ xj))



 (1.28)

by numerically inverting its transform

v̂n2(s) ≡
∫ ∞

0

e−stvn2(t)dt = −2



nB̂(2)(s)−
n−1
∑

j=1

e−sxj B̂(2)(s)



 , (1.29)

where B̂(2)(s) = b̂(2)(s)/s with b̂(2)(s) = b̂(1)(s)2 = [sB(1)(s)]2, so that B(2)(s) =
sB(1)(s)2, but we must calculate B(1)(x)2 and B(1)(x − xj)2 by separately calcu-
lating B(1)(x) and B(1)(x− xj), 1 ≤ j ≤ n− 1, by numerically inverting B̂(1)(s) in
(1.27). Hence vn(x) requires n + 1 inversions, while mn(x) requires only one. We
discuss technical issues involved in carrying out these inversions in Section 7.
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Example 1.3 [exN21] If the service-requirement pdf g is exponential with
mean 1, then ĝ(s) = ĝe(s) = (1 + s)

−1, B̂(1)(s) = (1 + s)/s2(1 − ρ + s) and
B̂(2)(s) = (s−1 + 2s−2 + s−3)(1− ρ+ s)−2, so that

[OKB1]m1(x) = B(1)(x) =
x

1− ρ −
ρ

(1− ρ)2 [1− e
−(1−ρ)x] , (1.30)

[OKB2]B(2)(x) =
x2

2(1− ρ)2 −
2ρx

(1− ρ)3 +
(2 + ρ)ρ

(1− ρ)4 (1− e
−(1−ρ)x)

− ρ2

(1− ρ)3xe
−(1−ρ)x , (1.31)

and

[OKB3]v1(x) = B(1)(x)2 − 2B(2)(x) = 2ρx

(1− ρ)3 +
2ρ(1 + ρ)

(1− ρ)3 xe
−(1−ρ)x − ρ(4 + ρ)

(1− ρ)4

+
4ρ

(1− ρ)4 e
−(1−ρ)x +

ρ2

(1− ρ)4 e
−2(1−ρ)x . (1.32)

As a check on equations (1.30)–(1.32), we note that equations (1.30) and (1.32)
agree with equations (33) and (34) on p. 128 of Coffman et al. [7] for their case
n = 0. (To get the mean response time, τ needs to be added to (33).) Using (1.10),
(1.30) and (1.32), we can easily compute the moments of T (xj , x) for xj < x, getting

ET (xj , x) = m1(x) −m1(x− xj)→
xj
1− ρ as x→∞

and

V ar T (xj , x) = v1(x) − v1(x− xj)→
2ρxj
(1− ρ)3 as x→∞ .

1.3 Stochastic Comparisons for Mean Response Times

We now consider the impact of the service-requirement cdf on the expected
conditional response times. To make these comparisons we use basic stochastic
order relations; e.g., see Chapter 1 of Stoyan [24]. We say that one random variable
X1 with cdf G1 is stochastically less than or equal to another random variable X2
with cdf G2, and write X1 ≤st X2 or G1 ≤st G2, if Ef(X1) ≤ Ef(X2) for all
nondecreasing real-valued functions f for which the expectations are well defined
or, equivalently, if Gc1(t) ≤ Gc2(t) for all t. We say that X1 is less than or equal to
X2 in the convex order, and write X1 ≤c X2 or G1 ≤c G2, if Ef(X1) ≤ Ef(X2) for
all convex real-valued f for which the expectations are well defined. Since f(x) = x
and f(x) = −x are both convex, we must have EX1 = EX2 when X1 ≤c X2.
When X1 ≤c X2, we have V arX1 ≤ V arX2. The ordering G1 ≤c G2 holds if and
only if

∫ ∞

x

Gc1(t)dt ≤
∫ ∞

x

Gc2(t)dt for all x (1.33)

with

m11 =

∫ ∞

0

Gc1(t)dt =

∫ ∞

0

Gc2(t)dt = m21 ; (1.34)

see Section 1.3 of Stoyan [24].
From the classical theory (e.g., Section 3.3 of Kelly [18]), we know that for

any service-requirement cdf G, the steady-state number of jobs in service Q in the
M/G/1/PS model has the geometric distribution P (Q = k) = (1 − ρ)ρk, k ≥ 0,
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with mean EQ = ρ/(1−ρ) and, given that there are n jobs in service in steady state,
the n remaining service requirements are distributed as n iid random variables each
with the stationary-excess cdf Ge. If G1 and G2 are two service-requirement cdf’s
ordered by G1 ≤c G2, then the associated stationary-excess cdf’s defined in (1.1)
are stochastically ordered, i.e., G1e ≤st G2e; this is easy to see from (1.1), (1.33)
and (1.34). Hence, if G increases in convex order, the mean m1 and thus ρ remain
unchanged, but Ge increases stochastically, so that the steady-state distribution of
the remaining service requirements increases stochastically.
We now show that there is an opposite effect on the conditional mean response

times given fixed information.

Theorem 1.4 [thH1] Consider twoM/G/1/PS systems with common arrival
rate λ and service-requirement cdf ’s ordered by G1 ≤c G2. Then

ET1(x, y) ≥ ET2(x, y) for all x < y (1.35)

and

E[T1(x)|n, x, x1, . . . , xn−1] ≥ E[T2(x)|n, x, x1, . . . , xn−1] (1.36)

for all n, x, x1, . . . , xn−1.

Proof Since G1 ≤c G2, G1e ≤st G2e. Hence G1e(t) ≥ G2e(t) for all t, which in
turn implies that R1(t) ≥ R2(t) for all t by (1.4). The first conclusion follows from
the representation

ET (x, y) = B(1)(y)−B(1)(y − x) =
∫ y

y−x
R(t)dt . (1.37)

The second conclusion follows because [T (x)|n, x, x1, . . . , xn−1] can be expressed
as the sum of n independent random variables each distributed as T (x, y) for ap-
propriate (x, y), as given in (1.8).

