
SIMULATION RUN LENGTHS TO ESTIMATE BLOCKING

PROBABILITIES

by

Rayadurgam Srikant1

University of Illinois

Ward Whitt2

AT&T Bell Laboratories

July 7, 1995

Revised: November 20, 1995

ACM Transactions on Modeling and Computer Simulation (TOMACS) 6 (1996) 7–52

1Coordinated Science Laboratory, University of Illinois, 1308 W. Main Street, Urbana, IL 61801;

srikant@shannon.csl.uiuc.edu
2AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636; wow@research.att.com



Abstract

We derive formulas approximating the asymptotic variance of four estimators for the steady-
state blocking probability in a multi-server loss system, exploiting diffusion process limits. These
formulas can be used to predict simulation run lengths required to obtain desired statistical precision
before the simulation has been run, which can aid in the design of simulation experiments. They
also indicate that one estimator can be much better than another, depending on the loading. An
indirect estimator based on estimating the mean occupancy is significantly more (less) efficient than
a direct estimator for heavy (light) loads.
A major concern is the way computational effort scales with system size. For all the estima-

tors, the asymptotic variance tends to be inversely proportional to the system size, so that the
computational effort (regarded as proportional to the product of the asymptotic variance and the
arrival rate) does not grow as system size increases. Indeed, holding the blocking probability fixed,
the computational effort with a good estimator decreases to 0 as the system size increases. The
asymptotic variance formulas also reveal the impact of the arrival-process and service-time variabil-
ity on the statistical precision. We validate these formulas by comparing them to exact numerical
results for the special case of the classical Erlang M/M/s/0 model and simulation estimates for
more general G/GI/s/0 models.
It is natural to delete an initial portion of the simulation run to allow the system to approach

steady state when it starts out empty. For small-to-moderately-sized systems, the time to ap-
proach steady state tends to be negligible compared to the time required to obtain good estimates
in steady-state. However, as the system size increases, the time to approach steady state remains
approximately unchanged, or even increases slightly, so that the computational effort associated
with letting the system approach steady state becomes a greater portion of the overall computa-
tional effort as system size increases.

Categories and Subject Descriptors: C4 [Performance of Systems]: Measurement techniques; G.m
[Mathematics of Computation]: Queueing theory; I.6.8 [Simulation and Modeling]: Discrete event
simulation.

General Terms: Algorithms, Experimentation, Measurement, Performance, Theory

Additional Keywords and Phrases: asymptotic variance, bias, blocking probabilities, diffusion
approximations, reflected Ornstein-Uhlenbeck diffusion process, estimation, experimental design,
heavy-traffic limits, indirect estimation, loss models, Poisson’s equation, simulation, simulation run
length



1. Introduction and Summary

In this paper we consider the problem of estimating steady-state blocking probabilities in a

multi-server loss system from simulation output or system measurements. We develop formulas

approximating the variance of four candidate estimators. These variance formulas enable us to

predict the observation intervals required to obtain estimates with desired statistical precision

before collecting any data. Thus these formulas can help design experiments. These formulas

should also be directly of interest to system designers, because the variability of blocking, due to

variability in the arrival process and service times, is an important performance measure in addition

to the blocking probability itself.

We are interested in loss networks, as in Kelly (1991) and Ross (1995), but here we consider

only a single link. Nevertheless, the results provide useful insights for loss networks. Here we focus

on the G/GI/s/0 model, which has s servers in parallel, no extra waiting space, and independent

and identically distributed (i.i.d.) service times that are independent of a general stationary arrival

process (i.e., with stationary increments). Most of our analysis focuses on the special case of

exponential (M) service-time distributions, but we also treat general (GI) service-time distributions.

The results for general service times are more tentative, however, as explained later.

Arrivals that find all servers busy are lost (blocked) without affecting future arrivals. The goal

is to determine the steady-state blocking probability, i.e., the long-run proportion of all arrivals

that are not admitted. In a simulation we assume that the data are collected after the system has

reached steady state. Hence, there typically is an initial period where the system is approaching

steady state, over which no data are collected, and then a second period where we assume that

the system is approximately in steady state, over which all relevant data are collected. We first

consider the problem of predicting the required observation interval assuming that the system

starts in steady state. Afterwards, we consider the initial portion that needs to be deleted for the

system to be approximately in steady state when the system starts empty. Then we also consider

alternative initial conditions to make the system approach steady state more quickly. When the

number of servers is not large, the initial conditions do not matter much, but when the number of

servers is large the initial conditions become important; see Section 11.

Indeed, a major goal is to better understand how the (lengths of the) data-collection interval

and the initial transient interval (to be deleted) should scale as the model size (measured by the

number of servers) increases. We find that these intervals scale in very different ways. It may
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be somewhat surprising at first, but the asymptotic variance tends to be inversely proportional to

system size, whereas the appropriate initial transient interval tends to be approximately independent

of system size, or even increasing slowly in system size. (This property of the asymptotic variance

becomes intuitively reasonable when you realize that the amount of data collected over any given

observation interval tends to be directly proportional to system size, assuming that the arrival

rate is approximately proportional to system size.) This behavior implies that the steady-state

portion of the computational effort in a simulation (regarded as proportional to the product of the

asymptotic variance and the arrival rate) is approximately independent of system size. This also

implies that the initial transient interval should become a greater portion of the overall interval as

system size increases. For small-to-moderately-sized systems, the initial transient interval tends to

be negligible compared to the steady-state observation interval, but when the system gets large,

initial transient interval becomes significant and eventually even dominates.

A major feature of our model is the general stationary arrival process. Non-Poisson arrival

processes often arise in loss systems; e.g., because the input often contains overflows from other

loss systems, as with various alternative routing schemes in circuit-switched telecommunications

networks. For general stationary arrival processes, there are no analytical formulas available for

the steady-state blocking probability, so that simulation is important. The estimation questions

posed are interesting even for the special cases of renewal (GI) and Poisson (M) arrival processes,

for which exact formulas for the steady-state blocking probability are available (e.g., see Section 2.1

of Takács (1962)), because results about the efficiency of different simulation estimators for these

tractable models can provide insight into what to do with more general models.

The present paper is in the spirit of Whitt (1989), which carried out a similar investigation for

queueing systems with unlimited waiting space (i.e., for delay systems), focusing primarily on the

case of relatively few servers. There the object was to determine the amount of data required to

estimate standard steady-state performance measures such as the mean waiting time and the mean

queue length with desired statistical precision. The main idea was to obtain simple approximations

by exploiting approximations of the queueing processes by reflected Brownian motion (RBM). For

the multi-server loss model with exponential service times considered here, instead of RBM, the

key process is the reflected Ornstein-Uhlenbeck (ROU) diffusion process, as we explain in Section 4.

Further related work on delay systems appears in Asmussen (1989, 1992). Whitt (1992) contributed

further by providing formulas and algorithms for the asymptotic variance of the sample means of

functions of birth-and-death processes and other Markov processes. (The substantial previous
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literature is reviewed there as well.) We draw upon the algorithms in Whitt (1992) here; they are

reviewed in Section 3.

1.1. The Candidate Estimators

We now describe the four estimators that we will consider. First, the natural estimator for the

steady-state blocking probability B based on observations of the system over the time interval [0, t]

is

B̂N (t) ≡ L(t)/A(t), (1)

where L(t) is the number of lost (blocked) arrivals in [0, t] and A(t) is the total number of arrivals

(admitted or blocked) in [0, t]. A closely related alternative simple estimator, whose efficiency is

easier to analyze, is

B̂S(t) ≡
L(t)

EA(t)
=
L(t)

λt
, (2)

where λ ≡ EA(1) is the arrival rate (or intensity). It is intuitively clear that the estimators B̂N (t)
and B̂S(t) should behave similarly; we substantiate this intuition analytically in Section 7 and via

simulation experiments in Section 10. Hence, we regard results for B̂S(t) as being applicable to

B̂N (t).

As in Law (1975), Carson and Law (1980) and Glynn and Whitt (1989), we can exploit the

conservation law L = λW (Little’s law) to obtain an alternative indirect estimator for B. For this

purpose, let µ−1 be the mean service time, α ≡ λ/µ the offered load, N(t) the number of busy

servers at time t (which we assume is stationary, due to deleting an initial portion of the run) and

n ≡ EN(t) is the steady-state mean number of busy servers. Applying the relation L = λW , as in
Example 4.3 of Whitt (1991b), we get the relation n = λ(1−B)/µ or, equivalently,

B = 1− n

α
. (3)

Assuming that we know λ and µ, as would be the case with many simulations, we can use the

indirect estimator

B̂I(t) ≡ 1−
n̂(t)

α
, (4)

where n̂(t) is an estimator of n based on data over [0, t]. In particular, we assume that n̂(t) is the

sample mean, i.e.,

n̂(t) = t−1
∫ t

0
N(u)du, t ≥ 0 . (5)
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Closely related to the blocking probability B is the probability that all servers are busy,

P (N(t) = s), which is often called the time congestion. Indeed, for Poisson arrivals these two

quantities are equal, by virtue of the PASTA property; see Wolff (1982), Melamed and Whitt

(1990) and Baccelli and Brémaud (1994). However, they are not equal more generally. The natural

time congestion estimator is

B̂T (t) = t
−1
∫ t

0
1{N(u)=s}du , (6)

where 1A is the indicator random variable of the set A; i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0
otherwise, where ω is an underlying sample point. Glynn, Melamed and Whitt (1993) made a

general study of estimators for time and customer averages, but did not focus on loss systems.

In this paper we consider only the four estimators B̂N (t), B̂S(t), B̂I(t) and B̂T (t) in (1), (2),

(4) and (6). We investigate other estimators designed to reduce variance in Srikant and Whitt

(1995). For example, since BI(t) is decreasing in n̂(t), while BN (t) should tend to be increasing in

n̂(t), B̂I(t) and B̂N (t) tend to be negatively correlated, so that it is natural to consider a combined

estimator B̂C(t) = pB̂I(t)+(1−p)B̂N (t) for appropriate p, which can be estimated during the run.
Similarly, as in Lavenberg, Moeller and Welch (1982), Glynn and Whitt (1989) and references

cited there, it is natural to consider linear-control-variable estimators, such as B̂L(t) = B̂N (t) +

a1(λ̂(t)− λ)− a2(µ̂(t)− µ), where λ̂(t) ≡ t−1A(t) and µ̂(t) is an estimate of the individual service
rate such as the reciprocal of the sample mean of the service times used during the run. We discuss

these alternative estimators in the other paper.

1.2. The Asymptotic Variance

Here we concentrate on predicting the variance of the basic estimators B̂N (t), B̂S(t), B̂I(t) and

B̂T (t). We address this problem by focusing on the asymptotic variance. For any estimator B̂(t),

its asymptotic variance is defined as

σ2 = lim
t→∞

t V ar B̂(t). (7)

We use subscripts N,S, I and T to refer to the specific estimators defined above. Under regularity

conditions (which includes the requirement that the asymptotic variance actually be positive and

finite), for suitably large run times t, each estimator B̂(t) tends to be approximately normally

distributed with mean B and variance σ2/t, where σ2 is the asymptotic variance (which depends

on the estimator); see Section 2.1 of Whitt (1989) for a review of the standard statistical theory.
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Hence, a (1− β) 100% confidence interval for B will be [B̂(t)− h(β), B̂(t) + h(β)] with halfwidth

h(β) =
σzβ/2√

t
, (8)

where P (−zβ/2 ≤ N(0, 1) ≤ zβ/2) = 1 − β with N(0, 1) a standard (mean 0, variance 1) normal
random variable. (For example, if we use a 90% confidence interval, then zβ/2 = 1.645.) Thus, for

specified halfwidth ε and level of precision β, the required simulation run length is

t(ε, β) =
σ2z2β/2
ε2

. (9)

From (9) we see that the required run length is directly proportional to the asymptotic variance

σ2 and inversely proportional to the square of the specified confidence-interval halfwidth ε. Clearly,

the specified halfwidth ε is a key factor, but the asymptotic variance σ2 can be important as well.

Note that the asymptotic variance is the only quantity in (9) that is not known to the experimenter.

We emphasize that our analysis presumes that the observation interval length t is sufficiently

long that the standard asymptotic theory implying that B̂(t) is approximately normally distributed

with mean B and variance σ2/t is appropriate. See Section 4.5 of Whitt (1989) and Asmussen (1989,

1992) for further discussion.

