
ARRANGING QUEUES IN SERIES

S. Suresh W. Whitt

AT&T Engineering Research Center AT&T Bell Laboratories
Murray Hill, NJ 07974 Murray Hill, NJ 07974

June 21, 1988

Revision: April 21, 1989



ABSTRACT

For given external arrival process and given service-time distributions, the object is to determine the

order of infinite-capacity single-server queues in series that minimizes the long-run average sojourn time

per customer. We gain additional insight into this queueing design problem, and congestion in open

queueing networks more generally, primarily by performing simulation experiments. We develop a new

parametric-decomposition approximation for departure processes, which can be used in general queueing

network algorithms as well as in this design problem. For this design problem, we conclude that the key

issue is variability: The order tends to matter when the service-time distributions have significantly

different variability, and not otherwise. The order also matters less in light traffic, even with a relative

difference criterion. Arranging the queues in order of increasing service-time variability, using the squared

coefficient of variation as a partial characterization of variability, seems to be an effective simple heuristic.

In all cases of two queues in series, the simulation results indicate that the same order is optimal for all

combinations of the traffic intensities, suggesting that the light-traffic asymptotics in Greenberg and Wolff

(1988) should usually be effective for identifying the best order. Comparisons with simulations for two

queues also indicate that the parametric-decomposition approximations provide quite accurate quantitative

estimates of the expected sojourn time with each order. However, for more than two queues, the

approximations need not properly describe the congestion at a bottleneck queue.

Key Words: queueing networks; tandem queues; departure processes; queueing system design; simulation;

variance reduction; common random numbers; approximations; parametric-decomposition approximations.



1. INTRODUCTION

1.1 The Queueing Design Problem

This paper revisits a queueing design problem considered by Tembe and Wolff (1974), Pinedo (1982),

Whitt (1985), Greenberg and Wolff (1988) and Wein (1988). The model is an open network of single-

server queues in series. Each customer (or job) arrives according to an external arrival process and is

served once at each queue, with the order of the queues being the same for all customers. Each queue has

unlimited waiting space, the FIFO (first-in first-out) discipline, and i.i.d. (independent and identically

distributed) service times that are independent of the other random quantities in the model. The design

problem is to determine, for given fixed external arrival process, the order of the queues that minimizes the

expected steady state (or long-run average) sojourn time (time in system) per customer. More generally,

the object is to determine if the order actually matters, and if it does, which orders are good and which are

bad. Even more generally, the object is to determine how queues in series perform.

Given that the external arrival process is a renewal process (i.e., the interarrival times are i.i.d.), which

we also assume here, the model is specified by the distribution of the service times at each queue and the

distribution of the external interarrival times. This problem is difficult for general distributions (e.g., when

they are not all exponential), because exact expressions for the expected steady-state sojourn time typically

are unavailable, primarily because the arrival processes to all queues after the first typically are not renewal

processes; see Berman and Westcott (1983).

1.2 Parametric-Decomposition Approximations

Whitt (1985) suggested analyzing this design problem approximately using parametric-decomposition

approximations for queueing networks, as in Whitt (1982, 1983, 1984) and references cited there. With this

approximation procedure, each distribution is partially characterized by its first two moments or,

equivalently, by its mean and squared coefficient of variation (variance divided by the square of the mean).

Then closed-form formulas give an approximate squared coefficient of variation for the arrival process to

each queue and an approximate expected steady-state waiting time at each queue; see Section 4. Of course,

the expected steady-state sojourn time for queues in series actually depends on the distributions beyond
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their first two moments, but experience indicates that fairly good approximations can be obtained given this

partial information. Even when the best order can be determined exactly, as in the special cases considered

by Tembe and Wolff (1974), the approximations are useful because they provide quantitative estimates of

the expected sojourn times with each order.

1.3 The Purpose of this Paper

Our goal was to obtain additional insight into this queueing design problem and the parametric-

decomposition approximations. We gained additional insight primarily by performing simulation

experiments. (None of the previous papers discussing this design problem reported any simulation results.)

For the most part, we restrict attention to the special case of only two queues, but we consider a few

examples with more queues.

With respect to the queueing design problem, we aim to answer the following questions:

(1) Can the order of the queues significantly affect performance?

(Section 3.1)

(2) If so, when does the order matter?

(Sections 3.3, 3.4 and 4.5)

(3) When the order does matter, what orders are good or bad?

(Section 3.6)

(4) Are there simple design heuristics that perform reasonably well?

(Sections 3.2 and 3.6)

(5) Are there fundamental principles explaining how queues in series perform?

(Sections 3.5, 5.1 and 5.2)

With respect to the parametric-decomposition approximations, we aim to answer the following

questions:

(6) How accurate are the approximations in Whitt (1983,1985)?

(Sections 4.1 and 4.3)
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(7) Can these approximations be improved?

(Section 4.3)

(8) Can situations be identified where these approximations break down?

(Section 5.3)

(9) How should these approximations be regarded, given that recent light-traffic limits in

Section 4 of Greenberg and Wolff (1988) contradict design heuristics on p. 481 of Whitt

(1985)?

(Sections 3.2, 5.1 and 6)

(10) What is the performance of Wein’s (1988) new parametric-decomposition approximation,

which is derived from the heavy-traffic multi-dimensional diffusion approximation under

balanced loading?

(Section 5.4)

Whitt (1985) previously addressed questions 1-5 and 8, while Whitt (1984), Albin and Kai (1986),

Fendick, Saksena and Whitt (1988), and Bitran and Tirupati (1988) addressed questions 7-8. The object

now is to say more.

1.4 Organization of this Paper

We begin in Section 2 by describing our simulation experiment to study the design problem for two

queues in series. A significant feature is the use of common random numbers in order to obtain greater

efficiency (smaller confidence intervals for given computer budget). In Section 3 we present the main

conclusions about the design problem, i.e., our answers to questions 1-5 above.

In Section 4 we briefly review the previous parametric-decomposition approximations for queues in

series and then propose a new hybrid approximation for departure processes (see (4.4)). In Section 4 we

also use the simulations to evaluate the approximations. In Section 5 we review light-traffic and heavy-

traffic limits and investigate to what extent this limiting behavior is reflected in systems with typical traffic

intensities, e.g., with 0. 1 ≤ ρ i ≤ 0. 9 for all i. In Section 5.3 we show how the current implementation of

the parametric-decomposition approximation can break down for several queues in series due to the
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presence of a bottleneck queue. Finally, in Section 6 we discuss the case in which the service-time

distributions have common variability and issues raised by Greenberg and Wolff. Additional tables

describing the approximations are in appendices (available from the authors).

2. SIMULATION EXPERIMENTS

To estimate the expected steady-state waiting time at each queue in these models, we used the SIMAN

simulation program; see Pegden (1984). In each case, we performed ten independent replications using

30,000 arrivals in each replication and estimated 90% confidence intervals using the t-statistic. (The

ordinate of the t-distribution used was 1.833.) An initial portion of each run (2000 customers) was

discarded to allow the system to approach steady state.

2.1 The Experimental Design

A basic problem was to decide what cases to consider. Even when we restrict attention to the special

case of two queues in series, which we mostly did, and partially characterize distributions by their first two

moments, there are five parameters. Without loss of generality (by choosing the measuring units), we make

the external arrival rate 1. Then the mean service time at queue i coincides with the traffic intensity there,

which we denote by ρ i . The parameter five-tuple characterizing the two-queue model is then

(ca
2 , ρ 1 , cs1

2 , ρ 2 , cs2
2 ), where ca

2 (csi
2 ) is the squared coefficient of variation of an interarrival time (service

time at queue i). Of course, we have yet to specify the distributions to go with the first two moments.

