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In this paper we describe the mean number of busy servers as a function of time in an M,/
G/ queue (having a nonhomogeneous Poisson arrival process) with a sinusoidal arrival
rate function. For an M, /G /oo model with appropriate initial conditions, it is known that the
number of busy servers at time t has a Poisson distribution for each ¢, so that the full distribution
is characterized by its mean. Our formulas show how the peak congestion lags behind the peak
arrival rate and how much less is the range of congestion than the range of offered load. The
simple formulas can also be regarded as consequences of linear system theory, because the
mean function can be regarded as the image of a linear operator applied to the arrival rate
function. We also investigate the quality of various approximations for the mean number of
busy servers such as the pointwise stationary approximation and several polynomial approxi-
mations. Finally, we apply the results for sinusoidal arrival rate functions to treat general periodic
arrival rate functions using Fourier series. These results are intended to provide a better un-
derstanding of the behavior of the M, /G / oo model and related M, / G /s / r models where some
customers are lost or delayed.

(Queues; Nonstationary Queues; Infinite-server Queues; Queues with Time-dependent Arrival Rates;

Approximations; Pointwise Stationary Approximation)

1. Introduction
This paper is part of an effort to analyze queues with
time-dependent arrival rates. We want to develop com-
putational methods and approximation techniques, but
the primary purpose of this paper is to develop a better
understanding of the time-dependent behavior. We want
to understand the congestion response to different ar-
rival rate functions. For example, we want to understand
how peak congestion lags behind the peak arrival rate.
We believe that a good place to begin a quest for
better understanding is the M,/G /o queue, which
has a nonhomogeneous Poisson arrival process with
deterministic time-dependent arrival-rate function A
= {\(t): —0 <t < 00}, iid. service times that are
independent of the arrival process and infinitely many
servers. The M,/ G /oo model is u good starting point be-
cause it is remarkably easy to analyze. For the M, /G /o0
model we can carry out the mathematical analysis re-
quired to obtain explicit formulas. These results apply
directly to M, /G /oo models but also serve as approx-
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imations (and tools for developing further approxi-
mations) for M, /G /s/r models (with s servers and r
extra waiting spaces); see Eick et al. (1993Db).

In this paper we continue the investigation of the
M,/ G /oo queue begun in Eick et al. (1993a) by focusing
on sinusoidal arrival rate functions. Queues with si-
nusoidal arrival rates have been considered previously
by Jagerman (1975), Rothkopf and Oren (1979), Green
and Kolesar (1991) and Green et al. (1991). The special
case of sinusoidal arrival rates is especially interesting
to understand queues with periodic arrival rates (e.g.,
daily cycles).

For the M, /G / oo queue with sinusoidal arrival rates,
we obtain explicit formulas for the mean number of
busy servers as a function of time, its extreme values
and the time lag between the times when the extremes
occur in the arrival rate function and when they occur
in the mean number of busy servers. The simple
formulas in the special cases of exponential and deter-
ministic service times are especially revealing.
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A second purpose of this paper is to study approxi-
mations for the time-dependent mean number of busy
servers in the M, /G /oo model. Since we obtain nice
explicit formulas for the case of sinusoidal arrival rates,
there obviously is not a great need for approximations
here. We are studying approximations in the sinusoidal
context to gain insight into how the approximations perform
more generally (i.e., for M; /G /oo models with general
arrival rate functions, for M;/G /s /r models and for
even more general models). We regard the sinusoidal
case as a convenient testbed for the approximations.

Here is how this paper is organized. In §2 we define
the M, /G /oo model and review some of its basic prop-
erties; for more discussion and references, see Eick et
al. (1993a). In §3 we review some approximations for
the mean number of busy servers in an M, /G /oo model.
In §4 we obtain general results for M, /G /oo models
with sinusoidal arrival rates. In §§5, 6 and 7 we consider
the special cases of exponential, deterministic and hy-
perexponential service-time distributions, respectively.
In §8 we apply the results for sinusoidal arrival rates to
treat general periodic arrival rate functions using Fourier
series. In §9 we indicate how to calculate the asymptotic
sampling variance for the case of a periodic arrival pro-
cess. Finally, we state some conclusions in §10.

2. The M,/G /oo Model

We assume that the M,/G /o0 model starts empty in
the infinite past, which can be formally justified by ap-
plying Thorisson (1985). We primarily consider periodic
arrival rate functions; then this initialization gives us a
dynamic steady state as discussed for M, / M /s models
by Heyman and Whitt (1984).

In general, we assume that X is nonnegative, mea-
surable and integrable over any bounded interval. For
applications, we could also assume that A is piecewise
smooth, i.e., has a continuous derivative everywhere
except at finitely many points. Indeed, we use this as-
sumption in §8 for Fourier series.