The steady-state mean of T (x) without further conditioning is well known to
be

ET (x) =
x

1− ρ , (1.38)

which clearly is independent of the service-requirement cdf beyond its mean. Thus
the two effects of increased service-requirement variability described above exactly
cancel out: The remaining service requirements tend to increase, while the con-
ditional mean for any given set of service requirements tends to decrease, so that
(1.38) holds.
The stochastic comparisons in Theorem 1.4 allow us to bound the conditional

means ET (x, y) and ETn(x) above by using less variable service-requirement cdf’s.
In particular, upper bounds for an arbitrary service-requirement cdf G with mean
m1 are obtained by using the deterministic (D) distribution assigning probability
1 to the mean m1. Hence we can obtain conservative estimates even if we do not
know the service-requirement cdf provided we use a deterministic distribution with
atom (unit probability) on a value greater than or equal to the true mean.

Example 1.5 [exH1] Gamma distributions with common mean are convex
ordered by their shape parameter; see Example 1.5.1(e) on p. 14 of Stoyan [24].
For example

ĝp(s) =

(

1

1 + s/p

)p

(1.39)
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is the Laplace transform of the gamma pdf with mean 1 and shape parameter p,
which has variance 1/p. If p1 < p2, then Gp1 ≥c Gp2 . As p → ∞, ĝp(s) → e−s,
which is the Laplace transform of the deterministic distribution with mean 1. To
illustrate, consider the four convex ordered cases

D ≡ Γ∞ ≤c Γ5 ≡ E5 ≤c M ≤c Γ0.2
with variances 0, 0.2, 1 and 5. Plots of E[T (x)|1, 2] as a function of the arrival rate,
for different service-requirement cdf’s, are given in Figure 2 (i.e., n = 1, x1 = x = 2).
These are obtained by numerically inverting the LT in (1.26) for n = 2. We have an

Arrival rate

E
[T

(x
)|

n=
1,

x=
2]

0.0 0.5 1.0 1.5 2.0
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10
15

20
25

DeterministicDeterministic
Deterministic

Gamma(5.0)Gamma(5.0)
Gamma(5.0)Gamma(5.0)Gamma(5.0)Gamma(5.0)Gamma(5.0)

ExponentialExponential

ExponentialExponential
Exponential

Gamma(0.2)Gamma(0.2)
Gamma(0.2)

Pareto(1.5)

Figure 2 The mean E[T (x)|1,2] as a function of the arrival rate for five
different service-requirement cdf’s.

independent check on the numerical transform inversion algorithm by comparing
results for ET1(x) with results displayed in Example 1.3 for theM/M/1/PS model.

Also displayed in Figure 2 are the conditional means for the Pareto service-
requirement ccdf

Gcq(t) = (1 + t/(q − 1))−q , (1.40)

with parameter q = 1.5. This Pareto cdf has mean 1 for q > 1, second moment
m2 = 2(q− 1)/(q− 2) for q > 2 and power tail with exponent q. As q decreases the
cdf Gq(t) gets more variable in the convex order. The Laplace transform Ĝ

c
q(s) of

Gcq(t) in (1.40) which was used in (1.26) was calculated using continued fractions
as in Abate and Whitt [5]; see especially Section 8 there.
The numerical results in Figure 2 suggest that the Pareto (1.5) distribution

with mean 1 is more variable in convex order than the gamma (0.2) distribution
with mean 1, but that is not true. This can be seen from plots of the ccdf’s in
Figure 3. For ccdf’s with common mean, convex order is characterized by the
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ccdf’s crossing once and only once. Figure 3 shows that the two Pareto ccdf’s cross
each other once, but both cross the gamma (0.2) ccdf twice.

x

C
C

D
F

0.01 0.05 0.10 0.50 1.00 5.00

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Pareto(1.5)Pareto(1.5)Pareto(1.5)Pareto(1.5)Pareto(1.5)

Pareto(2.5)

Gamma(0.2)

Figure 3 A plot of three ccdf’s in log-log scale to show convex order between
the two Pareto ccdf’s and lack of it between these and the gamma ccdf.

Example 1.6 [exH2] We have not yet been able to establish an analog of
Theorem 1.4 for the conditional variances. However, we have observed this ordering
empirically. Indeed, we see such an ordering for the ratio SD/M . To illustrate,
in Figure 4 we display the ratio SD/M for [T (x)|1, 2], the same case considered in
Example 1.5.

1.4 Reliable Prediction When the Initial Work is Large

In this section we show that reliable prediction becomes possible when the
initial work is large, i.e., when there is a large service requirement x of the arriving
job or a large number n of other jobs in the system.
We first note that the squared coefficient of variation (SCV, variance divided

by the square of the mean) of T1(x) for any x is bounded above by 1, the value for
an exponential random variable. In particular, by (1.18) and (1.19),

V ar T1(x) = B
(1)(x)2 − 2B(2)(x) < B(1)(x)2 = ET1(x)2 . (1.41)

However, we want the SCV of Tn(x) to be much less than 1.
The SCV of Tn(x) tends to decrease as we increase x or n because, by (1.8),

Tn(x) can be expressed as a sum of independent random variables. Indeed, this in-
dependence makes it possible to establish laws of large numbers (LLNs) and central
limit theorem (CLT) refinements. To state the results, let ⇒ denote convergence
in distribution and let N(m,σ2) denote a normal random variable with mean m
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Figure 4 The ratio of the standard deviation to the mean of [T (x)|1, 2] as a

function of the arrival rate for five different service-requirement cdf’s.

and variance σ2. Recall that convergence in distribution to a deterministic limit is
equivalent to convergence in probability. (This initial asymptotic result was pre-
viously established by S. A. Grishechkin. The M/M/1/PS model is covered by
[11], as reviewed by Theorem 6 of [12], while the M/G/1/PS model is covered by
Theorem 1.1 of [13].)