We determined what cases to include in the simulation experiment by first using the approximations to

explore the parameter space. We applied calculus with the formulas and a spreadsheet with the numerical

calculations to determine when the order should matter and when it should not (see Section 4.5). This

preliminary analysis eventually enabled us to see that, at least for the case of two queues, there are only a

few basic configurations. We simulated cases in which the approximations predict the order should matter

and cases in which the approximations predict the order should not matter.

In particular, we considered various variability parameter triples (ca
2 , cs1

2 , cs2
2 ) for all combinations of

the traffic intensities ρ 1 and ρ 2 in a representative range. Assuming that cs1
2 ≤ cs2

2 , the three principal

cases seem to be:
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(i) aca
2 ≤ cs1

2 ≤ cs2
2

(ii) cs1
2 ≤ ca

2 ≤ cs2
2 (2.1)

(iii) cs1
2 ≤ cs2

2 ≤ ca
2 .

The actual cases considered for two queues in series are summarized in Table 1. These cases can be

divided into two groups: different service variability (cs1
2 ≠ cs2

2 ) and identical service variability

(cs1
2 = cs2

2 ). For cs1
2 ≠ cs2

2 , we considered 5 variability triples (ca
2 , cs1

2 , cs2
2 ), namely, ( 0. 5 , 0. 5 , 2. 0 ),

( 1. 0 , 0. 5 , 8. 0 ), ( 1. 0 , 2. 0 , 4. 0 ), ( 4. 0 , 0. 5 , 1. 0 ) and ( 4. 0 , 1. 0 , 4. 0 ), ordered lexicographically. Note that

the three cases in (2.1) are represented by ( 1. 0 , 2. 0 , 4. 0 ), ( 1. 0 , 0. 5 , 8. 0 ) and ( 4. 0 , 0. 5 , 1. 0 ), respectively,

while ( 0. 5 , 0. 5 , 2. 0 ) is on the boundary of (i) and (ii) and ( 4. 0 , 1. 0 , 4. 0 ) is on the boundary of (ii) and

(iii).

For each queue we considered 4 values of ρ i : 0.3, 0.6, 0.8 and 0.9. Thus, associated with each

variability triple are 32 cases of two queues in series:

( 4 values of ρ 1 ) × ( 4 values of ρ 2 ) × ( 2 orders ) = 32 cases .

When c 2 = 0. 5, we used the E 2 distribution (Erlang of order 2, the convolution of two exponentials);

when c 2 = 1. 0, we used the exponential (M) distribution; when c 2 > 1, we used the H 2 distribution

(hyperexponential, a mixture of two exponentials) with balanced means; i.e., if p i is the probability of the

exponential variable with mean m i , then we require that p 1 m 1 = p 2 m 2 .

For cs1
2 = cs2

2 , we used cases analyzed by Greenberg and Wolff (1988) in which the service-time

random variables at the two queues, say X 1 and X 2 , are related by X 2 =
d

(ρ 2 /ρ 1 ) X 1 , where =
d

means

equality in distribution; i.e.; the distributions only differ by a scale factor. In particular, we considered the

variability triples ( 1. 0 , 0. 5 , 0. 5 ) and ( 1. 0 , 4. 0 , 4. 0 ). For each queue we considered 5 values of ρ i : 0.1,

0.2, 0.3, 0.6 and 0.9. Thus, for each triple, there are 5 + 4 + 3 + 2 + 1 = 15 cases of two queues in

series. (Since the order cannot matter when ρ 1 = ρ 2 , there are only 10 cases in which the order might

matter.) Just as before, we use E 2 , M and H 2 distributions when c 2 = 0. 5, c 2 = 1. 0 and c 2 = 4. 0,

respectively. However, for the H 2 distributions we considered both balanced means and unbalanced

means. The case of unbalanced means has one exponential replaced by an atom at zero.
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We also conducted experiments with more than two queues in series, which we discuss in Sections 3.6

and 5.3.

2.2 Variance Reduction

We used common random numbers to obtain improved simulation efficiency (smaller confidence

intervals for given computer budget), as discussed in Section 2.1 of Bratley, Fox and Schrage (1987). We

used the same random numbers to treat cases that differ only by the service times at a queue having

different means. For example, E 2 random variables with mean 1 were randomly generated to treat service

times with csi
2 = 0. 5. Then these random variables were multiplied by ρ i to obtain the random variables at

the queue with mean ρ i in different cases. Similarly, when different orders of queues were considered, the

same random variables were used with both orders. With four values of each traffic intensity, we simulated

one model with 64 queues as shown in Figure 1 (16 cases × 2 orders × 2 queues), instead of 32 independent

models of two queues in series. We generated i.i.d. random variables with mean 1 and ca
2 for the

interarrival times, and i.i.d. random variables with mean 1 and csi
2 for the service times at queue i. Upon

each arrival, we created 32 separate customers (clones) to go through the 32 separate two-queue

configurations. The service times at queue i with traffic intensity ρ i were obtained by simply multiplying

the given mean-one random variables by ρ i .

Using common random numbers with both orders was critical for obtaining reliable estimates of the

difference between the expected total sojourn times with different orders, given our simulation run lengths.

For example, a typical case of two queues in series yielded expected total sojourn times for the two orders

of 8.60 and 8.71 with 90% confidence intervals of (±0. 47 ) and (±0. 46 ), respectively, while the estimated

difference was 0.104 with a 90% confidence interval of (±0. 02 ). Thus, we can conclude that there is a

statistically significant difference, although we do not regard the 1.2% estimated relative difference as

practically significant from the perspective of the design problem. (This obviously depends on the context.

We give the numbers as well as our interpretation, so readers can judge for themselves.) This method was

especially important for detecting statistically significant differences in light traffic; see Tables 7-9.
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2.3 Simulation Results for Two Queues

Tables 2-6 contain the simulation results for the five different-service-variability cases in Table 1, while

Tables 7-9 contain simulation results for the three identical-service-variability cases. These tables display

the estimated expected waiting time at each queue and the total expected waiting time in the two-queue

network for each order. Also given is the estimated difference and relative difference of the total expected

sojourn times with the two orders. Of course, the difference of the total expected sojourn times coincides

with the difference of the total expected waiting times, because the total expected service time is the same

for both orders. However, there is a distinction with the relative difference. The relative difference is for

the total expected sojourn times; i.e., it is the estimated difference divided by the minimum of the estimated

total expected sojourn times, including the sum of the expected service times in the denominator, so as not

to obtain a meaninglessly inflated number in light traffic.

In Tables 2-9, CSA = ca
2 and CSi = csi

2 . Order 1 refers to the given triple, while order 2 is the reverse

order. The estimated half-width of the 90% confidence interval appears below each simulation estimate;

e.g., in Table 2 the entry for queue 1 of order 1 at ρ 1 = ρ 2 = 0. 9 means that the 90% confidence interval

is 3. 939 ± 0. 189 or [ 3. 750 , 4. 128 ].

The statistical precision of the expected waiting time estimates is not great, especially at higher traffic

intensities. (Overall, the statistical precision of these estimates is consistent with the approximation

formulas in Whitt (1989).) However, the statistical precision of the estimated difference of the expected

sojourn times is adequate to meaningfully compare the orders.

3. CONCLUSIONS ABOUT THE DESIGN PROBLEM

In this section we draw some conclusions about the queueing design problem from the simulation

results. We start discussing the approximations in Section 4.