We aim to develop approximations for the asymptotic variances σ2S, σ
2
N , σ

2
T and σ

2
I . Roughly

speaking, we find that σ2S, σ
2
N and σ

2
T are approximately the same, but that σ

2
I can be quite different

from the others. In particular, we find that each of the estimators B̂S(t) and B̂I(t) has a region

where it is much more efficient. In particular, we tend to have σ2I < σ2S when α > s, whereas we

tend to have σ2I > σ2S when α < s. (They tend to be about the same when α ≈ s.) A similar

conclusion was found by Ross and Wang (1992) for indirect estimation in the context of Monte

Carlo summation.

1.3. Characterizing Model Variability

One of our goals is to determine how the model variability (the variability in the arrival process

and service times) affects the asymptotic variance of the blocking estimators. One of our principal

conclusions is that it appropriate to partially characterize the variability of the arrival process

through its normalized arrival asymptotic variance, defined by

c2a = limt→∞

V ar A(t)

λt
, (10)

which we assume is well defined (the limit exits and is finite). The parameter c2a is the asymptotic

variance of the arrival-rate estimator λ̂(t) ≡ A(t)/t divided by the arrival rate λ. The parameter c2a
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in (10) is the limiting value of the index of dispersion for counts, e.g. see Fendick and Whitt (1989)

and references cited there. For a deterministic evenly spaced (D) process, c2a = 0; for a Poisson

process, c2a = 1. For the special case of a renewal process, c
2
a coincides with the squared coefficient

of variation (SCV) of an interarrival time; i.e., if U is an interarrival time, then

c2a = V ar (U)/(EU)2 . (11)

However, (11) is only true for renewal processes. Formula (10) captures correlations between

different interarrival times in non-renewal processes. A large class of non-renewal arrival processes

can be represented as batch Markovian arrival processes (BMAPs) or versatile Markovian point

processes; see Neuts (1989) and Lucantoni (1993). The normalized arrival asymptotic variance of

a BMAP is given on p. 284 of Neuts (1989).

In applications, the general arrival processA(t) is often a superposition of independent processes.

If the component processes are independent Poisson processes, then the superposition process is

a Poisson process, and c2a = 1. More generally, the normalized arrival asymptotic variance of

the superposition process (with independent component processes) is a convex combination of the

normalized arrival asymptotic variances of the component processes; i.e., if A(t) = A1(t) + . . . +

An(t), where Ai(t) has arrival rate λi and normalized arrival asymptotic variance c
2
ai, then

c2a =
n
∑

i=1

(λi/λ)c
2
ai; (12)

e.g., see Section III.E of Fendick and Whitt (1989).

Since we have assumed that the service times are i.i.d. and independent of the arrival process,

their variability is easier to characterize. Our theoretical results are primarily for the case of

exponential service times, but we also develop approximation formulas for non-exponential service

times. These are more empirical, and so should be regarded as more tentative. We primarily

characterize the service-time variability via the service-time SCV, denoted by c2s, and defined as in

(11).

In previous studies of G/GI/s/0 loss systems it has been found that the model variability can be

usefully characterized by focusing on the associated G/GI/∞ infinite-server model, with the same
arrival process and service times; see Eckberg (1983), Whitt (1984) and p. 338 of Neuts (1989).

Since the infinite-server model is much easier to analyze, it can provide useful insight into the

loss model. In particular, the G/GI/s/0 model variability can be partially characterized by the

peakedness parameter z. The peakedness is defined as the ratio of the variance to the mean number
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of busy servers in the associated G/GI/∞ model. For example, if the arrival process is a renewal
process with interarrival time U and the service-time distribution is exponential with µ−1, then the

peakedness is

z = [1− φ(µ)]−1 − α , (13)

where φ(s) = Ee−sU ; see Eckberg (1983). The expressions are more complicated for non-renewal

arrival processes. However, the peakedness for the MMPP/M/∞ model with a Markov modulated
Poisson process (MMPP) as an arrival process is given on p. 338 of Neuts (1989).

It is often convenient and appropriate to use the heavy-traffic (large α) approximation for

the peakedness with a general stationary arrival process and a general service-time cumulative

distribution function (cdf) H(t), which is

z = 1 + (c2a − 1)µ
∫ ∞

0
[1−H(t)]2dt . (14)

When the service time cdf H in (14) is exponential, z = (c2a+1)/2; when H is deterministic, z = c
2
a;

see p. 692 of Whitt (1984). Note that z = 1 in (14) for all service-time distributions when c2a = 1.

Also note that the influence of the service-time distribution on z in (14) is not determined by its

first two moments. A very rough approximation for (14) is z ≈ 1 + (c2a − 1)/(1 + (c2s ∧ 1)), where
x ∧ y = min{x, y}. (Note that this approximation is exact for M and D service times.)

In summary, we partially characterize the variability of the G/GI/s/0 model via the parameter

triple (c2a, c
2
s, z). A principle conclusion of our analysis is that this is indeed an appropriate partial

characterization for the blocking probability and the asymptotic variance of the simulation estima-

tors. When the model is not too far from M/M/s/0, the model variability as partially characterized

by the triple (c2a, c
2
s, z) will usually be of secondary importance. However, there is a growing inter-

est in different kinds of variability. Highly variable non-Poisson traffic is becoming more common

in communication networks, as can be seen from Erramilli, Gordon and Willinger (1994), Will-

inger (1995) and references there, so that it is even possible to have c2a = ∞ or c2s = ∞. For the
most part, this non-Poisson traffic is packet traffic, but in some instances connection requests may

also deviate significantly from Poisson; see Paxson and Floyd (1995). While we do not directly

consider this phenomenon, our results provide useful insight into its consequences. In particular,

more highly variable traffic requires longer observation intervals to estimate blocking probabilities

reliably. Moreover, more variability means that the observed blocking should be more variable.

Finally, we provide formulas that quantify these effects.
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1.4. Scaling as System Size Grows

We are especially interested in the way the performance of the different estimators scales as

the system size grows. Previous experience has shown that when s grows there are three distinct

regions for loss models: light loading, normal (or critical) loading, and heavy loading. As in

Jagerman (1974), Borovkov (1976), (1984), Halfin and Whitt (1981), Whitt (1984), Mitra and

Weiss (1989) and other studies, the region depends on the way the traffic intensity ρ ≡ α/s changes
as s→∞. If (1−ρ)√s or, equivalently, (s−α)/√α approaches +∞, a constant or −∞ as s→∞,
then the region is light, normal or heavy loading, respectively. The region of primary interest is

usually normal loading, but all three regions are important. First, real systems are often designed

to be lightly loaded instead of normally loaded to provide some safety factor, e.g., to allow for

forecasting uncertainty. Second, performance in heavy loading arises when studying the response

to overloads, e.g., due to system failures.

1.5. Approximations for the Blocking Probabilities

In order to help judge what statistical precision is appropriate, it is useful to have rough ap-

proximations for the blocking probability and time congestion themselves. Asymptotics for the

GI/M/s/0 model in the case of normal loading has produced the following approximation for the

blocking probability:

B ≈
√

z/α
φ(γ/

√
z)

Φ(−γ/√z) , (15)

where γ = (α − s)/
√
α, z = (c2a + 1)/2, and α ≡ λ/µ is the offered load, while φ(·) and Φ(·)

are the density and cumulative distribution function of the standard (mean 0, variance 1) normal

distribution; see (13) of Whitt (1984). Formula (15) is asymptotically correct as s → ∞ with
(α − s)/√α → γ; see p. 226 of Borovkov (1976). Table 1 below compares (15) to exact values for

the M/M/s/0 model. The performance is quite good for γ ≥ −3.
A related approximation for the time congestion is

P (N(t) = s) ≈ z−1/2B ≈ (1/
√
α)

φ(γ/
√
z)

Φ(−γ/√z) . (16)

With Poisson arrivals, the time congestion coincides with the blocking probability, so that (16) is

also asymptotically correct for the M/M/s/0 model, but otherwise we have no asymptotic correct-

ness result supporting (16). Formula (16) differs from (9) in Whitt (1984) by a factor of z−1/2. We

propose (16) because it is more consistent with simulation results. Formulas (15) and (16) indicate

that B and P (N(t) = s) should both be O(1/
√
s) as s gets large in normal loading.
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Approximations (15) and (16) are most strongly supported in the case of exponential service

times, but we suggest using them as rough approximations with general service times, using the

appropriate peakedness z. The best value for z should be the exact peakedness, but (14) is a

convenient approximation. Finally, we note that the reliability of the approximations is likely to

deteriorate when z becomes very large.

1.6. Workload Factors

Formula (9) shows that the required simulation time t to achieve desired statistical precision

is approximately proportional to the asymptotic variance σ2. However, the computational effort

required to simulate for time t is approximately proportional to λt, because λt is the expected

number of arrivals in [0, t]. (See Glynn and Whitt (1992) for a study relating computational effort

to statistical precision in simulation experiments. There it is explained why it suffices to look at

the rate of expected computational effort, λ.) Hence, we give formulas for w ≡ λσ2, which we call
the workload factor.

However, we recognize that λt is only a rough approximation for the expected work to produce

a run of length t. Moreover, the expected work may differ for different estimators. For example,

in a Markovian simulation, with estimators B̂S(t) and B̂N (t) we can work with the embedded

process obtained by looking at N(t) only at transition epochs, without generating the times between

transitions. In contrast, the estimators B̂I(t) and B̂T (t) require the transition times too.

2. Main Results

Our main results are approximate expressions for the workload factors associated with the four

estimators B̂N (t), B̂S(t), B̂I(t) and B̂T (t).

2.1. Canonical Workload Factors

We find that the workload factors in the G/GI/s/0 model primarily depend upon the parameter

five-tuple (s, γ, c2a, c
2
s, z) and, moreover, that they can be expressed as scaled versions of functions

of a single real variable, which we call the canonical workload factors. In particular, for the indirect

estimator, the key workload approximation formula is

wI(s, γ, c
2
a, c
2
s, z) ≈

(c2a + c
2
s)

2
ψI(γ/

√
z) , (17)

where ψI(γ) ≡ wI(∞, γ, 1, 1, 1) is the canonical workload factor associated with the M/M/s/0
special case (the limit as s → ∞), γ = (α − s)/

√
α, z is the peakedness, c2a is the normalized
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arrival asymptotic variance in (10) and c2s is the SCV of the service-time distribution, defined as

in (11). Note that formula (17) has important content even in the M/M/s/0 case, indicating that

wI(s, γ, 1, 1, 1) ≈ ψI(γ) for all s (which we discuss further below). Note that the arrival-process

variability enters into (17) via both c2a and z, and that the service-time distribution enters in via

both c2s and z. As with (15) and (16), the preferred peakedness z is the exact value, but (14)

usually is a satisfactory approximation. (For an exception, see Example 10.6.) In the G/M/s/0

model with (14) for z, c2s = 1 and z = (c
2
a+ c

2
s)/2, so that wI ≈ zψI(γ/

√
z), but this is not true for

other G/GI/s/0 models.

It is instructive to see what (17) says for the M/GI/s/0 model. With Poisson arrivals, there is

an insensitivity property implying that the steady-state distribution depends on the service-time

distribution only through its mean. Thus, we must have z = 1, in (17). However, the service-

time variability still has an influence on the workload factor wI through the SCV c2s in the factor

(c2a + c
2
s)/2. This is not a contradiction, because the time-dependent behavior of the M/GI/s/0

model does not have the insensitivity property; see Davis, Massey and Whitt (1995) and Section 6.1

here, especially (48).

The approximation we propose for the workload factor of the simple estimator has the same

form; just replace the two I subscripts in (17) by S. Since B̂N (t) ≈ B̂S(t), we propose approximating
wN by wS . Numerical evidence indicates that the workload factor for the time-congestion estimator

approximately takes the form

wT (s, γ, c
2
a, c
2
s , z) ≈

(

c2a + (c
2
s ∨ 1)

c2a + 1

)

ψT (γ/
√
z) , (18)

where x∨ y = max{x, y}. Note that the prefactors of ψ differ in (17) and (18), but both become 1
in the M/M/s/0 special case. In general, we regard the approximations to account for the impact of

variability on the time-congestion estimator in (16) and (18) as less reliable than the approximations

for the other estimators. As with formulas (15) and (16), approximations (17) and (18) should be

regarded as less reliable when the model variability, as measured by c2a, c
2
s or z, is high.