Theorem 1.7 [thJ1] If x→∞, then
(a) mn(x)x → 1

1−ρ ,

(b) Tn(x)
mn(x)

⇒ 1 .
(c) If in addition m2 <∞, then

x−1/2[Tn(x)− x/(1− ρ)]⇒ N
(

0,
ρm2
(1− ρ)3

)

as x→∞ .

Proof Since parts (a) and (b) are consequence of (c) under the extra moment
condition, we concentrate on establishing (c). Similar direct arguments apply to
parts (a) and (b) without assuming that m2 < ∞. It furthermore suffices to
establish the result (c) for T1(x) because Tn(x) is the sum of T1(x) and (n −
1) other independent random variables Tj(xj ∧ x, x), as shown in (1.16). These
other variables are bounded above by (and approach as x →∞) Tj(xj ,∞), which
we have noted is distributed as the first passage time Txj ,0 with finite mean and
variance, independent of x. Hence, these variables are asymptotically negligible
in the scaling. We propose two different arguments to treat T1(x): The first is
a high-level argument exploiting the Lindeberg-Feller CLT for independent non-
identically distributed random variables on p. 262 of Feller [10], while the second
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is a direct asymptotic argument using the characteristic function of the normalized
version of T1(x). First, for the high-level argument, we observe that T1(x) can be
expressed as the sum of the k+1 independent random variables T1(1, x), T2(1, x−
1), . . . , Tk+1(1, x−k) where k is the largest integer such that x ≥ k+1 (x−k ≥ 1):
We simply write the transform as

[J2]t̂1(s|x) =
t̂1(s|x)
t̂1(s|x − 1)

t̂1(s|x− 1)
t̂1(s|x− 2)

t̂1(s|x− 2)
t̂1(s|x− 3)

· · · t̂1(s|x− k)
t̂1(s|x − k − 1)

= t̂(1, x)t̂(1, x− 1)t̂(1, x− 2) · · · t̂(1, x− k) . (1.42)

Since the distributions of all the random variables Tj+1(1, x−j) approach the distri-
bution of T10 and are stochastically bounded above by this distribution, and since
this distribution has finite mean and variance, we can easily verify the Lindeberg
condition (4.15) on p. 262 of Feller [10]. The variance of t̂1(s|x) is asymptotically
xV ar(T10) to within an error negligible in the scaling. We obtain V ar(T10) =
m2ρ/(1− ρ)3 from Theorem 7 of Abate and Whitt [3]. Now turning to the alter-
nate transform proof, we use the Laplace transform of T1(x) in (1.17) to construct
the characteristic function of x−1/2[T1(x)− x/(1− ρ)]; i.e., for real u,

φ(u|x) ≡ Eeiu[x−1/2(T1(x)−x/(1−ρ))] = t̂1
(

− iu√
x

∣

∣

∣

∣

x

)

e−iu
√
x/(1−ρ) (1.43)

for t̂1(s|x) in (1.17). We then do Taylor series expansions of t̂1
(

− iu√
x
|x
)

and

t̂
(

− iu√
x
|z, y
)

about t̂1(0|x) and t̂(0|z, y) appearing in two integrals on the right
side of (1.43) (using (1.17)), exploiting the established formulas for the first two
moments. This reasoning yields

φ(u|x) → e−σ2t2/2 as x→∞ , (1.44)

where σ2 = ρm2/(1 − ρ)3, which establishes the desired result by the continuity
theorem for characteristic functions; see p. 508 of Feller [10]. The second moment
condition m2 < ∞ is used to show that the integrated remainder terms in the
Taylor series expansions are asymptotically negligible; e.g., we need y2G2(y) → 0
as y →∞, which follows from (6.4) on p. 150 of Feller [10].
Example 1.8 [exJ1] To illustrate Theorem 1.7, we consider a numerical ex-

ample. In Figures 5 and 6 we plot m1(x)/x and v1(x)/xm2 as functions of x for
the several service-requirement cdf’s (the gamma and Pareto cdf’s considered in
Figures 2 and 4). In each case we compare these curves to the limiting cases as
x → ∞, (1 − ρ)−1 for the mean and ρ(1 − ρ)−3 for the variance. We have nor-
malized the mean and variance so that these limits should both be independent of
x and the service-requirement cdf G. Consistent with Theorem 1.7(a), Figure 5
shows that m1(x)/x → (1− ρ)−1 = 2 as x → ∞ in this example. Consistent with
Theorem 1.7(c), the rate of convergence of m1(x)/x is slower for the more variable
distributions. The rate is especially slow for Pareto (1.5) for which m2 =∞. Also
consistent with Theorem 1.7(c), Figure 6 shows that v1(x)/xm2 → ρ/(1− ρ)3 = 4
as x→∞.
We now consider CLTs when n increases. For the special case of the M/M/1/PS

system, asymptotic results as n → ∞ were obtained previously by Grishechkin in
[11] and Theorem 6 of [12]. For the more general M/G/1/PS model, we clearly need
to impose some regularity conditions, because the remaining service requirement
xn of job n could approach 0 very rapidly as n → ∞, so that the total service
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Figure 5 The normalized mean m1(x)/x as a function of the arrival service

requirement x for several service-requirement distributions.

requirement of all n jobs is less than a single job; i.e., we could have Tn(x) <
T2(x) ≡ [T (x)|x, 2, x1] for 0 < x1 < x and all n, under which we would not have a
LLN or a CLT.
A simple regularity condition is to start with m jobs with remaining service

requirements x1, . . . , xm. Then we can consider n groups of jobs with these service
requirements. Let Tn,m(x) represent this scheme, which has nm other jobs, n each
with remaining service times x1, . . . , xm.