Let S be a generic service-time random variable and
let G be its cumulative distribution function (cdf). Let
S. be a random variable with the associated stationary-
excess cdf (or equilibrium-residual-lifetime cdf)

Ge(t)EP(Sest)EE—[ls—]LGC(u)du, t=0, (1)
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where G°(¢) = 1 — G(¢); see (16) and (37) of Serfozo
(1990). The moments of S, are related to the moments
of S by

E[sk+1]

E[Si] = (k+ DES]’

k=1. (2)

Let Q(t) represent the number of busy servers at time
t and let m(t) = E[Q(¢)]. The main M,/G /oo result,
due to Palm (1943, 1988) and Khintchine (1955, 1960),
is that Q(#) has a Poisson distribution with mean

m(t) = J:O G(u)N(t — u)du

- EU; }\(u)du} = E[M(t - S.)]E[S]. (3)

In Eick et al. (1993a) we review an elegant probabilistic
proof of (3) using Poisson random measures, evidently
originally due to Prékopa (1958); also see pp. 27-31 of
Serfozo (1990). See Eick et al. (1993a) for a review of
the literature and Carrillo (1991) for related work in
inventory theory.

For interpretation, it is useful to relate the time-de-
pendent mean m(t) in (3) to the instantaneous offered
load N(t)E[S], because m(t) equals the instantaneous
offered load when the arrival process is homogeneous
(by virtue of L = AW). For the stationary M/G /o
model, the steady-state mean m(co) thus depends on
the service-time distribution only through its mean; i.e.,
the M /G /oo model has the familiar insensitivity prop-
erty. From (3) it is clear that this is not true for the M, /
G /oo model; the entire service-time distribution plays
a role.

The last expression for m(t) in (3) says that to obtain
m(t) we replace A(t) in the instantaneous offered load
by an appropriate weighted average of X before time .
Since we average before time ¢, we see that the conges-
tion as described by m(t) lags behind A(t); e.g., if A is
unimodal with a unique maximum, then the peak of m
will come after the peak of A; see Corollary 2.5 of Eick
et al. (1993a).

The second expression for m(t) in (3) also has a nice
interpretation. The integral describes the cumulative
arrival rate during a service period before time ¢. The
expectation is then the expected number of arrivals
during a random service period before t. The proba-
bilistic proof shows that this interpretation is justified.
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It is significant that the operator mapping the function
A into the function m in (3) is a linear operator: see
Theorem 2.10 of Eick et al. (1993a). Thus, we can regard
the congestion measure 1 as a response of a linear system
(the queueing model) to an input signal (the arrival rate
function \); e.g., see Chapter 2 of Ziemer and Tranter
(1976). This linearity occurs in large part because dif-
ferent customers do not interfere with each other. The
linear structure in the M,/G /oo model explains why
the M, /G /oo model is much easier to analyze than other
M,/G/s/r queues.

It is not necessary to be familiar with linear system
theory to read this paper, but linear system theory adds
additional insight. The first expression for m(t) in (3)
is the standard superposition integral in linear system
theory; see p. 53 of Ziemer and Tranter (1976). The
impulse response function (i.e., the response to the system
to an impulse applied at time ¢t = 0) is G°. The super-
position integral shows that the response m is the con-
volution of the impulse response function G¢ with the
signal . By (1), the impulse function is just E[S] times
the probability density of S.. Linear system theory pro-
vides a nice framework for interpreting the results in
this paper. An important role is played by the transfer
function, which is the Fourier transform of the impulse
response function; see (11) below.

3. Approximations for the Mean

Function

Since the distribution of Q(t) is Poisson for each ¢, to
describe this distribution as a function of time it suffices
to focus on the mean function m in (3). For any arrival
rate function A and any service-time cdf G, m(t) is easily
calculated from (3), using numerical integration if nec-
essary. However, to understand the behavior of M; /G /
o systems, and perhaps to calculate more quickly, it is
useful to consider various approximations for m(t). We
review some basic approximations for m(t) here; they
are summarized in Table 1.

