Chapter 1

Experiencing
Statistical Regularity

1.1. A Simple Game of Chance

A good way to experience statistical regularity is to repeatedly play
a game of chance. So let us consider a simple game of chance using a
spinner. To attract attention, it helps to have interesting outcomes, such as
falling into an alligator pit or winning a dash for cash (e.g., you receive the
opportunity to run into a bank vault and drag out as many money bags as
you can within thirty seconds). However, to focus on statistical regularity,
rather than fear or greed, we consider repeated plays with a simple outcome.

In our game, the payoff in each of several repeated plays is determined
by spinning the spinner. We pay a fee for each play of the game and then
receive the payoff indicated by the spinner. Let the payoff on the spinner
be uniformly distributed around the circle; i.e., if the angle after the spin is
0, then we receive 6/2m dollars. Thus our payoff on one play is U dollars,
where U is a uniform random number taking values in the interval [0, 1].

We have yet to specify the fee to play the game, but first let us simulate
the game to see what cumulative payoffs we might receive, not counting the
fees, if we play the game repeatedly. We perform the simulation using our
favorite random number generator, by generating n uniform random num-
bers Uy, ..., U,, each taking values in the interval [0, 1], and then forming
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associated partial sums by setting
SkEU1+"'+Uk, lﬁszn,

and Sy = 0, where = denotes equality by definition. The n'" partial sum
Sy, is the total payoff after n plays of the game (not counting the fees to
play the game). The successive partial sums form a random walk, with U,
being the n'" step and S, being the position after n steps.

1.1.1. Plotting Random Walks

Now, using our favorite plotting routine, let us plot the random walk,
i.e., the n + 1 partial sums Si, 0 < k < n, for a range of n values, e.g., for
n = 107 for several values of j. This simulation experiment is very easy to
perform. For example, it can be performed almost instantaneously with the
statistical package S (or S-Plus), see Becker, Chambers and Wilks (1988) or
Venables and Ripley (1994), using the function

walk <- function(j) {

uniforms <- runif(10¥) # generate random numbers
firstsums <- cumsum(uniforms) # form the partial sums
sums <- c(0, firstsums) # include a 0" sum
index <- order(sums) -1 # adjust the index
plot(index, sums) } # do the plotting
Plots of the random walk with n = 107 for j = 1,...,4 are shown in

Figure 1.1. For small n, e.g., for n = 10, we see irregularly spaced (verti-
cally) points increasing to the right, but as n increases, the spacing between
the points becomes blurred and regularity emerges: The plots approach a
straight line with slope equal to 1/2, the mean of a single step Uy. If we
look at the pictures in successive plots, ignoring the units on the axes, we
see that the plots become independent of n as n increases. Looking at the
plot for large n produces a macroscopic view of uncertainty.

The plotter automatically plots the random walk {S; : 0 < k < n} in
the available space. Ignoring the units on the axes is equivalent to regarding
the plot as a display in the unit square. By “unit square” we do not mean
that the rectangle containing the plot is necessarily a square, but that new
units can range from 0 to 1 on both axes, independent of the original units.
The plotter automatically plots the random walk in the available space by
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Figure 1.1: Possible realizations of the first 10/ steps of the random walk
{Sk : k > 0} with steps uniformly distributed in the interval [0, 1] for j =
1,...,4.
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scaling time and space (the horizontal and vertical dimensions). Time is
scaled by placing the n + 1 points 1/n apart horizontally. Space is scaled
by subtracting the minimum and dividing by the range (assuming that the
range is not zero); i.e., we interpret the plot as

plot({Sk : 0 < k < n}) = plot({(Sx — min)/range: 0 < k <n}),

where
min = min({Sk : 0 < k <n})

and
range = maz({Sk : 0 <k <n}) —min({Sx: 0 <k <n}).

Combining these two forms of scaling, the plotter displays the ordered
pairs (k/n, (Sx, —min)/range) for 0 < k < n. With that scaling, the ordered
pairs do indeed fall in the unit square. Also note that (Sy — min)/range
must assume (approximately) the values 0 and 1 for at least one argument.
That occurs because, without the rescaling, the plotting makes the units on
the ordinate (y axis) range from the minimum value to the maximum value
(approximately).

To confirm the regularity we see in Figure 1.1, we should repeat the
experiment. When we repeat the experiment with different random number
seeds (new uniform random numbers), the outcome for small n changes
somewhat from experiment to experiment, but we always see essentially the
same picture for large n. Thus the plots show regularity associated with
both large n and repeated experiments.

1.1.2. When the Game is Fair

Now let us see what happens when the game is fair. Since the expected
payoff is 1/2 dollar each play of the game, the game is fair if the fee to
play is 1/2 dollar. To examine the consequences of making the game fair,
we consider a minor modification of the simulation experiment above: We
repeat the experiment after subtracting the mean 1/2 from each step of
the random walk; i.e., we plot the centered random walk (i.e., the centered
partial sums Sy — k/2 for 0 < k < n ) for the same values of n as before.

If we consider the case n = 10%, it is natural to expect to see a horizontal
line instead of the line with slope 1/2 in Figure 1.1. However, what we see
is very different! Instead of a horizontal line, for n = 10* we see an irregular
path, as shown in Figure 1.2.
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Figure 1.2: Possible realizations of the first 10/ steps of the centered random
walk {Sx—k/2 : k > 0} with steps uniformly distributed in the interval [0, 1]
forj=1,...,4.
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We do not see the horizontal line because the data have been automat-
ically rescaled by the plotter. The centering has let the plotter blow up the
picture to show extra detail not apparent from Figure 1.1.

After centering, the range of values (the maximum minus the minimum)
for the partial sums decreases dramatically. The first 10* uncentered partial
sums assume values approximately in the interval [0, 5000], whereas the first
10* centered partial sums all fall in the interval [—60,5]. Thus, the range
has decreased from 5,000 to less than 100.

At first glance, it may not be evident that there is any regularity for large
n in Figure 1.2. We would hope to be able to predict what we will see if we
repeat the experiment with new uniform random numbers. However, when
we repeat the simulation experiment with different random number seeds,
we obtain different irregular paths. To illustrate, six independent plots for
n = 10* are shown in Figure 1.3. The six path samples look somewhat
similar, but each is different from the others.

In Figure 1.3, just as in Figures 1.1 and 1.2, we let the plotter automat-
ically do the scaling. Thus, the units on vertical axis change from plot to
plot. We plot in this manner throughout this chapter, by design. We will
show that these “automatic plots” reveal statistical regularity if we ignore
the units and think of the plot as being on the unit square. But essentially
the same conclusion can be drawn if we fix the units on the vertical axis.
From Figure 1.3, after the fact, we can conclude that we could have fixed the
units on the vertical axis, letting the values fall in the interval [—100, 100].
In either case, we are faced with the problem of understanding what we see.

We have arrived at a critical point, which may require us to adjust our
thinking. To understand what we are seeing, we need to recognize that
the irregular paths we see should be regarded as random paths. We then
can understand that there actually is regularity underlying the six displayed
paths in Figure 1.3, but it is statistical reqularity.

We want to be able to predict what we will see when we increase n
or perform additional experiments. For the uncentered random walks in
Figure 1.1, we predict that the plot of {S; : 0 < k < n} will look like
the diagonal line in the unit square for all n sufficiently large. However,
for the centered random walks, the plots do not approach such a simple
limit. What we should hope to predict when we repeat the experiment
for the centered random walk (again ignoring the units on the axes) is the
probability distribution of the random path. We should anticipate that the
successive paths in repeated experiments will change from experiment to
experiment, but we should look for a common probability distribution on
the space of possible paths.



1.1. A SIMPLE GAME OF CHANCE 7

10

sum
o 5
sum
o 10

5

-10

8 8
) 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index
3
R
N =3
8
.
- o
g
R
- o
g £ ®
5. 5
g
-
S
w
.
S
) 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index
o
R 8
2
<
g
R
8 o
§s E
S
S
.
° 2
[ 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index

Figure 1.3: Six independent realizations of the first 10* steps of the centered
random walk {Sy —k/2 : k > 0} associated with steps uniformly distributed
in the interval [0, 1].
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The simulation experiments suggest that, for all n sufficiently large, there
tends to be a common probability distribution for the plotted random walk
paths, where as before we ignore the units on the two axes or, equivalently,
we regard the plot as being in the unit square. We can see part of the story
when we generate new random walk paths for different values of n. For
example, when we generate six centered random walk paths for n = 10° or
n = 108, the plots look just like the plots in Figure 1.3. To make that clear,
we plot six independent plots for the case n = 10° in Figure 1.4. As before,
the units on the vertical axes change from plot to plot, but if we ignore the
units on both axes, the plots in Figure 1.4 look just like the plots in Figure
1.3.

Looking at Figures 1.3 and 1.4, we should be confident about what we
will see when n = 10® or n = 10'°. From Figure 1.4 and other similar
plots, we see that, for n sufficiently large, the plots tend to be independent
of n, provided that we ignore the units on the axes, and regard the plot as
being in the unit square. Of course, as n increases, the units change on the
two axes. And each new plot is a random path selected from the common
probability distribution on the space of possible sample paths in the unit
square.

As a consequence, we also see that the fluctuations in a smaller time scale
are asymptotically negligible compared to the fluctuations in a larger time
scale. Thus, for j > 5, the plots for 107 are visually unchanged if we only
keep the values at about 10* equally spaced indices. Indeed, such pruning
of the data (reducing a data set of 10/ partial sums for 7 > 5 to 10* values)
is useful to efficiently print the plots for large n.

The fact that the plots are independent of n for all n sufficiently large
means that the plots tend to exhibit self-similarity. By self-similarity we
mean that rescaled versions of the plot associated with increasing n tend to
look like the original plot. More specifically, the probability distribution on
the space of sample paths in the unit square tends to be unaffected by the
scaling. Self-similarity will be a persistent theme; e.g., see Section 4.2.