3.1 The Order Can Matter

First, there is no doubt that the order can significantly affect the total expected sojourn time. Tables 2,

3, 4 and 6 clearly demonstrate that the order can matter. The order matters most for the variability triple

( 1. 0 , 0. 5 , 8. 0 ). The largest differences occur for (ρ 1 , ρ 2 ) = ( 0. 9 , 0. 8 ) and ( 0. 9 , 0. 6 ), the first being
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Example 1 of Whitt (1985). For ( 0. 9 , 0. 8 ), our simulation estimates for the expected total sojourn times

for orders ( 1 , 2 ) and ( 2 , 1 ) are 19. 2 ± 1. 2 and 31. 8 ± 1. 8; the estimated difference is 12. 6 ± 1. 0 and the

estimated relative difference is 60.2%.

3.2 There Are No Switches

For all eight variability triples in Tables 2-9, the simulation results indicate that the same order is

optimal for all combinations of the traffic intensities. This consistency suggests that the light-traffic

asymptotics in Greenberg and Wolff (1988) should usually be effective for determining the best order for

all traffic intensities. Similarly, approximations that tend to be more accurate at higher traffic intensities

may also be relatively effective in identifying the best order over the full range of traffic intensities.

3.3 The Key Issue is Variability

Consistent with remarks on pp. 479-481 of Whitt (1985), but deserving more emphasis, we conclude

that the key issue is variability. Tables 7-9 indicate that if the service-time variability is the same or nearly

the same at all the queues, then the order should not matter much. For the variability triple ( 1. 0 , 0. 5 , 0. 5 )

in Table 7, we can conclude statistically that the difference is not zero in several cases, but the difference is

consistently very small. Only in the case ρ 1 = ρ 2 = 0. 9, for which we know there is actually no

difference at all, is the estimated relative difference greater than 1%. For the variability triples

( 1. 0 , 4. 0 , 4. 0 ) in Tables 8 and 9, the estimated relative difference is always less than 5%, except for a

ρ 1 = ρ 2 = 0. 9 case in which the order does not matter at all. The order clearly matters more in the

unbalanced means case than in the balanced means case (average relative difference among the 10 cases

where there can be a difference of 2.15% versus 0.36%).

In contrast, Tables 2-6 indicate that if the service-time variability at the queues differs significantly,

then the order can matter much more. For cs1
2 < cs2

2 , the order tends to matter more as cs1
2 decreases and

cs2
2 increases. The order also tends to matter more as ca

2 decreases. For example, the order matters least in

Table 5 when ca
2 is high (4.0) and cs2

2 is 1.0. In contrast, the order matters most in Table 3, where ca
2 is

lower (1.0) and cs2
2 is higher (8.0).
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3.4 The Traffic Intensities

As indicated above, when the service-time variability is the same at both queues (Tables 7-9), the order

does not matter much for any traffic intensity pair, but in all cases the order tends to matter more, as

measured by the relative difference of expected sojourn times, at higher traffic intensities than at lower

traffic intensities.

Let R(ρ 1 , ρ 2 ) be the estimated relative difference as a function of ρ 1 and ρ 2 . For cs1
2 < cs2

2 as in

Tables 2-6, R(ρ 1 , ρ 1 ) and
ρ 2

max R(ρ 1 , ρ 2 ) are consistently increasing in ρ 1 within the range of traffic

intensities considered (with one exception in Table 5). For any given ρ 1 , R(ρ 1 , ρ 2 ) appears to be a

concave function of ρ 2 with a maximum near but slightly less than ρ 1 . The order tends to matter most for

(ρ 1 , ρ 2 ) = ( 0. 9 , 0. 8 ), with ( 0. 9 , 0. 9 ), ( 0. 8 , 0. 8 ) and ( 0. 8 , 0. 6 ) next.

3.5 The Variability Propagation Principle

There is one fundamental principle that seems remarkably robust in explaining the performance of

queues in series:

The Variability Propagation Principle (VPP): Increased variability in the arrival process or the service

times of a queue tends to propagate to the departure process from that queue and thus to the arrival

process to all subsequent queues.

The VPP is illustrated by the parametric-decomposition approximations for cd1
2 , the approximating

squared coefficient of variation of the departure process from the first queue in (4.3) and (4.4) below; i.e.,

cd1
2 is made a convex combination of ca

2 and cs1
2 , so that cd1

2 increases if either ca
2 or cs1

2 increases. The VPP

has implications for performance, because the delays at a queue tend to increase as the variability of the

arrival process or the service times increases, as illustrated by approximation formula (4.1) below.

The VPP obviously has implications for many other problems besides this queueing design problem.

For example, for production lines that at least roughly behave like our model, the VPP suggests that we

should work harder to reduce variability at the front of the line than at the end of the line.
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3.6 A Simple Design Heuristic

For our queueing design problem, the VPP suggests the following simple design heuristic.

Simple Design Heuristic: Order the queues so that cs1
2 ≤ cs2

2 ≤ . . . ≤ csn
2 .

This simple design heuristic is an extension of heuristic design principles P1 and P4 on p. 481 of Whitt

(1985). On p. 480, this simple design heuristic was mentioned as a natural simple rule suggested by Tembe

and Wolff (1974), but Whitt (1985) suggested that the simple design heuristic should be inadequate.

However, our simulation experience indicates that the simple design heuristic performs remarkably well,

even better than suggested by the approximations. Indeed, the simulations indicate that the simple design

heuristic is optimal in every case in Tables 2-6. Apparent advantages of other orderings seem to be

primarily due to approximation error. We discuss this further in Section 4.5.

Of course, we know that the simple design heuristic is not optimal in general. For the case of non-

overlapping service-time distributions, Tembe and Wolff (1974) proved that the queue with the larger

service times should go first. Since the distribution of the larger service times can have any nonnegative

csi
2 , the simple design heuristic above can easily be wrong, which is not to say seriously wrong. For

example, if in addition the distribution of the smaller service times is deterministic (i.e., the smaller service

times are constant), then Theorem 2 of Tembe and Wolff implies that the order does not matter at all.

In Examples 4 and 5 of Whitt (1985) different orderings were proposed for several queues in series with

one or two bottlenecks. However, we performed simulation experiments for these examples that indicate

that the simple heuristic performs just as well as, in fact, slightly better. In Example 4 with seven queues in

series, the simple design heuristic ordering ( 1 , 2 , 3 , 7 , 4 , 5 , 6 ) has an estimated expected total sojourn

time of 45. 47 ± 3. 19, whereas the previously proposed ordering of ( 3 , 2 , 1 , 7 , 4 , 5 , 6 ) has an estimated

expected total sojourn time of 45. 57 ± 3. 29. (See Whitt (1985) for more details.) The estimated

difference (favoring the simple design heuristic) was 0. 09 ± 0. 15, which of course is not significant

statistically or practically.

In Example 5 of Whitt (1985) with four queues in series, the simple design heuristic ordering

( 1 , 2 , 3 , 4 ) has an estimated expected total sojourn time of 138 ± 17, whereas the previously proposed



- 11 -

ordering ( 3 , 2 , 1 , 4 ) has an estimated expected total sojourn time of 140 ± 18. The estimated difference

was 2. 0 ± 0. 6, so that the difference (again favoring the simple heuristic) is statistically significant. (As

before, we consider the relative difference of 1.5% as practically negligible.)

Finally, we remark that the simple design heuristic is roughly consistent with the light-traffic limit for

two queues when one distribution is exponential in Section 3 of Greenberg and Wolff; i.e., a queue with

less (more) variable service-time distribution according to a Laplace transform ordering should go first

(second).