Theorem 1.9 [thJ2] In the group framework above, if n→∞, then
(a)

Tn,m(x)
ETn,m(x)

→ 1 ,
(b)

Tn,m(x)
nET1,m(x)

→ 1 .
(c) If in addition m2 <∞, then

n−1/2[Tn,m(x)− nET1,m(x)]⇒ N(0, V ar T1,m(x)) as n→∞ .

Proof Tn,m(x) is distributed as the sum of n i.i.d. random variables distributed
as T1,m(x) plus a single random variable distributed as T1(x). Thus the classical
LLN and CLT for i.i.d. random variables can be used.

It is clearly possible to generalize Theorem 1.9. One way is to prohibit arbi-
trarily small service requirements.

Theorem 1.10 [thJ3] Suppose that m2 <∞ and that there is an ε > 0 and
an M < ∞ so that xj > ε for all but M of the remaining service requirements.
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service requirement x for several service-requirement distributions.

Then
Tn(x) −ETn(x)
√

V ar Tn(x)
⇒ N(0, 1) as n→∞.

Proof The Lindeberg-Feller CLT for independent non-identically distributed
random variables can be applied, just as in Theorem 1.7. The up-to M random
variables with remaining service times less than ε are asymptotically negligible.
The remaining n − M variables are stochastically bounded between T (ε, x) and
T (x, x) = T1(x), which allows us to verify condition (4.15) on p. 262 of Feller
[10].

Example 1.11 [exJ2] We illustrate Theorems 1.7 and 1.9 by considering a
numerical example involving [T (x)|n, x1, . . . , xn] in which x = xn = 2 and xj = 1
for 1 ≤ j ≤ n− 1. In Figure 7 we plot the ratio SD/M as a function of the arrival
rate for several different values of n.

1.5 Only Conditioning on the Number of Jobs

In this section we consider the prediction problem when we condition only
upon the service requirement x of the arriving job and the total number n of jobs
in the system; i.e., we do not exploit either the remaining service requirements
or the completed service requirements of the other n − 1 jobs. However, we do
exploit knowledge of the service-requirement cdf G. In this situation prediction is
facilitated by the fact that the remaining n − 1 service requirements of the other
jobs, conditional on there being n− 1 other jobs in the system in steady state, are



1.5. Only Conditioning on the Number of Jobs 19

Arrival rate

S
D

[T
(x

)|
-]

/E
[T

(x
)|

-]

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

n = 1n = 1
n = 1

n = 6n = 6n = 6

n = 11n = 11
n = 11

:::: :::

:
n = 51n = 51
n = 51

Figure 7 The ratio of the standard deviation to the mean for
[T (x)|n, x1, . . . , xn] as a function of the arrival rate for several values of n,
when x = xn = 2 and xj = 1, 1 ≤ j ≤ n− 1.

distributed as n − 1 iid random variables with the service-requirement stationary-
excess cdf Ge in (1.1). (In Section 3 we noted that this is part of the classical
theory.) In this section we assume that ρ < 1, so that we can invoke this steady-
state theory.
In the special case of the M/M/1/PS model, the conditional response time

given the number of jobs in service was treated by Coffman, Muntz and Trotter [7]
and Sengupta and Jagerman [23]. for the M/M/1/PS model, this conditional re-
sponse time is unchanged by also conditioning on the amounts of completed service,
because the remaining service again has an exponential distribution.
As before let T1(x), m1(x) and v1(x) be the random value, mean and variance

of the conditional response time of a single job with service requirement x given
that it is initially the only job. Let T (x, n), Mk(x, n) and V (x, n) be the random
value, kth moment and variance of the conditional response time of this same job
with service requirement x given that initially there are also n− 1 other jobs in the
system (without specifying remaining or completed service). Let Mk(x) and V (x)
be the kth moment and variance of the time required for one of the other jobs to
complete the minimum of x and its service requirement. Because of the properties
mentioned above, we clearly have

[M1]M1(x, n) = m1(x) + (n− 1)M1(x) , (1.45)

[M2]V (x, n) = v1(x) + (n− 1)V (x) , (1.46)

[M3]V (x) = M2(x) −M1(x)2 , (1.47)
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We have already shown how to calculate m1(x) and v1(x) in (1.24) and (1.25). We
now show how to compute all the remaining quantities by showing how to compute
the two moments M1(x) and M2(x).

Theorem 1.12 [thM1] The two moments M1(x) and M2(x) can be expressed
as

M1(x) = B
(1)(x)−

∫ x

0

B(1)(x − u)dGe(u) (1.48)

and

[M5]M2(x) = 2B(1)(x)2 − 2B(2)(x) + 2
∫ x

0

B(2)(x− u)dGe(u)

−2B(1)(x)
∫ x

0

B(1)(x− u)dGe(u) , (1.49)

where Ge, B
(1) and B(2) are defined in Section 2. The mean in (1.48) has LT

M̂1(s) ≡
∫ ∞

0

e−stM1(t)dt = B̂
(1)(s)(1− ĝe(s)) , (1.50)

while the convolution integrals in the third and fourth terms of (1.49) have LTs

sB̂(1)(s)2ĝe(s) and B̂
(1)(s)ĝe(s).

Proof For (1.48), apply (1.24). For (1.49), apply (1.47), (1.24) and (1.25).

From (1.45)–(1.47) and Theorem 1.12, we see that we can apply numerical
transform inversion to calculate M1(x), V (x), M1(x, n) and V (x, n) for any x and
n.