When we consider rescaling, we can also decrease n. For instance, sup-
pose that we consider the plot for n = 107 and select 10% of it from a
subinterval of the plot. If we make a full plot of that 10% portion, then we
obtain a plot for n = 10, which looks just like a random version of the orig-
inal plot for n = 107. (By a “random version of the original plot” we mean
that the probability distributions on the space of possible sample paths in
the unit square tend to be the same.) Similarly, if we continue and select
10% of the new plot for n = 108 from any subinterval and plot it, then we
obtain a plot for n = 105, which again looks like a random version of the
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Figure 1.4: Six independent realizations of the first 10° steps of the centered
random walk {Sy —k/2 : k > 0} associated with steps uniformly distributed
in the interval [0, 1].
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original plot for 107. Of course, Figure 1.2 shows that the self-similarity for
the random walks associated with decreasing n breaks down when n is too
small. It is interesting to contemplate a limiting continuous-time random
path that permits self-similarity without end!

1.1.3. The Final Position

It is difficult to actually see the probability distribution of the entire
random path, because the path is multidimensional, but we can easily look
at any one position of the random walk. For instance, suppose that we focus
on the final position of the centered random walk, i.e., the single centered
partial sum S,, — n/2 for one fixed (large) value of n.

It is evident that the final position of the centered random walk, S, —n /2,
changes from experiment to experiment. We find statistical regularity when
we perform many independent replications of the experiment and look at
the distribution of the final positions. So, let us do that.

Remark 1.1.1. The final position and the relative final position. For sim-
plicity, we now want to look at the final position of the centered random walk,
Sp —n/2, independent of the rest of the random walk. If instead we looked
at the final position in the unit square, ignoring the original units, we would
be looking at the relative final position, which must assume a value between
0 and 1. Letting M,, = maxlSkSn{Sk —k/2} and m, = minlgkgn{sk —k)/2},
the relative final position is

Sp —n/2 —my

R, =
" M, —my

, n>1. (1.1)
It turns out that there is statistical regularity associated with the relative
final position, just as there is statistical regularity associated with the en-
tire plot, but the relative final position is more complicated than the final
position. Hence, now we focus on the final position. We discuss the relative
final position in Remark 1.2.2 at the end of Section 1.2.4. =

Suppose that we consider the final position of the centered random walk
with uniform random steps for n = 1000, and suppose that we perform 1000
replications of the experiment. We thus obtain 1000 independent samples of
the centered sum S1p9p —500. We can estimate the probability density of this
distribution using the nonparametric probability density estimator density
from S (with the default parameter settings). The estimated probability
density of the final position Siggp — 500 is plotted in Figure 1.5.
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Figure 1.5: An estimate of the probability density of the final position of
the random walk, obtained from 1000 independent samples of the centered
partial sum S79p9 — 500, where the steps Uy are uniformly distributed in the
interval [0, 1].
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Figure 1.5 shows that nonparametric density estimation does not achieve
high resolution with only a modest amount of data, but it suggests that the
final position of the random walk after 1000 steps is approximately normally
distributed with zero mean. That conclusion is more strongly supported by
the QQ plot in Figure 1.6. The QQ plot compares the empirical distribution
of the data to the normal distribution; e.g., see p. 122 of Venables and Ripley
(1994). Specifically, the QQ plot compares the sorted data to the quantiles
of the normal distribution. If there are n data points, then we consider the
n — 1 normal quantiles zj, where

P(N(0,1) <zg)=k/n, 1<k<n-1,

with N(m,o?) denoting a random variable with a normal (or Gaussian)
distribution having mean m and variance o2. When n = 1,000, the normal
quantiles range from —3.1 to +3.1, with there being more quantiles near 0
than at the extremes. (Since we focus on the shape of the QQ plot, the
QQ plot compares the distributions independent of location and scale; e.g.,
the shape of the QQ plot is independent of the mean and variance of the
reference normal distribution.)

The near-linear plot in Figure 1.6 is approximately the same as the QQ
plot for 1000 independent samples from a normal distribution. To make that
clear, a QQ plot of a sample of 1000 observations from a normal distribution
(with the same mean and variance) is also shown in Figure 1.6. Again the
units are different in the two plots, because the range of values differs from
sample to sample. The linearity that holds except for the tails strongly
indicates that the final positions are indeed normally distributed.

But, in order to fairly draw that conclusion, we need more experience
with QQ plots. We become more confident of the conclusion when we repeat
these experiments a number of times; then we can observe the statistical
variability in the QQ plots. We also gain confidence when we make QQ plots
of various non-normal distributions; then we can see how departures from
normality are reflected in the plots. When you think hard about the figures,
they become invitations to perform additional experiments. Our main point
here is that analysis with the QQ plots indicates that the final position of
the centered random walk is indeed approximately normally distributed.

That conclusion is also supported by density estimates based on more
data. To illustrate how the density estimates perform as a function of sample
size, we display the estimates of the probability density of the same final
position S1g0o —500 based on 107 samples for j = 2,...,5 in Figure 1.7 (again
using the nonparametric density estimator density from S with the default
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Figure 1.7: Estimates of the probability density of the final position of
the random walk, obtained from 107 independent samples of the centered
partial sum S1ggg — 500 for j = 2,...,5, for the case in which the steps Uy
are uniformly distributed in the interval [0, 1], based on the nonparametric
density estimator density from S.

parameter settings). Essentially the same plots are obtained for independent
samples from normal distributions. From Figure 1.7, it is evident that the
density estimates converge to a normal pdf as n — co. For more on density
estimation, see Devroye (1987).

It is not our purpose to delve deeply into statistical issues, but it is worth
remarking that we obtain new interesting plots, like the random walk plots,
when we do. Our brief examination of the distribution of the final position
of the random walk suggests looking for a more precise statistical test to
determine whether or not the final position of the random walk is indeed
approximately normally distributed. To evaluate whether some data can be
regarded as an independent sample any specified probability distribution, it
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is natural to carefully investigate how the empirical distribution of a sam-
ple from that probability distribution tends to differ from the underlying
probability distribution itself.

Recall that the cumulative distribution function (cdf) F of a random
variable X is the function

Ft)=P(X <t) for teR.

Similarly, the empirical cdf of a data set of size n is the proportion F),(t) of
the n data points that are less than or equal to ¢, as a function of ¢.

The idea, then, is to look at the difference between a cdf and the empirical
cdf obtained from an independent sample from that cdf. Moreover, it is
natural to consider how that difference behaves as the sample size increases.
Once we have made such a study, we can use the established behavior of
samples from the specified probability distribution to test whether or not
data from an unknown source can reasonably be regarded as a sample from
the candidate probability distribution.

Example 1.1.1. The empirical cdf of uniform random numbers. To illus-
trate, we now consider the difference between the empirical cdf associated
with 7 uniform random numbers on the interval [0,1] and the uniform cdf
itself. Since the uniform cdf is F(t) = t,0 < ¢t < 1, we now want to plot
F,(t) —t versus t for 0 < ¢ < 1. Since the function F,(t) —¢,0 <t <1, is
a function of a continuous variable, the plotting is less routine than for the
random walk. However, the empirical cdf F;, has special structure, making
it possible to do the plotting quite easily. In particular, to do the plotting,
let U,gn), 1 < k < n, be the order statistics associated with the uniform ran-

dom numbers Uy, ..., U,, i.e., U,gn) is the k*" smallest of the uniform random
numbers. Note that

F,U)=k/n and F,(U"-)=(k—1)/n,

F,(0) = 0 and F,(1) = 1, where F,,(t—) is the left limit of the function F,
at t. Thus we can plot F,(t) — ¢ versus ¢ by plotting the points (0,0), (1,0),
(U,g"), (k—1)/n— U,En)) and (U,g"), k/n— U,g")), 1 <k < n, and connecting
the points by lines (i.e., performing linear interpolation).

Plots for n = 107 for j = 1,...,4 are shown in Figure 1.8. The plots
in Figure 1.8 look much like the plots of the uncentered random walks, but
there is a subtle difference that can be confirmed by further replications of
the experiment. Unlike before, here the final position is 0 just like the initial
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Figure 1.8: The difference between the empirical cdf and the actual cdf for
samples of size 10/ from the uniform distribution over the interval [0,1] for
j=1,...,4

position. That makes sense as well, because both the empirical cdf and the
actual cdf must assume the common value 1 at the right endpoint.

It turns out that there is statistical regularity in the empirical cdf’s just
like there is in the random walks. As before, the plots look the same for
all sufficiently large n. Moreover, except for having the final position be 0,
the plots look just like the random-walk plots. More generally, this example
illustrates that statistical analysis is an important source of motivation for
stochastic-process limits. We discuss this example further in Section 2.2.
There we show how to develop a statistical test applicable to any continuous
cdf, including the normal cdf that is of interest for the final position of the
random walk.
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1.1.4. Making an Interesting Game

We have digressed from our original game of chance to consider the
statistical regularity observed in the plots, which of course really is our
main interest. But now let us return for a moment to the game of chance.

A gambling house cannot afford to make the game fair. The gambling
house needs to charge a fee greater than the expected payoff in order to
make a profit. What would be a good fee for the gambling house to charge?

From the perspective of the gambling house, one might think the larger
the fee the better, but the players presumably have the choice of whether or
not to play. If the gambling house charges too much, few players will want
to play. The fee should be large enough for the gambling house to make
money, but small enough so that potential players will want to play. We
take that to mean that the individual players should have a good chance of
winning.

One might think that those objectives are inconsistent, but they are
not. The key to achieving those objectives is the realization that the player
and the gambling house experience the game in different time scales. An
individual player might contemplate playing the game 100 times on a single
day, while the gambling house might offer the game to hundreds or thousands
of players on each of many consecutive days.