An obvious approximation strategy, commonly aplied
in practice, is to act as if the arrival process were ho-
mogeneous. The simple stationary approximation (S5A)
uses the stationary M /G /o formula with a long-run
average arrival rate A, assuming that the long-run av-
erage is well defined, as it is in the periodic case. An
alternative scheme is the pointwise stationary approxi-
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Table 1 A Summary of Basic Approximations
for the Mean Function m
SSA NE[S]
PSA MHELS]
LIN-S Mt — E[S.]EIS]
LIN-D MOEIST — X_“f(f)_é’[ﬁl_
)‘(2)(0
QUAD-S Mt — E[S )E[S] + e Var (S.)E[S]
1 2 3
QUAD-D NOE[S] - & )(t)zf 157, ”2)(’)5 [57]
CUBIC-D QUAD-D — ﬂ(%%[s—‘-]

mation (PSA), which calculates m(t) as if the arrival
process were homogeneous with the instantaneous ar-
rival rate A(#). Thus, for m(t), SSA is AE[S], while PSA
is A(t)E[S]. (For finite-capacity systems, these stationary
approximations could be unstable, but that cannot occur
here.) Note that PSA is a function of time, whereas SSA
is a constant. The corresponding approximations for
multi-server delay systems are examined by Green and
Kolesar (1991) and Green et al. (1991).

In Eick et al. (1993a) various polynomial approxima-
tions for m(t) were introduced, which are based on as-
suming that the arrival rate function X is a polynomial
or can be approximated by a polynomial. The approx-
imations LIN-S (linear with time shift) and QUAD-S
(quadratic with time shift) are based on the formula

m(t) = A(t — E[S.DE[S]

+ 2‘—%@—) Var (S,)E[S], (4)

where A ®)(t) is the kth derivative of X at t. Formula
(4) is valid if A is quadratic; see (7) and (15) of Eick et
al. (1993a). The approximations LIN-D, QUAD-D and
CUBIC-D (D for derivatives) are based on Taylor series
expansions for A; i.e.,

. NO(HE[S/M]

m(t)y= 2 (1Y — =

1=0 (] + 1)!
where R,(t) is a remainder term; see (8), (16) and
Theorem 3.2 of Eick et al. (1993a). These approxima-
tions all appear in Table 1.

+ Ru(t),  (5)
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As indicated above, we will examine how these ap-
proximations perform in the special case of an M, /G /
oo model with sinusoidal arrival rate function. We obtain
a very clear picture because we can obtain convenient
explicit expressions for m(t) as well as the approxi-
mations.

4. General Results for Sinusoidal

Arrival Rates
Now we consider the sinusoidal arrival rate function

A(t)= X+ Bsin (yt) =X + Rasin (27t /¢), (6)

for positive constants X, 8 = Aa and v = 27 /¥, where
0 < < 1. The second representation in (6 is convenient
for interpretation, because X is the average arrival rate,
a is the relative amplitude and ¢ is the cycle length or
period. We call « the frequency. In the context of (6),
the arrival process is characterized by three parameters,
e.g., the triple (X, 8, v), the triple (X, o, ¥) or the triple
A\ o, 7). Of course, these parameters should be inter-
preted relative to the mean service time E[S]. There is
one degree of freedom for choosing the measuring units.
If we choose measuring units so that E[S] = 1, we speak
of X as the relative average arrival rate,  as the relative
cycle length and v as the relative frequency.

As pointed out by Green et al., a key role is played
by the relative cycle length. In many applications, a cycle
represents a day. Table 2 displays values of the relative
cycle length and relative frequency as a function of the
mean service time, assuming a daily cycle. For example,
if we think of a daily cycle applying to telephone calls
with a mean holding time of five minutes, then ¢ = 288
and y = 0.022. More detailed modeling of telephone
traffic might lead to two cycles over the twelve hour
period from 8 am to 8 pm. Then we have y = 72 and
v = 0.087.In this context, Palm (1943, 1988) suggested
that PSA should be a pretty good approximation, and
this will be substantiated for the mean m(t) in the M, /
G /oo model here. More generally, we will investigate
the error in PSA as a function of the parameters X, a,
v and the service-time cdf G, assuming that ES = 1.

We begin by obtaining an explicit expression for .

THEOREM 4.1.  For sinusoidal \ as in (6),
m(t) = AE[S] + B(sin (v¢)E[cos (7S.)]
— cos (yH)E[sin (vS,))E[S]. (7)
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Table 2 The Relative Cycle Length v and the Relative Frequency v
as a Function of Mean Service Time for a Daily Cycle.
(The Relative Cycle Length and Relative Frequency Are the Cycle Length

and Frequency Computed With Measuring Units So That E[S}=1)

Mean Service Time Relative Cycle Length Relative Frequency

E[S] ¥ v
1 second 86,400 7.27 X 1075
1 minute 1,440 4.36 X 107°
5 minutes 288 0.0218
10 minutes 144 0.0436
30 minutes 48 0.131
1 hour 24 0.262
4 hours 6 1.05
12 hours 2 3.14
1 day 1 6.28
7 days 1/7 44.0

PROOF. From (3), we immediately obtain
m(t) = (X + BE[sin (¢ — S,)])E[S].