Example 1.13 [exN51] Continuing Example 1.3, let the service-requirement
pdf g be exponential with mean 1. Then M̂1(s) = 1/s(1− ρ+ s), so that

M1(x) = (1− ρ)−1(1− e−(1−ρ)x), x ≥ 0 , (1.51)

and M1(x, n) is obtained by combining (1.45), (1.51) and (1.30). We see that
M1(x, n) agrees with formula (33) of Coffman et al. [7] for all n. We have numeri-
cally verified the second-moment formula. To illustrate, Table 1 displays results for
the mean M1(x, n) and variance V (x, n) as a function of n for x = 1 and ρ = 0.5.
These results were obtained from both [7] and numerical inversion. For the numer-
ical inversion (see Section 7), setting the target discretization error bound at 10−8

and calculating A for B1 as − log(10−8/6x), we obtained accuracy to at least 10−7
for the mean and 10−6 for the variance.

n mean variance
1 1.213061 1.588668 e− 1
2 2.000000 4.659456 e− 1
4 3.573877 1.080103
6 5.147755 1.694261
8 6.721632 2.308418

Table 1 The mean M1(x, n) and variance V (x, n) as a function of n for Ex-
ample 1.13 with ρ = 0.5 and x = 1.

[ta1]
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Given the iid structure, it is evident that we also have the following CLT,
paralleling Theorem 1.9(c).

Theorem 1.14 [thM2] When we condition only upon n and x,

T (x, n)− nM1(x)
√

nV (x)
⇒ N(0, 1) as n→∞ ,

where M1(x) and V (x) are the mean and variance in (1.47)–(1.49).

In order to establish a CLT as x → ∞, we first give conditions for M1(x) and
M2(x) to converge to finite limits as x→∞.
Theorem 1.15 [thM3] Consider the moments M1(x) and M2(x) in Theo-

rem 1.12.

(a) If m2 <∞, then

M1(x)→
me1
1− ρ =

m2
2m1(1− ρ)

as x→∞ .

(b) If m3 <∞, then

M2(x)→
me2
(1− ρ)2 =

m3
3m1(1− ρ)2

as x→∞ .

Proof (a) Rewrite (1.48) as

M1(x) = B
(1)(x)Gce(x)−

∫ x

0

[B(1)(x)−B(1)(x − u)]dGe(u) .

Then note that

B(1)(x)Gce(x) ≤ xGce(x)/(1− ρ)→ 0 as x→∞
because me1 <∞, see (6.4) on p. 150 of Feller [10], while

B(1)(x)−B(1)(x − u)→ u

1− ρ as x→∞

and B(1)(x) − B(1)(x − u) ≤ u/(1 − ρ), so that by the dominated convergence
theorem
∫ x

0

[B(1)(x)−B(1)(x−u)]dGe(u)→ (1− ρ)−1
∫ ∞

0

udGe(u) =
me1
1− ρ as x→∞ .

(b) Rewrite (1.49) as

M2(x) = 2B
(1)(x)2G2e(x) − 2B(2)(x)Gce(x)

+2

∫ x

0

{

B(1)(x)[B(1)(x)−B(1)(x− u)]− [B(2)(x)−B(2)(x − u)]
}

dGe(x) .

Then note that
2B(1)(x)2Gce(x) ≤ 2x2Gce(x)/(1− ρ)2 → 0

and
2B(2)(x)Gce(x) ≤ x2Gce(x)/(1− ρ)2 → 0

by the moment condition m3 <∞, using (6.4) on p. 150 of Feller [10] again. Also,

2
{

B(1)(x)[B(1)(x)−B(1)(x− u)]− [B(2)(x)−B(2)(x − u)]
}

→ 2xu

(1− ρ)2 −
2

(1− ρ)2
(

x2

2
− (x− u)

2

2

)

=
u2

(1− ρ)2 as x→∞ ,

so that indeed
M2(x)→ me2/(1− ρ)2
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by the dominated convergence theorem. (We omit the demonstration of domination,
which is tedious. We exploit the fact that W has finite first and second moments
since we have assumed that m3 <∞.)
We apply Theorem 1.15 to establish a CLT as x→∞.
Theorem 1.16 [thM4] If m3 <∞, then

x−1/2[T (x, n)− x/(1− ρ)]⇒ N
(

0,
ρm2
(1− ρ)3

)

as x→∞ .

Proof By Theorem 1.7, we have the CLT for T1(x). By Theorem 1.15, the
n− 1 other variables are asymptotically negligible in the scaling as x→∞.
We close this section by deriving an expression for the Laplace transform

t̂(s;x, n) ≡ Ee−sT (x,n) in terms of f̂1(s|x) = 1/t̂1(s|x). See Remark 1.1 of Ott
[21] for previous use of this reciprocal of the transform t̂1(s, x). Applying (1.16),
we see that

t̂(s;x, n) =
[
∫ x

0 f̂1(s|x− y)dGe(y) +Gce(x)]n−1

f̂1(s|x)n
. (1.52)

We can then express the numerator terms in (1.52) in terms of double transforms;
i.e., let

f̂e(s, x) =

∫ x

0

f̂1(s|x− y)dGe(y) +Gce(x) (1.53)

and

f∗1 (s, τ) ≡
∫ ∞

0

e−τxf1(s|x)dx . (1.54)

Then

f∗e (s, τ) ≡
∫ ∞

0

e−τxf̂e(s, x)dx = f
∗
1 (s, τ)ĝe(τ) +

1− ĝe(τ)
τ

. (1.55)

From (1.11) of Ott [21],

f∗1 (s, τ) =
τ − λ(1− ĝ(τ))

τ(τ − s− λ(1− ĝ(τ)) . (1.56)

1.6 Conditioning Upon Completed Work

In this section we make predictions based on the amount x of required work for
the new arrival, the number n of jobs in the system and the amount of completed
work for each of the n− 1 other jobs already in the system, denoted by yj , 1 ≤ j ≤
n − 1. Let G(x|y) be the conditional cdf of remaining work given the completed
work for one job, i.e.,

G(x|y) = G(x+ y)−G(y)
1−G(y) , x > 0 . (1.57)

