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In order to understand queueing performance given only partial information about the
model, we propose determining intervals of likely values of performance measures given
that limited information. We illustrate this approach for the mean steady-state wait-
ing time in the GI/GI/K queue. We start by specifying the first two moments of the
interarrival-time and service-time distributions, and then consider additional information
about these underlying distributions, in particular, a third moment and a Laplace trans-
form value. As a theoretical basis, we apply extremal models yielding tight upper and lower
bounds on the asymptotic decay rate of the steady-state waiting-time tail probability. We
illustrate by constructing the theoretically justified intervals of values for the decay rate
and the associated heuristically determined interval of values for the mean waiting times.
Without extra information, the extremal models involve two-point distributions, which
yield a wide range for the mean. Adding constraints on the third moment and a transform
value produces three-point extremal distributions, which significantly reduce the range,
producing practical levels of accuracy.

Keywords: bounds, extremal queues, mean waiting time, multi-server queues, performance
approximations, queues

1. INTRODUCTION

Despite many significant research contributions in queueing theory over the years, what
Kingman [34] wrote 50 years ago largely remains true today:

It is a fair criticism of the theory of queues as it has been developed over the years
that, even in the simple cases for which explicit analytical solutions can be found, these
solutions are too complicated to be of practical use. It has been argued elsewhere [33]
that the criticism is to be met to some degree by the analysis of situations where robust
approximations exist, such as that of “heavy traffic.” It is, however, important to know
how accurately such approximations represent the true solution, and the significance of
inequalities for the various quantities of interest thus become apparent.

Just as Kingman [34] did, we consider this problem for the GI/GI/K queue, which
is a K-server queue with unlimited waiting room and service in order of arrival by the
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SET-VALUED QUEUEING APPROXIMATIONS 379

first available server, where the interarrival times and service times come from independent
sequences of independent and identically distributed (i.i.d.) random variables distributed as
U and V with general cumulative distribution functions (cdf’s) F and G. We are especially
interested in the performance impact of the variability of these underlying cdf’s F and G
(both assumed to have finite first two moments). To describe the extent of the variability
independent of the mean, we let c2

a and c2
s be the squared coefficient of variation (scv,

variance divided by the square of the mean) of U and V . We start by considering the
special case K = 1, but it is significant that our approach extends directly to K > 1.

The complication is well illustrated by the formula for the mean of steady-state waiting
time W (before starting service) for K = 1,

E[W ] =
∞∑

k=1

E[S+
k ]

k
< ∞, (1.1)

where [x]+ ≡ max {x, 0}, Sk is the kth partial sum of k i.i.d. random variables distributed
as X ≡ V − U and ≡ means equality by definition; see Sect. X.2 of [4] and Sect. 8.5 of [12].
Formula (1.1) is mathematically elegant but not convenient for computation. Formula (1.1)
is reviewed in Ref. [2], which is devoted to algorithms to compute E[W ] and P (W > t)
when K = 1 for general F and G based on alternative integral representations. In general,
simulation remains an attractive method, although it applies to only one specified model,
does not yield the insight of formulas, and is a relatively time-consuming numerical proce-
dure. Unfortunately, the situation is much worse for K > 1 because there is no analog of
(1.1) that has been found for K > 1.

A candidate simple and insightful approximation formula for E[W ] is provided by the
heavy-traffic approximation (HTA). Choose measuring units by setting E[U ] = 1, so that
E[V ] = ρK, where ρ is the traffic intensity. Then, the second moments are E[U2] = c2

a + 1
and E[V 2] = ρ2K2(c2

s + 1). In this context, the HTA for the mean with K ≥ 1 is

E[W ] ≈ ρ2(c2
a + c2

s)
2(1 − ρ)

. (1.2)

For K = 1, the HTA in (1.2) is obtained by combining the M/GI/1 Pol-
laczek–Khintchine exact formula for the special case of a Poisson arrival process, where
c2
a = 1, with the heavy-traffic limit in [30]. The extension to K > 1 was provided in Refs.

[5,24,25,36]. (We do not consider the many-server heavy-traffic scaling in [22] or [18].) The
limit shows that the approximation is asymptotically correct in the sense that

E[W ] = HTA + o(1 − ρ) as ρ ↑ 1, (1.3)

where o(x) is a quantity h(x) such that h(x)/x → 0 as x → 0.
In this setting, the problem posed in [34] can be expressed as follows: How accurate

is formula (1.2)? First, it is well known that, consistent with (1.3), the accuracy of (1.2)
improves as ρ increases; for asymptotic theory, see Thm. XIII.6.7 of [4]. More generally that
question is answered for the case K = 1, at least in part, by the large literature on bounds
for E[W ], given the partial specification by the parameter 4-tuple

(E[U ], E[U2], E[V ], E[V 2]) ≡ (1, c2
a, ρ, c2

s), (1.4)

starting from Refs. [14,16,31,34,48] and continuing with Refs. [6,9] and the many references
therein.
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380 Y. Chen and W. Whitt

Unfortunately, however, this program has not yet been very successful. As shown by
Table 1 in Ref. [9], the range of possible values of the mean E[W ] in the GI/GI/1 model
given the first two moments of U and V is quite wide and so is of limited value. (We
elaborate on this important point in Sect. 2 of the Appendix [7].) Consequently, we need to
use more information about F and G. However, relatively little is known about the impact
of additional information, beyond the early results for the GI/M/1 model in [44,45], [35]
and queues with phase-type distributions in [26,27]. Almost nothing is known about the
case K > 1, but it is known that the range given the first two moments of U and V is even
wider; see Refs. [15,21].

The purpose of this paper is to investigate a new approach to obtain useful set-valued
approximations for the steady-state mean E[W ] given partial information about the two
underlying distributions, which addresses two difficulties: (i) producing a useful smaller
set of possible values than is possible with the first two moments and (ii) applying to the
challenging multi-server case K > 1 as well as K = 1.

We show that it is possible to address both of these difficulties by taking an indirect
approach. Instead of focusing directly on the mean, we first focus on the (asymptotic)
decay rate of the steady-state waiting-time distribution because it is more tractable. For
the decay rate, we apply recent tight upper and lower bounds established in [8] by applying
the theory of Tchebycheff systems. We use the extremal models for the decay rate to create
likely intervals for the mean E[W ]. So far, this indirect approach is heuristic, because while
we produce valid performance guarantees for the decay rate, we do not produce performance
guarantees for the associated mean. Nevertheless, we are able to produce useful intervals
of likely values for the mean, given only two more parameters for each of the underlying
distributions: the third moment and a single value of its Laplace transform.

This study is not only useful for understanding simple approximations such as (1.2).
It is also useful when we fit a specific model to data, such as a Ph/Ph/K model with
phase-type distributions, and then compute the exact value of the mean E[W ] for that
model by simulation or a numerical algorithm. Even in that case, it is natural to ask how
the performance depends on limited information.

Here is how the rest of the paper is organized: In Section 2, we give an overview
of the supporting theory and our approximation procedure. In Section 3, we review the
supporting theory for the decay rate. In Section 4, we apply that the theory to develop
the set-valued approximations for the mean, as outlined above. In Section 5, we conduct
simulation experiments to evaluate the procedure. The tables in Section 5 show that the
heuristic procedure above with an appropriate parameter choice is effective, but we regard it
as a proof of concept rather than the final word. In Section 6, we draw conclusions. We give
a concise summary of the approximation procedure in Section 6.1. Additional supporting
material appears in Ref. [7].

2. OVERVIEW

In Section 2.1, we explain the theoretical basis in terms of the decay rate. In Section 2.2,
we give a quick overview of our proposed procedure.