Thus, the player might evaluate his experience by the possible outcomes
from about 100 plays of the game, while the gambling house might evaluate
its experience by the possible outcomes from something like 10* — 10% plays
of the game. What we need, then, is a fee close enough to $0.50 that the
player has a good chance of winning in 100 plays, while the gambling house
receives a good reliable return over 10* — 10° games.

A reasonable fee might be $0.51, giving the gambling house a 1 cent or
2% advantage on each play. (Gambling houses actually tend to take more,
which shows the appeal of gambling despite the odds.) To see how the
$0.51 fee works, let us consider the possible experiences of the player and
the gambling house. In Figure 1.9 we plot six independent realizations of a
player’s position during 100 plays of the game when there is a fee of $0.51
for each play. The game looks pretty interesting for the player from Figure
1.9. The player has a reasonable chance of winning. Indeed, the player wins
in plots 3 and 5, and finishes about even in plot 2. How do things look for
the gambling house?

To see how the gambling house fares, we should look at the net payoffs
over a much larger number of games. Hence, in Figures 1.10 and 1.11 we plot
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Figure 1.9: Six possible realizations of the first 100 net payoffs, positions of
the random walk {S; — 0.51k : k > 0}, with steps Uy uniformly distributed
in the interval [0,1] and a fee of $0.51.
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Figure 1.10: Possible realizations of the first 10* net payoffs (steps of the
random walk {S; — 0.51k : k > 0} with steps Uy uniformly distributed in
the interval [0, 1].

six independent realizations of a player’s position during 10* and 10° plays
of the game. As before, we let the plotter automatically do the scaling, so
that the units on the vertical axes change from plot to plot. But that does
not alter the conclusions. In these larger time scales, we see that the player
consistently loses money, so that a profit for the gambling house becomes
essentially a sure thing. When we increase the number of plays to 10°, there
is little randomness left. That is shown in Figure 1.11. Further repetitions
of the experiment confirm these observations. We again see the regularity
associated with a macroscopic view of uncertainty.

Above we picked a candidate fee out of the air. We could instead be
more systematic. For example, we might seek the largest fee such that the
player satisfies some criteria indicating a good experience. Letting the fee
for each game be f, we might want to constrain the probability p that a
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Figure 1.11: Possible realizations of the first 10° net payoffs (steps of the
random walk {Sy — 0.51%k : k > 0} with steps Uy uniformly distributed in
the interval [0, 1].
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player wins at least a certain amount w, i.e., by requiring that
P(S100 — f(l()()) > w) >p.

Given such a formulation, we can determine the optimal fee f, i.e., the
maximum fee f such that the constraint is satisfied, which is attained when
the probability just equals p.

As noted at the outset, when we consider making the game interesting,
we might well conclude that a uniform payoff distribution for each play is
boring. We might want to have the possibility of much larger positive and/or
negative payoffs on one play. It is easy to devise more interesting games with
different payoff distributions, but the statistical regularity associated with
large numbers observed above tends to be the same. Readers are invited to
make their own games and look at the net payoffs for 10/ plays for various
values of j.

An extreme case that is often attractive is to have, like a lottery, some
small chance of a very large payoff. However, with independent trials, as
determined by successive spins of the spinner, the gambling house faces the
danger of having to make too many large payoffs. Such large losses are
avoided in lotteries by not letting the game be based on independent tri-
als. In a lottery only a few prizes are awarded (and possibly shared) so
that the people running the lottery are guaranteed a positive return. How-
ever, an insurance company cannot control the outcomes so tightly, so that
careful analysis of the possible outcomes is necessary; e.g., see Embrechts,
Kliippelberg and Mikosch (1997). We too will be interested in the possibility
of exceptionally large values in random events.

1.2. Stochastic-Process Limits

The plots we have looked at indicate that there is statistical regularity
associated with large n, i.e., with large sample sizes. We now want to
understand why we see what we see, and what we will see in other related
situations. For that purpose, we turn to probability theory; see Ross (1993)
and Feller (1968) for introductions.

1.2.1. A Probability Model

We can use probability theory to explain what we have seen in the ran-
dom walk plots. The first step is to introduce an appropriate mathematical
model: Assuming that our random number generator is working properly



22 CHAPTER 1. EXPERIENCING STATISTICAL REGULARITY

(an important issue, which we will not address, e.g., see p. 123 of Venables
and Ripley (1994), L’Ecuyer(1998a,b) and references cited there), the ob-
served values Uy, 1 < k < n, should be distributed approximately as the
first n values from a sequence of independent and identically distributed (IID)
random variables uniformly distributed on [0, 1] (defined on an underlying
probability space). Indeed, the model fit is usually so good that there is a
tendency to identify the mathematical model with the physical experiment
(a mistake), but since the model fit is so good, we need not doubt that the
mathematical conclusions are applicable.

Remark 1.2.1. Mathematics and the physical world. It is important to
realize that a physical phenomenon, a mathematical model of that physical
phenomenon and a simulation of that mathematical model are three different
things. But, if the mathematical model is well chosen, the three may be
closely related. In particular, a mathematical model, whether simulated or
analyzed, may provide useful desciptions of the physical phenomenon.

We are interested in mathematical queueing models because of their
ability to explain queueing phenomena, but we should not expect a perfect
match. For example, mathematical models often succeed by exploiting the
infinite, even though the physical phenomenon is finite. Random numbers
generated on a computer are inherently finite, and yet simulations based on
random numbers can be well described by mathematical models exploiting
the infinite.

Here, we perform stochastic simulations to reveal statistical regularity,
and we introduce and analyze mathematical models to explain that statis-
tical regularity. We expect to capture key features, but we do not expect a
perfect fit. We want the the mathematics to explain key features observed
in the simulations, and we want the simulations to confirm key features
predicted by the mathematics. =

With that attitude, let us consider the probability model consisting of
a sequence of IID uniform random numbers. Within the context of that
probability model, we want to formulate stochastic-process limits suggested
by the plots. First, we see that as n increases the plotted random walk
ceases to look discrete. For all sufficiently large n, the plotted random
walk looks like a function of a continuous variable. Thus it is natural to
seek a continuous-time representation of the original discrete-time random
walk. We can do that by considering the associated continuous-time process
{S|4) : t > 0}, where | - | is the floor function, i.e., |t] denotes the greatest
integer less than or equal to ¢. If we also want to introduce centering,
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then we do the centering first, and instead consider the centered process
{S|s) —m[t] : t > 0} for appropriate centering constant m, which here is
1/2. Thus the continuous-time representation of the random walk is a step
function, which coincides with the random walk at integer arguments.

However, the step function is not the only possible continuous-time rep-
resentation of the random walk. We could instead form a process with con-
tinuous sample paths by connecting the points by lines, i.e., by performing
a linear interpolation. Then, instead of S|;|, we consider

S(#) = (t— [t))Sp 41+ (1 + [t] —)Spy forall t>0, (2.1)

and similarly if we do centering. (With centering, we do the centering be-
fore doing the linear interpolation.) Possible initial segments of the two
continuous-time processes associated with the discrete-time (uncentered)
random walk for the case n = 10 are shown in Figure 1.12. (The verti-
cal lines in the plot are not really part of the step function.) Even though
the 10 random walk steps are the same for both continuous-time repre-
sentations, the two initial segments of the continuous-time stochastic pro-
cesses look very different in Figure 1.12. However, for large n, plots of the
two continuous-time representations of the discrete-time random walk look
virtually identical. To make that important point clear, we plot the two
continuous-time representations of the same discrete-time centered random
walk (same sample paths) for n = 10/ for j = 1,...,4 in Figure 1.13. Figure
1.13 shows that the two alternative representations indeed look the same
for all n sufficiently large. Thus, when we focus on the random-walk plots
for large n, we regard the two alternatives as equivalent. For our remaining
discussion here, though, we will only discuss the step functions.

We now want to scale time and space (the horizontal and vertical di-
mensions in the plots). Note that the plotter scales time by putting the
n+ 1 random walk values in a region of fixed width. Thus, if we let 1 be the
available width of the plot, then the n 4+ 1 random walk values are spaced
1/n apart. Equivalently, time is scaled automatically by the plotting routine
by multiplying time ¢ by n, i.e., by replacing ¢ with nt. Then, for each n, we
only look at the process for ¢ in the closed interval [0, 1]. The final position
of the random walk for any n corresponds to t = 1.

We can also consider the space scaling in the same way. We can let 1 be
the available height of the plot. Then the plotter automatically scales space
by subtracting the minimum value and dividing by the range of the plotted
values. Unfortunately, however, the range is random. Moreover, there is a
complicated dependence between the path and its range. In formulating a
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Figure 1.12: Possible initial segments of the two continuous-time stochastic
processes constructed from one realization of an uncentered random walk
with uniform steps for the case n = 10. The step-function representation
appears on the left, while the linear-interpolation representation appears on
the right.
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stochastic-process limit, it is natural to try to perform the space scaling, like
the time scaling, with a deterministic function of n. With such deterministic
space scaling, we hope to achieve a nondegenerate limit as n — oo, but one
for which the range is allowed to remain random. In the limit as n — oo, we
will achieve essentially the same thing as the plots if the normalized range
converges to a nondegenerate random limit.

What we do, then, is scale space by dividing by ¢, where {c, : n > 1}
is a sequence of (deterministic) real numbers with ¢,, — 0o as n — oo. That
is, for each n, we form the stochastic process

Sn(t) = ' (Spmy —m(|nt]), 0<t<1. (2.2)

We then want to find an appropriate sequence {c, : n > 1} so that

{Sn(t):0<t<1} = {S(t):0<t<1} as n— oo, (2.3)

where S = {S(¢) : 0 < ¢ < 1} is an appropriate limit process with ¢ ranging
over the interval [0, 1] and — in (2.3) is an appropriate mode of convergence.
When we have a limit as in (2.3), we have a stochastic-process limit.

