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Abstract

This paper develops methods to determine appropriate staffing levels in call centers and other

many-server queueing systems with time-varying arrival rates. The goal is to achieve targeted

time-stable performance, even in the presence of significant time-variation in the arrival rates.

The main contribution is a flexible simulation-based iterative-staffing algorithm (ISA) for the

Mt/G/st + G model - with nonhomogeneous Poisson arrival process (the Mt) and customer

abandonment (the +G). For Markovian Mt/M/st + M special cases, the ISA is shown to

converge. For that Mt/M/st+M model, simulation experiments show that the ISA yields time-

stable delay probabilities across a wide range of target delay probabilities. With ISA, other

performance measures - such as agent utilizations, abandonment probabilities and average

waiting times - are stable as well. The ISA staffing and performance agree closely with the

modified-offered-load (MOL) approximation, which was previously shown to be an effective

staffing algorithm without customer abandonment. While the ISA algorithm so far has only

been extensively tested for Mt/M/st + M models, it can be applied much more generally, to

Mt/G/st + G models and beyond.

Keywords: Contact centers; call centers; staffing; non-stationary queues; queues with time-

dependent arrival rates; many-server queues; capacity planning; queues with abandonment;

time-varying Erlang models.



1. Introduction

In this paper we develop methods to determine appropriate staffing levels in call centers

and other many-server queueing systems with time-varying arrival rates. For background on

call centers, see Gans et al. (2003).

In setting staffing levels, we are faced with two sources of variability: predictable variability

– time-variations of the expected load – and stochastic variability – random fluctuations around

this time-dependent average. (There may also be model uncertainty, but we do not consider

it.) Most available staffing algorithms are designed to cope only with stochastic variability,

avoiding the predictable variability in various ways. For example, when the service times are

relatively short, as in many call centers when service is provided by a telephone call, it is

customary to use a pointwise stationary approximation (PSA), i.e., to act as if the system

at time t were in steady-state with the arrival rate occurring at that instant (or during that

half hour); see Green and Kolesar (1991) and Whitt (1991). In call centers, staffing typical is

held constant over staffing intervals of 15− 30 minutes. The effect of staffing intervals can be

important, see Green et al. (2001), but here we do not consider staffing intervals.

However, service times are not always short, even in call centers. If relatively lengthy

interactions are not uncommon or if arrival rates change quite rapidly, then PSA can produce

poor performance. As a consequence, some parts of the day may be overstaffed, while others

are understaffed. For a review of staffing methods to cope with time-varying arrivals, see Green

et al. (2005).

In this paper we address the staffing problem with both predictable and stochastic variabil-

ity: Given a daily performance goal, and faced with both predictable and stochastic variability,

we seek to find the minimal staffing levels that meet this performance goal stably over the day.

We aim to understand when PSA is appropriate and to do significantly better than PSA when

it is not appropriate. We emphasize the importance of achieving time-stable performance.

With time-stable performance, the nearly-constant quality of service is easily adjusted up or

down, as desired. Moreover, our experience suggests that customers tend to prefer consistent

performance even at the expense of some service level.

Our main contribution in this paper is a flexible simulation-based iterative-staffing algo-

rithm (ISA). We develop the ISA for the many-server Mt/G/st + G queueing model, which

has a nonhomogeneous Poisson arrival process (the Mt) with time-varying arrival-rate function

λ(t), independent and identically distributed (i.i.d.) random service times with a general cu-
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mulative distribution function or cdf (the first G), a time-varying number of servers st, which

is for us to set, and i.i.d. random times to abandon (before starting service) with a general

cdf (the final +G). Allowing non-exponential service-time and time-to-abandon distributions

is important, because they have been found to occur in practice; see Bolotin (1994) and Brown

et al. (2005).

We show that the ISA staffing function sISA
t yields time-stable delay probabilities across a

wide range of delay-probability targets for the Markovian Mt/M/st+M special case, where the

service-time and time-to-abandon cdf’s are exponential with means µ−1 and θ−1, respectively.

Even though we only report results for ISA applied to Markovian Mt/M/st + M models, the

method is developed for more general Mt/G/st + G models. (Indeed, we obtained similar

results for log-normal and deterministic service-time distributions.) Moreover, the ISA applies

much more generally, so that it has the potential of far-reaching applications. Indeed, by

being based on simulation, ISA has two important advantages: First, by using simulation, we

achieve generality: We can apply the approach to a large class of models; we are not limited to

models that are analytically tractable. We are able to include realistic features, not ordinarily

considered in analytical models. For example, we can carefully consider what happens to agents

who are in the middle of a call when their scheduled shift ends. Second, by using simulation, we

achieve automatic validation: In the process of performing the algorithm, we directly confirm

that ISA achieves its goal; we directly observe the performance of the system under the final

staffing function {sISA
t : 0 ≤ t ≤ T}. Of course, in other settings the effectiveness of the ISA

still needs to be verified.

Here is how the rest of this paper is organized: In §2 we specify the ISA. Then in §3 we

review the infinite-server and modified-offered-load (MOL) approximations from Jennings et

al. (1996). We will show that the ISA staffing levels and performance agree closely with MOL

and that both perform well. In §4 and §5 we illustrate the performance of ISA by considering

Mt/M/st + M examples, first with a stylized sinusoidal arrival-rate function and long service

times, and then with a realistic arrival-rate function from a medium-sized financial-services call

center, taken from Green et al. (2001) and shorter (customary) service times. In §6 we present

some supporting theory for the case θ = µ. In §7, we discuss the dynamics of the iterative

algorithm, establishing convergence of the ISA in the Mt/M/st +M special case (for all µ and

θ). Finally, in §8 we draw conclusions and indicate some directions for further research.

We present additional material in a longer unabridged version available on line as an Inter-

net Supplement. There we consider the Mt/M/st model (without abandonment) with the same
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sinusoidal arrival-rate function used for the Mt/M/st +M model in §4, and show that ISA also

works well for it. We also revisit the “challenging example” in Jennings et al. (1996), again

showing that ISA performs well, just like MOL. We expand the analysis of the Mt/M/st + M

example in §4 by considering different abandonment rates, in particular, θ = 0.2 and θ = 5.0

with µ = 1, representing relatively patient and impatient customers, respectively. We present

additional material for the realistic example discussed in §5. We also provide additional theoret-

ical perspective for the square-root-staffing algorithm from a uniform-acceleration perspective,

as in Mandelbaum et al. (1998) and Massey and Whitt (1998) and references therein.