2.1. Applying Tchebycheff Systems to the Asymptotic Decay Rate

In order to make progress, we propose a new approach based on the asymptotic decay rate.
To do so, we restrict attention to the light-tailed case, where the service-time cdf G has
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SET-VALUED QUEUEING APPROXIMATIONS 381

finite moments of all orders. We then typically have

P (W > t) ∼ αe−θW t as t → ∞, (2.1)

where f(t) ∼ g(t) as t → ∞ means that f(t)/g(t) → 1. Then, we call θW the (asymptotic)
decay rate and have the rough approximations E[W ] ≈ α/θW ≈ 1/θW ; for example, see Ref.
[3]. The key observation is that, in great generality, but under regularity conditions, the
decay rate θW in (2.1) is attained as the unique positive real root of an equation involving
the Laplace transforms of U and V , for example, f̂(s) ≡ ∫ ∞

0
e−st dF (t), see Ref. [3]. In

particular, the equation for the decay rate is

f̂(s)ĝ(−s) = 1. (2.2)

In this light-tailed setting, in Ref. [8] we have shown that the theory of Tchebycheff (T )
systems from Ref. [28], as used in Refs. [17,20,23,26,27,41,44,45], can be applied to determine
extremal models (yielding tight upper and lower bounds) on the decay rate θW above. The T -
system theory is a refinement of the classical moment problem which provides conditions for
identifying the probability measure P obtaining the supremum of an integral

∫ b

a
φ dP given

a finite number of integral constraints of the form
∫ b

a
ui dP = mi. The extremal probability

measures have a prescribed form if the set of functions {φ, u0, . . . , um} have a special form;
see Sect. 2 of [8] for a concise review suitable for the results here. As indicated by Lemma
2.2 of [8], the relevant T system here arises when the functions φ and ui are either moments
or values of the Laplace transform. That structure suffices for the asymptotic decay rate by
virtue of (2.2). In Section 3, we review the extremal results for the decay rate that we will
apply. See (3.3) for the extension to K > 1.

2.2. Application to Reveal Likely Intervals for the Mean Waiting Time

We now briefly describe the basic procedure for generating likely intervals for the mean E[W ]
in the GI/GI/1 model. We start by specifying the basic parameter vector (1, c2

a, ρ, c2
s) in

(1.4). Next, we specify a reference base GI/GI/1 model with those parameters, depending
on the pair of cdf’s (F,G). For that reference model, we determine the third moments ma,3

of F and ms,3 of G and the asymptotic decay rate θW ≡ θW (F,G).
Now, we come to the heuristic steps. In order to apply Theorem 3.2 for the decay rate

to generate an interval of likely decay rates, we need to specify a finite upper bound on
the support and a Laplace transform value for each of the distributions F and G. Let the
support bounds be Ma for F and ρMs for G. Let the arguments of the Laplace transforms
be μa for F and μs for G, so that we are specifying f̂(μa) with μa > 0 for F and ĝ(−μs)
with 0 < μs < s∗ for G, where s∗ is a theoretical limit specified in Assumption 3.1.

The remaining parameter vector (μa,Ma, μs,Ms) in addition to (1.4) is specified to
obtain an effective heuristic interval of likely values for the mean E[W ]. For that purpose,
we use two positive tuning parameters ε and R. We emphasize that this is a heuristic step,
so some judgment is required. For understanding, it is good to carry out the procedure for
a few candidate values of ε and R.

First, Theorem 3.2 for the decay rate requires finite support bounds for F and G. Thus,
our approach is to choose support bounds that should not affect the results much. With
that rough goal in mind, we let ε be a small value such as ε = 0.001. Then, we choose Ma

and Ms to satisfy

P (U > MaE[U ]) = P (U > Ma) = P (V > MsE[V ]) = P (V > ρMs) = ε. (2.3)
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382 Y. Chen and W. Whitt

Next, we specify the arguments μa and μs. We examine all possible orderings compared
to θW . After study, we suggest one of the two orderings:

μs, μa ≤ θW and μs ≤ θW ≤ μa, (2.4)

where θW is the reference base decay rate. Theorem 3.2 implies that the interval of possible
decay rates decreases as these arguments approach the base decay rate θW . Thus, for any
given ordering, we let

μ ≡ θW /R if μ ≤ θW and μ ≡ RθW if μ ≥ θW (2.5)

for suitable R, such as R = 20. The exact interval of possible decay rates decreases to the
single base value θW as R ↓ 1. Because there is no simple relation between the mean E[W ]
and the decay rate θW , it is important that we not try to make the interval for the decay
rate too short. Accordingly, it is important that R not be too small.

3. REVIEW OF EXTREMAL MODELS FOR THE ASYMPTOTIC DECAY RATE

In this section, we review the supporting theory for the decay rate determined in Ref. [8].
In Section 3.1, we provide additional background on the decay rate θW in (2.1). In Section
3.2, we exhibit the two-point extremal models given two moments and finite support for U
and V . In Section 3.3, we exhibit the three-point extremal models given three moments, a
Laplace transform value and a support bound for U and V . In Section 3.4, we establish the
results for the case of unbounded support.

3.1. Background on the Decay Rate

To increase the level of generality, instead of (2.1), we can let θW be defined by the critical
exponent in the Kingman-Lundberg bound for the GI/GI/1 queue, as in Ref. [32] and Sect.
XIII.5 of [4], defined by

θW ≡ inf {x ≥ 0 : P (W > t) ≤ e−xt, t ≥ 0}, (3.1)

so that large waiting times correspond to small values of θW . Under regularity conditions,
θW in (3.1) coincides with the asymptotic decay rate studied in large-deviations theory,
defined by

θW ≡ lim
x→∞

− log P (W > x)
x

. (3.2)

We assume that a strictly positive infimum exists in (3.1) and a strictly positive limit
exists in (3.2), which requires that the service-time V must have a finite moment generating
function E[esV ] for some s > 0. (We obtain θW = ∞ if P (V − U ≤ 0) = 1 and thus P (W =
0) = 1.) Thus, we are considering the light-tail case as in the discussion of exponential
change of measure in Chap. XIII in [4], large deviation limits in Corollary 1 in Sect. 1.2
of [19] and approximations in [3]. More about the asymptotic decay rate can be found in
discussions of the caudal characteristic curve of queues in [39] and effective bandwidths in
[11,29,46] and references therein.

As stated in the Introduction section, for our queueing application, the key observation
is that, under regularity conditions, the asymptotic decay rate θW in (2.1), (3.1), or (3.2)
is attained as the unique positive real root of Eq. (2.2) involving the Laplace transforms
of U and V , for example, f̂(s) ≡ ∫ ∞

0
e−st dF (t). Equivalently, as in Sect. XIII.1 of [4],
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κF (s) + κG(−s) = 0, where κF (s) ≡ log (f̂(s)) is the cumulant generating function. (The
function ĝ(−s) ≡ E[esV ] for s > 0 is the moment generating function (mgf).)

Indeed, it is well known that the distribution of W depends on V − U , which has Laplace
transform f̂(−s)ĝ(s). Moreover, Chapter II.5 of [13] shows that the distribution of W can
be characterized by all complex roots of equations related to (2.2).

Given the simple structure in (2.2), the extremal result and alternative ones follow
from the theory of T systems, as reviewed in Ref. [8]. To state the results, we impose some
technical conditions. In contrast to the mean E[W ], which is finite for all models given the
partial moment information in (1.4), as can be seen from Sect. X.2 of [4], the decay rate is
not well defined for all these models. Hence, in order to establish the extremal results for
the decay rate in (3.1) given the partial moment information in (1.4), we make the following
assumption.

Assumption 3.1 (finite moment generating function): Assume that there exists s∗, 0 <
s∗ ≤ ∞, such that the service-time cdf G has a finite moment generating function ĝ(−s) =∫ ∞
0

esx dG(x) for all s, 0 < s < s∗.

In general, we need to impose additional regularity conditions to have the limit for the
decay rate in (3.2) be well-defined, as can be seen from Corollary 1 and Prop. 2 in [19] and
Thms. 2.1, 5.5, and 5.3 in Chap. XIII in [4]. Instead of adding additional assumptions, we
allow the decay rate to be defined by (3.1). It coincides with (3.2) when the limit exists.

We still need extra conditions for (2.2) to have a solution; see Example 5 in Sect. 3
and Thm. 5 in Sect. 7 of [3]. However, no extra condition is needed when G has support in
[0,Ms] because then E[etV ] ≤ etMs for all t > 0, so that s∗ = ∞ in Assumption 3.1.