The conclusion then follows from the sine addition for-
mula

sin(x —y) =sinxcosy —cosxsiny. O (8)

REMARK (4.1). An easy alternate proof, which can
provide additional insight, is via Fourier transforms; see
pp- 58-59 of Ziemer and Tranter (1976). Corollary 4.2
below is also familiar in that context. O

From (7), we see that m is periodic with period (cycle
length) ¢ = 27 /v just like \. Moreover, the long-run
average (and average over one cycle) is

i
m = lim t‘lj; m(s)ds = XE[S]. (9)
and ]

Formula (9) implies that the approximations SSA and
PSA are both exact in an average sense. Note that this
is in distinct contrast with the behavior of queues with
finitely many servers. Experience related to Ross’s
(1978) conjecture (e.g., Rolski (1989) and Green et al.
(1991)) indicates that with finitely many servers the
SSA value underestimates congestion. Formula (9) sug-
gests that SSA should perform better in this average
sense as the number of servers increases and the model
becomes more like an infinite-server model.

Of course, SSA completely fails to say anything about
the time-dependent behavior of m. For this, we may
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turn to PSA. However, because of the averaging (3),
the extreme values of m will necessarily be relatively
less extreme than the extreme values X + 8 of \. Hence,
while SSA overestimates the true averaging effect at a
particular time, PSA underestimates it.

Note that the extreme values of  occur at times

T ™

b= ——
Y2y oy

(10)
for integer n, with the maximum occurring when n is
even. We now apply (7) and elementary calculus to
describe the locations and values of the extremes of m.
Here we will use elementary properties of complex
numbers. Recall that if z = x + iy, where i = V——l, then
the modulus of zis |z| = (x*> + y?)"/? and the argument
of z, denoted by arg (z), is the angle § between the x-
axis and the vector (x, y) in the plane, i.e,, tan § = y/
x. Recall that e* = e*(cos y + i sin ).

COROLLARY 4.2.
times

The extreme values of m occur at

tm =~ ' tan"' (—E[cos ¥S.]/E[sin ¥S.])
= t, + v ' tan""! (E[sin S,]/E[cos ¥5.])

= t, + v arg (E[e"*]), (11)

and the extreme values are
m(t,) = \E[S] + BIE[e"*]| E[S]
= AE[S] % B((E[cos vS.])*
+ (E[sin ¥S.])?)/?E[S], (12)
so that
|m(tw) — NE[S]| < BE[S].

REMARK (4.2). In linear system theory we obtain
Corollary 4.2 simply by noting that the amplitude re-
sponse function and the phase shift function are the
modulus and argument, respectively, of the transfer
function at the single relevant frequency v; see pp. 33
and 55 of Ziemer and Tranter (1976). O

From (11), we see that the lag (¢, — t\) depends on
XA in (6) only via the frequency v. It is evident that the
arrival rate function X is symmetric about its extremes,
i.e., A(tx + t) = (¢, — t) for all t. It is interesting that
the mean function m has this symmetry property too.
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THEOREM 4.3. m(to + t) = m(to — t) for all t if and
only if to = ty, for ty in (11).

PROOF. Apply the sine addition formula (8) with
(7) to calculate m(to + t) — m(to — t). Then observe
that the value is zero if and only if to = t,. 0O

Theorem 4.3 implies that congestion (as measured by
m) decreases after its peak just as quickly as it increases
before the peak. As shown by Green et al. (1991), with
finitely many servers, congestion tends to increase faster
before its peak than it decreases afterwards. Theorem
4.3 indicates that this effect disappears as the number
of servers increases.

It is instructive to see what happens as the frequency
v gets very small or very large. In the following we
index A and m by . Below we establish the asymptotic
validity of PSA when v gets small and the asymptotic
validity of SSA when v gets large. These results are
special cases of what can be established more generally.
For example, in the case of exponential service times
Theorem 4.3 is a corollary to Theorem 1 of Whitt (1991),
but the direct proof here is much easier.

Intuitively, we should anticipate that PSA should
perform well as ¥ = 0, because then the cycles are very
long, i.e., A changes slowly relative to the mean service
time. However, the desired asymptotic behavior as v
— 0 requires some care to state. For any fixed ¢, A,(t)
— A(0) = X and m,(t) = AES, so that SSA is also
asymptotically correct in this sense. However, we do
not really want to consider a fixed time ¢, but instead a
fixed position within a cycle. To achieve this, we must
scale time in m,. In the system with frequency vy we
want to consider times t /. This can also be achieved
by having uniform convergence in f as v —> 0.

THEOREM 4.4. If v = 0, then m,(t) — A\ (t)E[S]
— 0 and m,(t/v) = M(t)E[S]) uniformly in t.