2. The Simulation-Based Iterative-Staffing Algorithm (ISA)

In this section we specify the ISA. For our implementation of the algorithm, we assume

that we have an Mt/G/st +G model, but it will be evident that the method applies much more

generally. To start, we specify a time-horizon [0, T ], an arrival-rate function {λ(t); 0 ≤ t ≤ T},
a service-time cdf and a time-to-abandon cdf. The algorithm is iterative, continuing until the

observed error is negligible. Let s
(n)
t be the staffing level at time t in iteration n and let N

(n)
t

be the total number of customers in the system at time t under this staffing function. The

final iteration yields the ISA staffing sISA
t and the stochastic process N ISA

t representing the

number of customers in the system with that staffing function.

Although our algorithm is time-continuous, we make staffing changes only at discrete times.

That is achieved by dividing the time-horizon into small intervals of length ∆. In all experi-

ments presented in this paper, we use ∆ = 0.1/µ, where 1/µ is the mean service time. We then

let the number of servers be constant within each of these intervals. For any specified staffing

function, the system simulation can be performed in a conventional manner. We generate

a continuous-time sample path for the number in system by successively advancing the next

generated event. The candidate next events are of course arrivals, service completions, aban-

donments and ends of shifts (the times at which the staffing function is allowed to change). For

non-stationary Poisson arrival process, we generated arrival times by thinning a single Poisson

process with a constant rate λ∗ exceeding the maximum of the arrival-rate function λ(t) for

all t, 0 ≤ t ≤ T . Then an event in the Poisson process at time t (a potential arrival time) is in

an actual arrival in the system with probability λ(t)/λ∗, independent of the history up to that

time; see Section 5.5 of Ross (1990). We estimate the distribution of N
(n)
t for each n and t by

performing multiple (5000) independent replications. We think of starting off with infinitely

many servers. Since this is a simulation, we choose (after experimenting) a large finite number,
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ensuring that the probability of delay (i.e., of having all servers busy upon arrival) is negligible

for all t.

The algorithm iteratively performs the following steps, until convergence is obtained. Con-

vergence means that the staffing levels do not change more than some threshold τ after an

iteration, which we take to be 1.

1. Given the ith staffing function {s(i)
t : 0 ≤ t ≤ T}, evaluate the distribution of N

(i)
t for

all t using simulation.

2. For each t, 0 ≤ t ≤ T , let s
(i+1)
t be the least number of servers so that the delay-

probability constraint is met at time t; i.e., let

s
(i+1)
t = arg min {k ∈ N : P{N (i)

t ≥ k} ≤ α} .

3. If there is negligible change in the staffing from iteration i to iteration i + 1, then stop;

i.e., if

max {|s(i+1)
t − s

(i)
t | : 0 ≤ t ≤ T} ≤ τ ,

then stop and let s
(i+1)
t be the proposed staffing function, denoted by sISA

t . Otherwise, advance

to the next iteration, i.e., replace i by i + 1 and go back to step 1.

As indicated before, sISA
t denotes the final staffing level at time t and N ISA

t denotes the

number in system at time t with that staffing function. If the algorithm converges, then

necessarily P (N ISA
t ≥ sISA

t ) ≈ α, 0 ≤ t ≤ T .

Our implementation of ISA was written in C++. For the special case of the Markovian

Mt/M/st + M model with individual service rate µ = 1/E[S] and individual abandonment

rate θ, we rigorously establish convergence of the algorithm in §7. Experience indicates that

the algorithm consistently converges relatively rapidly. Experience also indicates that the final

time-dependent delay probabilities, and other performance measures, are remarkably stable.

The number of iterations required depends on the parameters, especially the ratio r ≡ θ/µ. If

r = 1, corresponding to an infinite-server queue - see §6, then no more than two iterations are

needed, since the distribution of the number in system does not depend upon the number of

servers in that special case. As r departs from 1, the number of required iterations typically

increases. For example, when r = 10, the number of iterations can get as high as 6−12. When

r is very small and the traffic intensity is very high, so that we are at the edge of stability, the

number of iterations can be very large. For more discussion, see §7.
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3. Infinite-Server and Modified-Offered-Load Approximations

In this section we review staffing algorithms based on infinite-server (IS) and modified-

offered-load (MOL) approximations from our (with Otis B. Jennings) previous paper Jennings

et al. (1996). These approximations were developed for the Mt/G/st model without customer

abandonment, but the methods extend directly to the corresponding model with customer

abandonment. The effectiveness of these methods with abandonments was not demonstrated

previously, though. Our simulation experiments here will show that ISA produces essentially

the same results as MOL, with and without customer abandonment, and that both are effec-

tive. (Our reported experiments are limited to Markovian Mt/M/st + M models, but limited

experimentation for other Mt/G/st + G models indicate that excellent results hold there too.)

To describe our goal in staffing, let Nt be the number of customers in the Mt/G/st + G

system at time t, either waiting or being served. We focus on the probability of delay (of a

potential arrival, i.e., P (Nt ≥ st)), aiming to choose the time-dependent staffing level st such

that

P (Nt ≥ st) ≤ α < P (Nt ≥ st − 1) for all t , (3.1)

where α is the target delay probability.

The Infinite-Server Approximation. We discuss the MOL and infinite-server approxima-

tions together, because the MOL approximation builds on the infinite-server approximation.

We start by considering the infinite-server approximation. Why would anyone consider an

infinite-server approximation? From a mathematical perspective, the reason is that the finite-

server Mt/G/st + G model of interest is analytically intractable, whereas the corresponding

infinite-server Mt/G/∞ model is remarkably tractable. From an engineering perspective, the

reason is that the infinite-server model can be used to show the amount of capacity that would

actually be used (and is thus needed) if there were no capacity constraints (i.e., a limited num-

ber of servers). For the Markovian Mt/M/st +M model, where θ = µ, there is even a stronger

connection: In that special case, the distribution of the number of customers in the infinite-

server Mt/M/∞ model actually coincides with the distribution of the number of customers

in the Mt/M/st + M model, as we explain in §6, so there is additional strong motivation for

considering the infinite-server approximation.

So what does the infinite-server approximation do? The infinite-server approximation for

the Mt/G/st + G model approximates the random variable Nt by the number N∞
t of busy
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servers in the associated Mt/G/∞ model, having infinitely many servers but the same arrival

process and service times. The infinite-server staffing function s∞t is obtained by applying (3.1)

with N∞
t instead of Nt. As we now explain, that approximation provides great simplification

because (i) the tail probability P (N∞
t ≥ st) at time t depends on the staffing function {st : t ≥

0} only through its value at the single time t and (ii) the exact time-dependent distribution of

N∞
t is known.