1.2.2. Classical Probability Limits

Classical probability limits help explain the statistical regularity we have
seen. First, referring to the asymptotically linear plots in Figures 1.1 and
1.11, the strong law of large numbers (SLLN) implies that the scaled partial
sums n~1 S, approach the mean m as n — oo with probability 1 (w.p.1); e.g.,
see Chapter X of Feller (1968), Chapter VII of Feller (1971) and Chapter 5
of Chung (1974). (In Figure 1.1 the mean is 1/2; in Figure 1.11 the mean is
—0.01.)
As an easy consequence of the SLLN, we can also conclude that

n_ISLmJ —mt w.p.l as n—

for each ¢ > 0. Moreover, the pointwise convergence can actually be ex-
tended to uniform convergence over bounded intervals:

{nilsLmJ 0<t<1} > {mt:0<t<1} wpl as n—oo,
uniformly in ¢ for ¢ in the interval [0, 1]. In other words,

sup{|n_IS’LntJ —mt|:0<t<1} >0 wpl as n—oo.
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Thus, in the setting of Figure 1.1, the limit (2.3) holds without centering
(with m = 0) for ¢, = n with the limit process S being the line with slope
1/2 (the one-step mean) defined over the interval [0,1]. In this case, the
mode of convergence in (2.3) is convergence w.p.1 on a space of functions
with the uniform distance

[|z1 — z2|| = sup {|z1(t) — z2(t)| : 0 <t < 1} .

In this case, the stochastic-process limit is called a functional strong law
of large numbers (FSLLN). Interestingly, the SLLN and the FSLLN are
actually equivalent; see Theorem 3.2.1 in the Internet Supplement.

Next, turning to the plots of the centered random walks, with centering
by the mean, in Figures 1.2, 1.3 and 1.4, we can appeal to the central limit
theorem (CLT). The CLT implies that

(6®n)~1/%(S, —nm) = N(0,1) as n — oo, (2.4)

where m = EUy = 1/2 is the mean and 02 = Var U, = 1/12 is the variance
of the uniform summand Uy, = denotes convergence in distribution and the
standard normal random variable N (0, 1) has cdf

T
B(t) = P(N(0,1) < z) = / (@m)~/2e 2 gy - (2.5)
—00
e.g., see Section VIII.4 of Feller (1971) and Chapter 7 of Chung (1974).
It is useful to review what the limit (2.4) means: The convergence in
distribution means that the cdf’s converge, i.e.,

P(nY%(S, —mn) <z) - P(N(0,6%) <z) as n— oo (2.6)

for all z. More generally, given real-valued random variables Z,, n > 1, and
Z, there is convergence in distribution, by the standard definition, denoted
by Z, = Z, if the associated cdf’s converge, i.e., if

F,(z)=P(Z,<z)—> P(Z<z)=F(z) as n— o (2.7)

for all x that are continuity points of the limiting cdf F', i.e., for which
P(Z=z)=0.

Since the normal distribution has a continuous cdf, the restriction to
continuity points of the limiting cdf in (2.7) does not arise in (2.6). We need
to allow non-convergence at discontinuity points in (2.7), because we want
to say that we have convergence Z, = Z in situations such as the special
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case in which P(Z = 2) = 1 and P(Z, = z,) = 1 for all n and z, — z as
n — oo. If z, = z with 2z, > z for all n, then F,(2) = P(Z, < z) =0 for
all n, while F(z) = P(Z < z) = 1. Since F,(z) — F(z) for all z except
T = z, we obtain the desired convergence Z,, = Z if we require pointwise
convergence of the cdf’s everywhere except at discontinuity points of the
limiting cdf F.

There also are other convenient equivalent characterizations of conver-
gence in distribution. In particular, (2.7) holds if and only if

E[h(Z,)] = E[h(Z)] as n— o0 (2.8)

for every continuous bounded real-valued function h on R, where E is the
expectation operator. Moreover, (2.7) and (2.8) hold if and only if

9(Zy) = g(Z) as n— o0 (2.9)

for every continuous function g on R. The alternative characterizations
(2.8) and (2.9) are useful because they generalize to random elements of
more general spaces.

The CLT in (2.4) explains the statistical regularity associated with the
final positions of the centered random walks: In agreement with Figures 1.5
— 1.7, the CLT tells us that the centered partial sums S;,, — mn should be
approximately normally distributed with mean 0 for all n sufficiently large.

We can also apply the CLT to obtain a corresponding limit for the scaled
random walk S, in (2.2) at an arbitrary time ¢ in the interval [0,1]. More
generally, we can consider an arbitrary ¢ > 0. To do so, we set ¢, = v/n and
m = 1/2. In particular, it is an easy consequence of (2.4) that we must have

n_l/Q(SLntJ —m|nt]) = oN(0,t) in R as n— (2.10)

for each t > 0, where m = 1/2 and % = 1/12.

From (2.10) we clearly see that the space-scaling constants ¢, in (2.2)
must be asymptotically equivalent to ¢y/n for some constant ¢ as n — 0.
Moreover, the space scaling by /n is consistent with the units on the axes
in Figures 1.2-1.4. Indeed, if we instead scale by ¢, = n? for p > 1/2, then
the values converge to 0 as n — oo. Similarly, if we scale by ¢, = n? for
p < 1/2, then the values diverge as n — oco. (The absolute values diverge to
infinity.) This property can be confirmed by further analysis of simulations,
but we do not pursue it.

We now want to convert (2.10) into a stochastic-process limit of the form
(2.3). Note that the left side of (2.10) coincides with S,(¢), but the right
side of (2.10) is not a stochastic process evaluated at time ¢. What we need
to do is identify the appropriate limit process S in (2.3).



1.2. STOCHASTIC-PROCESS LIMITS 29

1.2.3. Identifying the Limit Process

We should recognize that we have arrived at another critical point. An-
other important intellectual step is needed here. We not only must identify
the limit process; we need to realize that there indeed should be a limit pro-
cess.

The appropriate limit process turns out to be a Brownian motion (BM).
Brownian motion stochastic processes can be characterized as the real-valued
stochastic processes with stationary and independent increments having con-
tinuous sample paths. Brownian motion evaluated at time ¢ turns out to be
normally distributed with mean mt and variance 0%t for some constants m
and o2.

The special Brownian motion with parameters m = 0 and ¢? = 1 is
called standard Brownian motion; we shall refer to it by B = {B(t) : t > 0}.
It has marginal distributions

B(t) £ N(0,t), t>0, (2.11)

where < denotes equality in distribution.
An increment of Brownian motion is B(u)—B(t) for u > t. By stationary
and independent increments, we mean that the k-dimensional random vector

(B(U1 + h) — B(tl + h), een ,B(uk + h) — B(tk + h))

has a distribution independent of h for all k£, and that the k component
random variables are independent, providing that 0 <t <u; <tp <--- <
U

Combining (2.10) and (2.11), we see that we can also express the limit
(2.10) in terms of Brownian motion. In particular, after letting ¢, = /n in
(2.2), we see that (2.10) is equivalent to

Sp(t) = 0oB(t) in R as m—oo forall ¢>0, (2.12)
where B is a standard Brownian motion,
Su(t) =12 (Sppy — m(|nt)), t>0, (2.13)

and 02 = 1/12 because the steps in the random walk are uniformly dis-
tributed over [0, 1]. In equations (2.11), (2.12) and (2.13) we have let ¢ range
over the semi-infinite interval [0, 00), but we could also have restricted ¢ to
the closed interval [0, 1] to be consistent with the plots.
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We can apply the limit in (2.12) to generate approximations for the terms
of the original random walk. To generate approximations, we replace the
convergence in distribution by approximate equality in distribution. From
(2.12), we obtain the approximation

S|nt| & m|nt] +n'/?oB(t) (2.14)

or

Sy = mk +n'?cB(k/n) , (2.15)

where k is understood to be of order n and ~ means approximately equal
to in distribution. Note that the quality of the approximation for large n
tends to depend more on the time scaling by n and the space scaling by /n
than the limit process ¢B.

The limit in (2.12) (with ¢ ranging over the unit interval [0,1]) can be
regarded as the explanation for what we have seen in the random-walk plots.
The limit in (2.12) is a stochastic-process limit, because it establishes conver-
gence of the sequence of stochastic processes {{Sp(t) : 0<t<1}:n>1}in
(2.13) to the limiting stochastic process {oB(¢) : 0 <t < 1}. However, we
want to go beyond the limit as expressed via (2.12). We want to strengthen
the form of convergence in order to be able to deduce convergence of re-
lated quantities of interest; in particular, we want to show that plots of the
centered random walk converge to plots of standard Brownian motion as
n — oo.

The probability law or distribution of a stochastic process is usually spec-
ified by the family of its finite-dimensional distributions (f.d.d.’s). Hence,
a natural first step is to go beyond convergence of the one-dimensional
marginal distributions, which is provided by (2.12), to convergence of the
f.d.d.’s, i.e., the k-dimensional marginal distributions for all k. From the
assumed independence among the random walk steps, it is not difficult to
see that (2.12) can be extended to obtain

(Sn(t1),...,Sn(ty)) = (6B(t1),...,0B(t;)) in RF (2.16)

as n — oo for all positive integers k& and all k time points t1,...,%; with
0<t <--- <t <1, where convergence in distribution of random elements
of R¥ is defined by the natural generalization of (2.7), (2.8) or (2.9). Because
of the independence among the random walk steps in this example, there is
little difference between (2.12) and (2.16), but in general (2.16) is a much
stronger conclusion.

However, we want to go even further. We want to go beyond convergence
of the f.d.d.’s in (2.16) to convergence of the plots. We want to establish
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limits for more general functions of the stochastic processes. To do so, we
regard S, and B as random elements of a function space containing all
possible sample paths. (A function space is a space of functions.)