The notion of a canonical workload curve for M/M/s/0 models is supported by Figures 1–

3, which display the exact workload factors w(s, γ, 1, 1, 1) as functions of γ for the estimators

B̂S(t), B̂I(t) and B̂T (t) in the M/M/s/0 model for different values of s, assuming that µ = 1 (com-

puted by the methods of Section 3). These workload factors are plotted in log scale to emphasize

significant differences. Note that the workload curves for different s in each figure essentially fall

on top of each other when the scaled arrival rate γ ≡ (α − s)/
√
α is not too far from 0 (e.g.,
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−2 ≤ γ ≤ 2) or s is sufficiently large (e.g., s ≥ 200). Hence, a workload curve for one value of
s can serve as a workload curve for all values of s (not too small) for that estimator. Table 1

provides canonical workload values for these three estimators based on the numerical results for the

M/M/s/0 model with s = 400. (To put the blocking probability approximation (15) in perspective,

Table 1 also compares (15) to the exact blocking probabilities.) Hence, the canonical workload

factors can be obtained from Figures 1–3, Table 1 or the algorithms in Section 3.

Note that ψI(γ) is small for γ > 0 while ψS(γ) and ψT (γ) are small for γ < 0, showing that

different estimators should be strongly preferred in different regions. Figures 2 and 3 show that

ψS(γ) and ψT (γ) are quite similar, but numerical evidence indicates that ψS(γ) → 1 as γ → ∞,
while ψT (γ)→ 0 as γ →∞.
For loss systems in normal loading, a reasonable rough approximation for all the workload factors

is 1. This implies that simulation run lengths should be approximately inversely proportional to the

arrival rate or the system size. Clearly, larger s means that more arrivals have to be generated,

but these additional arrivals evidently help with the statistical precision, so that the asymptotic

variance is inversely proportional to λ as s (and thus λ) get large.

2.2. A Supporting Diffusion Limit

We also provide theoretical support for the workload factor approximations in (17) and (18). In

Section 4 we show for the G/M/s/0 model that the normalized process (Ns(·) − s)/
√
α converges

to the ROU diffusion process as s → ∞ with (α − s)/√α → γ. (You could also think of Ns(·) as
being indexed by α and centered at α.) Moreover, we show how this limit supports the blocking

approximation in (15) and the workload factor approximation in (17).

Our limit theorem supplements related limit theorems in Borovkov (1976, 1984). For the case

of the blocking approximation (15), Borovkov (1976) treated the GI/M/s/0 model, whereas our

result applies to the more general G/M/s/0 model. Borovkov (1984) also has limit results for the

process Ns(t) in the general G/M/s/0 model, but with different conditions. In that general setting,

he did not treat the blocking probability.

2.3. Light-Loading and Heavy-Loading Approximations

We also develop other approximations in Sections 5–7 based on asymptotics as s → ∞ with ρ
held fixed, with either ρ < 1 (light loading) or ρ > 1 (heavy loading). These approximations are

shown in Table 2. These formulas show that the workload factors wI and wS behave differently:
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wI/wS → ∞ as s → ∞ for ρ < 1, while wI/wS → 0 as s → ∞ for ρ > 1. Moreover, these

formulas also serve as simple approximations. Since we already have reduced the G/GI/s/0 case to

the M/M/s/0 case in (17) and (18), we primarily use the formulas in Table 2 as convenient simple

approximations for the canonical (M/M/s/0) workload factors ψ (obtained by letting c2a = 1 in

Table 2).

light loading heavy loading
ρ < 1 ρ > 1

simple and

natural B

(

1 + c2a
1− ρ

)

c2a + ρ
−1

estimators

indirect

estimator 1 + c2a
(1 + ρ)(1 + c2a)

3

4s2(ρ− 1)4

Table 2. Approximation formulas for the workload factor w ≡ λσ2 of the estimators in (1), (2) and
(4) for the G/M/s/0 model in light and heavy loading.

With the exception of the light-loading simple-estimator formula, the formulas in Table 2 are

all in terms of the three variables s, γ and c2a. (Given s, γ is equivalent to ρ or α.) The light-loading

simple-estimator formula can be put in the same form by exploiting (15), which yields

wS(s, γ, c
2
a) ≈

(1 + c2a)
3/2

−2ργ√π e−γ
2/(1+c2

a
) in light loading . (19)

(Let w(s, γ, c2a) ≡ w(s, γ, c2a, 1, (c2a + 1)/2).)
Table 2 is especially important for providing theoretical support for the simple-estimator work-

load factor, because the diffusion limit in Section 4 only applies directly to the indirect estimator.

Note that formula (19) approximately satisfies the general functional form (17) with

ψS(γ) = 2γ
−1φ(γ) =

√

2/πγ2e−γ
2/2 . (20)

Similarly, the heavy-traffic indirect-estimator workload factor approximation in Table 2 can be

expressed approximately as

wI(s, γ, c
2
a) ≈

(1 + c2a)
3

2ρ4γ4
, (21)

which is approximately of the form (17) with

ψI(γ) = 4γ
−4 . (22)
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To see this consistency, we need to include the term
√
z in (17). Recall that z = c2a + 1 here.

Turning to the heavy-loading formula for the simple estimator and the light-loading formula for

the indirect estimator, we note that these formulas are consistent with (17), because ψS(γ/
√
z)→ 2

as γ → +∞ and ψI(γ/
√
z) → 2 as γ → −∞ for the M/M/s/0 model (corresponding to s → ∞

with fixed ρ as in Table 2); see Table 1.

Approximations (19)–(22) reveal the essential form of the workload factors in light and heavy

loading, but these formulas are not very accurate, e.g., when compared to the exact M/M/s/0

results in Table 1. The approximations tend to be conservative (on the high side) though; see

Sections 5 and 6.

2.4. Relative Statistical Precision

It is important to note that our discussion so far has been based on the tacit assumption that

we are using the criterion of absolute statistical precision. The computational effort necessarily

does grow with s in light and normal loading if we use relative statistical precision. With relative

statistical precision, the workload factor becomes λσ2/B2. In light loading, dividing by B2 causes

the workload factor to explode as s → ∞, because B approaches 0 exponentially fast as s → ∞
under light loading. The same phenomenon occurs, but less dramatically, in normal loading, because

then B = O(1/
√
s) as s→∞, as noted above.

It is natural to ask how the computational effort grows with s if we fix the blocking probability.

However, for any fixed (positive) blocking probability, we are eventually in heavy loading when s is

large enough, because ρ−1 approaches 1−B as s increases with B fixed. (Equivalently, B approaches
1 − ρ−1 as s increases with ρ fixed, by the law of large numbers; see p. 90 of Borovkov (1984).)
Then the computational effort for the simple estimator does not grow, while the computational

effort for the indirect estimator actually decreases to 0. So, even with relative statistical precision,

the computational effort using the best estimator ultimately decreases to 0 as s → ∞ if we fix the
blocking probability.

2.5. Initial Conditions

Since we cannot start the simulation in steady-state, the estimators necessarily have initializa-

tion bias, i.e., the expected value is not exactly B. The bias of estimator B̂(t) is EB̂(t)− B. The
bias can be kept small by choosing a good initial state and/or not collecting data over an initial

portion of the simulation to allow the system to approach steady state.
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First, we can approximate the bias at time t by using the asymptotic bias, which is defined by

β = lim
t→∞

t(EB̂(t)−B) . (23)

We use (23) to justify the approximation EB̂(t)−B ≈ β/t. Since SD(B̂(t)) ≈ σ/
√
t, the bias tends

to be negligible compared to the random fluctuations for sufficiently large t. However, in practice

it can be worthwhile to reduce the bias, as we will show.

While the required run length in steady state tends to be inversely proportional to system size,

the required run length to reduce the initialization bias starting empty tends to be independent of

system size (see Section 11). Hence, when the system size grows, eventually a majority of the run

must be devoted to reducing the initialization bias.

Hence, for large systems it can be valuable to initialize the system closer to the steady-state

mean. This is easy to do for exponential service-time distributions, but not otherwise; see Sec-

tion 11.

3. Exact Numerical Results for Markov Models

In this section we briefly review available algorithms for numerically computing the exact asymp-

totic variance. We have used these methods to compute the workload factors for the M/M/s/0

model in Figures 1–3 and Table 1.

3.1. Poisson’s Equation

First, following Whitt (1992), consider a process Y ≡ {Y (t) : t ≥ 0} that is a function of
an irreducible finite-state continuous-time Markov chain (CTMC) X = {X(t) : t ≥ 0}, i.e.,
Y (t) = f(X(t)) for a real-valued function f . As in (7), the asymptotic variance of Y is σ2Y ≡
limt→∞ t V ar Y (t).

The asymptotic variance σ2Y can be represented as the solution of Poisson’s equation involving

the infinitesimal generator of X, say Q. In particular, by Corollary 3 to Proposition 10 of Whitt

(1992),

σ̂2Y = 2xf
t , (24)

where x is the unique solution to

xQ = −y, (25)

with yi = −(fi − f̄)πi, xet = 0, π is the steady-state vector and f̄ = πf t. Here all vectors are

taken to be row vectors, xt is the transpose and e is the vector of all 1’s. As usual, the steady-state
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probability vector π itself is the unique solution of Poisson’s equation with y = 0 and πet = 1.

When solving Poisson’s equation, there is one redundant equation, so that we can initially look for

a solution of x̃Q = −y with one component x̃k fixed. Then we can obtain the desired solution x
with xet = 0 by letting

x = x̃− (x̃et)π, (26)

because all solutions x are of the form x = −yZ + (xet)π, where Z is the fundamental matrix of
the CTMC X.

As noted in Grassmann (1987) and Remark 1 of Whitt (1992), Poisson’s equation (25) can be

solved recursively for any birth-and-death process. Given birth rates λj , 0 ≤ j ≤ m− 1, and death
rates µj, 1 ≤ j ≤ m, the recursion is

xj+1 = (λjxj + Sj)/µj+1, (27)

where Sj =
∑j
i=0 yi. We could initially set x0 = 1, but for numerical purposes it is convenient to

initially set xk = 1 for k = min{bαc, s} and then recursively solve for other values of k using (27).
Again, afterwards we use the adjustment (26).

In this paper we apply the birth-and-death recursion to the M/M/s/0 loss model. The estimators

n̂(t) in (5) and B̂T (t) involve functions of the number in system, which is a birth-and-death process.

For n̂(t), f(k) = k for all k; for B̂T (t), f(k) = 1{s}(k). In particular, we used this method for

Figures 2 and 3. An alternative approach to the asymptotic variance σ2n of n̂(t) in (5) in the

M/M/s/0 model would be via expressions for the covariance function of N(t) in Beneš (1961).

3.2. Interoverflow Time Moments

For the simple estimator (2), it suffices to compute the asymptotic variance of the loss process

L(t). For the GI/M/s/0 model, with renewal arrival process, the overflow process L is a renewal

process. Hence it suffices to compute the SCV c2L of an interoverflow time, as in (11). The first two

moments of the interoverflow time for the M/M/s/0 model are given in equations (20) and (21) on

p. 89 of Riordan (1962). We used this method for Figure 1.

4. The Unifying Diffusion Process Limit

We now provide a basis for the workload factor approximation (17) in the case of the G/M/s/0

model. In particular, we establish a heavy-traffic functional central limit theorem (FCLT). To state

the theorem, let ⇒ denote weak convergence or convergence in distribution and let D[0,∞) be the
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function space of right-continuous real-valued functions on the interval [0,∞) with limits from the
left, endowed with the usual Skorohod topology; e.g., see Billingsley (1968) and Ethier and Kurtz

(1986). The convergence in D[0,∞) , in addition to convergence of the one-dimensional marginal
distributions, is useful for us to treat general stationary arrival processes and to get convergence

of the bivariate distributions, which is needed for the covariances appearing in the asymptotic

variance. To emphasize the dependence on s, we write Ns(t) for the process counting the number

of busy servers at time t. We assume that we start with a fixed arrival process A(t) with rate 1

and scale it as we increase λ by setting Aλ(t) = A(λt).

Theorem 4.1. Consider the G/M/s/0 model with general stationary arrival process Aλ(t) = A(λt)

having rate λ and fixed exponential service-time distribution with mean µ−1. Let λ→∞ and s→∞
with (α − s)/√α → γ. If (Ns(0) − s)/

√
α ⇒ y in

�
as s → ∞, where y < 0 is deterministic and

(A(λ·) − λ·)/
√

λc2a ⇒ Z(·) in D[0,∞) as λ → ∞, where Z is a standard (mean 0, variance 1)
Brownian motion, then

Ns(·)− s√
α

⇒ Yr(·) in D[0,∞) as s→∞ , (28)

where Yr is a reflected Ornstein-Uhlenbeck diffusion process with infinitesimal mean m(x) = −µ(x−
γ), infinitesimal variance σ2(x) = µ(1+c2a), instantaneously reflecting barrier above at 0 and initial

position Yr(0) = y.