The first simplification follows from the fact that the distribution of the stochastic process

{N∞
t : t ≥ 0} is totally independent of the staffing function {st : t ≥ 0}. When we calculate

P (N∞
t ≥ st), the staffing level st just serves as the argument of the tail-probability function.

The second simplification stems from basic properties of Mt/G/∞ queues. In particular, as

reviewed in Eick et al. (1993a), for each t, N∞
t has a Poisson distribution whenever the number

in the system at the initial time has a Poisson distribution. (Being empty is a degenerate case

of a Poisson distribution.) That Poisson distribution is fully characterized by its mean m∞
t .

As in previous work, such as Eick et al. (1993a,b) and Jennings et al. (1996), our work

reported here shows that the time-dependent mean m∞
t is the crucial quantity. We regard this

exact time-dependent mean m∞
t in the Mt/G/∞ model as the (time-dependent) offered load

for the Mt/G/st + G model.

We now observe that convenient formulas exist for the offered load m∞
t . Eick et al. (1993a)

showed that the offered load has the tractable representation

m∞
t ≡ E [N∞

t ] =
∫ t

−∞
Gc(t− u)λ(u) du = E

[∫ t

t−S
λ(u) du

]
= E [λ(t− Se)]E[S] , (3.2)

where λ(t) is the arrival-rate function, S is a generic service time with cdf G, Gc(t) ≡ 1−G(t) ≡
P (S > t), and Se is a random variable with the associated stationary-excess cdf (or equilibrium-

residual-lifetime cdf) Ge associated with the service-time cdf G, defined by

Ge(t) ≡ P (Se ≤ t) ≡ 1
E[S]

∫ t

0
Gc(u) du, t ≥ 0 , (3.3)

with kth moment E[Sk
e ] = E[Sk+1]/((k + 1)E[S]); see Theorem 1 of Eick et al. (1993a) and

references therein.

The different expressions in (3.2) provide useful insight; see Eick et al. (1993a, b) and

Section 4.2 of Green et al. (2005). For the special case in which λ(t) is constant, m∞
t ≡

m∞ = λE[S]. Accordingly, the PSA approximation for m∞
t in the Mt/G/∞ model is mPSA

t ≡
λ(t)E[S]. We call mPSA

t the PSA (time-dependent) offered load for the Mt/G/st + G model.

In addition, there are convenient explicit formulas for m∞
t in special cases as well as useful

approximations. We will use the explicit formula for sinusoidal arrival-rate functions in §4.
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Based on a second-order Taylor-series approximation for λ about t, the offered load can be

approximated by

m∞
t ≈ λ(t−E[Se])E[S] +

λ(2)(t)
2

V ar(Se)E[S] , (3.4)

where λ(2)(t) is the second derivative of the function λ evaluated at time t; see Theorem 9

of Eick et al. (1993a). Approximation (3.4) shows that the approximate offered load in (3.4)

coincides with the PSA offered load mPSA
t ≡ λ(t)E[S] except for a time shift by E[Se] and a

space shift by λ(2)(t)V ar(Se)E[S]/2. The time shift is especially important. A simple refinemnt

of PSA based on (3.4) suggested by Eick et al. (1993a) is lagged PSA, where we ignore the

space shift and approximate m∞
t by λ(t−E[Se])E[S].

We now continue, exploiting the established Poisson distribution with a known time-

dependent mean m∞
t . Assuming that m∞

t is not extremely small, we can apply a normal

approximation for the Poisson distribution, obtaining first P (Nt ≥ st) ≈ P (N∞
t ≥ st) and

then

P (N∞
t ≥ st) ≈ P (N(m∞

t ,m∞
t ) ≥ st) = P

(
N(0, 1) ≥ st −m∞

t√
m∞

t

)
= 1− Φ

(
st −m∞

t√
m∞

t

)
,

(3.5)

where N(m,σ2) denotes a normally distributed random variable with mean m and variance

σ2, and Φ(x) ≡ P (N(0, 1) ≤ x) is the standard normal cdf.

From (3.5), we see that we can obtain a stable approximate delay probability if we can

choose the staffing function s∞t to make (s∞t −m∞
t )/

√
m∞

t stable in the final term of (3.5).

Accordingly, we obtain the square-root-staffing formula:

s∞t = dm∞
t + β

√
m∞

t e, 0 ≤ t ≤ T, (3.6)

where dxe is the least integer greater than or equal to x and the constant β is a measure of

the quality of service. Combining the target in (3.1) and the normal approximation in (3.5),

we see that the quality-of-service parameter β in (3.6) should be chosen so that 1−Φ(β) = α.

The normal approximation and the square-root-staffing formula for stationary many-server

queues are classic results, see Whitt (1992) and references therein. What is less well understood

is the role of the offered load m∞
t with time-varying arrivals. The notation s∞t means that we

staff according to the infinite-server approximation. In doing so, we not only apply the normal

approximation and the square-root-staffing formula, but we also use the infinite-server mean

m∞
t as the offered load.

7



The MOL Approximation. Section 4 of Jennings et al. (1996) also introduced a refine-

ment of the infinite-server approximation for the time-dependent delay probabilities, which

is tantamount to a modified-offered-load (MOL) approximation, as in Jagerman (1975) and

Massey and Whitt (1994, 1997). The MOL approximation for Nt in the Mt/G/st + G model

at time t, denoted by NMOL
t , is the limiting steady-state number of customers in the system

in the corresponding stationary M/G/s + G model (with the same service-time and time-to-

abandon distributions and the same number of servers st at time t), but using m∞
t as the

stationary offered load operating at time t. Since the stationary offered load is λE[S], that

means letting the homogeneous Poisson arrival process in the stationary M/G/s + G model

have time-dependent arrival rate

λMOL
t ≡ m∞

t

E[S]
= m∞

t µ at time t . (3.7)

The MOL staffing function sMOL
t is obtained by applying (3.1) with NMOL

t instead of Nt.

The important insight is that the “right” time-dependent offered load in the Mt/G/st + G

model should be the time-dependent mean number of busy servers in the associated infinite-

server model - m∞
t . Since the right offered load for the stationary model is λE[S], the “obvious”

direct time-dependent generalization is the PSA offered load mPSA
t ≡ λ(t)E[S]. However,

λE[S] is also the mean number of busy servers in the associated stationary infinite-server

model. It turns out that the mean number of busy servers in the infinite-server model is a

better generalization of “offered load” than the PSA time-dependent offered load for most

time-varying many-server models. Indeed, it may be considered exactly the right definition for

the infinite-server model itself.