PROOE. Since cos yx > landsinyx—>0asy—0
for all x, the results follow easily from Theorem 4.1. In
particular, E[cos (vS.)] = 1 and E[sin (vS.)] = 0 by
the bounded convergence theorem. [

In contrast to the situation when v — 0, we should
anticipate that PSA will perform poorly as v — oo. For
example, the number of arrivals in any interval [a, b]
is Poisson with mean [ A(t)dt, so that the crucial
quantity is the integral of X, not X itself. (Also see (3)
and the proof below.) If A is suitably smooth, then
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fb A(t)dt =~ A(a)(b — a),

but if A oscillates rapidly, then any specific values of
A(t) will be misleading. In contrast, SSA is asymptoti-
cally correct as vy = . As ¥ = 0, there will be many
complete cycles during a service time, so that the rele-
vant arrival rate is the long-run average rate X.

THEOREM 4.5. If v = oo, then m.(t) = X E[S] uni-
formly in t.

PROOF. The arrival process with rate function A,
converges in distribution to a homogeneous Poisson
process with constant rate X as v — oo, because the
compensators converge, i.e.,

J: [A + B sin (yu)]du

=Xt+§cos('yt)—>7\t as y—> o©;

see Theorem 5.7 of Serfozo (1990). Then a continuity
argument shows that Q.(¢) converges in distribution to
Q(t) for each t as ¥ = o0, e.g., by a minor modifica-
tion of Whitt (1974). Finally, m,(t) = m(t) as vy = o
since the distributions are all Poisson. As a conse-
quence (or by a direct argument), E[cos (v5,)] = 0 and
E[sin (vS.)] = 0 as v = 0 in (8), but then m.(t) =
AE[S] as ¥ = co uniformly int. O

Of course, Theorems 4.4 and 4.5 do not tell when vy
is sufficiently small or large for the limits to be realized
as good approximations in practice. However, we can
write down explicit expressions for the errors:

epsa(t) = N(#)E[S] — m(t)
= XE[S]((sin (v#)(1 — E[cos (¥5.)])
+ cos (yt)E[sin (vS.)]) and (13)
essa(t) = AE[S] — m(¢)
= XE[S]((—sin (v¢)E[cos (¥5,)])
+ cos (yt)E[sin (¥5.)]). (14)

From (13) and (14), we see that both errors epga () and
essa(t) are proportional to the average arrival rate A
Consequently, the relative errors epsa(t)/m(t) and
essa(t)/m(t) depend on (X, a, ¥) only through (e, ¥).
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5. Exponential Service Times

Consider the special case of an exponential service-time
distribution with mean 1. Since then Efsin (vS,)] = v/
(1 + ~?)and E[cos (vS.)] = 1/(1 + v?). From (8) we
see that

m(t) =X+ [sin vt — v cos yt].  (15)

1+ 42
Formula (15) can also be verified by applying Corollary
2.8 of Eick et al. (1993a) which says that for any
M,;/M /oo model

m'(t)E[S) = M(+)E[S) — m(t).

This differential equation in turn is just an expression
for a more general conservation law stating that m’(t)
is the arrival rate minus the departure rate; see Theorem
2.6 of Fick et al. (1993a). For the Markovian M; /M /
oo model, it is obvious that the conservation law takes
the form m'(t) = A(t) — um(t), where up = 1 /E[S]. The
differential equation implies that the PSA approximation
A(t)E[S] coincides with m(t) precisely when m'(t) = 0.

REMARK (5.1). From the perspective of linear system
theory, this differential equation shows that the M,/
M /oo model corresponds to the low-pass RC filter; see
pp- 50 and 55 of Ziemer and Tranter (1976). O

From (11), and the fact that we have fixed the mea-
suring units by setting E[S] = 1, we see that m'(t) = 0
at times

tm =t +cot™ (1/v)/, (16)

i.e., the time lag in the peak of m after the peak of A is
L(v)=cot™ (1/v)/~v and the phase shift (relative lag
in the peak per cycle) is

L(y) _cot™(1/v)
(27 /7) 2x '

The time lag L(«) is decreasing in <y, going from L(0)
=1 to L(c0) = 0, while the phase shift in (17) is in-
creasing in v, going from ¢(0) = 0 to ¢(c0) = §.