Theorem 4.1 is similar to Theorem 2 on p. 177 of Borovkov (1984); it draws the same conclusions,

but the conditions are different. The conditions in Theorem 4.1 here parallel the conditions in

Theorem 1 on p. 103 of Borovkov (1984) for the G/GI/∞ model. We prove Theorem 4.1 in

Section 12, by applying the G/M/∞ heavy-traffic FCLT. In addition to p. 103 of Borovkov (1984),
other infinite-server FCLTs appear in Borovkov (1967), Whitt (1982) and Glynn and Whitt (1991).

The exponential service-time distribution assumption is important for the conclusion in The-

orem 4.1. When the service-time distribution is non-exponential, the appropriate approximating

process is non-Markov. This is clear from the G/GI/∞ heavy-traffic limit; see Glynn (1982). One
would naturally conjecture that the appropriate approximating process for the G/GI/s/0 model is

a “reflected” version of the limiting Gaussian process for the G/GI/∞ model, but the statement
remains to be made precise, the proof remains to be established, and the consequences remain to

be exploited; see Section 6.1 below for some related discussion.

There are some interesting features in our proof of Theorem 4.1: First, unlike the familiar

heavy-traffic setting in Berger and Whitt (1992) and references cited there, the ROU is not defined

as the image of an unrestricted process under a continuous reflection or regulator mapping. The
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state-dependent service rate makes the basic process Ns itself be altered when it hits the barrier s.

Moreover, the process Ns(t) is not a Markov process. The embedded process at arrival epochs is

Markov in the GI arrival case which provides a basis for Markovian approaches, as in Whitt (1982).

To treat the G arrival case, we use a coupling comparison argument together with the established

limit for the associated G/M/∞ model.
We define the ROU by a limiting argument in Section 12. The time-dependent density p(x, t)

of the ROU can also be characterized by appending the boundary condition

µ(1 + c2a)

2

∂

∂x
p(x, t)|x=0 = −µγp(0, t) . (29)

to the usual forward partial differential equation; e.g., see p., 223 of Cox and Miller (1965). Alter-

natively the generator and its domain can be characterized as in Chapter 8 of Ethier and Kurtz

(1986). The alternative characterization of the ROU in Section 12 is convenient for our proof of

Theorem 4.1.

The ROU limit in (28) depends on three parameters — µ, γ and c2a — but because of the

possibility of scaling we can reduce the relevant parameters to only one. First, without loss of

generality, we can obviously make the service rate µ = 1. Then let z = (c2a + 1)/2 and note

that Theorem 4.1 implies that (Ns(·) − s)/
√
zα ⇒ (1/√z)Yr(·), where (1/

√
z)Yr is an ROU with

infinitesimal mean −(x−γ/√z) and infinitesimal variance 2. Hence, if we let Yr(t;m(x), σ2) denote
the ROU as a function of its infinitesimal parameters, then

Ns(·) ≈ s+
√

α(1 + c2a)

2
Yr(·;−(x− γ

√

2/(1 + c2a), 2) . (30)

Thus the asymptotic variance σ2n of Ns(t) is approximately

σ2n ≈ α
(1 + c2a)

2
σ2
Yr(·;−(x−γ

√
2/(1+c2

a
), 2)

. (31)

Only the single parameter γ
√

2/(1 + c2a) appears inside the ROU Yr in (30) and thus inside the

asymptotic variance term σ2Yr in (31). The asymptotic variance term σ2Yr(t;−(x−γ),2) remains to be

calculated, but it clearly is a function of only the one parameter.

We can apply Theorem 4.1 to treat the indirect estimator in normal loading. Combining (4)

and Theorem 4.1, we obtain convergence of the bivariate distributions for any two time points.

As on p. 1353 of Whitt (1989), this almost implies convergence of the covariances, but we also

need appropriate uniform integrability; see p. 32 of Billingsley (1968). Assuming that we can

approximate the covariance function of the queueing process by the covariance function of the
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ROU, we obtain

λσ2I (GI/M/s/0) ≈ (1 + c
2
a)

2
σ2
Yr(·;−(x−γ

√
2/(1+c2

a
)),2)

. (32)

It remains to establish similar results for the other estimators, but Theorem 4.1 clearly suggests

that we should look at the workload factors as functions of γ ≡ (α− s)/√α. When we do, we find
canonical curves for all the workload factors.

Theorem 4.1 also provides a theoretical basis for the blocking formula (15) in the G/M/s/0

model. Borovkov (1976) previously established (15) as a limit for the GI/M/s/0 model by proving

a local limit theorem. We can avoid having to resort to a local limit theorem by exploiting the

representation (3). Under additional minor technical regularity conditions, Theorem 4.1 implies

that (ns− s)/
√
α converges as s→∞ to the steady-state mean of the ROU. Since the steady-state

distribution of the ROU is a truncated normal, (15) is the resulting approximation for the blocking

probability.

5. The Simple Estimator

In this section we derive the approximation formulas for wS in Table 2. The simple estimator

is B̂S(t) = L(t)/λt, as in (2). Paralleling (10), let

c2L = limt→∞

V ar L(t)

EL(t)
.

Since EL(t)/t→ λB as t→∞, the asymptotic variance of the simple estimator B̂S(t) is

σ2S =
B

λ
c2L, (33)

so that the workload factor is

wS ≡ λσ2S = Bc2L. (34)

First, we observe how the blocking probability B behaves. We note that

B ≥ max{1− ρ−1, 0}, (35)

see Sobel (1980), Heyman (1980) and p. 698 of Whitt (1984), so that B is at least 1 − ρ−1 when
ρ > 1. In addition, 1− ρ−1 tends to be a good approximation for B when ρ is significantly greater
than 1; see Tables I–IV of Whitt (1984). Indeed, B → 1− ρ−1 as s→∞ for fixed ρ > 1; see p. 90
of Borovkov (1984). On the other hand, B tends to be exponentially small when s is very large;

for fixed ρ < 1 e.g., see Jagerman (1974). Hence, wS in (34) should be small for ρ < 1, but not for

ρ > 1.
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Turning to c2L, we develop an approximation for the cases ρ < 1 and ρ > 1 by considering

the case of large s. In the GI/M/s/0 special case (when the arrival process is a renewal process),

the overflow process {L(t) : t ≥ 0} itself is a renewal process (because overflows necessarily occur
at arrival epochs). Then c2L coincides with the SCV of the interval between successive overflows.

The approximate analysis is also reasonable for the more general G/M/s/0 model, without the

GI assumption. For large s, the overflow process is determined by the behavior of the process

{N(t) : t ≥ 0} in the neighborhood of s. For large s, we can approximate the service completion
rate µ(s− k) when N(t) = s− k by the constant service rate µs. Approximating the service rate
by sµ should clearly be a better approximation in heavy loading than in light loading. In light

loading we significantly overestimate the service rate, which will cause overflows to be rarer events,

so that we should overestimate c2L. Thus we anticipate that our approximation here will tend to be

conservative in light loading, which is confirmed by numerical results. The important point is that

c2L in (34) tends to be O(1).

Thus, we use an approximation for the asymptotic variance of the overflow process in the

G/M/1/C queue, which has single server, service rate sµ and finite waiting space C. In particular,

we apply results in Sections 3 and 4 of Berger and Whitt (1992). There exact results for c2L are

given for the M/M/1/C model and for reflected Brownian motion (RBM) with reflecting barriers

at 0 and C; also see Williams (1992) for results on RBM.

First we rescale the G/M/1/C model to have arrival rate ρ ≡ α/s and service rate 1. Note the
c2L is invariant under time scaling. Now we use a diffusion approximation for the G/M/1/C model

with service rate µ = 1 and arrival rate ρ. As noted in Section 4.2 of Berger and Whitt (1992), the

process representing the number of customers in the single-server queue can be approximated by

RBM with drift −(1− ρ) and diffusion coefficient (ρc2a +1). We then apply Theorem 4.1 of Berger
and Whitt (1992) to obtain

c2L(G/M/1/C, µ = 1) ≈ 1 + ρc
2
a

|1− ρ| (36)

assuming that ρ 6= 1 and that the barrier C is large. In particular, as a convenient approximation
for large C, we use the limit of (29) in Berger and Whitt (1992) as C → ∞. Combining (34) and
(36), we obtain

wS ≈
B(1 + ρc2a)

|1− ρ| . (37)

For ρ > 1, we approximate B by 1− ρ−1 to obtain

wS ≈
1 + ρc2a

ρ
for ρ > 1. (38)
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Formula (37) for light loading and formula (38) for heavy loading are given in Table 2.

To quickly see how formulas (37) and (38) perform for the M/M/s/0 model, we consider the

case in Table 1 with s = 400. For γ = −4,−3,−2,−1, the approximate workload factors are,
.00035, .0065, .074 and .62, respectively. For γ = 1, 2, 3, 4, the approximate workload factors are

1.95, 1.90, 1.86 and 1.82. From Table 1, we see that these are upper bounds that would serve as

suitable rough approximations in practice.

6. The Indirect Estimator

The indirect estimator is B̂I(t) = 1− n̂(t)α−1, as in (4). The workload factor is thus

wI ≡ λσ2I =
λ

α2
σ2n, (39)

where σ2n is the asymptotic variance of n̂(t) in (5).

6.1. Light Loading

First consider the case of light loading. For ρ < 1 and s large, we can approximate the

asymptotic variance σ2n by the asymptotic variance in the associated infinite-server model. For the

M/M/∞ system, σ2n = 2α; see (23) of Whitt (1992). To treat the G/M/∞ model, as in Borovkov
(1967) and Whitt (1982), we approximate a scaled version of the process {N(t) : t ≥ 0} by an
Ornstein-Uhlenbeck (OU) diffusion process, say {Y (t) : t ≥ 0}. (Further discussion appear in
Section 12, because this is used in the proof of Theorem 4.1.) In particular, for µ = 1,

N(t)− α√
α

≈ Y (t), t ≥ 0, (40)

where Y (t) has drift −x, diffusion coefficient (1 + c2a) and covariance function

R(t) ≡ Cov(Y (0), Y (t)) = ((1 + c2a)/2)e−t .

Hence, as in (4) and Example 5 of Whitt (1992), the asymptotic variance of t−1
∫ t
0 Y (u)du is

σ2Y ≡ limt→∞V ar t
−1
∫ t

0
Y (u)du = 2

∫ ∞

0
R(t)dt = (1 + c2a) . (41)

By (40),

σ2n ≈ ασ2Y . (42)

Finally, combining (39), (41) and (42), for the case µ = 1 we obtain

wI ≡ λσ2I ≈ 1 + c2a, (43)
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as given in Table 2. From Table 1, we see that in the M/M/s/0 case with s = 400 the approximation

wI ≈ 2.00 from (43) performs excellently for γ suitably large.
For the more general G/GI/∞ system, again with µ = 1, we can again apply the heavy-traffic

approximation, which is a Gaussian process with covariance function

R(t) =

∫ ∞

0
H(u)Hc(t+ u)du+ c2a

∫ ∞

0
Hc(u)Hc(t+ u)du , t ≥ 0 , (44)

where Hc(t) = 1 −H(t) with H(t) the service-time cdf, see p. 176 of Whitt (1982) and Borovkov
(1994). Reasoning as in (41), we then obtain an approximation for the asymptotic variance

σ2Y = 2

∫ ∞

0
H(u)Hce(u)du+ 2c

2
a

∫ ∞

0
Hc(u)Hce(u)du , (45)

where Hce(t) ≡ 1−He(t) and
He(t) =

∫ t

0
Hc(u)du . (46)

For example, when c2a = 1, (45) simplifies to

σ2Y = 2

∫ ∞

0
Hce(u) = (c

2
s + 1) . (47)

so that combining (39), (42) and (47), we obtain

ωI ≈ 1 + c2s . (48)

Formula (48) provides good theoretical support for approximation (17) for the M/GI/s/0 model.

More generally, formulas (45)–(48) provide partial support for formulas (17) and (18) when the

service-time distribution is non-exponential. Refined approximations could be based on combining

(39), (42) and (45).

6.2. Heavy Loading

In heavy loading it is natural to focus on the number of idle servers instead of the number of

busy servers, e.g., see p. 138 of Borovkov (1984). Let m be the mean number of idle servers. Then,

clearly, m = s− n, so that, by (3),
B = 1− s

α
+
m

α
. (49)

Moreover, σ2n = σ2m, where σ
2
n is the asymptotic variance of n̂(t) in (5) and σ

2
m is the asymptotic

variance of

m̂(t) = s− n̂(t), t ≥ 0. (50)
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Henceforth we focus on approximating σ2m. Since we are looking at the idle servers, we approx-

imate the process M(t) ≡ s − N(t) counting the idle servers in a G/M/s/0 model by an M/G/1
queue with constant arrival rate sµ and service rate λ and service-time SCV c2a. Since ρ > 1 in the

original system, the traffic intensity for M(t) is ρ−1. As before, the constant rate sµ is an approxi-

mation for the state-dependent rate (s− k)µ when M(t) = k, which is a good approximation when
s is large.