3.7 Comparison With the Assembly Line Balancing Model

Although the insights about variability in Sections 3.3, 3.5 and 3.6 should apply to other models, it is

important to note that the conclusions may change dramatically when the model is changed. To illustrate

this phenomenon, we compare the simple design heuristic above with good design heuristics for the

assembly line balancing problem, as discussed by Hillier and Boling (1966, 1979) and others.

The assembly line balancing problem can also be modeled as several queues in series; the object is to

allocate tasks (service-time distributions) to the different queues, so as to maximize the throughput

(departure rate). A significant feature of the assembly line model is that the queues have limited buffers

(finite waiting rooms). In the assembly line problem, there is an unlimited supply of jobs at the front of the

line, instead of an external arrival process with a given arrival rate. In our model, the throughput (departure

rate) coincides with the arrival rate, which is fixed, whereas in the assembly line model the throughput is a

quantity affected by the design, i.e., a quantity less than the processing rate of the slowest server.

As a consequence of these model differences, the mean service times are much more important for the

assembly line model than for our model. For the assembly line, something close to balanced means is

desirable for the service-time distributions, with the variability of the service times tending to be much less

important. Of course, there is the important bowl phenomenon, but the bowl should usually be shallow.

It is probably fair to say that issues about deterministic rates in stochastic models are usually more

critical than issues about variability, but in our model the important rate (the arrival rate = the throughput)

is fixed, so that the most important issue becomes variability. When the critical issue is variability,
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systematic analysis is typically important, because intuition is typically poor.

Note that our model becomes relevant for the assembly line balancing problem as the amount of waiting

space in the assembly line queues increases. Indeed, suppose that all queues after the first have unlimited

waiting space. Then after the first queue we have a series of infinite-capacity queues with a renewal

external arrival process, where the external interarrival-time distribution coincides with the service-time

distribution at the first queue. (The first server is assumed to be the slowest.) Then the overall throughput

coincides with the service rate at the first queue, and a relevant issue becomes the average sojourn time.
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4. THE APPROXIMATIONS

4.1 Expected Waiting Time in a GI/G/1 Queue

A basic approximation for the expected steady-state waiting time before beginning service in a GI/G/1

queue with arrival rate 1, traffic intensity ρ and variability parameters ca
2 and cs

2 is

E(W) ∼∼
2 ( 1 − ρ)

ρ2 (ca
2 + cs

2 )_ __________ ; (4.1)

see (44) of Whitt (1983). Approximation (4.1) is the natural heavy-traffic approximation, because it is

asymptotically correct as ρ → 1 (the ratio of the two sides approaches 1) and it is exact for M/G/1 for all ρ.

A refined approximation developed by Kraemer and Langenbach-Belz (1976) is (4.1) multiplied by an

adjustment factor

g(ρ , ca
2 , cs

2 ) =










exp




− ( 1 − ρ)

(ca
2 + 4 cs

2 )

(ca
2 − 1 )_ __________





,

exp



−

3 ρ
2 ( 1 − ρ)_ ________

(ca
2 + cs

2 )

( 1 − ca
2 )2

_ ________




,

ca
2 > 1 .

ca
2 < 1

(4.2)

In (4.2) the correction factor g is always less than one, reflecting the fact that (4.1) tends to be too high,

especially at lower traffic intensities, although (4.1) is not an upper bound. In (45) of Whitt (1983), (6) of

Whitt (1985) and here, we use (4.2) only for ca
2 < 1, and set g = 1 for ca

2 ≥ 1.

To measure the accuracy of approximations for the expected waiting time, we use the minimum of the

relative error and the absolute error, e.g., the relative error is (approx. − sim. estimate/sim. estimate).

Since the arrival rate is 1, the expected waiting time coincides with the expected queue length, so that it

seems reasonable to use the absolute error when the simulation estimate is less than one.

With this criterion, the errors in the approximation for the expected steady-state waiting time in a

GI/G/1 queue tend to be of order 0.05. To illustrate, in Table 10 we compare the approximations for E(W)

in (4.1) and (4.2) with the simulation estimates and exact numerical values from Seelen, Tijms and

van Hoorn (1985) for three variability pairs: (ca
2 , cs1

2 ) = ( 0. 5 , 0. 5 ), ( 0. 5 , 2. 0 ) and ( 4. 0 , 1. 0 ), each for

four values of ρ. In these 12 cases, the average error for (4.1), using the exact numerical values where
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available, is 0.045. For the same cases, the average error for our adjusted approximation, which

incorporates (4.2) when ca
2 < 1, is 0.026.

Of course, there are other candidate approximations for E(W) worth considering, but the major problem

is developing approximations for non-renewal arrival processes. For two queues in series, the larger

approximation errors tend to occur at the second queue. Thus we often choose to work with (4.1), without

the correction factor g, because it is easier to work with.

4.2 Approximating Arrival Processes by Renewal Processes

With the parametric-decomposition approximation procedure for open networks of single-server

queues, each queue is analyzed approximately as a GI/G/1 queue, so that the expected waiting times are

approximated by (4.1), possibly with a refinement such as (4.2), after an approximating arrival variability

parameter is determined for each queue. Each queue is analyzed as a GI/G/1 queue by acting as if the

interarrival times are i.i.d. with the squared coefficient of variation of an interarrival time equal to the

approximating arrival process variability parameter. The mean interarrival time at each queue, which is the

reciprocal of the arrival rate, is obtained (usually exactly) by solving the system of traffic rate equations. Of

course, for queues in series the arrival rate at each queue is the same as the external arrival rate.

The major difficulty is obtaining a variability parameter to adequately represent complicated non-

renewal arrival processes arising in queueing networks. In general, there is more flexibility in the possible

approximations than may be apparent, because the approximating arrival variability parameters may depend

on the traffic intensities at all the queues. For example, for two queues in series, the approximating

variability parameter of the arrival process at the second queue might depend on the traffic intensity of the

second queue as well as the traffic intensity of the first queue, even though the arrival process to the second

queue is exogeneous to the second queue. Having ca
2 depend on ρ has been shown to be useful for treating

queues with superposition arrival processes; see Albin (1984), Section 4.3 of Whitt (1983) and Albin and

Kai.

For two queues in series with order (1, 2) and a renewal arrival process, the critical approximation is the

variability parameter of the arrival process at the queue 2, which coincides with the variability parameter
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for the departure process from queue 1, say cd1
2 . The approximation in Whitt (1983, 1985) is

cd1
2 = ρ1

2 cs1
2 + ( 1 − ρ1

2 ) ca
2 , (4.3)

which is an approximation for the squared coefficient of variation of a stationary interval between

departures; see Section 2.2 of Whitt (1984). Note that cd1
2 in (4.3) does not depend on ρ 2 , even though it

could.

4.3 A New Hybrid Approximation for Departure Processes

Using our simulation results and a spreadsheet, we developed a hybrid approximation, in the spirit of

Albin, and Albin and Kai, that is a convex combination of the stationary-interval approximation (4.3) and

the asymptotic approximation cd1
2 ∼∼ ca

2 (see Whitt (1982) and Sections 1 and 4 of Whitt (1984)), namely,

cd1
2 = ρ2

10 ca
2 + ( 1 − ρ2

10 ) (ρ1
2 cs1

2 + ( 1 − ρ1
2 ) ca

2 ) = ρ1
2 ( 1 − ρ2

10 ) cs1
2 + [ 1 − ρ1

2 ( 1 − ρ2
10 ) ] ca

2 . (4.4)

Note that (4.4) can be applied to general open queueing networks as well as queues in series, e.g., it can

be immediately incorporated in the queueing network algorithms in Whitt (1983), Segal and Whitt (1988)

and Bitran and Tirupati (1988). We discuss other approximations for cd1
2 in Sections 5.3 and 5.4; a

summary of the approximations discussed appears in Table 11.