Since G(·|y) = G = Ge when G is exponential, the results in this section agree
with the results in Section 5 for the M/M/1/PS model, but not otherwise. (The
exponential distribution is the only continuous distribution for which Ge = G.)
We start by indicating how to calculate the mean and variance of the conditional

response time. The reasoning is very similar to Section 5. Let Tc(x, n), Mck(x, n)
and Vc(x, n) denote the random variable, k

th moment and variance, respectively,
of the conditional response time of the job with service requirement x given that
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there are initially n − 1 other jobs with a vector of completed amounts of service
(y1, . . . , yn−1). We suppress the vector (y1, . . . , yn−1) in our notation, using the
subscript c to indicate this form of information. Let Myk(x) and Vy(x) be the k

th

moment and variance of the time required for one of the other jobs to complete the
minimum of x service and its own remaining service requirement given that it had
previously completed an amount y of service. Paralleling (1.45)–(1.47), we have the
following relations:

[N1]Mc1(x, n) = m1(x) +
n−1
∑

j=1

Myj1(x) , (1.58)

[N2]Vc(x, n) = v1(x) +

n−1
∑

j=1

Vyj (x) , (1.59)

[N3]Vy(x) = My2(x) −My1(x)2 . (1.60)

Since we have shown how to compute m1(x) and v1(x) in (1.24) and (1.25), it
suffices to show how to compute My1(x) and My2(x) for any x > 0 and y > 0. The
following is a direct analog of Theorem 1.12.

Theorem 1.17 [thN1] The first two moments My1(x) and My2(x) can be
expressed as

My1(x) = B
(1)(x) −

∫ x

0

B(1)(x− u)dG(u|y) (1.61)

and

[N5]My2(x) = 2B(1)(x)2 − 2B(2)(x) + 2
∫ x

0

B(2)(x− u)dG(u|y)

−2B(1)(x)
∫ x

0

B(1)(x− u)dG(u|y) , (1.62)

where G(u|y) is the conditional remaining-service cdf in (1.57) and B(1) and B(2)
are defined in Section 2. The mean in (1.61) has LT

M̂y1(s) ≡
∫ ∞

0

e−stMy1(t)dt = B̂
(1)(s)(1− ĝy(s)) , (1.63)

while the convolution integrals in the third and fourth terms of (1.62) have LTs

sB̂(1)(s)2ĝy(s) and B̂
(1)(s)ĝy(s), where ĝy(s) is the LST of the cdf G(u|y).

We can exploit (1.58)–(1.60) and Theorem 1.17 to calculate the meanMc1(x, n)
and the variance Vc(x, n) by numerical transform inversion. However, now we need
to know the LST ĝy(s) of the conditional cdf G(x|y) in (1.57) as well as the LST
ĝ(s) of the original service-requirement cdf G. Fortunately, for many families of
distributions, the conditional cdf G(x|y) often inherits the form of the original cdf
G(x); e.g., see Section 4 of Duffield and Whitt [9].
Just as in Sections 4 and 5, the variable Tc(x, n) is the sum of n independent

random variables, so that we can establish LLNs and CLTs under regularity con-
ditions. As in Section 4, we have to account for the nonidentical distributions.
Analogs of Theorems 1.7 and 1.9 follow by essentially the same reasoning. Hence,
we see that Tc(x, n) should be approximately normally distributed when either x
or n is large (or both).
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Example 1.18 [exL1]We now consider numerical examples to illustrate the
consequences of using the three different kinds of information in Sections 2, 5 and
6. A useful numerical check is provided by the M/M/1/PS model where the
exponential cdf G has mean 1, because then the conditional-remaining-service-
requirement cdf’s are all exponential with mean 1 in Sections 5 and 6, so the
formulas agree. We now consider information comparisons for the M/H2/1/PS
model, having a hyperexponential (H2) service-requirement cdf. In particular, the
pdf is

g(x) = pλ1e
−λ1x + (1− p)λ2e−λ2x, x ≥ 0 , (1.64)

where p = (1 + 1/
√
3)/2, λ1 = 2p and λ2 = 2(1 − p), which yields mean 1, SCV

c2s = 2 and “balanced means”, i.e., pλ
−1
1 = (1−p)λ−12 . We assume that the arriving

job has a service requirement of 10. Since that requirement is large compared to
the mean (1), there is considerable opportunity for that customer’s response time
to be influenced by other customers.
We consider two cases: There is either 1 old customer or 10, making n = 2

and 11. We let the required remaining service time or the age be the same value
x for all old customers, and we let x range in powers of 10 from 0.01 to 100. The
expected values for the three forms of conditioning are displayed in Table 2. We see
that the mean is lowest (highest) when the good news (bad news) corresponding to
low (high) x is clearest, when x denotes the required remaining service requirement
of each old job. When we condition on the ages, the conditional mean increases
with x, as it should, because an H2 distribution has decreasing failure rate (is
DFR), meaning that the conditional remaining service requirement increases as the
age increases. From Table 2, we see that the form of information can significantly
influence the mean.
We display the corresponding variances in Table 3. We display the conditional

variance when we condition on n only, and the variance ratios
V ar(T (x)|Reqd.)/V ar(T (x)|n) and V ar(T (x)|Ages)/V ar(T (x)|n) in the other two
cases. For smaller x, the conditional variances are ordered as expected, according
to the utility of the information. However, that is not true for larger values of x. In
those cases, the means are very different, so that the variance becomes somewhat
a second-order factor. From Tables 2 and 3, it is evident that the form of informa-
tion can significantly affect both the predicted value (the conditional mean) and
the reliability of that prediction (the conditional variance or standard deviation).