From (12), we see that extreme values of m in this
case are

#(y)= (17)

5 B
m(tm)=)\:tm.

(18)
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From (18) we see that the extremes are decreasing in
~, with the limits as v > 0 and ¥ = oo being consistent
with Theorems 4.4 and 4.5. Moreover, we have a con-
venient quantitative tight bound for SSA, which is the
approximation provided by Theorem 4.5:

lessay| = Im(t) — x| < B/V1+ 42 forallt. (19)
The relative error is then

essa(t)  essalt) a

m(t)  AE[S]  V(1++?)

for @ and v in (6). Assuming that the relative amplitude
a is not small, we see from (20) that the maximum
relative error in SSA as a pointwise approximation is
small only if 4 » 1 ( is large compared to 1), which
only occurs if the mean service time is greater than one
day in the setting of Table 2. Thus, we conclude that
SSA is typically a poor pointwise approximation for pe-
riodic arrival rates.
ExaMPLE 5.1. To illustrate, consider an M, /M /o0
model with exponential service times having mean 1
and arrival rate function A(t) = 10 + 5 sin (), i.e., X
= 10, @ = 0.5 and v = 1. Figure 1 displays A\, which
coincides with PSA, and m over a time interval of four
cycles (25.13). As indicated above, m'(t) = 0 precisely
where A(t) = m(t). From (18), the relative amplitude

of mis

(20)

a/V1++~2=V2/4~0353

as opposed to a = 0.500 for A. From (16), the time lag
in the extremes is cot™' (1) = = /4 ~ 0.785.
The percent error in PSA in (13) is plotted in Figure
1 as well as the mean number of busy servers. Note
that the maximum percent error tends to be somewhat
larger than we might suspect from only looking at the
plots of X and m. The maximum error occurs less than
halfway between the extreme values of m (where there
is no error). Also note that the maximum error occurs
before the extreme in . 0
Note that A in (6) has bounded derivatives of all or-
ders, so that we can apply Theorem 3.2 of Eick et al.
(1993a) to obtain Taylor series expansions for m(t). In
this case, the expansion is absolutely convergent if and

only if ¥ < 1. Moreover,
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Figure 1
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The Comparison of A(t) = PSA with m(t) in Example 5.1
Mt) = 10 + 5 sin(t)
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1=0
X (sin yt — v cos 'yt)) , n=0, (21)

which is of the same form as (13) except that the term
(1+4)7 =2 (1Y
1=0

in (13) is approximated by the finite sum 2], (—1)’
X (v?)’. In this case with S exponential and E[S] = 1,
the remainder term is simply

R,(t) = E[]A"*D(t = 8)],
because S, = S and E[S"] = n! From (22), we see that
(23)

(22)

sup |R.(+)] = Xay™*.
=0

The first four terms of the Taylor series expansion are
PSA, LIN-D, QUAD-D and CUBIC-D in Table 1. In
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particular, LIN-D and CUBIC-D are (21) for n = 0 and
1, respectively.

In this case the relative error in PSA is
v?sin (yt) + vy cos vt

epsa(t) _
1+ %+ afsin vt — v cos yt]

m(t)

Figure 2 displays contours of maximum (over ) percent
PSA error as a function of the two parameters y and a.
For example, corresponding to v = 0.087 for the tele-
phone example mentioned in the beginning of §4, the
maximum percent error in m(t) using PSA increases
from about 1% to 10% as « increases from 0.2 to 0.8.
A realistic value of « might be 0.4, which corresponds
to a maximum percent error in m(t) from PSA of 4%.

(24)

EXAMPLE 5.2. We now modify Example 1 by con-
sidering smaller and more realistic relative frequency
factors v. In particular, we let X = 10 and « = 0.5 as
before, but now we let ¥ = 0.5, 0.2 and 0.02. These
values correspond to mean service times of about 115
minutes, 46 minutes and 5 minutes, respectively, in a
daily cycle. Figures 3-5 compare several approximations
with the exact values of m(t) for this example.

Figure 2 The Contours of Maximum Percent Error in the PSA Approx-
imation for m(t) as a Function of the Relative Amplitude «
and the Relative Frequency v when the Service Time is Ex-
ponential with Mean 1
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A Comparison of Approximations with Exact Values when
= 0.5 in Example 5.2

A(t) = 10 + 5 sin(0.5 1)

Figure 3

16

14
12

10

MEAN NUMBER OF BUSY SERVERS

o N A OO @

20
10 N

PERCENT ERROR
o
1

As in Figure 1, in Figure 3 for v = 0.5 we see the
possible difficulties in interpretation. First, the periodic
plots of the means tend to hide the actual errors. For
example, from the periodic plots of the means, we might
not realize that the maximum percent error in PSA is
as much as 23% when v = 0.5. On the other hand, the
errors may exaggerate the true differences in the mean
functions, because the errors measure vertical distance
only. The mean functions could be considered closer if
we used a different metric.

For v = 0.2 and 0.02, we only give the percent errors,
because the curves are too close in direct plots. We plot
the percent errors with and without PSA. We see
that the error in PSA is much greater than the other
errors and that the error in LIN-D is much greater than
QUAD-D.