As in Whitt (1984), we found that natural candidate weighting factors for the convex combination such

as ρ 2 or ρ2
2 instead of ρ2

10 in (4.4) do not provide a consistent improvement over (4.3), but that a much

higher exponent such as 10 works remarkably well. Of course, for ρ 2 ≤ 0. 7, ρ2
10 ∼∼ 0 so that (4.4)

essentially reduces to (4.3) when ρ 2 ≤ 0. 7. To see the change from (4.3) to (4.4), note that

( 0. 95 )10 = 0. 599, ( 0. 9 )10 = 0. 349, ( 0. 8 )10 = 0. 107, ( 0. 7 )10 = 0. 028 and ( 0. 6 )10 = 0. 006.

The improvement provided by (4.4) is seen when the second queue has traffic intensity 0. 9. For the 52

cases in Tables 2-9 in which the second queue has ρ = 0. 9, the average error in the expected waiting time

at the second queue, which in these cases is always relative error, was reduced from 12.2% to 5.3% by

replacing (4.3) with (4.4).

Overall, for the simulation cases in Tables 2-9, the average estimated error in the expected steady-state

waiting time at the second queue (using the criterion introduced in Section 4.2) is 0.066 with the simple
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approximation (4.1) plus (4.3) and 0.048 with the adjusted approximation, using (4.2) when ca
2 < 1 and

(4.4).

Tables 8 and 9 are interesting because they contain quite different service-time distributions with the

same parameters. Of course, the mean waiting times are the same at the first M/G/1 queue in Tables 8 and

9, but differences at the second queue reflect effects of the distributions beyond the first two moments. The

differences are about the same order as our approximation errors, which suggests that the approximations

are reasonable.

4.4 Expected Sojourn Times for Two Queues

Let T( 1 , 2 ) and T( 2 , 1 ) be the total sojourn time (waiting time plus service time) per customer in

equilibrium for two queues with order (1, 2) and (2, 1), respectively. Combining (4.1) and (4.3), we obtain

the relatively tractable simple approximation

E[T( 1 , 2 ) ] ∼∼ ρ 1 +
2 ( 1 − ρ 1 )

ρ1
2 (ca

2 + cs1
2 )_ ___________ + ρ 2 +

2 ( 1 − ρ 2 )

ρ2
2 (ρ1

2 cs1
2 + ( 1 − ρ1

2 ) ca
2 + cs2

2 )_ _________________________ . (4.5)

Even though the adjustments discussed above usually improve the quality of the approximation, we use

(4.5) in order to obtain a relatively simple expression, which we can analyze with elementary calculus. We

sacrifice some accuracy to clearly see the first-order effects. Based on (4.5), we conclude that order (1, 2) is

preferred to order (2, 1) if and only if δ 1 < δ 2 , where

δ i = ( 1 − ρ i ) (csi
2 − ca

2 ) ; (4.6)

see (9) of Whitt (1985). Of course, we need to examine (4.5) to see if the predicted difference is truly

significant.

To compare the orderings of two queues, we focus on the approximate relative difference

R ≡ R(ca
2 , ρ 1 , cs1

2 , ρ 2 , cs2
2 ), where

R =
min { E[T( 1 , 2 ) ] , E[T( 2 , 1 ) ] }

E[T( 2 , 1 ) ] − E[T( 1 , 2 ) ]_ __________________________ . (4.7)

Given (4.5) and E[T( 2 , 1 ) ] > E[T( 1 , 2 ) ], our simple approximation for R is
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R ∼∼ N / D , (4.8)

where

N = ρ1
2 ρ2

2 
( 1 − ρ 1 ) cs1

2 − ( 1 − ρ 2 ) cs2
2 + (ρ 2 − ρ 1 ) ca

2


D = cs2
2 

ρ2
2 ( 1 − ρ 1 ) + cs1

2 
ρ1

2 ( 1 − ρ 2 ) + ρ1
2 ρ2

2 ( 1 − ρ 1 ) (4.9)

+ ca
2 

ρ1
2 ( 1 − ρ 2 ) + ρ2

2 ( 1 − ρ 1 ) ( 1 − ρ1
2 ) + 2 ( 1 − ρ 1 ) ( 1 − ρ 2 ) (ρ 1 + ρ 2 ) .

Note that (4.6) does not always agree with the simple design heuristic in Section 3.6, which we have

indicated is correct in all 80 cases in Tables 2-6. However, in only 9 of these 80 cases does the simple

approximation dictate the wrong order: (ρ 1 , ρ 2 ) = ( 0. 6 , 0. 9 ), ( 0. 3 , 0. 9 ), ( 0. 3 , 0. 8 ) in Table 4 and

( 0. 9 , 0. 8 ), ( 0. 9 , 0. 6 ), ( 0. 9 , 0. 3 ), ( 0. 8 , 0. 6 ), ( 0. 8 , 0. 3 ), ( 0. 6 , 0. 3 ) in Table 5. For the three cases in

Table 4, the simulation estimate of the relative difference in expected sojourn times are –3.9%, –0.4% and

–1.0%, while the predicted relative difference with the simple (adjusted) approximations are 0.4% (–0.1%),

0.2% (0.1%) and 0.02% (0.01%), respectively. Thus, for the three cases in Table 4, the approximations

correctly predict that the order does not matter.

However, there are two seriously wrong predictions for the variability triple ( 4. 0 , 0. 5 , 1. 0 ) in Table 5.

In the six cases here, the simulation estimates of the relative difference are –3.5%, –1.3%, –0.3%, –2.3%,

–0.6% and –2.4%, which indicate that the order really does not matter, whereas the simple (adjusted)

approximations predict relative differences of 16.1% (4.4%), 17.6% (8.3%), 4.9% (2.8%), 7.9% (5.8%),

3.5% (2.9%), 1.3% (1.3%), respectively. In the first two cases, the simple approximation predicts that the

reverse order ( 2 , 1 ) is significantly better (≥ 10 % ), whereas actually the order does not matter. However,

this approximation error is largely corrected by the refined hybrid approximation (4.4).

As indicated by Greenberg and Wolff (1988), the approximations consistently select the wrong order in

Tables 7 and 9, but for the most part the approximations correctly predict that the order actually does not

matter. Significant errors only occurs in the case (ρ 1 , ρ 2 ) = ( 0. 9 , 0. 6 ) in Tables 8 and 9; then the

difference between the simple (adjusted) approximation predicted relative difference and the simulation

estimate is 11.0 % (5.0%) and 15.4% (9.3%).
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Overall, the approximations predict the relative difference in expected sojourn times for the two orders

remarkably well. The average difference between the simple (adjusted) approximation prediction of the

relative difference and the simulation estimate in the 125 cases of Tables 2-9 is 4.8% (2.5%). For the

adjusted approximation, the maximum difference is 10.1%; the number of cases in which the difference is

greater than 8% (5%) is 8 (17). (In evaluating these numbers, recall that there is considerable noise in the

simulation estimates.)

4.5 The Perspective of the Separate Queues

It is useful to consider the design problem for two queues from the perspective of the separate queues.

When we do, we see that there are two cases: one, where the approximations predict that the good order is

better for both queues, and the other, where the approximations predict that there are tradeoffs.