Just as at the end of Section 5, we can obtain an expression for the Laplace
transform of Tc(x, n). Let t̂c(s|x, n) ≡ t̂c(s|x, n, y1, . . . , yn−1) be the LST

t̂c(s|x, n) ≡ E[e−sTc(x,n)] , (1.65)

where yj are the amounts of completed work. Paralleling (1.52), we can write

t̂c(s|x, n) =
n−1
∏

j=1

[

∫ x

0
f̂1(s|x− u)dG(u|yj) +Gc(x|yj)

]

f̂1(s|x)n
. (1.66)

We then can express the double transform of the numerator terms

f̂y(s|x) ≡
∫ x

0

f̂1(s|x − u)dG(u|yj) +Gc(x|yj) (1.67)
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n = 2 Form of Conditioning
x required ages n only
0.01 17.2 19.1 20.0
0.10 17.4 19.1 20.0
1.00 19.1 19.9 20.0
10.00 34.4 21.6 20.0
100.00 34.4 21.6 20.0
n = 11 Form of Conditioning
x required ages n only
0.01 17.4 36.2 45.3
0.10 19.1 36.8 45.3
1.00 36.6 44.0 45.3
10.00 189.0 61.2 45.3
100.00 189.0 61.2 45.3

Table 2 Comparison of different forms of conditioning in Example 1.18: The
expected conditional response time in anM/H2/1/PS model for a new arrival
with service requirement 10 given n− 1 old jobs (n = 2 and 11) each having
required remaining service or age x, as a function of x.

[ta2]

n = 2 Variance Variance Ratios
x given n only required ages
0.01 0.663 0.875
0.10 0.674 0.883
1.00 64.9 0.790 0.984
10.00 1.322 1.158
100.00 1.322 1.158
n = 11 Variance Variance Ratios
x given n only required ages
0.01 0.167 0.691
0.10 0.196 0.712
1.00 262.8 0.482 0.960
10.00 1.796 1.389
100.00 1.796 1.389

Table 3 Comparison of different forms of conditioning in Example 1.18: The
variance of the conditional response time of a new job given n only and the
ratios of the other conditional variance to this one, again for a new arrival wtih
service requirement 10.

[ta3]

as

f∗y (s, τ) ≡
∫ ∞

0

e−τxfy(s|x) = f∗1 (s, τ)ĝyj (τ) +
1− ĝyj (τ)
τ

(1.68)

where f∗1 (s, τ) is given in (1.56) and ĝy(τ) is the LST of the cdf G(x|y) in (1.57).
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1.7 Numerical Inversion Issues

In this section we discuss technical issues that arise when we perform numerical
inversion of the transforms in Sections 2, 5 and 6.

1.7.1 Controlling the Discretization Error. When we use the Fourier-
series method, the discretization error is controlled by exploiting the structure of
the function to be calculated; e.g., see (11) and (12) of [4]. In particular, when the
function is f(x), the discretization error is

ed ≡ ed(x) =
∞
∑

k=1

e−kAf((2k + 1)x) . (1.69)

From (1.69), we see that the discretization error is controlled by choosing A suitably
large. However, we are usually constrained from choosing A too large because
very large A introduces roundoff error; e.g., see Section 2.2 of [1]. If A needs
to be increased significantly, then we also need to increase the roundoff-control
parameter l (e.g., typically to l = 2 or 3 from 1), which increases the computation
by approximately a factor of l. Working with standard double precision, it is
usually reasonable to aim for discretization error of the order 10−8 (in the interval
10−6 − 10−10).
When we calculate cdf’s or ccdf’s we can use predetermined control parame-

ters, because cdf’s and ccdf’s are always bounded by 1. However, this convenient
property does not hold for the functions considered here. Hence, we need to bound
the functions above by convenient functions we can analyze.
There are two cases to consider here: ρ < 1 and ρ ≥ 1. For ρ < 1, we can easily

establish convenient bounds. First, from (1.4), by bounding W (x) above by 1,

R(x) ≤ 1

1− ρ . (1.70)

Hence, from (1.18)–(1.20), (1.24) and (1.28),

[X2]m1(x) = B(1)(x) ≤ x

1− ρ , (1.71)

[X3]v1(x) ≤ B(1)(x)2 ≤ x2

(1− ρ)2 , (1.72)

[X4]B(2)(x) ≤ x2

2(1− ρ)2 , (1.73)

[X5]mn(x) ≤ nB(1)(x) ≤ nx

1− ρ , (1.74)

[X6]|v2n(x)| ≤ 2nB(2)(x) ≤ nx2

(1− ρ)2 . (1.75)

It is easy to see that similar bounds hold for the functions in Sections 5 and 6.
By (1.71)–(1.75), we need to consider functions of the form c1x and c2x

2 for
constants c1 and c2. The first case was explicitly worked out in (5.29) of [2] and
applied to renewal functions in Section 13 of [2].
Given (1.69), if |f(x)| ≤ cxk , then the discretization error is bounded by

|ed(x)| ≤
∞
∑

k=1

e−kA(2k + 1)cxk ≤ cxk (3e
−A − e−2A)
(1− e−A)2 ≈ 3cxke−A . (1.76)
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If the desired discretization-error bound is ε (e.g., 10−8), then we should set A at

A = − log(ε/3cxk) . (1.77)

For example, for mn(x) we combine (1.74) and (1.77) to obtain

A[mn(x)] = − log(ε(1− ρ)/3nx) . (1.78)

The behavior for ρ ≥ 1 is more complicated, but simple bounds can be obtained
from the inequality

Tn(x) ≤
∫ x

0

[n+A(t)]dt , (1.79)

where A(t) is the number of arrivals in [0, t], which is obtained by assuming that
there are no departures at all before the time that the job of interest with service
requirement x departs. From (1.79), we get the simple bounds

mn(x) ≡ ETn(x) ≤
∫ x

0

[n+EA(t)]dt = nx+
λx2

2
(1.80)

and

[X14]E[Tn(x)]
2 ≤ E

[

(
∫ x

0

[n+A(t)]dt

)2
]

≤ E[x2(n+A(x))2] = x2(n2 + 2nλx+ λx+ (λx)2) .(1.81)

For example, the analog of (1.77) for (1.81) is

A = − log(ε/3[n2x2 + (2n+ 1)λx3 + λ2x4]) . (1.82)

These bounds in (1.80) and (1.81) for ρ ≥ 1 make it natural to ask how the
M/G/1/PS queue grows when ρ ≥ 1. This has been studied by Jean-Marie and
Robert [16].