For B, we could consider the space C = C([0,1],R) of all continuous
real-valued functions on the unit interval [0,1], but to include S,, we need
discontinuous functions. (We could work with the space C' if we used linearly
interpolated random walks, as in (2.1), but we are considering the step
functions.) We could consider a space containing all continuous functions
and the special step functions that capture the structure of S,,, but with
other applications in mind, we consider a larger set of functions. We let the
function space be the set D = D([0, 1], R) of all real-valued functions on [0, 1]
that are right-continuous at all ¢ in [0,1) and have left limits everywhere in
(0,1], endowed with an appropriate topology (notion of convergence, see
Chapter 3).

The desired generalization of (2.12) and (2.16) follows from Donsker’s
theorem. Donsker’s theorem is a functional central limit theorem (FCLT),
which implies here that

S,=0cB in D, (2.17)

where again S,, is the scaled random walk in (2.13), B is standard Brownian
motion and the function space D is endowed with an appropriate topology.
We discuss the topology on D and the precise meaning of (2.17) in Section
3.3.

Even though Brownian motion has a relatively simple characterization,
it is a special stochastic process. For example, it has the self-similarity
property observed in the plots (without limit). In particular, for all ¢ > 0,
the stochastic process {¢ 1/?B(ct) : 0 < t < 1} has the same probability
law on D; equivalently, it has the same finite-dimensional distributions, i.e.,
the random vector (c~'/?B(ct1),...,c”/?B(ct;)) has a distribution in RF
that is independent of ¢ for any positive integer £ and any k time points
ti, 1 <i<k,with)<ti <---<tp<1.

Indeed, the self-similarity is a direct consequence of the stochastic-process
limit in (2.17): First observe from (2.13) that, for any ¢ > 0,

Sen(t) = c /28y (ct), t>0. (2.18)
By taking limits on both sides of (2.18), we obtain
(B(t):0<t<1} L {c ?B(ct):0<t <1} . (2.19)

For further discussion, see Section 4.2.
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Even though we are postponing a detailed discussion of the meaning of
the convergence in (2.17), we can state a convenient characterization, which
explains the applied value of (2.17) compared to (2.12) and (2.16). Just as
n (2.8), the limit (2.17) means that

E[h(S,)] = E[h(cB)] as n — oo (2.20)

for every continuous bounded real-valued function h on D. The topology on
D enters in by determining which functions A are continuous. Just as with
(2.9), (2.20) holds if and only if

9(Sn) = g(eB) in R (2.21)

for every continuous real-valued function g on D. (It is easy to see that (2.20)
implies (2.21) because the composition function hog is a bounded continuous
real-valued function whenever g is continuous and A is a bounded continuous
real-valued function.) Interestingly, (2.21) is the way that Donsker (1951)
originally expressed his FCLT. The convergence of the functionals (real-
valued functions) in (2.21) explains why the limit in (2.17) is called a FCLT.

It turns out that we also obtain (2.21) for every continuous function g,
regardless of the range. For example, the function g could map D into D.
Then we can obtain new stochastic-process limits from any given one. That
is an example of the continuous-mapping approach for obtaining stochastic-
process limits; see Section 3.4. The representation (2.21) is appealing be-
cause it exposes the applied value of (2.17) as an extension of (2.12) and
(2.16). We obtain many associated limits from (2.21).

1.2.4. Limits for the Plots

We illustrate the continuous-mapping approach by establishing a limit
for the plotted random walks, where as before we regard the plot as being
in the unit square [0,1] x [0, 1].

To establish limits for the plotted random walks, we use the functions
sup: D —- R inf: D — R range: D — R and plot : D — D, defined for
any ¢ € D by

sup(z) = Sup z(t),

inf(z) = inf (),

range(z) = sup(z) —inf(z)
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and
plot(z) = (z —inf(x))/range(z) .

Note that plot(x) is an element of D for each 2 € D such that range(z) # 0.
Moreover, the function plot is scale invariant, i.e., for each positive scalar ¢
and z € D with range(z) # 0,

plot(cz) = plot(z) .

Fortunately, these functions turn out to preserve convergence in the
topologies we consider. (The first three functions are continuous, while
the final plot function is continuous at all z for which range(z) # 0, which
turns out to be sufficient.) Hence we obtain the initial limits

n~1/? max {Sx — mk} = sup(S,) = sup(¢B) = sup {cB(t)},
<k<n 0<t<1

-1/2 . . _ . — -
n 1I§I}c1£n{sk mk} =inf(S,) = inf(ocB) = Oggl{aB(t)} ,

n"Yrange({Sy —mk : 0 < k < n}) = range(S,) = range(cB)

in R and the final desired limit
plot(S,) = plot(cB) = plot(B) in D,
where
plot({Sy,—mk : 0 < k < n}) = plot({c,; (Sx—mk) : 0 < k < n}) = plot(S,),

from Donsker’s theorem ((2.17) and (2.21)).

The limit plot(S,) = plot(B) states that the plot of the scaled random
walk converges to the plot of standard Brownian motion. Note that we use
plot, not only as a function mapping D into D, but as a function mapping
R™*! into D taking the random walk segment into its plot.) Hence Donsker’s
theorem implies that the random walk plots can indeed be regarded as ap-
proximate plots of Brownian motion for all sufficiently large n. By using
the FCLT refinement, we see that the stochastic-process limits do indeed
explain the statistical regularity observed in the plots.

To highlight this important result, we state it formally as a theorem.
Later chapters will provide a proof; specifically, we can apply Sections 3.4,
12.7 and 13.4.
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Theorem 1.2.1. (convergence of plots to the plot of standard Brownian
motion) Consider an arbitrary stochastic sequence {Sk : k > 0}. Suppose
that the limit in (2.3) holds in the space D with one of the Skorohod non-
uniform topologies, where ¢, = \/n and S = cB for some positive constant
o, with B being standard Brownian motion, as occurs in Donsker’s theorem.
Then

plot({Sx —mk : 0 < k <n}) = plot(B) .

But an even more general result holds: We have convergence of the plots
for any space-scaling constants and almost any limit process. We have the
following more general theorem (proved in the same way as Theorem 1.2.1).

Theorem 1.2.2. (convergence of plots associated with any stochastic-process
limit) Consider an arbitrary stochastic sequence {Sk : k > 0}. Suppose that
the limit in (2.3) holds in the space D with one of the Skorohod non-uniform
topologies, where ¢, and S are arbitrary. If

P(range(S) =0) =0,

then
plot({Sg —mk : 0 < k <n}) = plot(S) .

Note that the functions sup, inf, range and plot depend on more than
one value z(t) of the function z; they depend on the function over an initial
segment. Thus, we exploit the strength of the limit in D in (2.17) as opposed
to the limit in R in (2.12) or even the limit in R¥ in (2.16). For the random
walk we have considered (with IID uniform random steps), the three forms
of convergence in (2.12), (2.16) and (2.17) all hold, but in general (2.16) is
strictly stronger than (2.12) and (2.17) is strictly stronger than (2.16). For-
mulating the stochastic-process limits in D means that we can obtain many
more limits for related quantities of interest, because many more quantiti-
ties of interest can be represented as images of continuous functions on the
space of stochastic-process sample paths.

Remark 1.2.2. Limits for the relative final position. As noted in Remark
1.1.1, if we look at the final position of the centered random walk in the plots,
ignoring the units on the axes, then we actually see the relative final position
of the centered random walk, as defined in (1.1). Statistical regularity for
the relative final position also follows directly from Theorems 1.2.1 and 1.2.2,
because the relative final position is just the plot evaluated at time 1, i.e.,
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plot(z)(1). Provided that 1 is almost surely a continuity point of the limit
process S, under the conditions of Theorem 1.2.2 we have

R, = plot(S)(1) in R as n— oo,

as a consequence of the continuous-mapping approach, using the projection
map that maps z € D into z(1). =

To summarize, the random-walk plots reveal remarkable statistical reg-
ularity associated with large n because the plotter automatically does the
required scaling. In turn, the stochastic-process limits ezplain the statisti-
cal regularity observed in the plots. In particular, Donsker’s FCLT implies
that the random-walk plots converge in distribution to the plots of standard
Brownian motion as n — oo.

1.3. Invariance Principles

The random walks we have considered so far are very special: the steps
are IID with a uniform distribution in the interval [0, 1]. However, the great
power of the SLLN, FSLLN, CLT and FCLT is that they hold much more
generally. Essentially the same limits hold in many situations in which the
step distribution is changed or the IID condition is relaxed, or both. More-
over, the limits each depend on only a single parameter of the random walk.
The limits in the SLLN and the FSLLN only involve the single parameter
m, which is the mean step size in the IID case. Similarly, after centering
is done, the limits in the CLT and FCLT only involve the single parameter
0?2, which is the variance of the step size in the IID case. Thus these limit
theorems are invariance principles.

Moreover, the plots have an even stronger invariance property, because
the limiting plots have no parameters at alll (We are thinking of the plot
being in the unit square [0,1] x [0, 1] in every case, ignoring the units on the
axes.) Assuming only that the mean is positive, the plots of the uncentered
random walk (with arbitrary step-size distribution) approach the identity
function e = e(t) = ¢, 0 <t < 1. If instead the mean is negative, then
the limiting plot is —e over the interval [0,1]. Similarly, the plots of the
centered random walks approach the plot of standard Brownian motion over
[0,1]; i.e., the limiting plot does not depend on the variance 0. Thus, the
random-walk plots reveal remarkable statistical regularity!

The power of the invariance principles is phenomenal. We will give some
indication by giving a few examples and by indicating how they can be
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applied. We recommend further experimentation to become a true believer.
For example, the plots of the partial sums — centered and uncentered — should
be contrasted with corresponding plots for the random-walk steps. Even for
large n, plots of uniform random numbers and exponential (exponentially
distributed) random numbers look very different, whereas the plots of the
corresponding partial sums look the same (for all n sufficiently large).