The clear choice occurs when the arrival process variability parameter is between the two service-time

variability parameters. When cs1
2 ≤ ca

2 ≤ cs2
2 , the approximations predict that both queues are better off for

all combinations of traffic intensities with the order (1, 2). In (4.6), δ 1 is negative and δ 2 is positive. In

fact, this uniform preference remains true for (4.4) and all departure process approximations consistent with

min { ca
2 , cs1

2 } ≤ cd1
2 ≤ max { ca

2 , cs1
2 } . (4.10)

Since the conclusion is important, we state it as a proposition, but we omit the elementary proof.

Proposition 1. Suppose that the approximation for E(W) is nondecreasing in ca
2 (as in (4.1)) and the

departure process approximation satisfies (4.10) (as in (4.3) and (4.4)). If cs1
2 ≤ ca

2 ≤ cs2
2 , then the arrival

process variability parameters and the approximate expected waiting times at the two queues are both

smaller for all traffic intensities with order (1, 2).

Hence, we would predict with more confidence that the simple design heuristic is correct when

cs1
2 ≤ ca

2 ≤ cs2
2 . As indicated in Section 3, this prediction is correct in all simulation cases (Tables 2, 3 and

6). Moreover, in these cases the simulation estimates of the expected waiting times do seem to be less, or

essentially the same, at both queues with the optimal order. In addition, we would predict that higher

moments of the steady-state sojourn time are also less with order (1, 2).
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In contrast, if ca
2 ≤ cs1

2 ≤ cs2
2 , then the approximations predict that both queues want to be first; if

cs1
2 ≤ cs2

2 ≤ ca
2 , then the approximations predict that both queues want to be second. Hence, we expect

there to be tradeoffs, so that the order should matter less, which is consistent with our simulation results.

When ρ 1 = ρ 2 , the obvious order is ( 1 , 2 ), consistent with (4.6) and the simple design heuristic in

Section 3.6. When ρ 1 ≠ ρ 2 , (4.6) suggests beginning to favor the queue with the higher traffic intensity.

The idea is that the delay at the higher queue should dominate the total sojourn time, so that it is more

important to take action to keep the variability of its arrival process as low as possible. Hence, if

ca
2 ≤ cs1

2 ≤ cs2
2 and ρ 1 < ρ 2 or if cs1

2 ≤ cs2
2 ≤ ca

2 and ρ 1 > ρ 2 , then we may want to use the order (2, 1),

because it reduces the variability of the arrival process to the queue with the higher traffic intensity. We

call this idea the alleged variability smoothing principle.

As we explain in Section 5.2 below, the flaw in this reasoning is that in heavy traffic the alleged

variability smoothing does not take place. The delay at a second queue with high traffic intensity tends to

be nearly the same as if the first queue were not there.

5. ASYMPTOTIC REFERENCE POINTS

Useful insights can be gained from light-traffic and heavy-traffic limits. In this section we review some

of these results, discuss their implications, and investigate to what extent the insights are valid for systems

with typical traffic intensities, i.e., 0. 1 ≤ ρ i ≤ 0. 9.

5.1 Light Traffic

There is a very simple story for single-server queues in light traffic. Assume that customers arrive one

at a time (no batch arrivals) in a single-server queue with arrival rate 1 and let E[W(ρ) ] be the mean

steady-state waiting time before beginning service as a function of the mean service time (traffic intensity)

ρ. Of course, in great generality E[W(ρ) ] → 0 as ρ → 0. The first important observation is that in great

generality

ρ → 0
lim ρ − 1 E[W(ρ) ] = 0 . (5.1)

Not only does the mean waiting time become negligible as ρ → 0, but the mean waiting time relative to



- 20 -

the mean service time becomes negligible as ρ → 0.

The limit (5.1) is often expressed a different way. In many light-traffic analyses, the mean service time

is set equal to 1, so that the arrival rate becomes ρ. Then, instead of (5.1), we have only E[W(ρ) ] → 0 as

ρ → 0, but the practical consequence is the same: the mean waiting time relative to the mean service time

becomes negligible as ρ → 0.

There are several analyses supporting (5.1); e.g., Section 6.8 of Newell (1982), Daley and Rolski (1984,

1988), and Section 4.1 of Fendick and Whitt (1988). This behavior can also be deduced from Wolff (1982)

and Greenberg and Wolff, but Greenberg and Wolff conclude (p. 501) that the order can have substantial

relative effect on delay in light traffic. Note that approximation (4.1) (which tends to be too high in light

traffic) is consistent with (5.1), suggesting that

ρ − 1 E[W(ρ) ] = O(ρ) as ρ → 0 . (5.2)

The only way to support Greenberg and Wolff’s interpretation that the order does seriously matter in

light traffic is to use the relative difference of the waiting times excluding the service times, but we think

that it is usually more meaningful to include the service times.

The second important observation concerns the departure process from the queue in light traffic. If the

arrival rate is fixed at 1 and ρ → 0, then in great generality the departure process converges with

probability 1 to the arrival process; see Proposition 1 of Whitt (1988). Hence, if the arrival process is a

renewal process with variability parameter ca
2 , then the departure process is asymptotically the same

renewal process with parameter ca
2 . Hence, as ρ 1 → 0, cd1

2 ∼∼ ca
2 is asymptotically correct. Note that

approximations (4.3) and (4.4) are consistent with this light-traffic limit.

The overall impact of a queue being in light traffic is that the expected sojourn time in a network

containing the queue is asymptotically the same as if the queue were not there. Thus, if one of two queues

in series is in light traffic, then the order of the two queues should not matter, even with the relative

difference criterion. It is easy to see that approximation (4.8) is consistent with this limit. If either ρ 1 → 0

or ρ 2 → 0, then R → 0.
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Moreover, the same conclusion holds if both queues are in light traffic. By (5.1), the expected waiting

times become asymptotically negligible compared to the expected service times, which of course are the

same for the two orders. Again, approximation (4.8) is consistent with this limit; if both ρ 1 → 0 and

ρ 2 → 0, then R → 0.

In summary, our analysis supports the conclusion that the order of queues in series does not matter if

all queues, or all but one, are in light traffic. Of course, it remains to determine what traffic intensities

actually constitute light traffic, for which we turn to the simulations.

In fact, it is hard to say what actually constitutes light traffic. One would certainly expect that ρ i = 0. 3

is light traffic, but the order still matters when ρ 1 = 0. 9 and ρ 2 = 0. 3 in Table 3; indeed the estimated

relative difference in expected total sojourn time with the two orders is 19.0%.

The simulations do support the conclusion suggested by the light traffic limits that the order matters less

as either ρ 1 or ρ 2 , or both, get small. The simulations also indicate that for the queue to be negligible, the

traffic intensity must be lower as the service-time variability increases. For example, in Table 3, queue 1

with cs1
2 = 0. 5 is pretty negligible at ρ = 0. 3, whereas queue 2 with cs2

2 = 8. 0 is not. In fact, it is only in

Table 3 with cs2
2 = 8. 0, that the relative difference exceeds 10% when ρ i = 0. 3 for at least one queue.

5.2 One Queue in Heavy Traffic

When we let ρ i → 1 for one i, there are two effects to consider: the effect on queue i and the effect on

all subsequent queues.

For queue i, approximation (4.1) becomes asymptotically correct (the ratio of the two sides converges to

1) as ρ i → 1, where ca
2 is the squared coefficient of variation associated with the external arrival process.