The MOL approximation in §4 of Jennings et al. (1996) was not applied directly. Instead

of calculating the steady-state delay probability for the stationary M/M/s model, we exploited

an approximation for the delay probability based on a many-server heavy-traffic limit in Halfin

and Whitt (1981). That produces a simple formula relating the delay probability α and the

service quality β. Moreover, the heavy-traffic limit provides an alternative derivation of the

square-root staffing formula in (3.6), without relying on an infinite-server approximation or a

normal approximation. We will do the same thing here with customer abandonments, relying

on the heavy-traffic limits for the M/M/s + M model established by Garnett et al. (2002).

Jennings et al. (1996) showed that the method for setting staffing requirements in the

Mt/G/st model outlined above is remarkably effective. This was demonstrated by doing nu-

merical comparisons for the Mt/M/st special case. For any given staffing function, the time-
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dependent distribution of Nt in that Markovian model can be derived by solving a system of

time-dependent ordinary differential equations (ODE’s). We too could have exploited ODE’s

for the Mt/M/st + M model, but we wanted to develop a method that applies to much more

general models.

The most important conclusion from those previous experiments in Jennings et al. (1996)

is that it is indeed possible to achieve time-stable performance for the Mt/M/st model by an

appropriate choice of a staffing function st, even in the face of a strongly time-varying arrival-

rate function. Here we show the same is true for the Mt/M/st + M model. And we provide a

means to go far beyond these Markovian models.

4. An Mt/M/st + M Example with a Sinusoidal Arrival-Rate Function

We demonstrate the performance of ISA by considering Mt/M/st +M examples. We start

in this section with a sinusoidal arrival-rate function

λ(t) = a + b · sin(ct), 0 ≤ t ≤ T , (4.1)

letting a = 100, b = 20 and c = 1. Here we let the individual service rate µ and the individual

abandonment rate θ both be 1. Letting µ = 1 is without loss of generality, because we are

free to choose the time units. For the special case θ = µ that we consider, we have strong

supporting theory in §6, but we also found that ISA is effective with other abandonment rates.

We show corresponding results for θ = 0.2 and θ = 5.0 in the Internet Supplement.

Since mPSA
t ≡ λ(t)E[S] = λ(t), this example captures the many-server spirit of a call

center. However, the sinusoidal form of the arrival-rate function is clearly a mathematical

abstraction, which has the essential property of producing significant fluctuations over time,

i.e., significant predictable variability. This particular arrival-rate function is by no means

critical for our analysis; our methods apply to an arbitrary arrival-rate function.

An important issue, however, is the rate of fluctuation in the arrival-rate function compared

to the expected service time. To be concrete, we will measure time in hours, and focus on a

24-hour day, so that T = 24. A cycle of the sinusoidal arrival-rate function in (4.1) is 2π/c;

since we have set c = 1, a cycle is 2π ≈ 6.3 hours. Thus there will be about 4 cycles during

the day.

Since we let the mean service time be 1 and have chosen to measure time in hours, the

mean service time in this example is 1 hour. That clearly is relatively long for most call centers,

where the interactions are short telephone calls. If we were to change the time units in order
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Figure 1: The offered load m∞
t for the sinusoidal arrival-rate function in (4.1) with

parameters a = 100, b = 20 and four possible values of c: 0.5, 1, 2 and 8.
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to rectify that, making the expected service time 10 minutes, then a cycle of the arrival-rate

function would become about 1 hour, making for more rapid fluctuations in the arrival rate

than are normally encountered in call centers. Thus our example is more challenging than

usually encountered in call centers, but may be approached in evolving contact centers if many

interactions do indeed take an hour or more. We consider a more realistic example in §5.

Since we have a sinusoidal arrival-rate function, we can apply formula (15) of Eick et al.

(1993b) to obtain

m∞
t = a +

b

1 + c2
[sin(ct)− c · cos(ct)] . (4.2)

For the specific parameters a = 100, b = 20 and c = 1, we get m∞
t = 100 + 10[sin(t)− cos(t)].

In order to put our model into perspective, in Figure 1 we plot the time-dependent offered

load m∞
t in (4.2) for the sinusoidal arrival-rate function in (4.1) for the parameters a = 100

and b = 20, as in our example, but with four different values of the time-scaling parameter c:

0.5, 1, 2 and 8. Note that the time-dependent offered load m∞
t is also a periodic function with

the same period 2π/c as the arrival-rate function λ(t), but the number of cycles increases and

the amplitude (size of the fluctuations) decrease as c increases. As c increases, m∞
t approaches

the average value a = 100.

In Figure 2 we present two graphs, showing the ISA staffing functions for two values of α:

0.1 and 0.9. In each graph, we plot three curves: the arrival rate λ(t) ≡ mPSA
t (dotted), the
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Figure 2: Staffing - number of servers as a function of time - for the sinusoidal
example: (1) α = 0.1 (QD), (2) α = 0.9 (ED).
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offered load m∞
t (dashed) and the ISA staffing function sISA

t (solid). Note that we start our

system empty. This allows us to observe the behavior of the transient stage. In particular,

there is a rampup at the left side of the plot. Our methods respond appropriately to that

rampup.

The two values of α used in Figure 2 plus α = 0.5 characterize three different regimes

of operation, as discussed by Garnett et al. (2002): Quality-Driven (QD) - target α = 0.1,

Efficiency-Driven (ED) - target α = 0.9, and Quality-and-Efficiency-Driven (QED) - target

α = 0.5. In the QD regime, the ISA staffing function is well above the time-dependent offered

load, while in the ED regime the ISA staffing function is well below the time-dependent offered

load. However, in the QED regime, the ISA staffing function falls right on top of the time-

dependent offered load. (For that reason, we omit the plot, since it is unnecessary.) In that
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Figure 3: Delay probabilities for the sinusoidal example with nine delay-probability
targets α, ranging from 0.1 to 0.9.
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QED case (α = 0.5), it would have sufficed to simply let st = mt. This phenomenon held in all

our experiments. That itself is quite stunning. (Note that staffing to the offered load is much

easier than the full MOL approximation. Clearly, customer abandonment plays a crucial role

in staffing to the offered load.)

We now show that ISA achieves the desired time-stable performance. In Figure 3 we

show the ISA delay probabilities obtained with target α for α = 0.1, 0.2, . . . , 0.9. These delay

probabilities are estimated by performing multiple (5000) independent replications with the

final staffing function determined by our algorithm. (We verified that this was sufficient by

repeating the experiment with independent random numbers. We saw negligible change in

the plots. The observed fluctuations are largely due to the inherent discreteness: The staffing

levels must be integers.) Under the ISA staffing levels, the delay probabilities are remarkably

accurate and stable; the observed delay probabilities fluctuate around the target in each case.