EXAMPLE 5.1 (REVISITED). We have noted that the
Taylor series for m(t) converges absolutely if and only
if ¥ < 1. Thus, we should not expect the polynomial
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Figure 4

PERCENT ERROR

A Comparison of Approximations with Exact Values when v
= 0.2 in Example 5.2
AMt) =10 + 5sin(0.2 t)

approximations to perform well when v = 1. This is
illustrated by Figure 6, which compares approximations
to the exact values of m(t) when X = 10, a« = 0.5 and

v = 1, as in Example 5.1.

6. Deterministic Service Times
Now consider the case of deterministic service times,
all assuming the value 1. As indicated before, with the
stationary M / G / co model, the steady-state mean (o0 )
is AE[S], independent of the service-time distribution
(which is quite different from the effect of the service-
time distribution in the stationary M/G/1 model).

However, the service-time distribution beyond its mean

affects the mean function m in the M, /G /co model.

1+ . i
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Formula (25) can also be verified by applying Corollary
2.7 of Eick et al. (1993a), which states that m'(t) = A(¢)
= A(t — E[S]) for any M,/D /oo model. This corollary
also shows that m'(t) = 0 at times

tw =t + 4 and (26)

2 (27)

m(tn) = X x 2 sin (7_) :
Y

Since (sin x) /x < 1 for all x, |m(t,)| < X + B, as re-
quired. From (26), we see that in contrast to the case
of exponential service times, in which the lag L(7y) de-
creases from 1 to 0 and the phase shift ¢(v) increases
from O to  as v increases, here there is a fixed lag L(v)
= 1 and the phase shift is ¢(y) = v /47, 0 < v < 4,
which increases from 0 to 1 as +y increases from 0 to 4.

7. Hyperexponential Service Times
Now suppose that the distribution of S is hyperexpo-
nential Hy (a mixture of k exponentials), i.e.,

k
Gi(t)y=2 pe™™, t=0,
1=1
where E[S] = Z!.; (p; /m,) = 1. Then, from Theorem
2.10 of Eick et al. (1993a) and (15), we obtain

(28)

k .
m(t)=7\+62 %[(T%)-;sin(yt)

2

= (ui—v)z cos (yt)] . (29)

EXAMPLE 7.1. Consider an H, distribution with bal-
anced means (p;/u; = p2 /2 = 0.5) and squared coef-
ficient of variation (variance divided by the square of
the mean) ¢ = 5. Then p; = 0.908, yu, = 1.816, p,
= 0.092 and g, = 0.184; see (3.7) of Whitt (1982).
If v = 1, then E[sin (vS,)] = 0.126 and E[cos ¥(S.)]
= 0.220, so that

m(t) = X + $(0.220 sin t — 0.126 cos ¢t).

In contrast, for an exponential service time with mean
1,

m(t) = X + $(0.500 sin ¢ — 0.500 cos t).

These mean functions are compared in Figure 7.
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Figure 7 A Comparison of m () for Exponential and Hyperexponential

Service-time Distributions in Example 7.1

At) = 10 + 5 sin(t)

MEAN NUMBER OF BUSY SERVERS

PERCENT DIFFERENCE

8. General Periodic Arrival Rate

Functions

In this section we assume that X is a general periodic
function on [0, 27 /v], and analyze the associated M, /
G /oo model by applying Fourier series together with
the results in §4. Note that this periodic case essentially
covers a general arrival rate function on a finite interval,
because any such arrival rate function can be extended
to a periodic function. The only difficulty is the end
effect at the left boundary in the aperiodic function,
which can usually be represented by appropriately
modifying the periodic function. In particular, if the
given arrival rate function on the interval [b, c] is ini-
tialized at b as if there were a warmup period during
[a, b], then we construct our periodic function on [a,
c] and use the results from [b, c].

Since X is periodic on [0, 27 /¥], it follows from (3)
that m is also periodic on [0, 27 /v]. To treat general A,
we assume that A can be approximated by the partial
sums of its Fourier series, i.e.,

MANAGEMENT SCIENCE/Vol. 39, No. 2, February 1993
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No(t) = ap + 2 (4 sin kyt + by cos kvt),
k=1

(30)

where

2x

a = — A(t) sin kytdt and
T Jo

by = l | 7\(t) cos kytdt. (31)

To guarantee convergence of A\, in (30) as n = oo,
we assume that A is piecewise smooth on [0, 27 /v],
i.e., X has a continuous derivative except at finitely many
points where X and its derivative may have simple jump
discontinuities. Then A,(¢#) = A(t) as n = oo for each

t that is a point of continuity of A and
Ao(t) = [A(t+H)Y + A (1)]/2

at each point of discontinuity. Moreover, the conver-
gence is uniform if X is continuous everywhere; see pp.
19, 81 of Tolstov (1976). From (3), we see that the
mean function m, associated with A, converges uni-
formly to m when A, converges uniformly to A; see
Theorem 2.10 of Eick et al. (1993a).