For i = 1, this just means that approximation (4.1) is good as ρ → 1. For i ≥ 2, it means that the expected

sojourn time at bottleneck queue i is asymptotically the same as if the previous queues were not there; see

Iglehart and Whitt (1970), Reiman (1983), and Sections 1 and 4 of Whitt (1984).

As noted in Section 4 of Whitt (1984), approximation (4.3) is not consistent with this heavy-traffic

limit. In contrast, for i = 2, the hybrid approximation (4.4) is consistent with this limit. However, for

i > 2, neither (4.3) nor (4.4) is consistent with this limit. For i > 2 and ρ i → 1, the appropriate
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approximate variability parameter for the departure process from queue (i − 1 ) (to use as the arrival

process variability parameter at queue i) is cd(i − 1 )
2 ∼∼ ca

2 . (The service-time variability parameters

cs1
2 , . . . , cs(i − 1 )

2 play no role.) Similarly, for general queueing networks, the asymptotic method

approximation for the arrival process at queue i becomes appropriate as ρ i → 1.

The effect of ρ i → 1 on subsequent queues is fairly clear. Consistent with (4.3) and (4.4), queue i acts

like an external source; the departure process approaches a renewal process with the service times as the

interdeparture times.

The overall impact of one queue in heavy traffic is now clear: If one queue is in heavy traffic, then the

order will not matter. As ρ i → 1, the waiting time at queue i will be the dominant portion of the total

sojourn time and the waiting time at queue i will be the same no matter where queue i appears

(asymptotically as ρ i → 1). There is one important exception: If ca
2 = cs1

2 = 0 < cs2
2 , then the situation

is more complicated; then the first queue is a D/D/1 queue, so that E(W 1 ) = 0 for all ρ 1 , and the order

should matter as ρ 1 → 1. However, provided that csi
2 > 0, the order ultimately does not matter as

ρ i → 1.

As with the light traffic in Section 5.1, it remains to determine at what traffic intensities this heavy-

traffic limiting behavior can actually be seen. From Tables 2-9, we certainly cannot conclude that the order

does not matter when one queue has traffic intensity 0.9 and the other has a lower traffic intensity.

However, the heavy-traffic limit is the basis for the asymptotic method and the refined hybrid

approximation (4.4), which produces significant improvement at the second queue when the traffic intensity

there is 0.9. The heavy-traffic limit thus provides important insight.

5.3 Approximation Breakdown Due to a Bottleneck Queue

In this section we present simulation results showing that the heavy-traffic limiting behavior with a

single bottleneck queue can indeed be realized at typical traffic intensities. These simulation results also

show that the parametric-decomposition approximation in Section 4 can perform poorly. For other

examples of approximation breakdown, see Section 4 of Whitt (1985), Fendick, Saksena and Whitt, and

Bitran and Tirupati.
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The model here consists of nine exponential queues in series, with ρ i = 0. 6 for 1 ≤ i ≤ 8 and

ρ 9 = 0. 9, so that the last queue is the bottleneck. We let the interarrival times be H 2 with ca
2 = 8. 0.

Approximations (4.3) and (4.4) suggest that the appropriate approximating variability parameter for the

arrival process to queue i, say cai
2 , should decrease toward 1.0 as i increases, so that queue 9 should behave

much like an M/M/1 queue with E(W 9 ) ∼∼ 8. 1, whereas the bottleneck heavy-traffic limit suggests,

paralleling (4.1), the bottleneck approximation at queue i of

E(W i ) ∼∼
2 ( 1 − ρ i )

ρi
2 (ca

2 + csi
2 )_ ___________ , (5.3)

which is 36.5 in this case.

In fact, cai
2 does not quite reach 1 via the approximations, so that the simple approximation for E(W 9 ) is

8.9 and the adjusted approximation is 9.1. However, the simulation estimate is 30. 1 ± 5. 1, again using a

90% confidence interval, which is much closer to the bottleneck approximation 36.5.

A similar, but less dramatic result holds for the case of a deterministic arrival process with ca
2 = 0. 0.

Then the simple and adjusted approximations for E(W 9 ) are both 8.0, slightly less than the M/M/1 value of

8.1, whereas the bottleneck approximation in (5.3) is 4.05 and the simulation estimate is 5. 03 ± 0. 22.

Again the simulation estimate is much closer to the bottleneck approximation.

These examples show limitations in the parametric-decomposition approximations as currently

developed. We still believe that improved parametric-decomposition approximations can be developed to

cover these examples. However, it appears that an appropriate approximating arrival process variability

parameter at queue i, say cai
2 , should be a function of ca

2 , cs1
2 , . . . , cs,i − 1

2 and ρ 1 , ρ 2 , . . . , ρ i − 1 , ρ i .

Paralleling (4.10), we are fairly confident that cai
2 should satisfy the requirement that

min { ca
2 , cs1

2 , . . . , cs,i − 1
2 } ≤ cai

2 ≤ max { ca
2 , cs1

2 , . . . , cs,i − 1
2 } , (5.4)

but (4.3) and (4.4) evidently are not always good. However, we expect (4.3) and (4.4) to work well when

the bounds in (5.4) are not too far apart.

In order to capture the bottleneck phenomenon, Reiman (1988) proposed a sequential bottleneck

parametric-decomposition approximation for general queueing networks. The procedure starts by
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identifying the queue with the highest traffic intensity (assuming no ties) and applying the bottleneck

approximation to it, as in (5.3). This queue, say queue i, is then removed from the network and replaced by

an external source with a renewal process having the given arrival rate at queue i and an arrival variability

parameter equal to the service-time variability parameter csi
2 . Then the procedure is repeated by identifying

the queue with the second highest traffic intensity, and so forth. For two queues in series, this procedure

makes cd1
2 ∼∼ ca

2 if ρ 1 < ρ 2 and cd1
2 ∼∼ cs1

2 if ρ 2 < ρ 1; Reiman suggests cd1
2 ∼∼ 

ca
2 + cs1

2 
/2 if ρ 1 = ρ 2 .

This procedure has the virtue of capturing the effect of a bottleneck in a general network, so it and variants

have promise. However, for only two queues in series, it seems to be dominated by the hybrid

approximation in (4.4). For two queues, (4.4) responds more smoothly to changes in the parameters, as it

evidently should.

5.4 Two or More Queues in Heavy Traffic

As in Section 5.2, when several queues are in heavy traffic, we can disregard all other queues, but the

behavior of the subnetwork of heavily loaded queues in quite complicated, being described (asymptotically)

by a multi-dimensional diffusion process; see Iglehart and Whitt, Harrison (1973, 1978), Reiman (1984)

and Harrison and Williams (1987). In general, the stationary distribution cannot be readily evaluated, so

that we do not know the approximate mean waiting time at the second queue for two queues in series.

However, Greenberg (1986, 1987) did apply results from Harrison to show that for two queues with

ρ 1 = ρ 2 and ca
2 = cs2

2 , if the service-time distribution at the first queue is deterministic, then the expected

waiting time at the second queue is asymptotically (as ρ 1 → 1) 25% less than it would be if the first queue

were not there.

The heavy-traffic behavior of two queues in series when both ρ 1 → 1 and ρ 2 → 1 can be described in

two special cases. If ( 1 − ρ 2 )/( 1 − ρ 1 ) → ∞ as ρ 1 → 1 and ρ 2 → 1, then the asymptotic behavior is

as if ρ 1 → 1 with ρ 2 < 1 fixed, i.e., cd1
2 ∼∼ cs1

2 is asymptotically correct. On the other hand, if

( 1 − ρ 2 )/( 1 − ρ 1 ) → 0 as ρ 1 → 1 and ρ 2 → 1, then the asymptotic behavior is as if ρ 2 → 1 with

ρ 1 < 1 fixed, i.e., cd1
2 ∼∼ ca

2 is asymptotically correct. These different limits reveal a lack of robustness in

the behavior of two queues in heavy traffic. This analysis also suggests that numerical evaluation of the
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stationary distribution of the two-dimensional diffusion process should prove very useful.