We first scale time by 1/λ to make the service rate 1 and the arrival rate ρ−1 in the M/G/1

spaces model. By (28) of Whitt (1989), we see how this scaling affects the asymptotic variance; it

cancels the λ term in the workload factor. Hence, we have

λσ2I ≈ σ2m(M/G/1, µ = 1)/α2 . (51)

When the G is GI (a renewal arrival process in the original model) the exact form of

σ2m(M/G/1, µ = 1) depends on the first four moments of the service-time distribution, but as in

Whitt (1989) we can give a rough approximation. From Law (1975), the exact formula for the

asymptotic variance in the M/GI/1 model is

σ2Q =
ρ4

2(1− ρ)4 (c
2
s + 1)

3 +

(

5ρ3

2

(

m3
3m2

)

+ ρ2
)

(c2s + 1)
2

(1− ρ)3

+

(

ρ(1 + ρ)

(

m3
3m2

)

+ 3ρ2
(

m4
12m2

))

(c2s + 1)

(1− ρ)2 , (52)

where mk is the k
th moment of the service-time distribution, m1 = 1, c

2
s = m2−m21 and the arrival

rate is ρ < 1. For the approximation here (with ρ−1 < 1), we combine (18) and (22) of Whitt

(1989) to obtain

σ2m(M/G/1, µ = 1) ≈ ρ−1(1 + ρ−1)(c2a + 1)
3

4(1 − ρ−1)4 , (53)

so that

wI ≡ λσ2I ≈
(1 + ρ)(c2a + 1)

3

4s2(ρ− 1)4 for ρ > 1, (54)

as in Table 2. It is significant that (53) is exact for the M/M/1 model, but the role of c2a in (53), and

thus (54), is problematic, being based on heuristic heavy-traffic analysis in (17) of Whitt (1989).

However, (53) is asymptotically correct as ρ→ 1, so that there are regions where (53) and (54) are
appropriate. Moreover, as noted in (21) and (22), the form of (54) is consistent with (17).

The discussion so far has been based on assuming that G is GI. However, the approximation

formulas (53) and (54) also apply to the general G case, because the heavy-traffic diffusion approx-
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imations in Whitt (1989) apply to general G service processes. With service times as well as arrival

times, the variability of general G is characterized by the asymptotic variance as defined in (10).

To see how (54) performs for the M/M/s/0 model with s = 400, we can compare with Table 1.

For γ = 1, 2, 3, 4 and 5, the approximation (54) yields the values 0.68, 0.109, 0.028, 0.0094, 0.0038.

From Table 1, we see that these are upper bounds which get more accurate as γ increases.

7. The Natural Estimator

In this section we briefly relate the natural estimator B̂N (t) in (1) to the simple estimator

B̂S(t) in (2) and theoretically justify using σ
2
S as an approximation for σ

2
N . The simulation results

in Section 10 also provide strong empirical support.

We first note that both the natural estimator and the simple estimator are consistent; i.e., by

the ergodic theorem (assuming ergodicity as well as stationarity), L(t)/t → λB and A(t)/t → λ

w.p.1 as t → ∞, so that, under minor regularly conditions, B̂N (t) → B and B̂S(t) → B w.p.1 as

t→∞. (We need to have uniform integrability to get EL(t)/t→ λB from L(t)/t→ λB.)

Moreover, given that the system starts in equilibrium, so that the process {N(t) : t ≥ 0} is
stationary, the simple estimator is unbiased, i.e.,

EB̂S(t) =
EL(t)

EA(t)
= B. (55)

In contrast, in general the natural estimator is not unbiased, because the expectation of a ratio is

not necessarily the ratio of the expectations, i.e., we typically have

EBN (t) = E

(

L(t)

A(t)

)

6= EL(t)

EA(t)
= B. (56)

Nevertheless, the natural estimator may be preferred to the simple estimator. First, in the

context of system measurements the arrival rate λ is typically unknown. Moreover, even if the

arrival rate is known, it can be somewhat better to use the natural estimator than the simple

estimator, because it may have a smaller asymptotic variance, as shown below.

We can compare the asymptotic variances by using the theory of nonlinear control variates

or indirect estimation in Glynn and Whitt (1989). Just as in Theorem 2 of Glynn and Whitt

(1989), we can characterize σ2N if we assume a joint central limit theorem (CLT) for the processes

L(t) and A(t). This joint CLT condition holds for the GI/M/s/0 model, because the overflow

epochs serve as embedded regeneration epochs. The CLT condition will also hold for more general

models for which a subsequence of the overflow epochs serve as embedded regeneration times. For
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example, this regeneration structure occurs in Markov modulated arrival processes; then overflows

in a particular environment state can serve as regeneration times.

Let N(0, C) denote a normally distributed random vector with zero means 0 and covariance

matrix C.

Theorem 7.1. If

t−1/2[L(t)−Bλt,A(t)− λt]⇒ (X,Y ) in � 2 as t→∞,

then
√
t(B̂N (t)−B)⇒ λ−1(X −BY ) in �

as t→∞.

Moreover, if (X,Y ) is distributed as N(0, C), then λ−1(X −BY ) is distributed as N(0, σ2N ), where
C11 = λBc

2
L = λσ

2
S , C22 = λc

2
a,

C12 = lim
t→∞

cov (A(t), L(t))

t
. (57)

and
σ2N = λ−2(C11 − 2BC12 +B2C22)

= σ2S − 2BC12λ−2 +B2c2aλ−1.
(58)

Proof. The proof here is essentially the same as for Theorem 2 of Glynn and Whitt (1989). Note

that √
t(B̂N (t)−B) =

√
t

(

L(t)

A(t)
−B

)

=
t

A(t)

1√
t
([L(t)− λBt]−B[A(t)− λt])

⇒ λ−1(X −BY ) as t→∞
because A(t)/t→ λ w.p.1 and we can apply the continuous mapping theorem. Formula (58) is an

elementary consequence of the bivariate normal distribution.
�

A missing ingredient in Theorem 7.1 is the asymptotic covariance term C12 in (57). We antici-

pate that C12 will usually be positive, but we have no expression for it. Nevertheless, from formula

(58), we see that when B is small and/or λ is large we will have σ2N ≈ σ2S . Hence, σ
2
S should be a

good approximation for σ2N . If C12 > λBc2a/2, then σ
2
N ≤ σ2S .

8. The Time-Congestion Estimator

In this section we briefly discuss the time-congestion estimator B̂T (t) for P (N(t) = s) in (6).

We contend that B̂T (t) often behaves similarly to the simple and natural estimators. This can be

substantiated in the case of Poisson arrivals, where B = P (N(t) = s).
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First, by Proposition 6 of Glynn, Melamed and Whitt (1993), in the case of Poisson arrivals

the difference B̂T (t)− B̂N (t) has asymptotic variance

σ2d ≡ V ar(B̂T (t)− B̂N (t)) = λ−1B(1−B) , (59)

which will be small where either B is small or λ is large. This is consistent with the simulation

results in Section 10; see Tables 3 and 6.

In the case of Poisson arrivals, we can also bound the asymptotic variance σ2T above by σ
2
S

because we can represent B̂S(t) as a conditional expectation given B̂T (t), i.e.

E[B̂S(t)|B̂T (t)] = B̂T (t) , (60)

so that we necessarily have

σ2T ≤ σ2S ; (61)

see Example 11.16 of Ross (1993).

9. Ensuring Small Blocking Probabilities

In some applications we may wish to ensure that the blocking probability is very small, without

being concerned with estimating its actual value. For example, we may want to verify that B ≤ ε

for some very small ε. Since B is very small, presumably we are in the region of light loading. Thus

it is appropriate to use the natural estimator B̂N (t).

The question is: How large should t be in order to be convinced by a small value of B̂N (t) that

B ≤ ε? For example, we might obtain B̂N (t) = 0. For this purpose, it is natural to use a one-sided
confidence interval and choose the run length t to make the width of the confidence interval with

level of precision β be ε/2; i.e., let P (N(0, 1) < zβ) = 1− β and

ε

2
=
σNzβ√

t
, (62)

so that the required run length is

t(ε, β) =
4σ2Nz

2
β

ε2
; (63)

e.g., see p. 1345 of Whitt (1989). Since we do not know σ2N , we can approximate it by σ
2
S =

B(c2a + 1)/(1− ρ) from Table 1, as explained in Section 5. Substituting this approximation for σ2N
into (63), we obtain

t ≤
4B(c2a + 1)z

2
β

(1− ρ)ε2 . (64)
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A difficulty with (64) is that the bound itself depends on the blocking probability B to be estimated.

An obvious crude upper bound on B is 1. However, if we are prepared to assume that B is less

than some smaller number, then we can reduce the bound.

The estimation procedure is then as follows: We use the estimator B̂N (t) for the time t in the

bound in (64). If B̂N (t) ≤ ε/2, then we conclude with confidence 1− β that indeed B ≤ ε.

10. Simulation Evidence

A key point underlying all our work is the fact that the actual variance of each estimate B̂(t)

is reasonably well described by σ2/t, where σ2 is the asymptotic variance, when t is suitably

large. This large sample behavior is well established in statistical experience, but we also present

confirmation here.

Example 10.1. The Erlang Model.

To illustrate how the formulas based on the asymptotic variance perform for M/M/s/0 models,

we consider a simulation experiment with 4 independent runs each of length 5400 for the case

s = 400, λ = 380 and µ = 1. We delete an initial portion of length 5 to allow the system to reach

steady state (for discussion, see Section 11). For this model, the scaled arrival rate is γ = −1.0.
We thus estimate the variance of each estimator B̂(t) by σ2/t = ψ(−1)/2.052× 106 . From Table 1,
ψI(−1) = 0.89, ψS(−1) = 0.35 and ψT (−1) = 0.33.
Table 3 displays the simulation results and the predictions based on (15)–(18) and Table 1.

Table 3 shows that the predictions are good. Table 3 also shows that the estimators B̂S(t) and

B̂N (t) are almost identical; their difference is negligible compared to the statistical precision. Also

B̂T (t) is strongly positively correlated with B̂S(t), while B̂I(t) tends to be negatively correlated with

B̂S(t); B̂I(t) tends to have high (low) values when B̂S(t) has low (high) values. Thus the combined

estimator mentioned in Section 1 should (and does) have lower variance than either B̂S(t) or B̂I(t),

but we do not give details here. These observations hold for more general models, as can be seen

from the examples below. The results for the M/M/s/0 model in Table 3 help to judge the quality

of the approximations for the more general models.

Example 10.2. More Variable Arrival Processes

To see how the approximations perform for G/M/s/0 models with arrival processes more vari-

able than Poisson, we conduct a simulation experiment for the GI/M/s/0 model, where the inter-

arrival time has a hyperexponential (H2) distribution with balanced means and c
2
a = 9.0. This H2

26



distribution has density

f(x) = pλ1e
−λ1x + (1− p)λ2e−λ2x, x ≥ 0 , (65)

where

p = [1 +
√

(c2a − 1)/(c2a + 1)]/2 , (66)

λ1 = 2pλ and λ2 = 2(1− p)λ (67)

with λ−1 being the mean. Since the service-time distribution is exponential, the approximate

peakedness by (14) is z = (c2a + 1)/2 = 5. (The exact peakedness by (13) is 4.95, so (14) is an

excellent approximation.)

We consider s = 400, µ = 1 and three values of λ : λ = 360, λ = 400 and λ = 440. The

experiment consists of 4 independent runs of length 2700 for each λ, deleting a portion of length

5 to allow the system to approach steady state in each case. (The run length 2700 makes the

expected total number of arrivals about 106 in each case.) The simulation results are displayed in

Table 4. The predictions in Table 4 based on (15)–(18) seem very good. As in Example 1.1, B̂N (t)

essentially coincides with B̂S(t), while B̂S(t) and B̂I(t) are negatively correlated.

Example 10.3. Less Variable Arrival Processes

To show how the approximations perform for G/M/s/0 models with arrival processes less vari-

able than Poisson, we consider a simulation experiment for the GI/M/s/0 model, where an inter-

arrival time has the Erlang (E4) distribution with c
2
a = 0.25. An E4 distribution is the convolution

of four exponential distributions. By (14), z ≈ (c2a +1)/2 = 0.625. As in Example 1.2, we consider
s = 400, µ = 1 and three values of λ. Here we consider λ = 380, λ = 400 and λ = 420. The

experiment consists of 2 independent runs of length 2700 for each λ, deleting an initial portion of

length 5 to allow the system to approach steady state. The simulation results and the predictions

based on (15)–(18) are displayed in Table 5. Again the predictions are good.