1.3.1. The Range of Brownian Motion

We can apply the invariance property to help determine limiting prob-
ability distributions. For example, we can apply the invariance property to
help determine the distribution of the limiting random variables sup(B) and
range(B).

We first consider the supremum sup(B). We can use combinatorial meth-
ods to calculate the distribution of maxi<x<,{Sy — km} for any given n for
the special case of the simple random walk, with P(X; = +1) = P(X; =
—1) = 1/2, as shown in Chapter IIT of Feller (1968) or Section 11 of Billings-
ley (1968). In that way, we obtain

P(sup(B) > z) =2P(N(0,1) > z) = 29%(x) , (3.1)
where 3°(t) = 1 — &(t) for ® in (2.5). Since sup(B) <| N(0,1) |,
E[sup(B)] = v/2/m = 0.8 (3.2)
and
E[sup(B)?] = E[N(0,1)’] = 1.

These calculations are not entirely elementary; for details see 26.2.3, 26.2.41
and 26.2.46 in Abramowitz and Stegun (1972).

The limit range(oB) is more complicated, but it too can be character-
ized; see Section 11 of Billingsley (1968) and Borodin and Salminen (1996).
There the combinatorial methods for the simple random walk are used again
to determine the joint distribution of inf(B) and sup(B), yielding

k=+o00
P(a <inf(B) < sup(B) <b) = > (=1)*[®(b+k(b—a))—®(a+k(b—a))],

k=—o00

where @ is again the standard normal cdf. From (3.2), we see that the mean
of the range is

E[range(B)] = E[sup(B)] — E[inf(B)] = 2E[sup(B)] = 24/2/7 = 1.6.
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We can perform multiple replications of random-walk simulations to es-
timate the distribution of range(B) and associated summary characteris-
tics such as the variance. We show the estimate of the probability density
function of range(B) based on 10,000 samples of the random walk with
10,000 steps, each uniformly distributed on [0, 1], in Figure 1.14 (again ob-
tained using the nonparametric density estimator density from S). The
range of the centered random walk should be approximately o+/n times
the range range(B), so we divide the observed ranges in this experiment by
v/n/12 = 28.8675. The estimated mean and standard deviation of range(B)
were 1.58 and 0.474, respectively. The estimated 0.1, 0.25, 0.5, 0.75 and 0.9
quantiles were 1.05, 1.24, 1.50, 1.85 and 2.23, respectively. This characteri-
zation of the distribution of range(B) helps us interpret what we see in the
random-walk plots.

From the analysis above, we know approximately what the mean and
standard deviation of the range should be in the random-walk plots. Since
E[range(B)] ~ 1.6, the mean of the random walk range should be about
1.60y/n =~ 0.464/n. Similarly, since the standard deviation of range(B)
is approximately 0.47, the standard deviation of the range in the random-
walk plot should be approximately 0.470+/n =~ 0.14y/n. Hence the (mean,
standard deviation) pairs in Figures 1.3 and 1.4 with n = 10* and n = 10°
are, respectively, (46, 14) and (460, 140). Note that the six observed values
in each case are consistent with these pairs.

Historically, the development of the limiting behavior of sup(S,) played
a key role in the development of the general theory; e.g. see the papers
by Erdos and Kac (1946), Donsker (1951), Prohorov (1956) and Skorohod
(1956). =

Remark 1.3.1. Fized space scaling. In our plots, we have let the plot-
ter automatically determine the units on the vertical axis. Theorems 1.2.1
and 1.2.2 show that there is striking statistical regularity associated with
automatic plotting. However, for comparison, it is often desirable to have
common units. Interestingly, Donsker’s FCLT and the analysis of the range
above shows how to determine appropriate units for the vertical axis for the
centered random walk, before the simulations are run.

First, the CLT and FCLT tell us the range of values for the centered
random walk should be of order y/n as the sample size n grows. The invari-
ance principle tells us that, for suitably large n the scaling should depend
on the random-walk-step distribution only through its variance o2.

The limit for the supremum sup(S,) = n~/2 maxi<x<n{Sk — mk} tells
us more precisely what fixed space scaling should be appropriate for the
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Figure 1.14: An estimate of the probability density of the range of Brownian
motion over [0, 1], obtained from 10,000 independent samples of random
walks with 10, 000 steps, each step being uniformly distributed in the interval
[0, 1].



1.3. INVARIANCE PRINCIPLES 39

plots. Since 2P(N(0,1) > 4) may be judged suitably small, from (3.1)
we conclude that it should usually be appropriate to let the values on the
vertical axis for a centered random walk fall in the interval [—40/n, 40+/n]
as a function of n and 2. For example, we could use this space scaling to
replot the six random-walk plots in Figure 1.4. Since n = 10® and 02 = 1/12
there, we would let the values on the vertical axies in Figure 1.4 fall in the
interval [—1155,1155]. Notice that the values for the six plots all fall in the
interval [—700,450], so that this fixed space scaling would work in Figure
14. =

To gain a better appreciation of the invariance property, we perform
some more simulations. First, we want to see that the IID conditions are
not necessary.

1.3.2. Relaxing the ITD Conditions

To illustrate how the IID conditions can be relaxed, we consider ezpo-
nential smoothing.

Example 1.3.1. Ezponential smoothing. We now consider a simple exam-
ple of a random walk in which the steps are neither independent nor identi-
cally distributed. We let the steps be constructed by exponential smoothing.
Equivalently, the steps are an autoregressive moving-average (ARMA) pro-
cess of order (1,0); see Section 4.6.

In particular, suppose that we generate uniform random numbers U on
the interval [0, 1], £ > 1, as before, but we now let the k" step of the random
walk be defined recursively by

Xk =1 —7)Xg-1+9Ux, k>1, (3.3)

where Xy = Uy, where Uy is another uniform random number on [0, 1] and
0 < v < 1. Clearly, the new random variables X} are neither independent
nor identically distributed. Moreover, the distribution of X is no longer
uniform. It is not difficult to see, though, that as k increases the distribu-
tion of X} approaches a nondegenerate limit. More generally, the sequence
{Xnir : k > 0} is asymptotically stationary as n — oo, but successive
random variables remain dependent.

We now regard the random variables Xy as steps of a random walk; i.e.,
we let the successive positions of the random walk be

SkEXl—l----—i-Xk, k‘Zl, (34)
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Figure 1.15: Possible realizations of the first 10/ steps of the uncentered
random walk {Sy : k£ > 0} with steps constructed by exponential smoothing,
asin (3.3), for j=1,...,4.

where Sy = 0. Next we repeat the experiments done before. We display
plots of the uncentered and centered random walks with v = 0.2 for n = 107
with 7 = 1,...,4 in Figures 1.15 and 1.16. To determine the appropriate
centering constant (the steady-state mean of X} ), we solve the equation

E[X] = (1-7)E[X] +~E[U]

to obtain m = E[X] = E[U] = 1/2. Even though the distribution of Xj
changes with k, the mean remains unchanged because of our choice of the
initial condition.

Figures 1.15 and 1.16 look much like Figures 1.1 and 1.2 for the IID
case. However, there is some significant difference for small n because the
successive steps are positively correlated, causing the initial steps to be
alike. However, the plots look like the previous plots for larger n. For the
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Figure 1.16: Possible realizations of the first 107 steps of the centered random
walk {S; — k/2 : k > 0} with steps constructed by exponential smoothing,
as in (3.3), for j =1,...,4.
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centered random walks in Figure 1.16 with n = 10%, what we see is again
approximately a plot of Brownian motion. =

We can easily construct many other examples of random walks with
dependent steps. For instance, we could consider a random walk in a random
environment. A simple example has a two-state Markov-chain environment
process with transition probabilities Pio =1 —-P;; =pand P,; =1 —
P,y =qgfor 0 < p<land 0 < g < 1l We then let the kth step X
have one distribution if the Markov chain is in state 1 at the k™ step, and
another distribution if the Markov chain is in state 2 then. We first run the
Markov chain. Then, conditional on the realized states of the Markov chain,
the random variables X; are mutually independent with the appropriate
distributions (depending upon the state of the Markov chain). If we consider
a stationary version of the Markov chain, then the sequence {Xj : k > 1}
is stationary. Regardless of the initial conditions, we again see the same
statistical regularity in the associated partial sums when n is sufficiently
large. We invite the reader to consider such examples.

1.3.3. Different Step Distributions

Now let us return to random walks with IID steps and consider different
possible step distributions. We now repeat the experiments above with
various functions of the uniform random numbers, i.e., for X, = f(Uy),
1 < k < n, for different real-valued functions f. In particular, consider the
following three cases:

(i) Xx = —-mlog(1—-Ug) for m=1,10
(i) X = UP for p=1/2,3/2
(i) X, = U " for p=1/2,3/2. (3.5)

As before, we form partial sums associated with the new summands X}, just
as in (3.4).

Before actually considering the plots, we observe that what we are doing
covers the general IID case. Given the sequence of IID random variables
{Uy : k£ > 1}, by the method above we can create an associated sequence
of IID random variables {X} : k¥ > 1} where X} has an arbitrary cdf F.
Letting the left-continuous inverse of F' be

FC{)=inf{s: F(s) >t}, 0<t<1,



1.3. INVARIANCE PRINCIPLES 43

we can obtain the desired random variables X with cdf F' by letting
X, =F(Uy), k>1. (3.6)

Since
F<(s) <t ifandonlyif F(t)>s, (3.7

we obtain
P(FT(U)<t)=PU < F(t) =F(t) ,

where U is a random variable uniformly distributed on [0, 1], which implies
that F<(U) has cdf F for any cdf F when U is uniformly distributed on
[0,1]. For example, we see that X} has an exponential distribution with
mean m in case (i) of (3.5): If F(t) = e */™, then F* (t) = —mlog(l — t)
and

P(Xp >t) = P(—mlog(1—U;) > t) = Pl — U < e /M)y =7 H™ |

Incidentally, we could also work with the right-continuous inverse of F,
defined by

Flt)=inf{s: F(s) >t} = F (t+), 0<t<1,
where F< (t+) is the right limit at ¢, because
P(FT(U)=F~(U) =1,

since F< and F~! differ at, at most, countably many points.