Our design problem has also been studied by Wein (1988) using a heuristic approximation derived from

the heavy-traffic diffusion limit, related the case of balanced loading (the traffic intensities of all the queues

are high). This approximation makes the approximating arrival variability parameter at each queue after the

first equal to the service-time variability parameter at the previous queue, i.e., cd1
2 ∼∼ cs1

2 instead of (4.3) or

(4.4). For two queues, Wein’s approximation is consistent with (4.10) and is asymptotically correct as

ρ 1 → 1. Wein’s approximation often does not differ much from (4.3), but it does not seem to be an

improvement over (4.3). (Note that (4.4) puts more weight on ca
2 instead of cs1

2 .) Even though Wein’s

approximation is derived from heavy-traffic considerations, it does not capture the bottleneck phenomenon;

i.e., as explained above, cd1
2 ∼∼ cs1

2 is asymptotically correct when ρ 1 → 1 and ρ 2 → 1 only if

( 1 − ρ 2 )/( 1 − ρ 1 ) → ∞. Since Wein’s approximation is a heuristic based on the heavy-traffic limit, poor

performance of Wein’s approximation does not imply poor performance based on the full multi-

dimensional diffusion limit. We expect that the full diffusion limit will tell the proper story.

6. QUEUES WITH COMMON SERVICE-TIME VARIABILITY

Two theoretical results support the conclusion that the order should not matter much when the service-

time variability parameters are all nearly identical. First, Friedman (1965) showed that the order does not

matter at all when all the service-time distributions are deterministic. Second, Weber (1979) showed that

the order does not matter at all when all the service-time distributions are exponential, i.e., the sojourn-time

distributions are independent of the order. In both cases, the arrival process and the traffic intensities can be

arbitrary. See Lehtonen (1986), Anantharam (1987) and Tsoucas and Walrand (1987) for alternate proofs

of Weber’s interesting result. As indicated in Whitt (1985), the approximate relative difference in (4.8)

when cs1
2 = cs2

2 = 0 or when cs1
2 = cs2

2 = 1 should be viewed as a measure of approximation error.

Light-traffic limits in Section 4 of Greenberg and Wolff prove that the expected sojourn time for two

queues in series is not independent of the order when the service-time distributions differ only by a scale

factor, e.g., if the service-time distributions are both uniform or if they are both E 2 . Our simulation results

in Tables 7-9 also confirm (but of course do not prove conclusively) that the expected sojourn time is not
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independent of the order in these cases, but our simulation results also indicate that the order does not

matter much, as one would expect from the results of Friedman and Weber.

In Section 4 of their paper, Greenberg and Wolff show that the optimal light-traffic ordering contradicts

general ordering heuristics P2 and P3 on p. 481 of Whitt (1985) concerning the case of queues with

identical csi
2 , and this conclusion is supported by our simulation results. Indeed, as indicated in Whitt

(1985), the approximations themselves do not strongly support heuristics P2 and P3. The quantitative

estimates provided by the approximations mostly suggest (correctly) that the order does not matter in these

cases.

As indicated in Section 3.2, the light-traffic asymptotics seem effective for identifying which order is

best. However, the approximations also seem effective in providing a quantitative estimate of the expected

sojourn time with each other. As indicated in Section 4.4, the average (maximum) error in the predicted

relative difference of the expected sojourn times for two queues in series with the adjusted approximation

over the 110 cases in Tables 2-9 was 2.5% (10.1%).
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_ _________________________________________________________________
Table for Variability Parameters Traffic Intensities

Results ca
2 cs1

2 cs2
2 ρ i











_ _________________________________________________________________

different service variability

_ _________________________________________________________________

2 0.5 0.5 2.0

3 1.0 0.5 8.0

4 1.0 2.0 4.0 0.3, 0.6, 0.8, 0.9

5 4.0 0.5 1.0 ( 4 × 4 = 16 cases )

6 4.0 1.0 4.0





























_ _________________________________________________________________

identical service variability
_ _________________________________________________________________

7 1.0 0.5 0.5 0.1, 0.2

0.3, 0.6, 0.9

8 1.0 4.0 4.0

(H 2 with balanced means) (5 + 4 + 3 + 2 + 1 = 15 cases)

9 1.0 4.0 4.0

(H 2 with unbalanced means)

_ _________________________________________________________________ 











































































































Table 1. The simulation cases for two queues in series.



_ ____________________________________________________________________________
Traffic Approximations Tabled Difference

Variability Intensity _________________ Simulation Numerical _ ______________

Parameters ρ (4.1) (4.2) Estimate Values (4.1) (4.2)
_ ____________________________________________________________________________

0.9 4.05 3.98 3.91 3.92 0.033 0.015
ca

2 = 0. 5
0.8 1.60 1.54 1.48 1.49 0.074 0.034

0.6 0.45 0.40 0.38 0.38 0.070 0.020
cs

2 = 0. 5
0.3 0.064 0.044 0.040 0.039 0.025 0.005

_ ____________________________________________________________________________

0.9 10.13 10.05 9.92 0.021 0.013
ca

2 = 0. 5
0.8 4.00 3.93 3.90 0.026 0.008

not

0.6 1.13 1.08 1.06 available 0.066 0.019
cs

2 = 2. 0
0.3 0.161 0.138 0.126 0.035 0.012

_ ____________________________________________________________________________

0.9 20.25 19.51 21.16 20.17 0.004 0.033
ca

2 = 4. 0
0.8 8.00 7.42 8.10 7.86 0.018 0.056

0.6 2.25 1.94 2.12 2.06 0.092 0.058
cs

2 = 1. 0
0.3 0.320 0.247 0.246 0.243 0.077 0.004

_ ____________________________________________________________________________ 








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Table 10. A comparison of approximations for the expected steady-state waiting time at the first (GI/G/1)
queue with simulation estimates and numerical values from Seelen, Tijms and van Hoorn (1985).



_ _____________________________________________________________________
Approximation Method Variability Parameter cd1

2

_ _____________________________________________________________________

stationary-interval, (4.3) ρ1
2 cs1

2 + ( 1 − ρ1
2 ) ca

2

_ _____________________________________________________________________

ca
2asymptotic method (limit as

ρ 2 → 1 or as ρ 1 → 0)
_ _____________________________________________________________________

( 1 − ρ2
10 ) ρ1

2 cs1
2 + 

1 − ( 1 − ρ2
10 ) ρ1

2
 ca

2hybrid of stationary-interval and
asymptotic, (4.4)

_ _____________________________________________________________________

Wein’s heuristic based on multi-
dimensional diffusion

cs1
2approximation (also limit as

ρ 1 → 1)
_ _____________________________________________________________________

ca
2 if ρ 1 < ρ 2Reiman’s sequential bottleneck

cs1
2 if ρ 1 > ρ 2

2

(ca
2 + cs1

2 )_ _________ if ρ 1 = ρ 2

_ _____________________________________________________________________ 









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

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Table 11. Candidate approximate variability parameters for the departure process from the first queue of
two queues in series.
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Figure 1. The modified simulation model for greater efficiency: one network with 64 queues (4 values
of ρ 1 , 4 values of ρ 2 , 2 orders, 2 queues).