Example 10.4. Sensitivity in the M/G/s/0 Model

For the M/G/s/0 model, it is well known that the blocking probability depends on the service-

time distribution only through its mean. This insensitivity property is reflected by formulas (13)–

(16), because then c2a = z = 1. However, the asymptotic variance and workload factors do not have

this insensitivity property, as is clear from the influence of c2s in formulas (17) and (18).

To illustrate how the approximations (17) and (18) apply to M/G/s/0 systems, we consider an

M/G/s/0 system with s = 400, µ = 1 and an H b2 service-time distribution with c
2
s = 9.0, as in

Example 1.2. Simulation results for 2 independent runs of length 2700 are displayed in Table 6. The
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analysis in Section 11 shows that the bias changes when we change the service-time distribution.

For this Hb2 distribution, we should delete more in order to reduce the bias, about 50 instead of 5.

Note that the blocking probabilities are well predicted by formulas (15) and (16) with z = 1. The

standard deviation estimates are also reasonably well predicted by (17) and (18) as well. Notice

that the prefactor (c2a + c
2
s)/2 = 5 in (17) plays an important role here, as predicted by (48).

Example 10.5. General Distributions

We now consider GI/GI/s/0 models where neither the interarrival-time distribution nor the

service-time distribution is exponential. We consider all combinations of H b2 distributions with

c2 = 9.0 and E4 distributions with c
2 = 0.25. As before, we let s = 400 and µ = 1. Table 7 displays

results for λ = 380, while Table 8 displays results for λ = 440. The approximate peakedness values

used are displayed there. These results provide strong empirical support for approximations (15) –

(18). We rely heavily on such empirical support, because we have provided little theoretical support

for cases in which neither the arrival process nor the service times are M .

Example 10.6. Non-Renewal Arrival Processes

Our final simulation example is a G/GI/s/0 model with a non-renewal arrival process. To have

a relatively simple example, we let the arrival process be a two-state Markov-modulated Poisson

process (MMPP). There are alternating high-rate and low-rate environment states with exponential

holding times having meansmh andm`. In state h (`), arrivals are submitted according to a Poisson

process with rate λh (λ`), where λh > λ`. It is known that the “on-off” special case in which λ` = 0

is actually a renewal process, but more generally the MMPP is not renewal. The overall arrival

rate of the MMPP is

λ =
mhλh +m`λ`
mh +m`

. (68)

while the normalized asymptotic variance (defined in (10)) is

c2a = 1 +
2m−1h m−1` (λh − λ`)2
λ(m−1h +m

−1
` )
3

, (69)

see p. 288 of Neuts (1989), and the (exact) peakedness with exponential serviced times is

z = 1 +

(

λ2hm
−1
l + λ

2
lm
−1
h

λhm
−1
h + λlm

−1
l

− λ
)

(µ+m−1h +m
−1
l )
−1 , (70)

see p. 338 of Neuts (1989). The peakedness z in (13) tends to be well approximated by the heavy-

traffic value (c2a + 1)/2 in (14) when the rates λ,m
−1
h and m

−1
l are large compared to µ, but not

otherwise.
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We will focus on the special case in which mh = ml = m. Then

λh = λ+ γ and λl = λ− γ , (71)

where

γ =
√

λ(c2a − 1)/m . (72)

As a first concrete example, let s = 400, µ = 1, λ = 400 and c2a = 9.0 as in the second case of

Example 2.2 (Table 4). We consider 4 values of the common mean environment state holding time

m: m = .03125,m = 0.1,m = 1.0 and m = 10.0. The exact peakedness values in these four cases

are z = 4.93, z = 4.81, z = 3.67 and z = 1.67. The heavy-traffic approximation z ≈ 5 from (14) is
fine in the first two cases, but not in the last two. In the heavy-traffic limit, λ → ∞ and m → 0
as s → ∞, while µ remains fixed. (We have m → 0, because the rate-1 arrival process is scaled
by λ → ∞, which means the environment state change rates go to infinity.) Hence, eventually
m � µ−1 as the limit is approached. The fact that m ≥ µ−1 in the last two cases indicates that

the case is not near to the limit even though λ is quite large.

Table 9 compares the predictions in (15)–(18) with simulation estimates for these four cases.

Since γ = 0, the predicted standard deviations are independent of z and, thus, of m, which

is consistent with the simulation results. On the other hand, the blocking approximation (15)

depends on z and, thus, on m. The blocking approximation .089 from (15) based on z ≈ 5.0
from (14) evidently is accurate to within about 10% in the first two cases, but not in the last two

cases. The displayed blocking predictions using the exact peakedness from (13) provide a significant

improvement.

As a second concrete example, we reduce the arrival rate by multiplying the rates λh and λl

by 0.9, but leave m unchanged. This makes the new arrival rate λ = 360 and the new asymptotic

variance c2a = 8.2. Simulation results for this case are given in Table 10. In this case, since γ 6= 0,
the peakedness z appears in all four approximation formulas (15)–(18). As before, we use the exact

peakedness (13) in the predictions, which helps greatly in the last two cases with large m.

11. The Initial Conditions

Just as with the asymptotic variance, for functions of Markov chains the asymptotic bias for

any initial distribution can be calculated by solving Poisson’s equation; see (32) and Corollary 4 to

Proposition 10 of Whitt (1992). Hence, we can numerically investigate the M/M/s/0 model and

more complicated Markov loss models. For example, Table 11 displays the asymptotic bias for the
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indirect and time-congestion estimators in the M/M/s/0 model with s = 400, µ = 1 and several

values of ρ, starting empty or full, computed in this manner. For λ = 380 and simulation run

of length 5400 as in Example 2.1, the approximate bias of the time-congestion estimator starting

empty is .01/5400 ≈ 0.19 × 10−7, while the approximate bias of the indirect estimator starting
empty is 0.94/5400 ≈ 0.00017. The time-congestion-estimator bias is negligible, but the indirect-
estimator bias is of the same order as the approximate standard deviation 0.00066 in Table 3. Thus

some effort to reduce the bias evidently can be worthwhile.

Insight into appropriate procedures for addressing the initialization bias can be gained by con-

sidering the associated infinite-server models. In the G/GI/∞ model starting empty, the bias of
the estimator n̂(t) is exactly

En̂(t)− n = −nHce(t) , (73)

where He(t) is the service-time stationary-excess cdf in (46); see (20) of Eick, Massey and Whitt

(1993). (The M/GI/∞ result there remains true for G arrival processes; see Remark 2.3 of Massey
and Whitt (1993).) Hence, the asymptotic bias is

βn = −n(c2s + 1)/2µ ; (74)

see (2) of Eick, Massey and Whitt (1993). As a consequence, in light loading the approximate bias

of the indirect estimator is

βI ≈
−βn
α
=
(c2s + 1)

2µ
. (75)

In the case of M service with µ = 1, formula (75) implies that βI ≈ 1, which is substantiated by
Table 11.

Recall that the asymptotic variance σ2I tends to be inversely proportional to λ. In contrast,

formula (75) implies that the asymptotic bias tends to be independent of λ. Hence, the bias becomes

relatively more important as system size grows.

Formulas (73) and (75) can be used to estimate the remaining bias if we eliminate an initial

portion of the run of length t0. Let βI(t0) be this remaining bias. Then

βI(t0) =

∫ ∞

t0
Hce(u)du . (76)

For example, with M service with µ = 1,

βI(t0) =

∫ ∞

t0
e−udu = e−t0 . (77)
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Since e−2 = 0.135 and e−5 = .0067, the time-dependent mean reaches 86% and 99.3% of its steady-

state value by 2 and 5 mean service times, respectively, and a corresponding part of the bias is

reduced by eliminating the initial portion.

The infinite-server analysis is roughly consistent with asymptotical results as s → ∞ for the
transient blocking probability in the M/M/s/0 model by Mitra andWeiss (1989). Roughly speaking,

these results imply that the blocking probability at time t has reached about 90% of its steady-state

value approximately at time

t =















2 + log(s(1− ρ)) ρ < 1

2 +
1

2
log(s/2) ρ = 1

log(ρ/(ρ − 1)) ρ > 1

(78)

For s = 103 and ρ = 1, the time is t ≈ 5.1, which is about the same as the infinite-server result. This
analysis suggests that the initial portion to delete is a period lasting about 5 mean service times,

with the amount perhaps increasing very slowly with s. Hence, for the experiments in Section 2 we

deleted an initial portion of length 5 from each run. Table 11 gives an idea of the bias reduction.

For example, this phenomenon occurs when s = 104. The required run length in steady state

can be about 1, while the required run length to reduce bias starting empty can be about 5. For

such large systems, it clearly can be much better to initialize the system closer to the steady-state

mean.

Example 11.1. To illustrate this phenomenon, we simulate several GI/M/s/0 systems with s = 104

and µ = 1. We let the total run length be 1. Of course, when we start the system empty, no blocking

at all is observed. Hence, we start the system with 9980 customers and do not delete an initial

portion. Estimation results for the indirect estimator in 7 cases are shown in Table 12. The

statistical precision seems adequate. The asymptotic bias can be shown to be negligible in the M

arrival case by the exact numerical algorithm. Other runs with other initial conditions confirm

that there is negligible bias for these runs. Moreover, the results are relatively insensitive to N(0)

provided that it is not far from s.
�

Unfortunately, the good results in Table 12 fail to hold if we change the service-time distribution.

The difficulty is that all customers in service at time 0 would actually not be starting their service

times at that time. For a simple example, consider the G/D/s/0 model with µ = 1 and total run

length t = 1. None of the customers initially in the system would leave prior to time 1 if they all

began service at time 0. There is no difficulty with exponential service times, because the remaining

service time is again exponential.

The infinite-server model can give an idea about what is an appropriate residual service-time
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distribution at time 0 in the G/GI/s/0 model. In the infinite-server model, the expected number of

customers with service times greater than x in the system at any time is αH ce(x), by the argument

of Theorem 1 in Eick, Massey and Whitt (1993). hence, it is natural to let the customers in the

system have i.i.d. service times distributed according to He. While this initialization should yield

a good approximation for G/GI/s/0 models, it is only an approximation, whose error is yet to be

determined. Thus, with non-exponential service times in practice, it might well prove to be more

convenient to initialize the system by starting empty and deleting an appropriate initial portion

based on (79). This is an area where more work needs to be done.

12. Proof of Theorem 4.1

In this section we construct the reflected Ornstein-Uhlenbeck (ROU) diffusion process and prove

that the normalized G/M/s/0 number-in-system process (Ns(·)− s)/
√
α converges to it as s→∞

with (α − s)/
√
α → γ. For this purpose, we construct coupled bounding processes for each s

and show that these converge appropriately as s → ∞ to bounding limit processes, which in turn
converge to a unique limit as the bounds are tightened. The key idea is to exploit previous results

for the associated G/M/∞ model.
For any ε > 0 and positive integer s, let N u,εs (t) be the upper bound process and N

`,ε
s (t) the

lower bound process to be defined. Let these processes have the same arrival process as Ns(t), i.e.,

the same arrival-process sample paths. Let each process have jumps down with intensity µk when

the process is in state k. We modify each process whenever it hits an upper barrier. As usual,

jumps up in Ns are ignored when Ns(t) = s. Let Nu,εs have an instantaneous jump down of dε√se
whenever Nu,εs would reach s + dε√se, where dxe is the least integer greater than or equal to x.
Similarly, let N `,εs have an instantaneous jump down of bε

√
sc whenever N `,εs would hit s, where

bxc is the greatest integer less than or equal to x. Thus, the processes Ns, Nu,εs and N `,εs have

state spaces equal to the set of nonnegative integers less than or equal s, s− 1 + dε√se and s− 1,
respectively.

These processes can be constructed so that,

Nu,εs (t)− 2dε
√
se ≤ N `,εs (t) ≤ Ns(t) ≤ Nu,εs (t) for all t and ε w.p.1 , (79)

provided that (79) holds w.p.1 at t = 0. To establish (79) we construct all the downward jumps on

the same space. Suppose that N `,εs (t) ≤ Ns(t) ≤ Nu,εs (t). Then the downward jump intensities at

t are ordered as well. Hence, we can make the downward jumps of N `,εs a subset of the downward
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jumps of Ns, and in turn make that a subset of the downward jumps of N
u,ε
s ; see Whitt (1981)

for background; Theorem 10 there covers the essence of (79). In particular, when N u,εs (t) = k ≥
Ns(t) = j, then a downward jump in N u,εs is also a downward jump in Ns with probability j/k;

otherwise Ns does not change. Similarly, if Ns(t) = k ≥ N `,εs (t) = j, then a downward jump in

Ns is also a downward jump in N
`,ε
s with probability j/k, otherwise N

`,ε
s does not change. This

construction gives each process separately its proper distribution on D[0,∞) and provides the
orderings in (79); apply mathematical induction on the transition epochs to verify the orderings

for all t. We note that (79) does not depend on any structure in the arrival process.