Moreover, F*< (Uy), k > 1, are IID when U, k > 1, are IID. Of course,
there also are other ways to generate IID random variables with specified
distributions, but what we are doing is often a natural way.

So let us plot the uncentered and centered random walks with the step
sizes in (3.5). When we do so for cases (i) and (i), we see essentially the
same pictures as before. For example, plots of the first 10* steps of the
centered random walks in the four cases in (i) and (i%) of (3.5) are shown in
Figure 1.17.

Again the plots look like plots of Brownian motion, indistinguishable
from the plots for the uniform steps in Figure 1.3. Note that the units on
the y axis change from plot to plot, but the plots themselves tend to have a
common distribution.
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Figure 1.17: Possible realizations of the first 10* steps of the random walk
{Sk —mk : k > 0} with steps distributed as X}, in cases (i) and (ii) of (3.5).
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Figure 1.18: Possible realizations of the first 107 steps of the uncentered
random walk {Sj : k > 0} with steps distributed as U, Y7 in case (iii) of
(3.5) forp=3/2and j =1,...,4.

1.4. The Exception Makes the Rule

Just when boredom has begun to set in, after seeing the same thing in
cases (i) and (ii) in (3.5), we should be ready to appreciate the startlingly
different large-n pictures in case (iii). Plots of the uncentered random walks
are plotted in Figures 1.18 and 1.19.

In the case p = 3/2 in Figure 1.18, the plot of the uncentered random
walk is again approaching a line as n — oo, but not as rapidly as before.
(Again we ignore the units on the axes when we look at the plots.) However,
in the case p = 1/2 in Figure 1.19 we something radically different: For large
n, the plots have jumps!
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Figure 1.19: Possible realizations of the first 10/ steps of the uncentered
random walk {Sy : £ > 0} with steps distributed as U, Y7 in case (iii) of
(3.5) forp=1/2and j =1,...,4.
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1.4.1. Explaining the Irregularity

Fortunately, probability theory again provides an explanation for the
irreqularity that we now see: The SLLN states, under the prevailing 11D
assumptions, that scaled partial sums n 'S, will approach the mean EX;
w.p.1 as n — oo, regardless of other properties of the probability distribution
of X1, provided that a finite mean exists. Knowing the SLLN, we should
expect to see lines when n = 10* in all experiments except possibly in case
(iii).

We might initially be fooled in case (iii), but we should anticipate occa-
sional large steps because U~/? involves dividing by very small values when
U is small. Upon more careful examination, we see that U~'/? has a Pareto
distribution with parameter p, which we refer to as Pareto(p), when U is
uniformly distributed on [0, 1], i.e.,

PUYP>$)=PU<tP)=tP, t>1, (4.1)
with mean

E(U-Y/P) = / PUYP > t)dt =1 —i—/ tPdt | (4.2)
0 1

which is finite, and equal to 1 + (p — 1)1, if and only if p > 1; see Chapter
19 of Johnson and Kotz (1970) for background on the Pareto distribution
and Lemma 1 on p. 150 of Feller (1971) for the integral representation of
the mean.

Thus the SLLN tells us not to expect the same behavior observed in the
previous experiments in case (iii) when p < 1. Thus, unlike all previous
random walks considered, the conditions of the SLLN are not satisfied in
case (iii) with p = 1/2.

Now let us consider the random walk with Pareto(p) steps for p = 3/2
in (3.5) (iii). Consistent with the SLLN, Figure 1.18 shows that the plots
are approaching a straight line as n — oo in this case. But what happens
when we center?

1.4.2. The Centered Random Walk with p = 3/2

So now let us consider the centered random walk in case (iii) with p =
3/2. (Since the mean is infinite when p = 1/2, we cannot center when
p = 1/2. We will return to the case p = 1/2 later.) We center by subtracting
the mean, which in the case p = 3/2is 1+ (p—1)~! = 3. Plots of the centered
random walk with p = 3/2 for n = 10/ with j = 1,2, 3,4 are shown in Figure
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Figure 1.20: Possible realizations of the first 10’ steps of the centered random
walk {Sy — 3k : k > 0} associated with the Pareto steps U,;l/p for p = 3/2,
having mean 3 and infinite variance, for the cases j = 1,...,4.

1.20. As before, the centering causes the plotter to automatically blow up
the picture. However, now the slight departures from linearity for large n
in Figure 1.18 are magnified. Now, just as in Figure 1.19, we see jumps in
the plot!

Once again, probability theory offers an explanation. Just as the SLLN
ceases to apply when the IID summands have infinite mean, so does the
(classical) CLT cease to apply when the IID summands have finite mean
but infinite variance. Such a case occurs with the Pareto(p) summands in
case (iii) in (3.5) when 1 < p < 2. Thus, consistent with what we see
in Figure 1.18, the SLLN holds, but the CLT does not, for the Pareto(p)
random variable U~1/? in case (iii) when p = 3/2.

We have arrived at another critical point, where an important intellectual
step is needed. We need to recognize that, even though the sample paths are
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very different from the previous random-walk plots, which are approaching
plots of Brownian motion, there may still be important statistical reqularity
in the new plots with jumps.

To see the statistical regularity, we need to repeat the experiment and
consider larger values of n. Even though the plots look quite different from
the previous random-walk plots, we can see statistical regularity in the plots
(again ignoring the units on the axes). To confirm that observation, six
possible realizations for p = 3/2 in the cases n = 10* and n = 10° are shown
in Figures 1.21 and 1.22. Figures 1.21 and 1.22 show more irregular paths,
but with their own distinct character, much like handwriting. (We might
contemplate the probability of the path writing a word. With a suitable font
for the script, we might see “Null” but not “Set”.) Again, Figures 1.21 and
1.22 show that there is statistical regularity associated with the irregularity
we see. The plots are independent of n for all n sufficiently large. Again we
see self-similarity in the plots.

Even though the irregular paths in Figures 1.19 — 1.22 have jumps, as
before we can look for statistical regularity through the distribution of these
random paths. Again, to be able to see something, we can focus on the final
positions. Focusing first on the case with p = 3/2, we plot the estimated
density of the centered sums S,, — 3n for n = 1,000. Once again, we obtain
the density estimate by performing independent replications of the experi-
ment. To have more data this time, we use 10,000 independent replications.
We display the resulting density estimate in Figure 1.23.

When we look at the estimated density of the final position, we see that
it is radically different from the previous density plots in Figures 1.5 and
1.7. Clearly, the final position is no longer normally distributed!

Nevertheless, there is statistical regularity. As before, when we repeat
the experiment with different random number seeds, we obtain essentially
the same result for all sufficiently large n. Examination shows that there is
statistical regularity, just as before, but the approximating distribution of
the final position is now different. In Figure 1.23, the peak of the density
looks like a spike because the range of values is now much greater. In turn,
the range of values is greater because the distribution of S;,, —3n has a heavy
tail.

The heavier tails are more clearly revealed when we plot the tail of the
empirical cdf of the observed values. (By the tail of a cdf F', we mean the
complementary cdf or ccdf, defined by F¢(t) =1 — F(t).)

To focus on the tail of the cdf F', we plot the tail of the empirical cdf
in log — log scale in Figure 1.18; i.e., we plot log F°(t) versus log ¢t. To use
log — log scale, we consider only those values greater than 1, of which there
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Figure 1.21: Six independent realizations of the first 10* steps of the centered
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Figure 1.22: Six independent realizations of the first 10° steps of the centered
random walk {S}, — 3k : k > 0} associated with the Pareto steps U, P for
p = 3/2, having mean 3 and infinite variance.
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Figure 1.23: The density estimate obtained from 10,000 independent sam-
ples of the final position of the centered random walk (i.e., the centered

partial sum S1900 —3000) associated with the Pareto steps Uk_l/p for p = 3/2.
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Figure 1.24: The tail of the empirical distribution function in log — log
scale obtained from 10,000 independent samples of the final position of the
centered random walk (i.e., the partial sum Sjgo0 — 3000) associated with
the Pareto steps U, P for p = 3/2 corresponding to the density in Figure
1.23. The results are based on the 3,121 values greater than 1.

were 3,121 when n = 10%.

From Figure 1.24, we see that for larger values of the argument ¢, the
empirical ccdf has a linear slope in log — log scale. That indicates a power
tail. Indeed, if the ccdf is of the form

F(t)=at™ for t>ty>1, (4.3)

then
log F¢(t) = —flogt + log a (4.4)

for ¢ > typ. Then the paremeters o and J in (4.3) can be seen as the intercept
and slope in the log — log plot.
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Again there is supporting theory: A generalization of the CLT implies,
under the IID assumptions and other regularity conditions (satisfied here),
that properly scaled versions of the centered partial sums of Pareto(p)
random steps converge in distribution, as in (2.7). In particular, when
1<p<2,

n P8, —mn) =L in R, (4.5)

where m = 1 + (p — 1)7! is the mean and the limiting random variable L
has a non-Gaussian stable law (depending upon p); e.g., see Chapter XVII
of /Feller (1971). In our specific case of p = 3/2, we have space scaling by
n?/3,

Unlike the Pareto distribution, the limiting stable law is not a pure
power, but it has a power tail; i.e., it is asymptotically equivalent to a
power: for 1 < p < 2,

P(L>t)~ct™? as t— (4.6)

for some positive constant ¢, where f(t) ~ g(t) as ¢ — oo means that f
is asymptotically equivalent to g, i.e., f(t)/g(t) =1 as t — oo. Thus the
tail of the limiting stable law has the same asymptotic decay rate as the
Pareto distribution of a single step.