In addition to stabilizing the delay probabilities, other performance measures (e.g. utiliza-

tion, tail probabilities abandonment probabilities, etc.) are found to be quite stable as well.

However, as the target delay probability increases toward heavy loading, the abandonment

probabilities become much less time-stable, as shown in Figure 4. (Like the delay probability,

we let the abandonment probability be for a potential arrival at time t; a precise definition is

given after (6.1).) We discuss this phenomenon further in the Internet Supplement. Other mea-

sures of congestion such as average waiting time and average queue length were also found to

12



Figure 4: Abandonment probabilities for the same sinusoidal example with the same
nine delay-probability targets.
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be relatively stable, but like the abandonment probabilities, these too become less time-stable

under heavy loads. Details are given in the Internet Supplement.

We now validate the square-root-staffing rule in (3.6). For that purpose, we define an

implied empirical quality of service {βISA
t : 0 ≤ t ≤ T} by setting

βISA
t ≡ sISA

t −m∞
t√

m∞
t

, 0 ≤ t ≤ T , (4.3)

where m∞
t is again the offered load in (3.2) and (4.2). Since sISA

t is obtained from ISA, the

function βISA
t is itself obtained from ISA. It thus becomes interesting to see if the implied

service grade is approximately constant as a function of time. That would empirically justify

the square-root-staffing formula in (3.6).

And, indeed, it is. Again we consider nine values of α ranging from 0.1 to 0.9 in steps of

0.1. As α increases, the quality of service reflected by βISA
t decreases, from about +1.3 to

−1.3, hitting 0 for α = 0.5. But the main point is that βISA
t is approximately constant as a

function of t for each α over the full range from 0.1 to 0.9. The oscillations in the plots are

essentially the same as in Figure 3 (see the Internet Supplement).

The time-stability of βISA
t is extremely important because it validates the square-root-

staffing formula in (3.6) for this example. First, Figure 3 shows that ISA is able to produce the

target delay probability α for a wide range of α. When this is done, the square-root-staffing

formula holds empirically. In other words, we have shown that we could have staffed directly

by the infinite-server approximation and the square-root-staffing formula instead of by the ISA.

The single critical non-trivial element is the offered load m∞
t .
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However, one issues remains: In order to staff directly by the square-root staffing formula,

we need to be able to relate the quality of service β to the target delay probability α. Indeed, we

want a function mapping α into β. We propose a simple answer: MOL. For the Mt/M/st +M

model with time-varying arrival-rate function λ(t), staffing function st and parameters µ and θ,

we use the associated stationary M/M/s+M model, with the same service and abandonment

rates µ and θ, and with s = st, λ = λMOL
t = m∞

t µ (as in (3.7)) for the approximation at time

t. We used exact M/M/s + M formulas from Garnett et al. (2002). Moreover, paralleling

what was done in §4 of Jennings et al. (1996), we suggest using simple formulas obtained from

the many-server heavy-traffic limit for the M/M/s + M model in Garnett et al. (2002). The

Garnett function mapping β into α is

α =

[
1 +

√
θ

µ
· h(β̂)
h(−β)

]−1

, −∞ < β < ∞ , (4.4)

where β̂ = β
√

θ/µ, with µ the individual service rate and θ the individual abandonment

rate (both here set equal to 1 now) and h(x) = φ(x)/(1 − Φ(x)) is the hazard rate of the

standard normal distribution, with φ being the probability density function (pdf) and Φ the

cdf. To obtain the desired function mapping α into β, we can use the inverse of the Garnett

function, which is well defined. For this example, the Garnett function yields essentially the

same formula as the exact values for the M/M/s + M model.

We also looked at additional simulation output, aimed at establishing the validity of the

ISA and MOL approximations. First, we compared the empirical distribution of the customer

waiting times, with ISA, to the theoretical distribution of those waiting times in the stationary

M/M/s+M model. To illustrate, in Figure 5 we plot the empirical conditional waiting time pdf

given wait, i.e. the distribution of the waiting time for those who were in fact delayed, during

the entire time-horizon, for the case α = 0.1. We plot the proportions experiencing delays in

intervals of length 0.01. In doing so, we are looking at all the waiting times experienced across

the day. As before, we obtain statistically precise estimates by averaging over a large number of

independent replications (here again 5000). In this case, the empirical conditional distribution

is based on statistics gathered from the time of reaching steady state until the end of the

horizon. We compared the empirical conditional waiting-time distribution to many-server

heavy-traffic approximations for the conditional waiting-time distribution in the stationary

M/M/s+M queue, drawing on Garnett et al. (2002). Figure 5 shows that the approximation

for the conditional waiting-time distribution in the stationary queues matches the performance

of our time-varying model remarkably well. Plots for α = 0.5 and α = 0.9 in the Internet
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Figure 5: The empirical conditional waiting time distribution, given positive wait,
for the Mt/M/st + M example with delay-probability target α = 0.1 (QD).
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Supplement show an excellent match across the full range of delay-probability targets.

We next related the empirical (α, β) pairs to the Garnett function in (4.4). We define the

empirical values ᾱ and β̄ as simply the time-averages of the observed (time-stable) ISA values

(for α, displayed in the plot in Figure 3). In Figure 6, we plot the pairs of (ᾱi, β̄i) alongside

the Garnett function. Needless to say, the agreement is phenomenal!

We close this section by observing that, just as in Jennings et al. (1996), other common

approximations, such as the PSA or the SSA (the simple stationary approximation, using

the overall time-average arrival rate) perform poorly for this example; again see the Internet

Supplement.

5. A Realistic Mt/M/st + M Example

In this section we consider a more realistic example: a medium-sized financial-services call

center taken from Green et al. (2001). The hourly call volumes are shown in Figure 7. The

mean service time is E[S] = 6 minutes. That is achieved with our hourly time scale by letting

µ = 10. Corresponding to that, we let θ = 10, so that we have θ = µ as in Section 4. (Green

et al. (2001) did not consider customer abandonment.)