Moreover,

m.(t) = ag + 2 auma(t) + bimea(t),
k=1
where m;a(t) = my(t + w/2y) because cos(kt)
= sin (kt + 7 /2v) and my(t) is the formula from Theo-
rem 4.1 with v replaced by kv.

(32)

ExaMPLE 8.1. If the service times are exponential
with mean 1, then we can combine (15) and (32) to
obtain

ma(t) = § 1+ (k*r)2

X [sin (k’yt) — ky cos (kvt)]

? T (k X [sin (kyt + 7 /2)
~ kv cos (kyt + w/2)]
_ 5 (a t+ kbyy)
=go + El T () Uoy)? sin (kvyt)
(bk kayy)
1(21 1+ (ky)? cos (kvt). (33)

MANAGEMENT SCIENCE/Vol. 39, No. 2, February 1993

From (33), we see that the terms with high k have rel-
atively little influence because of the term (1 + (kv)?)
in the denominator of the coefficients. Thus, m might
be well approximated by fewer terms from its Fourier
series than A.

9. The Asymptotic Sampling

Variance
In this section we indicate how to calculate the asymp-
totic sampling variance for the case of a periodic arrival
rate. This is useful for determining confidence intervals
for the long-run average. For this purpose, we establish
a preliminary lemma. We use the iterate of the station-
ary-excess operator in (1), i.e., S& = (§¢™),.

LEMMA 9.1. Foran M, /G /o system,

2 Lm Cov [Q(t), Q(t + u)]du = E[A(t — S¥)]E[S?].

ProoOF. From Theorem 1.2 of Eick et al. (1991), we

have

J;w Cov [Q(t), Q(t + u)]du

= fo E“:_(S_S)_ )\(s)ds]du

= fm Jq A(S)P(S>t+ u — s)dsdu
0 —oo

=J“ A(s) Jw P(S>t+ u — s)duds

= E[S]Jj A(8)P(S. >t — s)ds

= E[SIE[S.JE[A(t — $¢)]
= E[N(t — S@))E[S?]/2. m]

THEOREM 9.1. If A(t) is a periodic function with period
T, then the asymptotic sampling variance of Q(t) is

lim ¢! Var [ft Q(s)ds] = %IT E[A(t — S{?)]dtE[S?].

=00
PrROOF. If Q(t) were a stationary process, then we
would have

lim ¢! Var“: Q(s)ds] = 2J:° Cov[Q(0), Q(1)]dt,

t—>o0

but it is not. However, we can make {Q(t) : t = 0}
stationary by randomizing the place in the cycle at time
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0 using the uniform distribution over [0, T]. For this
stationary process, say {Q*(t): ¢t =0},

Cov[Q*(0), Q*(1)] = 7 | Cov [Q(s). Q(s + £))ds

and the result follows from Lemma 9.1. It is also possible
to do a direct calculation. O

10. Conclusions

In this paper we have studied the M, /G /o0 queue with
a sinusoidal arrival rate function. We obtained explicit
expressions for the mean number of busy servers at
time ¢, m(t), for general service times in Theorem 4.1
and for exponential, deterministic and hyperexponential
service times, respectively, in (15), (25) and (29). We
also obtained explicit expressions for the peak value of
m and the lag in the peak of m behind the peak of A for
general service times in (12) and (11) and for expo-
nential and deterministic service times in (16), (18),
(26) and (27).

We also investigated the performance of several ap-
proximations for m(t). Assuming that we fix measuring
units by letting the mean service time be one, we see
that the simple stationary approximation (SSA) using
the average arrival rate X performs well only in the un-
usual case that the relative frequency v is significantly
greater than one, i.e., when there is considerably more
than one cycle in the arrival process per mean service
time. In this region, the pointwise stationary approxi-
matjon (PSA) and the polynomial approximations do
not perform well. However, PSA and the polynomial
approximations improve as vy decreases, i.e., as the cycle
length relative to the mean service time increases.
Moreover, for v sufficiently small (e.g., ¥ < 1 for ex-
ponential service times), higher order polynomial ap-
proximations provide better approximations.

Finally, we showed how general periodic arrival rate
functions can be treated using Fourier series and the
results for sinusoidal arrival rate functions. The case of
exponential service times considered in Example 8.1
suggests that the mean function m might be well ap-
proximated by fewer terms than required for the arrival
rate function A.!

! We are very grateful to Rodolfo Milito and Michael Taaffe for helpful
comments.
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