1.7.2 Smoothness. We note that the conditional mean mn(x) in (1.24) has
a discontinuous derivative ṁn(x) with jumps at the points xj for xj < x. The
discontinuity can be seen from the terms e−sxj in (1.26), which correspond to
atoms at xj . In particular,

ṁn(x) = nḂ
(1)(x)−

n−1
∑

j=1

Ḃ(1)(x− (x ∧ xj)) ,

where

Ḃ(1)(x) = R(x) .

Since R(x− xj) = 0 for x < xj ,
Ḃ(1)(x− xj) = 0 for x < xj .

However, from (1.4),

R(x− xj) ↓ 1 as x ↓ xj ,
so that

Ḃ(1)(x− xj) ↓ 1 as x ↓ xj .
Similarly, vn2(x) and B

(2)(x− xj) in (1.28) have discontinuous second deriva-
tives with jumps at xj for xj < x. (The convolution in (1.20) is a smoothness
operator.)
These discontinuities degrade numerical accuracy to some extent. The problem

for mn(x) tends not to be nearly as bad as if mn(x) itself had a discontinuity.
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Similarly, the problem is even less serious when the discontinuity appears in the
second derivative, as with B(2)(x).
If it is deemed necessary, we can smooth the functions, e.g., see Section 6 of

[2]. A simple way to smooth is by approximating the atoms at xj . In particular,
we can replace e−sxj in (1.26) and (1.29) by

ên(s;xj) ≡ (1 + sxj/n)n (1.83)

for large n like 1024. (A power of 2 is convenient for computation.) Formula (1.83)
corresponds to an Erlang En pdf with mean xj and SCV 1/n. As n increases, it
approaches the point mass at xj . The numerical accuracy can be checked by trying
different n.
Another alternative is to work directly with B̂(1)(s) and calculate B(1)(x) and

B(1)(x−xj ) separately. To calculate mn(x) we then need n inversions instead of 1.
Then the only discontinuities are at x = 0, which tends to cause no problem. To
illustrate, we do a numerical example.

Example 1.19 [ex71]We consider theM/M/1/PS model with mean service
time 1 and arrival rate ρ = 0.5. We let the arrival see 4 jobs with xj = j, 1 ≤ j ≤ 4.
We calculate m5(x) by both one inversion and five inversions. We provide an
additional check by calculating the exact value using (1.24) and (1.30). In the
inversion we set the target discretization error at 10−12. Using (1.71) and (1.77),
we let A = − log(10−12/3(10)x) for one inversion and A = − log(10−12/3(2)x)
for five inversions. Table 4 displays some of the results, focusing on the behavior
at and near the points of discontinuity of ṁ5(x), in particular, at x = 2.0 and
x = 4.0. The absolute error with five separate inversions is consistently about
10−11, while it ranges from less than 10−3 to less than 10−6 with one inversion,
peaking at the integers j with 1 ≤ j ≤ 4. These results show the consequences of
lack of smoothness, but they indicate that for practical purposes, a single inversion
usually should suffice.

exact by absolute error by inversion
x (1.24) and (1.30) one inversion five inversions
1.50 9.166 1.8 e−07 1.0 e−11
1.80 11.125 2.7 e−07 9.9 e−12
1.90 11.792 7.3 e−07 9.8 e−12
2.00 12.466 2.0 e−04 9.8 e−12
2.10 13.0.43 1.6 e−06 9.8 e−12
2.20 13.621 1.1 e−06 9.6 e−12
2.50 15.363 1.7 e−07 9.4 e−12
3.50 20.662 6.0 e−07 8.4 e−12
3.80 22.049 5.1 e−07 8.2 e−12
3.90 22.505 5.1 e−07 8.0 e−12
4.00 22.958 4.1 e−04 8.0 e−12
4.10 23.307 4.7 e−06 7.9 e−12
4.20 23.648 2.9 e−06 7.8 e−12

Table 4 A comparison of three methods for computing the conditional mean
m5(x) in the M/M/1/PS model in Example 1.19: one inversion, five separate
inversions and exact using Example 1.3.

[ta4]
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1.8 Conclusions

We have demonstrated that it is possible, through the use of numerical trans-
form inversion, to calculate the conditional mean and variance of a customer’s
response time in aM/G/1/PS queue, given various forms of system state informa-
tion. We have also demonstrated that the conditional mean often leads to reliable
predictions. In particular, when either the number of jobs in the system or the
workload of the arriving job is large, the distribution of the conditional response
time estimate clusters about its mean. We have developed supporting theory for
this claim for 3 different forms of conditioning: conditioning on remaining service
requirements (sections 3 and 4), conditioning on only the number of jobs in the sys-
tem at the time of arrival (section 5), and conditioning on the completed work of the
jobs in the system (section 6). We have given numerical examples demonstrating
the possibility of computing prediction estimates in practice.
To compare the different forms of conditioning, we suggest quantifying the value

of information by comparing the values of the mean and variance with and without
the additional information. We gave a numerical example comparing three alter-
native forms of information in Example 1.18. In some cases, the conditional mean
changes significantly when the information is clearly important because the single
predicted value changes. Prediction is enhanced by some form of information, even
when the mean does not change much, if the variance is reduced, because then the
predicted value is more reliable. We typically find the greatest variance reduction
when we condition on the remaining service requirements. We further note that
the value of information is highly dependent upon the service-requirement cdf. For
example, for an exponential service-requirement cdf, knowing the ages of the jobs
in the system offers no additional information, whereas for the deterministic cdf,
knowing the ages of the jobs in the system is equivalent to knowing the remaining
service requirements of the jobs. Thus the value of system-state information de-
pends both upon the workload of the arriving job and the service-requirement cdf.
It remains to further explore how to appropriately capture the value of different
forms of information.
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