Once again, ISA is very effective. To show that, we plot the ISA delay probabilities as a

function of the delay-probability target α for three values of α in Figure 8. With such short
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Figure 6: A comparison of the empirical relation between α and β with the Garnett
function for the sinusoidal example.
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service times, we might think that that this should be an easy problem, for which simple PSA

would also work well. Indeed, when we look at the staffing for three values of α in Figure 9, we

do not see much difference, but there actually is a difference. Even though the service times

are indeed short here, the arrival-rate function is changing rapidly at some times, especially in

hours 4 − 6. For this example, Figure 8 shows that simple PSA performs significantly worse

than ISA.

As before, we find that ISA produces essentially the same results as MOL. Moreover, the

dominant effect in MOL is captured by the time lag in (3.4); i.e., here it suffices to use lagged

PSA, with approximate offered load λ(t − E[Se])E[S]. Since the service-time distribution is

exponential, Se and S have a common exponential distribution, and the lagged-PSA offered

load is just λ(t−E[S])E[S]. The good performance of lagged PSA is consistent with the various
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Figure 7: Hourly call volumes to a medium-size financial-services call center.
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Figure 8: A comparison of ISA, PSA and lagged PSA for the same three delay-
probability targets.
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Target Alpha=0.1(ISA) Target Alpha=0.1(LPSA) Target Alpha=0.1(PSA)

Target Alpha=0.5(ISA) Target Alpha=0.5(LPSA) Target Alpha=0.5(PSA)

Target Alpha=0.9(ISA) Target Alpha=0.9(LPSA) Target Alpha=0.9(PSA)

refinements proposed by Green et al. (2001). We show that simple PSA performs worse than

ISA and lagged PSA by plotting the delay probabilities for these three staffing rules in Figure

8. The performance of simple PSA here is nowhere near as bad as it was in the challenging

Mt/M/st example in Jennings et al. (1996), and as it is for the example here in §4 (see the

Internet Supplement), but there are clear departures from the performance targets in Figure

8. The PSA delay probabilities are significantly below the targets during the hours 4− 6 with
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Figure 9: A comparison of staffing levels based on ISA, PSA and lagged PSA for
the realistic example, for three delay-probability targets: 0.1, 0.5 and 0.9.
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rapidly increasing arrival rates. The differences among the corresponding staffing functions

in Figure 9 look small, but those small differences can have a significant impact, because the

arrival-rate function changes rapidly.

We also observe that ISA is not as successful as before, because the target delay probability

is not achieved accurately at the beginning and at the end of the day. This phenomenon is

even more evident for other performance measures; see the Internet Supplement. However,

this weak performance is due to the extremely low arrival rates that prevail at the beginning

and the end of the day. When the load is small, the addition or removal of a single server will

greatly affect the delay probability. On the positive side, there is a clear time-interval - from

hours 5 to 18, in which all performance measures are stable. Finally, we remark that there is

excellent matching between the Garnett function and the empirical results, just as in Figure

6; see the Internet Supplement.

6. Theoretical Support in the Case θ = µ

Relation to other models. In one special case, we can analyze the Mt/M/st +M model in

considerable detail. That is the case we considered in §4 and §5, in which θ = µ. (As in §4, we

let those both be 1.) With the condition θ = µ, it is easy to relate the Mt/M/st +M model to,

first, the corresponding Mt/M/∞ model with the same arrival-rate function and service rate
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and, second, a corresponding family of steady-state distributions of stationary M/M/s + M

models, indexed by t, with the same service and abandonment rates, but with special arrival

rate that depends on time t.

Let {st : t ≥ 0} be an arbitrary staffing function. For simplicity, assume that all systems

start empty in the distant past (at time −∞). By having λ(t) = 0 for t ≤ t0, we can start

arrivals at any time t0. The first observation is that, for any arrival-rate function {λ(t) :

t ≥ 0} and any staffing function {st : t ≥ 0}, the stochastic process {Nt : t ≥ 0} in the

Mt/M/st + M model with θ = µ has the same distribution (finite-dimensional distributions)

as the corresponding process {N∞
t : t ≥ 0} in the Mt/M/∞ model, because the birth and

death rates are the same.

The second observation is that, for both these models, the individual random variables Nt

and N∞
t have the same Poisson distribution as the steady-state number in system N

(t)
∞ in the

corresponding stationary model with arrival rate m∞
t .

Waiting times and abandonment probabilities. Let Wt be the virtual waiting time

at time t (until service, i.e., the waiting time in queue that would be spent by an infinitely

patient customer arriving at time t), and let P ab
t be the virtual abandonment probability at

time t (i.e., the probability of abandonment for an arrival that would occur at time t), both in

the Mt/M/st + M model. These quantities are considerably more complicated than Nt.

Even though it is difficult to evaluate the full distribution of Wt, we can immediately

evaluate the virtual delay probability, because it clearly depends only on what the customer

encounters upon arrival at time t. Hence, we have

P (Wt > 0) = P (Nt ≥ st) = P (N∞
t ≥ st) = P (Poisson(m∞

t ) ≥ st) , (6.1)

where m∞
t is the offered load in (3.2), just as in (3.5), only here the infinite-server approxima-

tion is exact.

Next we observe that P ab
t = E[F (Wt)], where F is the time-to-abandon cdf, so that it

suffices to determine the waiting-time distribution. Here is an important initial observation:

Conditional on the event that Wt > 0, whose probability we have characterized above, Wt is

distributed (exactly) as the first passage time of the (Markovian) stochastic process {Nu : u ≥
t} from the initial value Nt encountered at time t down to the staffing function {su : u ≥ t},
provided that we ignore all future arrivals after time t. In other words, Wt is distributed as

the first passage time of the pure-death stochastic process with state-dependent death rate Nu
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for u ≥ t down from the initial value Nt to the curve {su : u ≥ t}. As a consequence, the

distribution of Wt and the value of P ab
t depend on only Nt and the future staffing levels, i.e.,

{su : u ≥ t}. The time-dependent arrival-rate function contributes nothing further.

It is easy to see that we can establish stochastic bounds on the distribution of Wt if the

staffing level is monotone after time t: then setting su = st for all u ≥ t will yield a bound. We

can go further based on this observation if we make approximations. If the number of servers

is large, then Wt will tend to be small, so that it is often reasonable to make the approximation

su ≈ st for all u > t. We make this approximation, not because the staffing level should be

nearly constant for all u after t, but because we think we only need to consider times u slightly

greater than t.

If the future-staffing-level approximation held as an equality, then we would obtain the

following approximations as equalities: Wt ≈ W∞ and P ab
t ≈ P ab∞ , where the constant staffing

level in the stationary M/M/s + M model on the righthand sides is chosen to be st and the

constant arrival rate is chosen to be λMOL
t in (3.7). Given these approximations, we can use

established results for the stationary M/M/s + M model, e.g., as in Garnett et al. (2002)

and Whitt (2005). Algorithms to compute the (exact) distribution of W∞ are given there,

including the corresponding conditional distributions obtained when we condition on whether

or not the customer eventually is served.