As indicated in Ref. [3], the asymptotic decay rate also is well defined for the more
general GI/GI/K model. We have fixed E[U ] = 1. If instead we had fixed E[V ] = 1, then
θW (K) = KθW (1), as in (5) of [3], where U(K) = U(1)/K to keep ρ fixed. Since we fix
E[U ] = 1, we get θW (K) = θW (1) ≡ θW . (As a sanity check, this can easily be verified for the
P (W > t|W > 0) = e−θW t in the M/M/K model; see Thm. 9.1 in Sect. III.9 on p. 108 of [4].)
However, we must adjust the service-time V to maintain ρ = E[V ]/KE[U ]. Thus, we leave
U independent of K, but we let V (K) = KV (1). Thus, the finite support of V (K) becomes
[0, ρKMs], the pth moment of E[V (K)p] = KpE[V (1)p] and the Laplace transforms are
related to ĝV (K)(s) = ĝV (1)(Ks). This implies that we can apply the extremal distributions
for K = 1 to directly obtain the corresponding extremal distributions for K > 1: If V ∗(K)
is the extremal random variable as a function of K, then V ∗(K) = KV ∗(1).

In Ref. [3], it was observed that the extension to K > 1 in (5) there was proved for the
GI/PH/K by Neuts and Takahashi [40]. A continuity result in Thm. 3.1 of [8] implies that
result applies to the general GI/GI/K model. If the decay rate θW is well defined for the
GI/GI/1 model with (U, V ) having cdf’s (F,G) where E[U ] = 1, then it is well defined in
the associated GI/GI/K model with (U,KV ) with the same cdf F and

θW (K) = θW (1) ≡ θW for K > 1. (3.3)

3.2. Two-Point Extremal Distributions Given Only Two Moments

We first consider the classical case in which we specify two moments. Let P2(m,m2(c2 +
1),M) be the set of all cdf’s with mean m, support [0,mM ] and second moment m2(c2 +
1), where c2 is the scv with c2 + 1 < M < ∞. (The last property ensures that the set
P2(m,m2(c2 + 1),M) is non-empty.) The extremal distributions for the decay rate will be
the extremal distributions P ∗

U and P ∗
L for T systems in Sect. 2.2.1 of [8].
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384 Y. Chen and W. Whitt

In this classical setting, the extremal distributions P ∗
U and P ∗

L are special two-point
distributions. The set of two-point distributions is a one-dimensional parametric family. In
particular, any two-point distribution with mean m, scv c2, and support mM has probability
mass c2/(c2 + (b − 1)2) at mb, and mass (b − 1)2/(c2 + (b − 1)2) on m(1 − c2/(b − 1)) for
1 + c2 ≤ b ≤ M .

Let subscripts a and s denote sets for the interarrival and service times, respectively.
Let F0 and Fu (G0 and Gu) be the two-point extremal interarrival-time (service-time) cdf’s
corresponding to P ∗

L and P ∗
U, respectively, in the space Pa,2(1, c2

a + 1,Ma) (Ps,2(ρ, ρ2(c2
s +

1),Ms)) from Sect. 2.2.1 of [8]. (Recall our convention that E[U ] = 1 and E[V ] = ρ. Hence,
the support of V is [0, ρMs].)

Consequently, F0 has probability mass c2
a/(1 + c2

a) at 0 and probability mass 1/(c2
a + 1)

at m(c2
a + 1), while Fu has mass c2

a/(c2
a + (Ma − 1)2) at the upper bound of the support,

Ma, and mass (Ma − 1)2/(c2
a + (Ma − 1)2) on m(1 − c2

a/(Ma − 1)).
We are especially interested in the map

θW : Pa,2(1, 1 + c2
a,Ma) × Ps,2(ρ, ρ2(1 + c2

s),Ms) → R, (3.4)

where 0 < ρ < 1 and θW (F,G) is the asymptotic decay rate of the steady-state waiting
time W (F,G) with interarrival-time cdf F ∈ Pa,2(1, 1 + c2

a,Ma) and service-time cdf G ∈
Ps,2(ρ, ρ2(1 + c2

s),Ms). In Ref. [8] we also consider case in which one cdf is specified, in
which case it need not have bounded support, but we do not discuss those cases here.

Theorem 3.1 (two-point extremal distributions for the decay rate, Thm. 3.2 of [8: )] Let
F0, Fu, G0, and Gu be the two-point extremal cdf’s for the GI/GI/1 queue defined above.

For all F ∈ Pa,2(1, c2
a + 1,Ma) and G ∈ Ps,2(ρ, ρ2(c2

s + 1),Ms),

θW (F0, Gu) ≤ θW (F,G) ≤ θW (Fu, G0). (3.5)

Based on Theorem 3.1, the overall extremal GI/GI/1 models are thus (F0, Gu) and
(Fu, G0). Our assumption that the distributions have bounded support plays an important
role. That is evident from the following elementary proposition.

Proposition 3.1 (limits as the support increases): Under the assumptions of Theorem 3.1,
for all F ∈ Pa,2(1, c2

a + 1,Ma) and G ∈ Ps,2(ρ, ρ2(c2
s + 1),Ms),

θW (F,Gu) → 0 as Ms → ∞, (3.6)

while

θW (Fu, G) → θW (F1, G) as Ma → ∞, (3.7)

where F1 is the cdf of the unit point mass on 1, associated with the D/GI/1 model.

Remark 3.1 (the decay rates of other steady-state distributions): Analogs of Theorem 3.1
(and the later Theorem 3.2) hold for the steady-state continuous-time queue length and
workload because there are simple relations among all these decay rates. That follows from
Thm. 6, Prop. 9, and Prop. 2 of [19]. For the workload, the decay rate is the same; for the
queue length, θQ = ĝ(−θW ).
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Remark 3.2 (comparison to the mean): The extremal model (F0, Gu) in Theorem 3.1 yield-
ing the smallest decay rate coincides with the conjectured upper bound model for the mean
E[W ], but the extremal model (Fu, G0) in Theorem 3.1 yielding the largest decay rate does
not coincide with the lower bound for the mean; see Sect. 2.4.1 of [9].

3.3. Laplace Transform Constraints to Reduce the Range

We now add additional constraints on the cdf’s F and G. In order to apply Lemma 2.2 of
[8], we add constraints on higher moments and transform values of F and G. In particular,
following [17,44], we add a third moment and a value of the Laplace transform. With (2.2)
in mind, we now impose constraints on the Laplace transform f̂(s) at s = μa > 0 and on
the reciprocal of the mgf, 1/ĝ(−s), at s = μs, 0 < μs < s∗, for s∗ in Assumption 3.1.

For the new extremal distributions, let Pa,2(1, c2
a + 1,ma,3, μa,Ma) be the subset of F in

Pa,2(1, c2
a + 1,Ma) having specified third moment ma,3 and Laplace transform value f̂(μa).

Since we are working with the mgf ĝ(−s) for s > 0, let Ps,2(ρ, ρ2(c2
s + 1),ms,3, μs,Ms) be

the subset of G in Ps,2(ρ, ρ2(c2
s + 1),Ms) having specified third moment ms,3 and mgf value

ĝ(−μs) at μs for 0 < μs < s∗. (Recall that s∗ = +∞ if G has bounded support.)
Let FL and FU (GL and GU) be the three-point extremal interarrival-time (service-time)

cdf’s corresponding to P ∗
L and P ∗

U, respectively, in the space Pa,2(1, c2
a + 1,ma,3, μa,Ma)

(Ps,2(ρ, ρ2(c2
s + 1),ms,3, μs,Ms)) based on Sect. 2.2.1 of [8]. (Recall our convention that

E[U ] = 1 and E[V ] = ρ.) In particular, FL (FU) is the unique element of Pa,2(1, c2
a +

1,ma,3, μa,Ma) with support on the set {0, x1, x2} (on the set {x1, x2,Ma}) for 0 < x1 <
x2 < Ma, while GL (GU) is the unique element of Ps,2(ρ, ρ2(c2

s + 1),ms,3, μs,Ms) with
support on the set {0, x̄1, x̄2} (on the set {x̄1, x̄2, ρMs}) for 0 < x̄1 < x̄2 < ρMs.