Unlike the standard CLT in (2.4), the space scaling in (4.5) involves
¢n = nt/P for 1 < p < 2 instead of ¢, = n'/2. Nevertheless, the generalized
CLT shows that there is again remarkable statistical regularity in the cen-
tered partial sums when the mean is finite and the variance is infinite. We
again obtain essentially the same probability distribution for all n. We also
obtain essentially the same probability distribution for other nonnegative
step distributions, provided that they are centered by subtracting the finite
mean, and that the step-size ccdf F°(t) has the same asymptotic tail; i.e.,
we require that

Fe(t) ~ct™? as t— o0 (4.7

for some positive constant c.

As before, there is also an associated stochastic-process limit. A gen-
eralization of Donsker’s theorem (the FCLT) implies that the sequence of
scaled random walks with Pareto(p) steps having 1 < p < 2 converges in
distribution to a stable Lévy motion as n — oo in D. Now

S, =S in D, (4.8)

where
Sp(t) = n " P(S|y —mlnt]), 0<t<1, (4.9)
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for n > 1, m is the mean and S is a stable Lévy motion. That is, the
stochastic-process limit (2.3) holds for S,, in (2.2), but now with ¢, = n'/?
and the limit process S being stable Lévy motion instead of Brownian mo-
tion. Moreover, a variant of the previous invariance property holds here as
well. For nonnegative random variables (the step sizes) satisfying (4.7), the
limit process depends on its distribution only through the decay rate p and
the single parameter ¢ appearing in (4.7). We discuss this FCLT further in
Chapter 4.

Since the random walk steps are IID, it is evident that the limiting
stable Lévy motion must have stationary and independent increments, just
like Brownian motion. However, the marginal distributions in R or R¥ are
non-normal stable laws instead of the normal laws. Moreover, the stable
Lévy motion has the self-similarity property, just like Brownian motion, but
now with a different scaling. Now, for any ¢ > 0, the stochastic process
{c"/PS(ct) : 0 < t < 1} has a probability law on D, and thus finite-
dimensional distributions, that are independent of c¢. Indeed, the proof is
just like the proof for Brownian motion in (2.18).

It is significant that the space scaling to achieve statistical regularity is
different now. In (4.9) above, we divide by n!'/? for 1 < p < 2 instead of by
n'/2. Similarly, in the self-similarity of the stable Lévy motion, we multiply
by ¢ '/? instead of ¢~/2. The new scaling can be confirmed by looking at
the values on the y-axis in the plots of Figures 1.20-1.22.

Figures 1.20-1.22 show that, unlike Brownian motion, stable Lévy mo-
tion must have discontinuous sample paths. Hence, we have a stochastic-
process limit in which the limit process has jumps. The desire to consider
such stochastic-process limits is a primary reason for this book.

1.4.3. Back to the Uncentered Random Walk with p = 1/2

Now let us return to the first Pareto(p) example with p = 1/2. The plots
in Figure 1.19 are so irregular that we might not suspect that there is any
statistical regularity there. However, after seeing the statistical regularity in
the case p = 3/2, we might well think about reconsidering the case p = 1/2.

As before, we investigate by making some more plots. We have noted
that we cannot center because the mean is ininite. So let us make more
plots of the uncentered random walk with p = 1/2. Thus, in Figure 1.25
we plot six independent realizations of the uncentered random walk with
10* Pareto(0.5) steps. Now, even though these plots are highly irregular,
with a single jump sometimes dominating the entire plot, we see remarkable
statistical regularity.
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Figure 1.25: Six independent possible realizations of the first 10* steps of
the uncentered random walk {Sy : k¥ > 0} with steps distributed as U, 1
in case (iii) of (3.5) for p = 1/2.



1.4. THE EXCEPTION MAKES THE RULE 57

§%10"12
|

241012

3+10M2

0 5%10%M1 1042

0 10M2

0 24105 410'5 64105 81105 106 0 24105 410'5 64105 81105 106

5%10M2
510M3 104 15104

31012

0 10M2

0

0 24105 24105 64105 81105 106 0 24105 4105 64105 810'5 106

41012

02710M2 6402 103
0 10%M2 2710M2

0 2410'5 410'5 64105 8105 10%6 0 24105 4105 6105 810°5 10%6
index index

Figure 1.26: Six independent possible realizations of the first 10% steps of
the uncentered random walk {Sy : k¥ > 0} with steps distributed as U, 1/p
in case (iii) of (3.5) for p =1/2.

Paralleling Figures 1.4 and 1.22, we confirm what we see in Figure 1.25
by plotting six independent samples of the uncentered random walk in case
(iii) with p = 1/2 for n = 10° in Figure 1.26. Even though the plots of
the uncentered random walks with Pareto(0.5) steps in Figures 1.19 — 1.26
are radically different from the previous plots of centered and uncentered
random walks, we see remarkable statistical regularity in the new plots. As
before, the plots tend to be independent of n for all n sufficiently large,
provided we ignore the units on the axes. Thus we see self-similarity, just
as in the plots of the centered random walks before. From the random-walk
plots, we see that statistical regularity can occur in many different forms.

Given what we have just done, it is natural to again look for statistical
regularity in the final positions. Thus we consider the final positions S,
(without centering) for n = 1000 and perform 10,000 independent replica-
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density estimate for p = 1/2
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Figure 1.27: A density estimate obtained from 10, 000 independent samples
of the final position of the uncentered random walk (i.e., the partial sum

S1000) associated with the Pareto steps U,;l/p in the case p = 1/2.

tions. Paralleling Figures 1.23 and 1.24 above, an estimate of the probability
density and the tail of the empirical cdf are plotted in Figures 1.27 and 1.28
below.

Figures 1.27 and 1.28 are quite similar to Figures 1.23 and 1.24, but now
the distribution has an even heavier tail. Again there is supporting theory:
A generalization of the CLT states, under the IID assumptions and other
regularity conditions (satisfied here), that for 0 < p < 1 there is convergence
in distribution of the uncentered partial sums to a non-Gaussian stable law
if the partial sums are scaled appropriately, which requires that ¢, = n'/?.
In particular, now with p = 1/2,

n"Y?S, =L in R, (4.10)

where the limiting random variable again has a a non-Gaussian stable law,
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tail of empirical cdf for p = 1/2 in log-log scale
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Figure 1.28: The tail of the empirical cumulative distribution function in
log—Ilog scale obtained from 10, 000 independent samples of the final position
of the uncentered random walk (i.e., the partial sum Sigop) associated with

the Pareto steps U, P for p = 1/2 corresponding to the density in Figure

1.27.
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which has an asymptotic power tail, i.e.,
P(L>t)y~ct™? as t— o0 (4.11)

for p = 1/2 and some positive constant c; again see Chapter XVII of Feller
(1971). As before, the tail of the stable law has the same asymptotic decay
rate as a single step of the random walk.

Moreover, there again is an associated stochastic-process limit. Another
generalization of Donsker’s FCLT implies that there is the stochastic-process
limit (4.8), where

Sn(t) =n"PS)yy, 0<t<1, (4.12)

for n > 1, with the limit process S being another stable Lévy motion de-
pending upon p.

Again there is an invariance property: Paralleling (4.7), we require that
the random-walk step ccdf F'¢ satisfy

Fe(t) ~ct™ as t— o0, (4.13)

where p = 1/2 and ¢ is some positive constant. Any random walk with
nonnegative (IID) steps having a ccdf satisfying (4.13) will satisfy the same
FCLT, with the limit process depending on the step-size distribution only
through the decay rate p = 1/2 and the constant ¢ in (4.13).

As before, the plotter automatically does the proper scaling. However,
the space scaling is different from both the previous two cases, now requiring
division by n!/? for p = 1 /2. Again, we can verify that the space scaling
by nl/? is appropriate by looking at the values in the plots in Figures 1.19—
1.26. Just as before, the stochastic-process limit in D implies that the limit
process must be self-similar. Now, for any ¢ > 0, the stochastic processes
{c71/P8(ct) : 0 < t < 1} have probability laws in D that are independent of
c.

Figures 1.19 and 1.25 show that the limiting stable Lévy motion for the
case p = 1/2 must also have discontinuous sample paths. So we have yet
another stochastic-process limit in which the limit process has jumps.

1.5. Summary

To summarize, in this chapter we have seen that there is remarkable
statistical regularity associated with random walks as the number n of steps
increases. That statistical regularity is directly revealed when we plot the
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random walks. In great generality, as a consequence of Donsker’s theorem,
properly scaled versions of the centered random walks converge in distribu-
tion to Brownian motion as n increases. As a consequence, the random-walk
plots converge to plots of standard Brownian motion.

The great generality of that result may make us forget that there are con-
ditions for convergence to Brownian motion to hold. Through the exponential-
smoothing example, we have seen that the conclusions of the classical limit
theorems often still hold when the IID conditions are relaxed, but again
there are limitations on the amount of dependence that can be allowed.
That is easy to see by considering the extreme case in which all the steps
are identicall Clearly, then the SLLN and the CLT break down. The clas-
sical limit theorems tend to remain valid when independence is replaced by
weak dependence, but it is difficult to characterize the boundary exactly. We
discuss FCLTs for weakly dependent sequences further in Chapter 4.

We also have seen for the case of IID steps that there are important
situations in which the conditions of the FSLLN and Donsker’s FCLT do
not hold. We have seen that these fundamental theorems are not valid in
the IID case when the step-size distribution has infinite mean (the FSLLN)
or variance (the FCLT). Nevertheless, there often is remarkable statistical
regularity associated with these heavy-tailed cases, but the limit process
in the stochastic-process limit becomes a stable Lévy motion, which has
jumps, i.e., it has discontinuous sample paths. We have thus seen examples
of stochastic-process limits in which the limit process has jumps. We discuss
such FCLTs further in Chapter 4.

If we allow greater dependence, which may well be appropriate in ap-
plications, then many more limit processes are possible, some of which will
again have discontinuous sample paths. Again, see Chapter 4.
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