7. Algorithm Dynamics

In this section we establish the convergence of ISA for the Mt/M/st + M model. In doing

so, we disregard statistical error caused by having to estimate the delay probabilities associated

with each staffing function in the simulation.

To prove convergence, we use sample-path stochastic order, as in Whitt (1981). We say

that one stochastic process {N (1)
t : 0 ≤ t ≤ T} is stochastically less than or equal to another,

{N (2)
t : 0 ≤ t ≤ T}, in sample-path stochastic order and write

{N (1)
t : 0 ≤ t ≤ T} ≤st {N (2)

t : 0 ≤ t ≤ T} , (7.1)

if

E
[
f

(
{N (1)

t : 0 ≤ t ≤ T}
)]
≤st E

[
f

(
{N (2)

t : 0 ≤ t ≤ T}
)]

(7.2)

for all nondecreasing real-valued functions f on the space of sample paths. We have ordinary

stochastic order for the individual random variables N
(1)
t and N

(2)
t and write N

(1)
t ≤st N

(2)
t

if E[f(N (1)
t )] ≤ E[f(N (2)

t )] for all nondecreasing real-valued functions on the real line; see
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Chapter 9 of Ross (1996) and Müller and Stoyan (2002). Clearly, sample-path stochastic order

as in (7.1) implies ordinary stochastic order for the individual random variables for all t. For

the convergence, we only need ordinary stochastic-order for each time t, but in order to get

that, we need to properly address what happens before time t as well.

Here is the key stochastic-comparison property for the Mt/M/st + M model:

Theorem 7.1. (stochastic comparison) Consider the Mt/M/st+M model on the time interval

[0, T ], starting empty at time 0. If r ≥ 1 and s
(1)
t ≤ s

(2)
t for all t, 0 ≤ t ≤ T , or if r ≤ 1 and

s
(1)
t ≥ s

(2)
t for all t, 0 ≤ t ≤ T , then

{N (1)
t : 0 ≤ t ≤ T} ≤st {N (2)

t : 0 ≤ t ≤ T} . (7.3)

Proof. Here is the key fact: The death rates depend systematically on the number of servers

st. When r > 1 (r < 1), the death rates at time t decrease (increase) as st increases. The

ordering of the death rates in the two birth-and-death processes makes it possible to achieve

the sample-path ordering. Indeed, we justify the relation (7.3) by constructing special versions

of the two stochastic processes on the same underlying probability space so that the sample

paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae

et al. (1978), that special construction is actually equivalent to the sample-path stochastic

ordering in (7.3). The sample-path ordering obtained ensures that a departure occurs in the

lower process whenever it occurs in the upper process and the two sample paths are equal.

To start the construction, we let the two processes be given identical arrival streams. Then

we construct all departures (service completions or abandonments) from those of the lower

process at epochs when the two sample paths are equal. Suppose that at time t the sample

paths are equal: N
(1)
t = N

(2)
t = k. Then, at that t, the death rates in the two birth and death

processes are necessarily ordered by δ1(k) ≥ δ2(k). We only let departures occur in process 2

when they occur in process 1, so the two sample paths can never cross over. When a departure

occurs in process 1 with both sample paths in state k, we let a departure also occur in process

2 with probability δ2(k)/δ1(k), with no departure occurring in process 2 otherwise. This keeps

the sample paths ordered w.p. 1 for all t. At the same time, the two stochastic processes

individually have the correct finite-dimensional distributions.

The simulation experiments show that the way the staffing functions converge to the limit

depends on the ratio r ≡ θ/µ: Whenever r > 1, we encounter monotone dynamics. Whenever

r < 1, we encounter oscillating dynamics; and whenever r = 1, we encounter instantaneous
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convergence. As shown in §6, when r = 1, the number in system is independent of the staffing

function, so we obtain convergence in one step.

An example of the oscillating dynamics is shown in Figure 10, where staffing levels are

shown for the first two and final iterations for the model in §4 with µ = 1 and r = θ = 0 (no

abandonment).

Figure 10: Oscillating algorithm dynamics for the model in §4 when r = θ = 0:
staffing levels in the 1st, 2nd and final iterations.
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Theorem 7.2. (convergence) Consider the Mt/M/st + M model on the time interval [0, T ],

starting empty at time 0. Suppose that we consider piecewise-constant staffing functions that

only can change at multiples of ∆ > 0. Suppose that in each iteration n we can obtain the actual

stochastic process {N (n)
t : 0 ≤ t ≤ T} associated with the staffing function {s(n)

t : 0 ≤ t ≤ T}
(without statistical error). Suppose that s

(0)
t = ∞ for all t, 0 ≤ t ≤ T .

(a) If r > 1, then s
(n)
t ≤ s

(m)
t for all n > m ≥ 0 and there exists a positive integer n0 such

that

sISA
t = s

(n0)
t = s

(n)
t for all t and n ≥ n0 . (7.4)

(b) If r < 1, then there exist 2 subsequences {s(2n)
t } and {s(2n+1)

t }, such that s
(2n)
t ↓ s

(even)
t

and s
(2n+1)
t ↑ s

(odd)
t .

s
(0)
t ≥ s

(2n)
t ≥ s

(2n+2)
t ≥ s

(2n+3)
t ≥ s

(2n+1)
t ≥ s

(1)
t (7.5)

for all t, 0 ≤ t ≤ T , and for all n ≥ n0. Moreover, there exists a positive integer n0 such that

s
(2n)
t = s

(2n0)
t = seven

t ≥ sodd
t = s

(2n0+1)
t = s

(2n+1)
t (7.6)
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for all t, 0 ≤ t ≤ T , and for all n ≥ n0 .

Proof. Given that s
(0)
t = ∞, we necessarily have s(0)t > s

(1)
t for all t, 0 ≤ t ≤ T . Hence

we have the ordering of the initial ordering of the staffing functions that lets us apply the

stochastic order. We then proceed recursively. As a consequence of the sample-path stochastic

order, we get ordinary stochastic order in (7.3), we get ordinary stochastic order N
(1)
t ≤st

N
(2)
t for all t. Ordinary stochastic order is equivalent to the tail probabilities being ordered:

P (N (1)
t > x) ≤ P (N (2)

t > x) for all x, which implies the ordering for the staffing functions at

time t. In particular, suppose that

P
(
N

(2)
t ≥ s

(2)
t

)
≤ α < P

(
N

(2)
t ≥ s

(2)
t − 1

)
.