Again, in Ref. [8] we also consider case in which one cdf is specified, in which case it
need not have bounded support, but we do not discuss those cases here.

Theorem 3.2 (three-point extremal distributions for the decay rate, Thm. 3.3 of [8]): Let
FL, FU, GL, and GU be the three-point extremal cdf’s for the GI/GI/1 queue defined above.

For all F ∈ Pa,2(1, c2
a + 1,ma,3, μa,Ma) with μa > 0 and G ∈ Ps,2(ρ, ρ2(c2

s + 1),ms,3,
μs,Ms) with μs > 0, the decay rate θW (F,G) is well defined as the unique positive solution
of (2.2). Moreover, for all (F,G) in these sets, the following four pairs of lower and upper
bounds for θW (F,G) are valid:

(i) θW (FL, GU) ≤ θW (F,G) ≤ θW (FU, GL) if μs, μa ≤ θW ,

(ii) θW (FU, GU) ≤ θW (F,G) ≤ θW (FL, GL) if μs ≤ θW ≤ μa,

(iii) θW (FU, GL) ≤ θW (F,G) ≤ θW (FL, GU) if θW ≤ μs, μa, μs < s∗,

(iv) θW (FL, GL) ≤ θW (F,G) ≤ θW (FU, GU) if μa ≤ θW ≤ μs < s∗. (3.8)

The bounds on θW get tighter as μa and μs move closer to θW (F,G). The bounds
coincide with θW when μa = θW in (a) and μs = θW in (b).

Remark 3.3 (choice of the Laplace transform values): The final conclusion of Theorem
3.2 has important practical implications. It shows that, for any given model with a specified
decay rate, the range of possible decay rate values consistent with the partial information
becomes smaller as the arguments of the Laplace transforms become closer to the final decay
rate.
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3.4. Extending the Extremal Models to Unbounded Support

The T -system theory and the Markov–Krein theorem extend to unbounded support intervals
as shown by Karlin and Studden [28] and as indicated in Refs. [17,20]. The extension is easy
if the extremal distribution places no mass on the upper endpoint. Then, the same extremal
distribution holds for all larger support bounds, including the unbounded interval [0,∞).

First, in the setting of the two-point extremal distributions in Theorem 3.1, the extremal
cdf’s F0 and G0 have support on {0, x} for appropriate x and so remain valid if we increase
Ma and Ms. (The x depends on the cdf.)

Similarly, in the setting of the three-point extremal distributions in Theorem 3.1, the
extremal cdf’s FL and GL have support on {0, x1, x2} for appropriate x1 and x2 and so
remain valid if we increase Ma and Ms. (Again, the points x1 and x2 depend on the cdf.)

Consequently, we need to make no adjustments for truncation provided we use the
following special case of (3.8):

θW (FL, GL) ≤ θW (F,G) for μa ≤ θW ≤ μs < s∗,

θW (FL, GL) ≥ θW (F,G) for μs ≤ θW ≤ μa. (3.9)

This recipe also eliminates the need to consider multiple cases.
We state the result formally in the following corollary. To simplify, we make the following

stronger assumption.

Assumption 3.2 (uniformly good cdf G): In addition to Assumption 3.1, assume that, for
the service-time cdf G, Eq. (2.2) has a finite solution for all F ∈ Pa,2(1, c2

a + 1).

Note that Assumption 3.2 is satisfied by the M , Hk, and Ek distributions considered
here and many others, but we need to avoid pathological examples like Example 5 of [3].

Corollary 3.1 (extension to unbounded support): Consider the setting of Theorem 3.2
extended by allowing unbounded support, that is, Ma = Ms = ∞.

(a) For any G ∈ Ps,2(ρ, ρ2(c2
s + 1)) satisfying Assumption 3.2, the decay rate θW (F,G)

is well defined as the unique positive solution of (2.2). Moreover, if μa ≤ θW , then

θW (FL, G) ≤ θW (F,G) (3.10)

for all F ∈ Pa,2(1, c2
a + 1,ma,3, μa).

(b) For any G ∈ Ps,2(ρ, ρ2(c2
s + 1),ms,3, μs) satisfying Assumption 3.2, the decay rate

θW (F,G) is well defined as the unique positive solution of (2.2). Moreover, if θW ≤
μs < s∗, then

θW (F,GL) ≥ θW (F,G) (3.11)

for all F ∈ Pa,2(1, c2
a + 1).

(c) For all (F,G) such that Assumption 3.2 holds, the decay rate θW (F,G) is well defined
as the unique positive solution of (2.2) and (3.9) holds.

4. APPLICATION TO PRODUCE A PRACTICAL RANGE FOR THE MEAN

We now elaborate in Section 2.2 and more carefully describe how we apply the theoretical
results for the decay rate in Section 3 to develop a practical way to identify intervals of
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likely values for the mean steady-state waiting time given the basic moment parameters in
(1.4) and the additional parameters introduced in Theorems 3.1 and 3.2. This analysis is
heuristic because we have no explicit relation between the decay rate and the mean, but
the general idea is that the mean should be decreasing in the decay rate.

We start in Section 4.1 by discussing the support bounds used in Theorems 3.1 and 3.2.
Then, in Section 4.2, we indicate how we can obtain the extremal models with three-point
distributions derived in Theorem 3.2.

4.1. Choosing the Support Bounds Ma and ρMs for GI/GI/1

Before considering the support bounds, we emphasize that the range of possible values for
the mean E[W ] in the GI/GI/1 model given only the first two moments of U and V tends
to be remarkably wide. That is shown in Table 1 of [9] and in Tables 1–4 in [7]. The relative
errors tend to increase in c2

a but decrease in ρ and c2
s; see Sect. 2 of [7].

4.1.1. Starting with a model or data In order to apply Theorem 3.2, we need support
bounds on F and G. Hence, starting from a specific model or data with unbounded U and
V , we suggest choosing the support bounds Ma and ρMs that tend to not affect the mean
too much. In particular, we suggest choosing Ma and Ms so that the tail probability is
suitably small, that is, so that

P (U > MaE[U ]) = P (U > Ma) = P (V > MsE[V ]) = P (V > ρMs) = ε (4.1)

for a suitably small ε such as 0.001; see Sect. 3 of [7] for more discussion.
For our numerical experiments, we start with standard M , Ek, and H2 distributions,

which are determined by their first two moments. For M , c2 = 1; for Ek, c2 = 1/k < 1; for H2

distributions, c2 ≥ 1. For H2, we assume balanced means to reduce the number of parameters
from 3 to 2, as in (3.7) of [42]. We suggest using a simple exponential approximation based
on the asymptotic decay rates of these distributions, which are well-defined. Thus, we choose
Ms so that

ε = P (V/E[V ] > Ms) ≈ e−θV Ms , (4.2)

where θV is the asymptotic decay rate of V .
For M , the decay rate of V/E[V ] is θV = 1; for Ek, the scv is 1/k, while the decay rate

of V/E[V ] is θV = k, so we let θV = 1/c2
s for c2

s ≥ 0.01, and θ(ρ, c2
s) = 100 for c2

s ≤ 0.01 to
avoid the deterministic case with c2

s = 0. Our examples use c2
s = 0.5, for which θV = 2. In

the case of H2 with balanced means, by (37) in [42], the asymptotic decay rate of V/E[V ]
is

θV = 1 −
√

(c2
s − 1)/(c2

s + 1). (4.3)