Now we establish limits as s→∞ for the bounding processes N `,εs and Nu,εs using the established
limit for the associated G/M/∞ model, drawing on Borovkov (1967) and Theorem 1 on p. 103 of
Borovkov (1984). Somewhat more transparent proofs of the infinite-server FCLT are available in

special cases: The case of GI arrivals is treated in Whitt (1982), while the case of G arrivals and

service-time distributions with finite support is treated in Glynn and Whitt (1991).

Let Ñα(t) be the number of busy servers in the G/M/∞ system with individual service rate µ
and offered load α. Then the previous infinite-server result states that

Ñα(·) − α√
α

⇒ Ỹ (·) in D[0,∞) as α→∞ , (80)

where Ỹ is the OU process with drift coefficient m(x) = −µx, diffusion coefficient σ2(x) = µ(1+c2a)
with c2a in (10) and initial position y−γ. The limit (80) deserves some further explanation because
Borovkov’s theorems apply directly only to the case of the system starting empty. (An exception is

on p. 113 of Borovkov (1984), but that does not apply here.) However, with M service other initial

conditions can easily be treated as well. In particular, the evolution of the customers initially in

the system can be treated separately from the new arrivals. Note that Ñα(t) = Ñαn(t) + Ñα0(t),

where Ñαn(t) is the number of new arrivals still in the system at time t, while Ñα0(t) is the

number of original customers that were in the system at time 0 that are still there at time t. Let

Ñα0(0) = Ns(0) for (s − α)/
√
α = −γ with µ fixed. By Theorem 4.4 of Billingsley (1968), our

conditions imply that

(

Aλ(·)− λ·√
λ

,
Ñα0(0)− α√

α

)

⇒ (Z, y − γ) in D[0,∞) × �
(81)

as λ→∞ (and thus α→∞). This in turn implies that
(

Ñαn(·) − α(1 − e−µ·)√
α

,
Ñα0(·) − αe−µ·√

α

)

⇒ (Ỹn, Ỹ0) in D[0,∞)2 as α→∞ , (82)
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where Ỹ0 and Ỹn are independent, from which (80) follows by adding the components. The limit

process Ỹ = Ỹ0 + Ỹn in (80) can be characterized as an OU by its covariance function, because it

is a Gaussian process.

Since (α− s)/√α→ γ as s→∞, (80) implies that

Ñα(·)− s√
α

⇒ Y (·) in D[0,∞) as s→∞ , (83)

where Y is the OU process with drift coefficient m(x) = −µ(x−γ) and diffusion coefficient σ2(x) =
µ(1 + c2a), because

Ñα(·)− s√
α

=

[

(Ñα(·)− α)√
α

]

+
α− s√
α

. (84)

In other words, Y is the OU process Ỹ centered at γ instead of at 0.

Next we apply the continuous mapping theorem with the first passage-time function to deduce

that
Nu,εs (·)− s√

α
⇒ Y u,ε(·) in D[0,∞) (85)

and
N `,εs (·) − s√

α
⇒ Y `,ε(·) in D[0,∞) as s→∞ , (86)

with (α − s)/√α → γ for each ε > 0, where Y u,ε and Y `,ε are modifications of the OU process

Y specified below, provided that N u,εS (0) = N l,εS (0) = Ns(0). The process Y
u,ε has a jump down

of ε whenever it hits ε, while Y `,ε has a jump down of ε whenever it hits 0. In proving (85) and

(86), we can consider successive intervals between downward jumps in Y u,ε and Y `,ε separately and

recursively. In particular, we can let the process Y u,ε have an instantaneous jump from ε to 0 and

then be absorbed at 0 when it hits ε and we can let the process N u,εs jump down and be absorbed

at s when it hits s+ dε√se. Note that the first passage time constitutes a measurable function that
is continuous almost surely with respect to the limit process; i.e., when an OU first hits ε it goes

above ε with probability one. In this way, we obtain convergence in D[0,∞) of the form (85) and
(86) for a single barrier hitting.

We next obtain convergence in the product space D[0,∞)∞ for the sequence of processes as-
sociated with successive barrier hittings, each starting at 0, based on the remaining portion of the

arrival process and being absorbed in 0 after the barrier hitting. The arrival process after each

successive barrier hitting time has a FCLT with a Brownian motion limit which is independent of

the history prior to that barrier hitting time by virtue of the original assumed FCLT for the arrival
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process. Also, the exponential service times can be regarded as starting over at each barrier hitting

time.

We then obtain (85) and (86) as stated by piecing together separate versions, with each starting

at the end of the last interval. The process of putting together the pieces into one single process on

D[0,∞) is easily seen to be a continuous mapping from D[0,∞)∞ to D[0,∞). For this continuity,
it is important to use the Skorohod topology as opposed to the topology of uniform convergence

on bounded intervals, because the jumps will not occur at precisely the same times. We treat Y `,ε

and N `,εs similarly.

We now obtain our desired result by letting ε ↓ 0. By the ordering (79) and the limits (85) and
(86),

Y u,ε(·)− 2ε ≤st Y `,ε(·) ≤st Y u,ε(·) , (87)

where ≤st denotes stochastic order on the function space D[0,∞); i.e., {Y1(t) : t ≥ 0} ≤st {Y2(t) :
t ≥ 0} if Ef(Y1(·)) ≤ Ef(Y2(·)) for all nondecreasing real-valued function f on D[0,∞), with
y1 ≤ y2 in D[0,∞) if y1(t) ≤ y2(t) for all t. We now want to deduce that Y

u,ε(·) converges as
ε → 0. Unfortunately, this is not immediate from (87). To establish the desired convergence as
ε ↓ 0, note that, by (79),

Nu,ε2
−n

s (t) ≤ Ns(t) + 2d(ε2−n)
√
se

≤ Nu,εs (t) + 2d(ε2−n)
√
se

≤ Ns(t) + 2d(ε2−n)
√
se+ 2dε√se

≤ Nu,ε2
−n

s (t) + 2d(ε2−n)√se+ 2dε√se

(88)

for all t, s and ε. Hence,

Y u,ε2
−n

(·) ≤st Y u,ε(·) + ε ≤st Y u,ε2
−n

(·) + 3ε (89)

for all n, so that

Y u,ε(·)− 2ε ≤st Y u,ε2
−n

(·) ≤st Y u,ε(·) + ε for all n . (90)

Hence, {Y u,ε2−n(·) : n ≥ 1} is a tight sequence in D[0,∞) and any weak convergence limit Yr(·) of
a subsequence satisfies

Y u,ε(·) − 2ε ≤st Yr(·) ≤st Y u,ε(·) + ε (91)

for all ε by (90). Hence, indeed Y u,ε(·)⇒ Yr(·) as ε ↓ 0. Combining (87) and (91) yields Y `,ε(·)⇒
Yr(·) as ε ↓ 0 as well. We define the reflected OU (ROU) process to be this common limit process
Yr.
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Finally, by (79),
N `,ε(t)− s√

α
≤ Ns(t)− s√

α
≤ Nu,ε(t)− s√

α
(92)

w.p.1 for all s, t and ε, so that

Ns(·)− s√
α

→ Yr(·) in D[0,∞) as s⇒∞ (93)

as well.

13. Summary

Our main results are workload factor approximations for the four estimators B̂N (t), B̂S(t), B̂I(t)

and B̂T (t) in (1), (2), (4) and (6). (The workload factor is the product of the arrival rate and the

asymptotic variance; see Section 1.6.) The approximation formulas for workload factors wI and

wT are given in (17) and (18). The approximation formula for wS has the same form as (17).

Theoretical analysis in Section 7 and numerical evidence show that B̂N (t) and B̂S(t) are very

similar, so that results for one apply to the other. Thus, wS serves as the approximation for wN .

The canonical workload factors ψ appearing in (17) and (18) can be calculated exactly by the

methods of Section 3; approximations are given in Table 2. The approximations show that B̂I(t)

tends to be more efficient than the other estimators in heavy loading, but less efficient in light

loading.

The behavior of the workload factors w ≡ w(s, γ, c2a, c
2
s, z) as a function of the parameters s

and γ ≡ (α − s)/√α is strongly supported by the exact numerical results for wS, wI and wT in
the M/M/s/0 model, using the algorithms in Section 3. Figures 1–3 dramatically show that these

workload factors depend on s and α primarily through the single parameter γ ≡ (α− s)/√α. For
the G/M/s/0 model, the convergence of the blocking probability B and the workload factor wI to

proper limits consistent with (15) and (17) as s → ∞ is established by the FCLT in Section 4.
While corresponding limits for the other estimators remain to be established, the ROU diffusion

approximation lends support to the other heuristic approximations (when s is not too small and

|γ| is not too large). The fact that the workload factors are approximately independent of s implies
that, for given statistical precision, the observation interval should be approximately inversely

proportional to the arrival rate or system size.

For models not too different from M/M/s/0, the effects of arrival-process and service-time vari-

ability on the workload factors should be regarded as second order compared to the effects of s
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and γ. For the G/M/s/0 model, the role of c2a in (10) for characterizing the variability of a non-

Poisson arrival process is supported by the FCLT in Section 4 and the asymptotic approximations

in Sections 5 and 6. The approximations for G/GI/s/0 models with non-exponential service times

are primarily empirical, and thus much more tentative. Formulas (45) and (48) in Section 6.1 lend

some theoretical support, especially for light loading. This is a good direction for future research.
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workload factors blocking probabilities

γ indirect simple time congestion exact approximation (15)

−6.0 2.00 .13× 10−7 .11× 10−7 .182 × 10−8 .35 × 10−9
−5.5 2.00 .16× 10−6 .14× 10−6 .214 × 10−7 .62 × 10−8
−5.0 2.00 .18× 10−5 .15× 10−5 .210 × 10−6 .84 × 10−7
−4.5 2.00 .16× 10−4 .14× 10−4 .170 × 10−5 .89 × 10−6
−4.0 2.00 .12× 10−3 .11× 10−3 .114 × 10−4 .74 × 10−5
−3.5 1.98 .79× 10−3 .72× 10−3 .623 × 10−4 .48 × 10−4
−3.0 1.94 .0042 .0039 .278 × 10−3 .24 × 10−3
−2.5 1.83 .0183 .0173 .00100 .00094
−2.0 1.59 .063 .060 .00295 .00290
−1.5 1.25 .171 .164 .00712 .00720
−1.0 .88 .36 .34 .0144 .0147
−0.5 .56 .60 .58 .0251 .0258
0.0 .33 .86 .82 .0389 .0399
+0.5 .19 1.09 1.04 .0550 .0563
+1.0 .109 1.28 1.20 .0728 .0744
+1.5 .063 1.41 1.32 .0917 .0934
+2.0 .037 1.51 1.40 .111 .113
+2.5 .023 1.57 1.44 .131 .133
+3.0 .014 1.62 1.47 .150 .152
+3.5 .0091 1.65 1.48 .170 .172
+4.0 .0060 1.66 1.47 .189 .191
+4.5 .0041 1.67 1.46 .208 .210
+5.0 .0028 1.67 1.45 .227 .229
+5.5 .0020 1.67 1.43 .245 .247
+6.0 .0014 1.67 1.40 .263 .262

Table 1. Canonical workload factors ψ(γ) for three estimators and blocking probabilities B for the

M/M/s/0 model as a function of γ = (α − s)/√α based on exact numerical results for the case
s = 400 and µ = 1.
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predicted run 1 run 2 run 3 run 4

S .0143 .0136 .0134 .0139 .0142
blocking N .0143 .0136 .0134 .0139 .0142
probability I .0143 .0143 .0157 .0142 .0135
estimate T .0143 .0138 .0135 .0140 .0142

S .00041 .00041 .00032 .00028 .00038
standard N .00041 .00041 .00031 .00029 .00037
deviation I .00066 .00071 .00067 .00047 .00064
estimate T .00040 .00043 .00033 .00027 .00036

Table 3. A comparison of predictions with simulation results for the M/M/s/0 model with s = 400,

λ = 380, µ = 1 and t = 5400 in Example 10.1.