Since P
(
N

(1)
t ≥ s

(2)
t

)
≤ P

(
N

(2)
t ≥ s

(2)
t

)
≤ α, necessarily s

(1)
t ≤ s

(2)
t .

Case 1: r > 1. For s
(0)
t = ∞, we necessarily start with s

(0)
t > s

(1)
t for all t, which produces

first N
(1)
t ≤st N

(0)
t and then s

(2)
t ≤ s

(1)
t for all t. Continuing, we get N

(n)
t stochastically

decreasing in n and s
(n)
t decreasing in n, again for all t. Since the staffing levels are integers,

if we use only finitely many values of t, as in our implementation, then we necessarily get

convergence in finitely many steps.

Case 2: r < 1. For s
(0)
t = ∞, we again necessarily start with s

(0)
t > s

(1)
t for all t.

That produces first N
(1)
t ≥st N

(0)
t and then s

(0)
t ≥ s

(2)
t ≥ s

(1)
t for all t. Afterwards, we get

N
(1)
t ≥st N

(2)
t ≥st N

(0)
t and s

(0)
t ≥ s

(2)
t ≥ s

(3)
t ≥ s

(1)
t for all t. Continuing, we get N

(2n)
t

stochastically increasing in n, while N
(2n+1)
t stochastically decreases in n, for all t. Similarly,

s
(2n)
t decreases in n, while s

(2n+1)
t increases in n for all t. We thus have convergence, to possibly

different limits. Since the staffing levels are integers, if we use only finitely many values of t,

as in our implementation, then we necessarily get convergence in finitely many steps.

We remark that we also obtain the convergence in Theorem 7.2 with other initial conditions.

In particular, it suffices to let s
(0)
t be sufficiently large for all t. For r > 1, it suffices to have

s
(0)
t ≥ sISA

t for all t. For r < 1, it suffices to have s
(0)
t ≥ seven

t for all t.

We conclude this section by making some empirical observations, for which we have yet

to develop supporting theory. We also observed that the target delay probability α strongly

influenced the dynamics. In particular, higher values of α cause larger oscillations in the

oscillating case, and slower convergence to the limit in all cases. Finally, we also observed

a time-dependent behavior in the convergence of s
(n)
t . We observed a greater gap as time

increased. For example, let It ≡ inf {j : s
(i)
t = s

(j)
t for all i ≥ j}. We observed that It2 ≥ It1
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for all t2 > t1. An illustration can be viewed in Figure 10. This time-dependent behavior is

understandable, because the gap between two different staffing levels persists across time, so

that there is a gap in the death rates at each t. Hence, as t gets larger, the two processes can

get further apart. Thus the gap can first decrease more at the initial times. When it reaches

the limit at earlier times, the gap will still have to decrease more at later times.

8. Conclusions

We have developed a simulation-based algorithm - ISA - that generates staffing functions

for which performance has been shown to be stable in the face of time-varying arrival rates for

the Mt/M/st + M model. The results have been found to be remarkably robust, applying to

all forms of time variation in the arrival-rate function, with or without abandonment, covering

the ED, QD and QED operational regimes. All experiments were done with nine target delay

probabilities, ranging from α = 0.1 (QD) to α = 0.9 (ED). In §7 we proved that the ISA

converges for the Mt/M/st + M model.

In our simulation experiments, we found that ISA performs essentially the same as the

modified-offered-load (MOL) approximation (reviewed in §3) with and without customer aban-

donment. Thus we provided additional support for MOL and the square-root-staffing formula

in (3.6) based on it (using arrival rate λMOL
t in (3.7)). As we saw in §5, in many applications

the MOL approximation is well approximated itself by lagged PSA and, in easy cases, by PSA

itself. To implement the MOL approximation with abandonments, we applied many-server

heavy-traffic limits from Garnett et al. (2002), which yield the Garnett function in (4.4); just

as Jennings et al. (1996) applied applied many-server heavy-traffic limits from Halfin and

Whitt (1981) without customer abandonment.

Finally, we found that the simple approach of staffing to the offered load is remarkably

effective in the QED regime (when α = 0.5). That was substantiated time and again by

having the ISA staffing function sISA
t fall on top of the offered load m∞

t , as in case 3 in Figure

2. Of course, abandonment plays an important role; the staffing is always above the offered

load without abandonment. When the service times are short, the offered load m∞
t may agree

closely with the PSA offered load mPSA
t ≡ λ(t)E[S]; then staffing to the offered load reduces

to the naive deterministic approximation: staffing to the PSA offered load mPSA
t . However, it

is good to be careful, because even for the realistic example in §5, PSA performed significantly

worse than ISA, MOL and lagged PSA.

There is much yet to be done. Here are some natural next-steps:
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1. As discussed in Section 4, for the Mt/M/st +M model, it remains to explore alternative

staffing methods to achieve better time-stability of abandonment probabilities and expected

waiting times, especially under heavy loads, but experience indicates that the delay probability

is a good performance target.

2. A great advantage of ISA is its generality. However, it remains to explore the ISA

for additional queueing systems. We already have had partial (successful) results for deter-

ministic and log-normal service-time distributions. It remains to consider other service-time

distributions for the same models; it remains to consider other models. Some other models to

analyze appear in Mandelbaum et al. (1998), e.g., queues with retrials and priority classes. Of

special interest for actual call centers are multi-class models with skill-based routing. For call

centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and

skill-based routing (SBR), but that remains to be done. In that setting, it is natural to apply

SBR methods for stationary models after using the MOL approximation in (3.7) for each call

type at time t. Once we have reduced the problem to a stationary SBR model, we may be

able to apply the staffing method in Wallace and Whitt (2005). Approaches based on these

ideas remain to be investigated. With networks of queues, the MOL approach can be applied

together with results for networks of infinite-server queues; see Massey and Whitt (1993).

3. We proved that ISA converges for the Mt/M/st + M model and we observed that it

usually does so quite quickly, but it remains to analyze convergence of the algorithm more

generally. Even for the Mt/M/st + M model, some of the phenomena have not yet been

adequately explained.

4. For one special case - the one with θ = µ - we have provided strong theoretical support for

our methods in §6 and the Internet Supplement. In the Internet Supplement we exploited the

mathematical framework of service networks in Mandelbaum et. al.(1998). It would be nice to

prove much more generally that, under proper scaling, the actual time-dependent probability

of delay under ISA indeed converges to the specified target as scale increases.
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