Our examples use c2
s = 4.0, for which we use θV = (1 − √

3/5) = 0.2254.
We now see how the extremal UB model F0/Gu/1 and the LB model Fu/G0/1 for

the decay rate from Theorem 3.1 apply to the mean E[W ] with K = 1 when we introduce
the parameters Ma and Ms following the prescription above. Table 1 shows the results for
five cases: (c2

a, c2
s) = (1.0, 1.0), (4.0, 4.0), (0.5, 0.5), (4.0, 0.5), and (0.5, 4.0). (We show more

results for other traffic intensities in Sect. 4 of [7].) We show two candidate support bounds
for each case, based on ε = 0.01 and 0.001 in (4.1). For comparison, Table 1 shows the HTA
and the tight UB and LB given only the moments as well as the values of the mean with
the support bounds.
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Table 1 shows that the range decreases as the traffic intensity increases and as the
support bounds decrease. For ρ = 0.7, the tight UB is not too far above the HTA approxi-
mation, but the tight LB tends to be far below. The mean for the Fu/G0/1 model with Ma

is significantly larger than the tight LB, but still the final range is very large, except for
the one case (c2

a, c2
s) = (0.5, 4.0). Note that the relative error is only about 5% for ρ = 0.7

in that good case.
To obtain these estimates of E[W ] and later ones, we use simulation. We implement

standard Monte-Carlo simulation to estimate the sample mean of the steady-state waiting
time with a run length (number of arrivals) N = 5 × 108 and 20 independent replications
for the model Fu/G0/1, but it helps to use an efficiency-improvement algorithm for the
F0/Gu/1 model with the atom at the upper support bound, as discussed in Ref. [9]. We
implement the [38] simulation algorithm with total simulation length T = 1 × 107 and 20
independent replications for the model F0/Gu/1. We can construct 95% confidence interval
by using statistical t-test. The worst-case confidence interval length for Monte-Carlo simu-
lation achieves 10−3 level which happens at the highest ρ, while the worst-case confidence
interval length for the [38] simulation is around 10−4 level. (See Ref. [9] for more discussion.)

Remark 4.1 (starting with HTAs): An alternative approach for obtaining the support
bounds is to use HTAs. In addition to the HTA for the mean in (1.2), we can use the
associated HTA for the decay rate,

θW ≈ 2(1 − ρ)
ρ(c2

a + c2
s)

, (4.4)

which is obtained by combining the M/M/1 exact formula θW = (1 − ρ)/ρ with the heavy-
traffic asymptotic expansion established in [1]; that is,

θW (ρ) =
2(1 − ρ)
c2
a + c2

s

+ C(1 − ρ)2 + O(1 − ρ)3 as ρ ↑ 1, (4.5)

where C is an (explicit) function of the first three moments of the mean-1 random variables
U and V/ρ. Related asymptotics and approximations for the GI/GI/s and BMAP/GI/1
models are established in [3,10] and Corollary 3 of [19].

To show that we could also start from the HTAs for the mean E[W ] in (1.2) and for
the decay rate θW in (4.4) instead of the exact models based on E2 and H2 distributions,
again using the case of balanced means to reduce the H2 parameters from 3 to 2. Table 2
compares the exact values of θW and E[W ] to these HTAs. Table 2 shows that the HTA in
(1.2) overestimates the exact value when c2

a = 0.5, which is consistent with the refinement
in (44) and (45) of [43].

We found that the support bounds determined by the HTA are similar to those for
the exact model. Overall, we found that, with the procedure based on (4.1), the support
bounds reduce the range of possible value in all cases, but not greatly, so that the range
is still very wide in most cases. The tables also show that the cases differ dramatically.
The relative errors are remarkably small for (c2

a, c2
s) = (0.5, 4.0) but remarkably large for

(c2
a, c2

s) = (4.0, 0.5).

4.2. Determining the Extremal Models from Theorem 3.2

We now investigate how we can apply Theorem 3.2 to obtain a better indication of typical
values of the mean E[W ]. Paralleling the two-moment case discussed above, we assume
that we are given the first three moments of the underlying cdf’s F and G. We also assume
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Table 1. Comparing bounds for E[W ] using Fu/G0/1 (UB) and F0/Gu/1 (LB) with (Ma,Ms) from Section 4.1 using ε = 0.001 and
0.01 in (4.1)

ρ Tight LB Ma = 9 Ma = 7 HTA (1.2) Ms = 7 Ms = 9 Tight UB

c2a = c2s = 1 0.50 0.000 0.122 0.162 0.500 0.810 0.821 0.846
0.70 0.467 0.970 1.130 1.633 2.025 2.036 2.071
0.90 3.600 7.265 7.596 8.100 8.564 8.579 8.620

Ma = 39.9 Ma = 31.1 Ms = 31.1 Ms = 39.9

c2a = c2s = 4 0.50 0.750 1.013 1.097 2.000 3.419 3.430 3.470
0.70 2.917 4.303 4.748 6.533 8.384 8.394 8.441
0.90 15.750 28.924 30.239 32.400 34.658 34.671 34.721

Ma = 4.5 Ma = 3.5 Ms = 31.1 Ms = 39.9

c2a = 0.5, c2s = 4 0.50 0.750 0.957 0.988 1.125 1.263 1.270 1.289
0.70 2.917 3.464 3.494 3.675 3.841 3.851 3.875
0.90 15.750 17.973 17.993 18.225 18.408 18.427 18.470

Ma = 39.9 Ma = 31.1 Ms = 3.5 Ms = 4.5

c2a = 4, c2s = 0.5 0.50 0.000 0.000 0.000 1.125 2.556 2.559 2.595
0.70 0.058 0.342 0.450 3.675 5.524 5.533 5.583
0.90 1.575 9.075 11.988 18.225 20.469 20.486 20.546

Ma = 4.5 Ma = 3.5 Ms = 3.5 Ms = 4.5

c2a = 0.5, c2s = 0.5 0.50 0.000 0.000 0.000 0.250 0.377 0.388 0.414
0.70 0.058 0.410 0.530 0.817 0.966 0.982 1.017
0.90 1.575 3.613 3.771 4.050 4.207 4.229 4.295
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Table 2. Decay rates and mean values: exact compared to the HT approximations in (1.2)
and (4.4)

Exact Approximate Exact Exact Approximate Exact
ρ θW θW E[W ] HTA ρ θW θW E[W ] HTA

c2a = c2s = 0.5 c2a = c2s = 4
0.5 2.00 2.00 0.195 0.250 0.5 0.244 0.250 2.02 2.00
0.7 0.857 0.857 0.725 0.817 0.7 0.106 0.107 6.61 6.53
0.9 0.222 0.222 3.92 4.05 0.9 0.0278 0.0278 32.6 32.4

c2a = 4, c2s = 0.5 c2a = 0.5, c2s = 4
0.5 0.826 0.444 0.882 1.13 0.5 0.311 0.444 1.05 1.13
0.7 0.260 0.190 3.37 3.68 0.7 0.153 0.190 3.56 3.68
0.9 0.0537 0.049 18.0 18.2 0.9 0.0458 0.0494 18.0 18.2

that we have determined the support bounds and a reference decay rate θW associated
with a candidate model as in Section 4.1 or with the aid of the HTA in Remark 4.1. While
determining those quantities, it is natural to also determine the associated mean E[W ],
which would be the usual direct approximation. It is a reference to check the set-valued
approximation.

To obtain exact results from Theorem 3.2, we should have the moments and decay
rate of the truncated distribution with the support bounds, but for simplicity, we simply
apply the moments and decay rate determined for the original base model without support
bounds. We found that the impact of that simplifying assumption tends to be negligible.

It now remains to determine the extremal distributions themselves. For the specified
parameters, it suffices to solve the equations characterizing the extremal models. First, we
can solve the system of equations provided by the T -system theory by using a nonlinear
equation solver (we used MATLAB). Second, a convenient way to calculate the extremal
distributions approximately (to any desired accuracy) is to assume finite support and apply
linear programming to minimize (or maximize) the Laplace transform given the constraints.
We can let the support be {kMa/n : 0 ≤ k ≤ n}, so that the only variables are the proba-
bilities pk assigned to the points xk ≡ kMa/n. As in Thm. 2.1 of [8], there will necessarily
be five-point extremal distributions given the four constraints using this approach. The
solution converges to the three-point solution for the original support set [0,Ma] as n → ∞.
Moreover, we can see that the optimal solution does not depend on the argument of the
Laplace transform provided that the sign of μ − θW does not change.

4.3. Choosing the Laplace Transform Arguments

Our proposed method is based on Theorem 3.2 in Section 3.3. We start with a concrete
model determined by the pair of cdf’s (F,G), which typically have unbounded support. We
first calculate (i) the decay rate θW for that model by solving for the unique positive root
of the single equation (2.2) involving the Laplace transforms f̂ and ĝ of F and G and (ii)
four parameters from each of the underlying cdf’s F and G: the first three moments and
one argument of each Laplace transform.