43



λ = 360 predicted run 1 run 2 run 3 run 4

S .036 .0309 .0306 .0324 .0307
blocking N .036 .0308 .0306 .0322 .0308
probability I .036 .0303 .0334 .0288 .0340
estimate T .0163 .0185 .0181 .0194 .0184

S .0014 .0011 .0012 .0014 .0013
standard N .0014 .0011 .0011 .0013 .0012
deviation I .0020 .0020 .0017 .0028 .0027
estimate T .00059 .00071 .00063 .00079 .00075

λ = 400 predicted run 1 run 2 run 3 run 4

S .089 .0811 .0854 .0838 .0815
blocking N .089 .0813 .0849 .0835 .0815
probability I .089 .0833 .0804 .0819 .0824
estimate T .040 .0489 .0515 .0502 .0490

S .0020 .0014 .0015 .0022 .0018
standard N .0020 .0013 .0013 .0020 .0016
deviation I .0012 .0015 .0011 .0013 .0010
estimate T .00087 .00084 .00089 .0013 .0011

λ = 440 predicted run 1 run 2 run 3 run 4

S .150 .1397 .1430 .1449 .1415
blocking N .150 .1400 .1428 .1443 .1415
probability I .150 .1431 .1417 .1411 .1426
estimate T .067 .0845 .0861 .0874 .0854

S .0023 .0027 .0020 .0019 .0022
standard N .0023 .0023 .0017 .0016 .0018
deviation I .00075 .00082 .00075 .00060 .00099
estimate T .00101 .00158 .00124 .00109 .00126

Table 4. A comparison of predictions with simulation results for the GI/M/s/0 model with s = 400,

hyperexponential (Hb2) interarrival times with balanced means having c
2
a = 9.0 and service rate

µ = 1 in Example 10.2. Estimated blocking probabilities and sample standard deviations for the

four estimators: simple (S), natural (N), indirect (I) and time-congestion (T ). Based on 20 batches

from simulation runs each of length 2700 after deleting an initial portion of length 5. The predictions

are based on (15)–(18) and Table 1.
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λ = 380 predicted run 1 run 2

S .0077 .0080 .0079
blocking N .0077 .0080 .0079
probability I .0077 .0055 .0071
estimate T .0098 .0116 .0117

S .00038 .00041 .00035
sample N .00038 .00041 .00035
standard I .00082 .00086 .00074
deviation T .00047 .00058 .00052

λ = 400 predicted run 1 run 2

S .032 .0387 .0385
blocking N .032 .0387 .0385
probability I .032 .0392 .0389
estimate T .040 .0384 .0385

S .00071 .00075 .00087
sample N .00071 .00073 .00084
standard I .00044 .00041 .00065
deviation T .00087 .00073 .00087

λ = 420 predicted run 1 run 2

S .066 .0644 .0656
blocking N .066 .0644 .0656
probability I .066 .0652 .0653
estimate T .084 .0913 .0924

S .00085 .00060 .00085
sample N .00085 .00060 .00083
standard I .00021 .00017 .00023
deviation T .00105 .00078 .00115

Table 5. A comparison of predictions with simulation results for the GI/M/s/0 model with s = 400,

Erlang (E4) interarrival times with c
2
a = 0.25 and service rate µ = 1 in Example 10.3. Estimated

blocking probabilities and standard deviations for the four estimators: simple (S), natural (N),

indirect (I) and time-congestion (T ). Based on 20 batches from simulation runs of length 2700

after deleting an initial portion of length 5. The predictions are based on (15)–(18) and Table 1.
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λ = 380 predicted run 1 run 2

S .0143 .0151 .0135
blocking N .0143 .0151 .0135
probability I .0143 .0137 .0165
estimate T .0143 .0150 .0136

S .0013 .00146 .00128
standard N .0013 .00146 .00128
deviation I .0021 .00221 .00221
estimate T .0013 .00145 .00130

λ = 400 predicted run 1 run 2

S .0399 .0389 .036
blocking N .0399 .0390 .036
probability I .0399 .0393 .040
estimate T .0385 .0389 .037

S .0020 .00144 .00177
standard N .0020 .00143 .00176
deviation I .0012 .00151 .00143
estimate T .0020 .00148 .00176

λ = 420 predicted run 1 run 2

S .073 .0729 .0727
blocking N .073 .0729 .0726
probability I .073 .0722 .0724
estimate T .073 .0729 .0725

S .0022 .00193 .00143
standard N .0022 .00191 .00144
deviation I .00072 .00084 .00074
estimate T .0023 .00192 .00149

Table 6. A comparison of predictions with simulation results for the M/G/s/0 model with s = 400,

hyperexponential service times with balanced means having c2s = 9 and µ = 1 in Example 10.4.

Based on 20 batches from simulation runs of length 2700.
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c2a = .25, c
2
s = .25, z = .43 c2a = .25, c

2
s = 9.0, z = .74

predicted run 1 run 2 predicted run 1 run 2

S .0042 .0051 .0055 .0098 .0073 .0090
blocking N .0042 .0052 .0055 .0098 .0073 .0090
probability I .0042 .0064 .0053 .0098 .0150 .0099
estimate T .0063 .0076 .0081 .0138 .0106 .0129

S .00019 .00020 .00028 .00112 .00096 .00071
standard N .00019 .00020 .00028 .00112 .00096 .00071
deviation I .00057 .00061 .00040 .0022 .0028 .0014
estimate T .00038 .00030 .00037 .0011 .0014 .00097

c2a = 9.0, c
2
s = .25, z = 7.0 c2a = 9.0, c

2
s = 9.0, z = 3.8

S .077 .062 .064 .050 .048 .048
blocking N .077 .062 .064 .050 .048 .047
probability I .077 .065 .063 .050 .048 .047
estimate T .029 .038 .039 .025 .029 .028

S .0017 .0015 .0014 .0022 .0019 .0020
standard N .0017 .0014 .0013 .0022 .0019 .0019
deviation I .0015 .0019 .0016 .0022 .0020 .0018
estimate T .00077 .00090 .00087 .00098 .00115 .00118

Table 7. A comparison of predictions with simulation estimates for the GI/GI/s/0 model with

s = 400, λ = 380 and µ = 1 in Example 10.5. The interarrival times and service times are either

Hb2 with c
2 = 9.0 or E4 with c

2 = 0.25. The peakedness z is computed approximately from (14).

Based on 20 batches from simulation runs of length 2700.
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c2a = .25, c
2
s = .25, z = .43 c2a = .25, c

2
s = 9.0, z = .74

predicted run 1 run 2 predicted run 1 run 2

S .100 .101 .103 .105 .100 .102
blocking N .100 .101 .102 .105 .100 .102
probability I .100 .102 .102 .105 .103 .103
estimate T .152 .141 .144 .122 .140 .142

S .00056 .00075 .00058 .0022 .0020 .0015
standard N .00056 .00070 .00055 .0022 .0020 .0015
deviation I .00014 .000096 .000081 .00039 .00047 .00043
estimate T .00108 .00098 .00080 .0030 .0027 .0020

c2a = 9.0, c
2
s = .25, z = 7.0 c2a = 9.0, c

2
s = 9.0, z = 3.8

S .164 .147 .151 .140 .135 .138
blocking N .164 .147 .150 .140 .136 .138
probability I .164 .147 .146 .140 .140 .139
estimate T .062 .089 .091 .072 .081 .083

S .0024 .0022 .0025 .0032 .0020 .0035
standard N .0024 .0022 .0021 .0032 .0018 .0032
deviation I .00078 .00087 .00089 .00094 .00071 .00098
estimate T .0010 .0013 .0014 .0014 .0012 .0021

Table 8. A comparison of predictions with simulation estimates for the GI/GI/s/0 model with

s = 400, λ = 440 and µ = 1 in Example 10.5. The interarrival times and service times are either

Hb2 with c
2 = 9.0 or E4 with c

2 = 0.25. The peakedness z is computed from (14). Based on 20

batches from simulation runs of length 2700.
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mh = .03125, λh = 720, z = 4.93 mh = 0.1, λh = 578.9, z = 4.81
predicted run 1 run 2 predicted run 1 run 2

S .089 .083 .080 .087 .079 .077
blocking N .089 .083 .080 .087 .079 .077
probability I .089 .082 .084 .087 .076 .079
estimate T .040 .050 .048 .040 .057 .055

S .0020 .0023 .0018 .0020 .0014 .0018
standard N .0020 .0025 .0016 .0020 .0016 .0016
deviation I .0012 .0014 .0013 .0012 .0014 .0012
estimate T .00087 .0014 .0010 .00087 .00119 .0013

mh = 1.0, λh = 456.6, z = 3.67 mh = 10.0, λh = 417.9, z = 1.67
predicted run 1 run 2 predicted run 1 run 2

S .076 .063 .059 .052 .043 .043
blocking N .076 .063 .059 .052 .043 .043
probability I .076 .060 .062 .052 .043 .044
estimate T .040 .056 .052 .040 .041 .042

S .0020 .0019 .0018 .0020 .0018 .0018
blocking N .0020 .0017 .0016 .0020 .0017 .0017
probability I .0012 .0014 .0010 .0012 .0012 .0012
estimate T .00087 .0016 .0015 .00087 .0017 .0017

Table 9. A comparison of predictions with simulation estimates for the MMPP/M/s/0 model with

s = 400, µ = 1, t = 2700, two environment states, mh = m`, c
2
a = 9.0 and λ = 400 in Example 10.6.

The exact peakedness in (13) is used in the blocking approximation (15). (It plays no role in

(16)–(18), because γ = 0.)
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mh = .03125, λh = 648, z = 4.54 mh = 0.1, λh = 521.0, z = 4.42
predicted run 1 run 2 predicted run 1 run 2

S .033 .031 .028 .032 .027 .028
blocking N .033 .030 .028 .032 .027 .028
probability I .033 .030 .031 .032 .022 .025
estimate T .015 .018 .017 .015 .020 .020

S .0013 .0013 .0011 .0013 .0013 .0012
standard N .0013 .0012 .0011 .0013 .0012 .0012
deviation I .0020 .0018 .0021 .0021 .0023 .0020
estimate T .00058 .00078 .00069 .00058 .00098 .00091

mh = 1.0, λh = 410.9, z = 3.40 mh = 10.0, λh = 376.1, z = 1.60
predicted run 1 run 2 predicted run 1 run 2

S .023 .0148 .0163 .0069 .0047 .0060
blocking N .023 .0148 .0162 .0069 .0047 .0060
probability I .023 .0150 .0105 .0069 .0066 .0047
estimate T .0125 .0130 .0144 .0055 .0045 .0058

S .0012 .00084 .00070 .00076 .00042 .00067
standard N .0012 .00080 .00068 .00076 .00041 .00065
deviation I .0021 .0023 .0022 .0025 .0024 .0028
estimate T .00053 .00070 .00057 .00035 .00039 .00063

Table 10. A comparison of predictions with simulation estimates for the MMPP/M/s/0 model with

s = 400, λ = 360, µ = 1, t = 2700, two environment states, mh = ml and c
2
a = 8.2 in Example 10.6.

The exact peakedness in (13) is used in the predictions.
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indirect estimator time-congestion estimator
traffic
intensity

ρ N(0) = 0 N(0) = s N(0) = 0 N(0) = s

0.7 1.00 −0.42 −0.15 × 10−10 0.0085
0.8 1.00 −0.24 −0.94 × 10−5 0.013
0.9 0.99 −0.086 −0.010 0.028
1.0 0.85 −0.0123 −0.0115 0.027
1.1 0.66 −0.0019 −0.23 0.015
1.2 0.52 −0.0005 −0.30 0.0087

Table 11. The asymptotic bias for the indirect and time-congestion estimators in the M/M/s/0

model with s = 400, starting empty or full, discussed in Section 11.
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λ c2a c2s B̂I(t) est. std. dev.

10,000 1 1 .0084 .00079
12,000 1 1 .1681 .00060
20,000 1 1 .50063 .00011
20,000 1 1 .50099 .00029
20,000 1 1 .50093 .00024
20,000 9 1 .5011 .0012
10,000 9 1 .0110 .0015

Table 12. Estimation for the GI/M/s/0 model with s = 104 and µ = 1 with total run length 1 and

N(0) = 9980 but no initial portion deleted in Example 11.1.

52



Figure 1. Workload factors wS ≡ λσ̂2S for the simple estimator B̂S(t) in the M/M/s/0 loss model

as a function of the scaled arrival rate γ ≡ (s− α)/√α for several values of s.



Figure 2. Workload factors wI ≡ λσ̂2I for the indirect estimator B̂I(t) in the M/M/s/0 loss model

as a function of the scaled arrival rate γ ≡ (s− α)/√α for several values of s.



Figure 3. Workload factors wT ≡ λσ̂2T for the time-congestion estimator B̂T (t) in the M/M/s/0

loss model as a function of the scaled arrival rate γ ≡ (s− α)/√α for several values of s.