We have two alternatives for each of the arguments μs of ĝ(−s) and μa of f̂(s): either
≤ θW or ≥ θW . Our experiments indicate that we can set

μ ≡ θW /R if μ ≤ θW and μ ≡ RθW if μ ≥ θW (4.6)
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for suitable R, for example, R ∈ {1, 5, 10, 20}. We find that it is better to have μs ≤ θW . For
the concrete model, we also directly calculate the mean steady-state waiting time E[W ],
but the goal is to determine a set of likely values of that mean given any model with the
two-moment parameters in (1.4) and the small set of additional parameters.

Because we are working with distributions with unbounded support, we must be careful
about Assumption 3.1. Hence, in the implementation, we do not allow μs > s∗. Thus, if we
are considering one of the cases with μs ≥ θW , then we first check to see if RθW > s∗ for
our largest value of R, which we take to be R = 20. If it is, then we create alternative values
of μs in the interval (θW , s∗). In particular, we use

μs ≡ θW +
(

R

25

)
(s∗ − θW ), R = 5k, 1 ≤ k ≤ 4, (4.7)

so that the values of R remain in {5, 10, 15, 20}, but all values are within the interval
(θW , s∗). However, cases (i) and (ii) in (3.8) that we recommend present no difficulties.

4.3.1. An illustration To illustrate, Table 3 shows the explicit numerical values of the
three-point extremal distributions FL, GL and FU, GU obtained in the case c2

a = c2
s = 4, ρ =

0.7 with R ∈ {1, 5, 10, 20}.
For these extremal models, we must determine the associated decay rates. Figure 1

plots the extremal Laplace transforms f̂(s) and 1/ĝ(−s) for UB (LHS) and LB (RHS) for
the case c2

a = c2
s = 4 and ρ = 0.7. The curves intersect at the decay rate θW . The decay rate

for R = 1 is 0.106, while for R = 20, it is 0.098 for the UB and 0.110 for the LB.

4.3.2. Specification details From Theorem 3.2 and Corollary 3.1, we see that we have
five candidate ways to set the positive arguments of the Laplace transform f̂(s) and the
mgf ĝ(−s): the four cases with bounded support in (3.8) and the single composite version
with unbounded support in (3.9). These alternatives have advantages and disadvantages.
First, the finite support bounds in (3.8) require truncation, so we either must calculate new
parameters for the truncated model with bounded support or use the parameters of the
original distributions with unbounded support without altering them. In addition, we must
choose among the four alternatives in (3.8).

The alternative with unbounded support in (3.9) is appealing because it requires no
truncation and we need not choose among four cases. On the other hand, it uses different
parameter specifications for the minimum and maximum, which can distort the results,
leading to anomalies such as the lower bound for the mean exceeding the upper bound.

We performed extensive experiments to test these alternatives and deduced that it is
better to use the finite support bounds in (3.8) provided that the support bounds are chosen
to have negligible impact, as in Section 4.1. In particular, we found that the parameters
were not significantly altered by the truncation. For example, for the E2/H2/1 model with
ρ = 0.7, the second and third moments of V with truncation were s2 = 2.44, s3 = 20.19,
and s2 = 2.45, 20.58 without truncation.) Hence, our procedure for the mean E[W ] uses the
parameters taken directly from the base model with unbounded support or the HTAs, but
then applies the results in (3.8) with the constructed support bounds.

It still remains to select one of the four alternatives in (3.8). From our experiments, we
conclude that a good robust approximation is obtained by doing all four cases, and using the
minimum of the four lower bounds for E[W ] for the final lower bound, and the maximum
of the four upper bounds for E[W ] as the final upper bound. However, that requires more
computational effort. Hence, we also propose a way to select one of the four alternatives.
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Table 3. Numerical examples of extremal distributions in the case c2
a = c2

s = 4, ρ = 0.7 with R ∈ {1, 5, 10, 20}
R = 1 F G R = 5 F G

FL/GL/1 q1 q2 q3 p1 p2 p3 FL/GL/1 q1 q2 q3 p1 p2 p3

0.620 0.370 1.04 × 10−02 0.677 0.317 6.08 × 10−03 0.526 0.459 1.57 × 10−02 0.656 0.336 7.69 × 10−03

y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0 2.21 17.6 0 1.93 14.4 0.0 1.65 15.5 0 1.78 13.4
FU/GU/1 q1 q2 q3 p1 p2 p3 FU/GU/1 q1 q2 q3 p1 p2 p3

0.956 0.0433 2.88 × 10−04 0.965 0.0345 1.73 × 10−04 0.936 0.0639 4.30 × 10−04 0.963 0.0370 2.12 × 10−04

y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0.587 9.86 39.9 0.440 7.86 27.9 0.505 7.99 39.9 0.431 7.54 27.9
R = 10 F G R = 20 F G
FL/GL/1 q1 q2 q3 p1 p2 p3 FL/GL/1 q1 q2 q3 p1 p2 p3

0.451 0.530 1.87 × 10−02 0.654 0.338 7.88 × 10−03 0.358 0.621 2.14 × 10−02 0.653 0.339 7.97 × 10−03

y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0.0 1.37 14.6 0 1.76 13.4 0 1.13 14.0 0 1.75 13.3
FU/GU/1 q1 q2 q3 p1 p2 p3 FU/GU/1 q1 q2 q3 p1 p2 p3

0.917 0.0828 5.02 × 10−04 0.962 0.0374 2.17 × 10−04 0.891 0.108 5.62 × 10−04 0.962 0.0376 2.20 × 10−04

y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0.439 6.97 39.9 0.430 7.50 27.9 0.360 6.08 39.9 0.429 7.48 27.9
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Figure 1. Display of f̂(s) and 1/ĝ(−s) for UB (LHS) and LB (RHS) for the case
c2
a = c2

s = 4 and ρ = 0.7: the decay rate for R = 1 is 0.106 and for R = 20 in UB is 0.098
and in LB is 0.110.

We first observe that FL (FU) in (3.8) of Theorem 3.2 is the natural analog of F0 (Fu) from
Theorem 3.1, having 0 (Ma) as one of the mass points. Thus, case (i) in (3.8) is the natural
choice. Our experiments indicate that cases (i) and (ii) are good. We examine all four cases
for the models we consider in our experiments.

5. NUMERICAL EXPERIMENTS

In this section, we report the results of experiments to evaluate the proposed heuristic
set-valued approximations. We start in Section 5.1 by looking at the M/M/1 base model.
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Table 4. Bounds for θW (exact) and E[W ] (approximate) for ρ = 0.7 and c2
a = c2

s = 1
based on M/M/1 (For reference, exact values for M/M/1 are θW = (1 − ρ)/ρ = 0.4286 and
E[W ] = ρ2/(1 − ρ) = 1.63.)

Case θW E[W ] Case θW E[W ]
(3.8) R = 5 10 20 R = 5 10 20 (3.8) R = 5 10 20 R = 5 10 20

(i) 0.426 0.425 0.425 1.67 1.67 1.68 (ii) 0.421 0.418 0.415 1.59 1.62 1.68
0.432 0.432 0.439 1.65 1.65 1.56 0.434 0.437 0.446 1.53 1.56 1.61

(iii) 0.422 0.417 0.409 1.71 1.72 1.71 (iv) 0.426 0.424 0.418 1.61 1.60 1.57
0.434 0.436 0.436 1.65 1.63 1.62 0.431 0.432 0.429 1.60 1.61 1.63

In Section 5.2, we report the numerical results of our application of this method to the
GI/GI/1 queue. Finally, in Section 5.3, we report the numerical results for the GI/GI/2
queue. More appears in Ref. [7].

5.1. The M/M/1 Reference Case: c2
a = c2

s = 1 with ρ = 0.7

To start, Table 4 below shows the results for all four cases associated with the M/M/1
reference base model with ρ = 0.7 and three possible values of R in (4.6).

From the analytical formulas θW = (1 − ρ)/ρ = 0.4286 and E[W ] = ρ2/(1 − ρ) = 1.63,
we see that θW (E[W ]) is strictly decreasing (increasing) in ρ. Of course, we are considering
a large collection of models with c2

a = c2
s = 1, not simply M/M/1, but it is our reference

case from which we extract parameters.
Consistent, with Theorem 3.2, Table 4 shows that the decay rate associated with the

UB (LB) for E[W ] is decreasing (increasing) in R in each case, while the reverse order tends
to hold for E[W ] too. There are minor exceptions in cases (iii) and (iv) because we get the
decay rates from the original M/M/1 model.

From Table 4, we obtain the composite bounds for E[W ] based on all four cases. With
R = 20, the composite bounds are

min
1≤i≤4

{E[WLB,i(R = 20)]} = 1.56 < E[W ] = 1.63 < 1.71 = max
1≤i≤4

{E[WUB,i(R = 20)]}.
(5.1)

Notice that the interval [1.56, 1.71] in (5.1) is not too different from the intervals
[1.56, 1.68] in case (i) with μs, μa < θW and [1.61, 1.68] in case (ii) with μs < θW < μa.
On the other hand, the LB 1.62 for E[W ] in case (iii) is too large, while the UB 1.57
for E[W ] in case (iv) is too small. Thus, we tentatively conclude that it is better to have
μs ≤ θW . For this case, the choice of μs seems to be more important than μa. We tentatively
conclude that the cases (i) and (ii) in (3.8) are both consistently effective for the M/M/1
base model, while the other alternatives are not.

5.2. Non-Exponential GI/GI/1 Base Models

We now extend the study to the four models with c2
a, c2

s ∈ {0.5, 4.0} based on the H2 and
E2 distributions. Table 5 shows the approximate upper bounds (top) and lower bounds
(bottom) for E[W ] with ρ = 0.7 and c2

a, c2
s ∈ {0.5, 4.0} based on the E2 and H2 models in

each of the four cases in (3.8) of Theorem 3.2 for three values in R in (4.6). The cases are
labeled at the left by the base model. (The exact values of E[W ] for H2/H2/1, H2/E2/1,
E2/H2/1, and E2/E2/1 are 6.61, 3.37, 3.56, and 0.725, respectively.)

Table 5 reinforces the conclusions about Table 4 for the case c2
a = c2

s = 1 based on the
M/M/1 model. Table 5 shows that the UB exceeds the LB for all models and all values of
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Table 5. Approximate upper and lower bounds for E[W ] for ρ = 0.7 and c2
a, c2

s ∈ {0.5, 4.0}
based on the E2 and H2 models in each of the four cases in (3.8) of Theorem 3.2 for three
values in R in (4.6) (The exact values of E[W ] for H2/H2/1, H2/E2/1, E2/H2/1, and
E2/E2/1 are 6.61, 3.37, 3.56, and 0.725.)

Model (i) (ii) (iii) (iv)
R = 5 10 20 R = 5 10 20 R = 5 10 20 R = 5 10 20

H2/H2 6.93 6.94 6.73 6.28 6.19 7.20 6.93 7.08 7.20 6.72 6.72 6.66
6.53 6.52 6.12 6.49 6.44 6.41 6.70 6.56 6.47 6.26 6.25 6.21

H2/E2 3.57 3.61 3.63 3.92 4.19 4.33 3.57 3.60 3.63 3.57 3.60 3.63
3.06 3.08 3.06 2.95 2.82 2.69 3.06 3.08 3.06 3.06 3.08 3.06

E2/H2 3.62 3.68 3.68 3.53 3.54 3.56 3.51 3.51 3.52 3.52 3.52 3.49
3.52 3.55 3.51 2.95 2.82 2.69 3.59 3.59 3.57 3.53 3.53 3.53

E2/E2 0.738 0.738 0.729 0.721 0.719 0.734 0.766 0.767 0.762 0.701 0.689 0.673
0.737 0.733 0.704 0.642 0.625 0.642 0.730 0.730 0.721 0.736 0.738 0.753

R in case (i) with μa, μa ≤ θW , while this good property holds for case (ii) except for the
case c2

a = c2
s = 4.0 based on the H2/H2/1 model, but it holds there as well for R = 20. In

contrast, cases (iii) and (iv) perform significantly worse. In case (iii), the LB exceeds the UB
for the case c2

a = 0.5, c2
s = 4.0 based on the E2/H2/1 model. In case (iv), the LB exceeds

the UB for the case c2
a = 0.5, c2

s = 4.0 based on the E2/H2/1 model.
Table 17 in [7] displays the corresponding rates obtained in deriving the extremal dis-

tributions used for the mean E[W ] in Table 5. That table confirms Theorem 3.2, just like
Table 4. (Again there are minor discrepancies because we get the decay rates from the
original models.)

We offer two possible explanations for the better performance of cases (i) and (ii) in
(3.8) of Theorem 3.2. First, since large waiting times tend to be caused by large service
times and short interarrival times (leading to clumps of arrivals), we should pin down E[W ]
most effectively from parameters with case (ii) with μs < θW < μa as in (4.6). A second
consideration is the nature of the distribution itself. Given an Ek distribution that has a pdf
h with h(0) = 0, large values of μ are not likely to help much. In contrast, a more variable
H2 distribution could be helped by additional specification wherever it appears. Thus, cases
(iii) and (iv) with c2

a = 0.5 involving an E2 arrival process are likely to not perform well, as
we have seen.

5.3. Examples for Multi-Server Queues

We now discuss experiments for K > 1. For ease of applications, it is significant that we
can apply the result for K = 1 to derive the decay rate. To apply the results for K = 1 to
K > 1, we use the same extremal interarrival-time distribution, but multiply the extremal
service-time random variable by K. We then can apply simulation to estimate E[W ] just
as before.

Table 6 shows the approximate upper and lower bounds for E[W ] obtained by this
method for three values of ρ in {0.5, 0.7, 0.9} and the five pairs of variability parameters
(c2

a, c2
s) from {0.5, 1.0, 4.0} in case (ii) of (3.8) in Theorem 3.2 for R ∈ {5, 10, 20}. Table 6

confirms that the procedure extends directly to GI/GI/K queues with K > 1.
To illustrate the procedure for larger K, Table 7 shows set-valued approximations for

E[W ] in the M/M/10 and E2/E2/10 models for ρ ∈ {0.7, 0.9}.
From readily available algorithms for M/M/10, we see that the exact values of E[W ] for

ρ = 0.7 and 0.9 are 0.519 and 6.03, respectively, which fall right in the middle of the interval
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Table 6. The improved UB and LB for E[W ] in GI/GI/2 for (c2
a, c2

s) ∈ {(1, 1), (4.0, 4.0),
(4.0, 0.5), (0.5, 4, 0), (0.5, 0.5)}, ρ ∈ {0.5, 0.7, 0.9}, and R ∈ {5, 10, 20}
ρ = 0.5 c2a = c2s = 1 ρ = 0.7 c2a = c2s = 1 ρ = 0.9 c2a = c2s = 1
R 5 10 20 R 5 10 20 R 5 10 20

UB 0.353 0.405 0.427 UB 1.34 1.39 1.41 UB 7.69 7.69 7.71
LB 0.290 0.262 0.251 LB 1.30 1.31 1.33 LB 7.67 7.62 7.61

ρ = 0.5 c2a = c2s = 0.5 ρ = 0.7 c2a = c2s = 0.5 ρ = 0.9 c2a = c2s = 0.5
R 5 10 20 R 5 10 20 R 5 10 20
UB 0.129 0.152 0.162 UB 0.590 0.606 0.608 UB 3.68 3.70 3.66
LB 0.092 0.087 0.086 LB 0.531 0.522 0.534 LB 3.64 3.66 3.64

ρ = 0.5 c2a = c2s = 4 ρ = 0.7 c2a = c2s = 4 ρ = 0.9 c2a = c2s = 4
R 5 10 20 R 5 10 20 R 5 10 20
UB 1.34 1.44 1.68 UB 5.29 5.37 5.76 UB 30.6 30.4 31.6
LB 1.30 1.27 1.21 LB 5.58 5.54 5.49 LB 30.9 30.7 30.8

ρ = 0.5 c2a = 4, c2s = 0.5 ρ = 0.7 c2a = 4, c2s = 0.5 ρ = 0.9 c2a = 4, c2s = 0.5
R 5 10 20 R 5 10 20 R 5 10 20
UB 1.33 1.49 1.59 UB 3.64 3.78 4.02 UB 17.9 17.9 18.1
LB 0.356 0.286 0.230 LB 2.65 2.56 2.43 LB 17.5 17.5 17.6

ρ = 0.5 c2a = 0.5, c2s = 4 ρ = 0.7 c2a = 0.5, c2s = 4 ρ = 0.9 c2a = 0.5, c2s = 4
R 5 10 20 R 5 10 20 R 5 10 20
UB 0.540 0.548 0.556 UB 2.56 2.56 2.58 UB 16.6 16.6 17.0
LB 0.588 0.591 0.593 LB 2.73 2.74 2.72 LB 16.7 16.7 16.4

Table 7. The set-valued approximations of E[W ] in M/M/10 (upper) and E2/E2/10
(lower) using case (ii) of (3.8) for ρ = 0.7 (left) and ρ = 0.9 (right)

ρ = 0.7 θW E[W ] ρ = 0.9 θW E[W ]
R = 5 10 20 R = 5 10 20 R = 5 10 20 R = 5 10 20

0.421 0.418 0.415 0.520 0.523 0.539 0.111 0.111 0.110 5.97 6.05 6.07
0.434 0.437 0.446 0.524 0.520 0.469 0.111 0.111 0.111 6.01 5.94 5.94

ρ = 0.7 θW E[W ] ρ = 0.9 θW E[W ]
R = 5 10 20 R = 5 10 20 R = 5 10 20 R = 5 10 20
0.842 0.833 0.825 0.176 0.177 0.179 0.222 0.221 0.221 2.76 2.71 2.74
0.880 0.889 0.893 0.162 0.162 0.161 0.222 0.223 0.223 2.73 2.74 2.73

[LB,UB] in each case. In contrast, the HTA in (1.2) are 1.633 and 8.10, which seriously
overestimates the mean for K = 10. However, it is well known that the HTA, which tends
to be good for K = 1, typically overestimates the mean for K > 1; for example, see Ref.
[47] and references therein.

6. CONCLUSIONS

In this paper, we investigated how a few additional constraints on an interarrival time U
with cdf F and a service times V with cdf G in the GI/GI/K queue can help understand
the quality of simple approximations for steady-state performance measures given partial
information provided by the first two moments of U and V as specified by the parameter
4-tuple (1, c2

a, ρ, c2
s) in (1.4). The idea is to obtain an interval of likely values for performance

measures given the partial information. This problem is interesting and important for the
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relatively well-understood GI/GI/1 model, but it is even more important for the challenging
cases with K > 1.

As a theoretical basis, we applied extremal models yielding tight upper and lower bounds
on the (asymptotic) decay rate of the steady-state waiting-time tail probability, recently
established in [8] by applying the theory of Tchebycheff systems. In order to be able to
apply Lemma 2.2 of [8], we require that the additional constraints correspond to higher
moments and Laplace transform values of F and G.

The decay rate is defined as in (2.1), (3.1), or (3.2). We reviewed the extremal models for
the decay rate in the GI/GI/1 queue in Section 3. It is significant that these results extend
to the GI/GI/K queue. Moreover, we chose scaling with E[U ] = 1 that made θW (K) =
θW (1) ≡ θW , so that the extremal distributions for K > 1 are simple modifications of the
extremal distributions for K = 1.

In Section 4, we showed that we can apply the theoretical results for the decay rate in
Section 3 to develop a practical way to identify intervals of likely values for the mean steady-
state waiting time E[W ] given the basic moment parameters in (1.4) and the additional
parameters introduced in Theorems 3.1 and 3.2, namely support bounds, the third moments,
and values of the Laplace transform. We conducted extensive numerical experiments to
study our proposed approach. We found that the proposed method based on cases (i) and
(ii) in (3.8) of Theorem 3.2 is consistently effective for a range of base GI/GI/K models.
This performance is illustrated in Section 5. For example, with these bounds, Table 5 shows
that the maximum error of the midpoint of each interval in case (i) is less than 10% for all
four models. We emphasize that this good performance in our estimates of E[W ] depends
critically on the extra parameters introduced in Theorem 3.2. With only the parameters in
(1.4), the range is usually very wide, as shown in Table 1 of [9] and Sect. 2 of [7].

Overall, we contributed to a better understanding of simple queueing approximations
such as (1.2) in typical GI/GI/K cases. Our investigation supported extensive experience
that the HTA in (1.2) tends to be quite good for K = 1, with the understanding that
there is a wide range of possibilities. On the other hand, we found that (1.2) seriously
overestimates the true value for K = 10, which already was a motivation for the many-
server approximations for multi-server queues; for example, see Table I of [22]. So far, the
method for K > 1 has only been studied for small values of K, for example, K ≤ 10.

6.1. Summary: An Overall Recommended Procedure

While the general idea of set-valued approximations given partial information is relatively
simple and natural, there are many possibilities for the specific implementation. We have
investigated many, so that the full story is somewhat complicated. Thus, we give a simple
final recipe based on Theorem 3.2.

(i) Start with a concrete GI/GI/K model. It suffices to start with K = 1, even if interest
is in K > 1. By (3.3), the extremal model is independent of K if we use the scaling
with E[U ] = 1. (The method has been tested for K ≤ 10.)

(ii) From that start, obtain the Laplace transforms and first three moments of each of
the two underlying distributions F and G. Use the scaling with E[U ] = 1. From
those, obtain the reference decay rate θW and mean E[W ]. The decay rate θW

is obtained as the unique solution to the Laplace transform Eq. (2.2), given the
Laplace transforms of F and G, as depicted in Figure 1. This step produces the
basic parameters (1, c2

a, ρ, c2
s) in (1.4) of one case, but also the tools we need to go

further.
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(iii) Obtain the associated support bounds Ma for F and ρKMs for G. Choose these to
have negligible impact on the tail probability, as specified in (4.1) for K = 1. Use
ε = 0.001, as for the more conservative case in Table 1.

(iv) Choose values of the Laplace transforms using the initial decay rate θW and (4.6)
depending on the parameter R, and possibly (4.7) if required. We suggest looking
at three cases with R ∈ {5, 10, 20} to show a range, but if we had to pick only one,
then we would choose R = 20 because it is the most conservative choice.

(v) Next, numerically determine the extremal distributions (FL, FU, GL, GU) specified
by Theorem 3.2, as indicated in Section 4.2. We suggest using a nonlinear equation
solving algorithm as in MATLAB.

(vi) Then, calculate the decay rate θW for each extremal model. Again, the decay rate can
be computed from (2.2), using the easily constructed Laplace transforms of the three-
point extremal distributions in (FL, FU, GL, GU); for example, f̂L(s) =

∑3
i=1 e−sxipi,

when the three mass points are (x1, x2, x3) with associated positive probabilities
(p1, p2, p3) for FL.

(vii) Finally, the extremal values of the mean E[W ] (and other performance measures of
interest) can be estimated by doing simulation of the extremal queueing models. The
mean and decay rate for the base model provides a consistency check for this final
step.

6.2. Directions for Future Research

There are many directions for future research. First, it remains to expose the precise relation
between E[W ] and θW . (There is useful theory in Sect. II.5 of [13]. Some numerical work
appears in Ref. [3].) Second, it remains to explore the approximation for other performance
measures such as the tail probability P (W > t). We expect even better results for large t,
but then worse results for t = 0; see Ref. [3]. Thm. 1 of [6] shows that tight upper and lower
bounds can be obtained directly fir higher moments E[W k] for K = 1, but it remains to
consider K > 1.

Third, there are many opportunities for further work with K > 1, including related
to many-server heavy-traffic scaling in [22]. It remains to develop and study procedures
for large values of K. There is also opportunity for improved rare-event simulation for
the extremal queues with K > 1 paralleling [38] used for K = 1 in [9]; see Ref. [37] for
some. Finally, we think that there is great potential for applying this general approach for
obtaining set-valued approximations given partial model information to other stochastic
models.
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