AN INVERSION ALGORITHM FOR LOSS NETWORKS
WITH STATE-DEPENDENT RATES

Gagan L. Choudhury, ! Kin K. Leung 2 and Ward Whitt *

I AT&T Bell Laboratories, Room 1L-238, Holmdel, NJ 07733-3030
2 AT&T Bell Laboratories, Room 11.-215, Holmdel, NJ 07733-3030
3 AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636

Abstract

We extend our recently developed algorithm for computing
(exact) steady-state blocking probabilities for each class in
product-form loss networks to cover general state-dependent
arrival and service rates. This generalization allows us to
consider, for the first time, a wide variety of buffered and
unbuffered resource-sharing models with non-Poisson traffic as
may arise with overflows in the context of alternative routing.
As before, we consider non-complete-sharing policies involving
upper-limit and guaranteed-minimum bounds for the different
classes, but here we consider both bounds simultaneously.
Major features of the algorithm are: dimension reduction by
conditional decomposition based on special structure, an
effective scaling algorithm to control errors in the inversion, the
efficient treatments of multiple classes with identical parameters
and the truncation of large sums.

1. Introduction

In this paper we describe a new algorithm to compute
blocking probabilities for each class and other steady-state
performance measures in a family of product-form loss
networks (or resource-sharing models). The model has multiple
resources, each containing multiple resource units which
provide service to multiple job classes. Each job requires a
number of units from each resource, which may be zero, one or
greater than one. In a circuit-switched telecommunications
network, the resources may be links, the resource units may be
circuits on these links, and the jobs may be calls.

In the standard loss network model [11], the job arrival
processes are independent Poisson processes and the job
holding times are assumed to be independent with exponential
distributions having a mean depending on the job class. (The
exponential assumption can be relaxed by virtue of
insensitivity.) Here, however, we consider a more general
model with state-dependent arrival and service rates. In
particular, we assume that the vector representing the numbers
of jobs in service of each class evolves as a continuous-time
Markov chain, with the arrival and service rates of each class
depending on the number of jobs from that class already in
service. The state-dependent arrival rates may be used in two
ways: First, the arrival rate may truly be state-dependent, as
when there are only finitely many sources or when the arrival
rate is controlled based on the number of jobs in service.
Second, the state-dependent arrival rate may be introduced to
approximate non-state-dependent non-Poisson traffic (explained
in Section 5), generalizing Delbrouck’s [5,6] treatment of a

more elementary model.

The state-dependent service rate includes as a special case
the standard unbuffered model in which each job goes into
service immediately upon entering the system, and hence the
service rate for a class is proportional to the number of jobs of
that class in service. However, the main attraction of the state-
dependent service rate is that it allows us to model the rich class
of buffered resource-sharing models in which a job is buffered
upon entering the system and starts service only after other jobs
of its class have finished their service. The number of servers
per class may be one or more. In contrast to the unbuffered
variant, where the resource units are servers, in the buffered
variant the resource units are buffer spaces. In the special case
of unlimited servers per class the buffered variant is identical to
the unbuffered variant. Considerable research has been focused
on the unbuffered variant, but an effective algorithm for the
buffered variant has been developed previously only in the
special case of single constant-rate server per class and with a
number of other restrictions [9]. So a significant contribution of
this paper is the effective treatment of buffered models.

The standard loss model has a complete-sharing (CS)
policy, in which jobs are admitted whenever all the required
resource units are free. Here, however, we consider more
general resource-sharing policies involving extra linear
constraints (which make the state space coordinate convex
[10]). We pay particular attention to the case in which upper-
limit (UL) and guaranieed-minimum (GM) bounds are assigned
to each class. The UL bounds limit the number of jobs from
each class that can be in service. The GM bound guarantees
that there is always space for a specified number of jobs from
each class. A set of GM bounds is equivalent to an upper limit
on the resource units used by each subset of the classes. The
UL and GM bounds are equivalent for two classes, but not for
more than two classes. We focus on combined UL and GM
bounds (which cannot be reduced to either one alone). The UL
and GM bounds are very useful for providing protection against
overloads and for providing different grades of service to
different job classes.

If all requirements under the sharing policy in use can be
met upon arrival of a new job, then the new job is admitted, and
all required resource units are held throughout the job holding
time. Otherwise, the job is blocked and lost. The primary
measures of performance are the blocking probabilities of the
different classes.

The basic model we consider assumes fixed routing.
However, we can also treat alternative routing approximately,

4d.2.1

0743-166X/95 $04.00 © 1995 IEEE

513



extending [5,6,7], by using state-dependent arrival rates to
represent overflow traffic associated with alternative routing.
Networks of moderate size or with special structure allowing
dimension reduction (see [1,2,3]) can be treated by our method
exactly. Large networks without special structure can be
analyzed approximately by extending the reduced-load fixed-
point approximations [11].

The fact that the generalizations we introduce have
product-form is easy to show. So our main contribution is to
provide an effective algorithm for computing the normalization
constants in these models. We also show that blocking
probabilities and other steady-state characteristics have simple
expressions in terms of normalization constants. In general, a
steady-state performance measure (e.g., a moment) may involve
computation of a very large number of normalization constants,
but we can show that it is always possible to express the
quantity of interest in terms of a small number of modified
normalization constants, which are as easy to compute by our
method as the standard normalization constant. This is
demonstrated in (5.3) for the mean, but it is true for other
steady-state quantities as well.

Our algorithm here extends our previous algorithm for loss
networks without state-dependent rates in [1,2]. It is based on
deriving a convenient expression for the generating function of
the normalization constant and then numerically inverting the
generating function. The numerical inversion algorithm has a
number of computational advantages: First, large finite sums
may be efficiently computed through judicious truncation or
through acceleration methods. Second, for large models with a
high-dimensional generating function, it is often possible to
reduce the effective dimension by inverting the variables in a
good order. For example, this dimension reduction enables us
to solve models with UL and GM resource-sharing policies
nearly as quickly as the standard model with the CS sharing
policy. Similar approaches to dimension reduction (but with
quite different algorithms) have been used by Lam and Lien
[12] for closed queueing networks and by Conway, Pinsky and
Tripandapani [4] for special cases of models considered here.

It is also possible to reduce the computations by exploiting
multiplicities, i.e., multiple classes with identical parameters.
We can make our models much larger by increasing
multiplicities at negligible computational cost. In models for
large systems the multiplicities occur very naturally.

We now discuss the unbuffered and buffered variants
separately in more detail.

1.1 The Unbuffered Variant

The unbuffered variant has become widely recognized as a
fundamental model for communication networks. For instance,
it is now being considered to analyze the performance of
wireless  networks [17] and  emerging  high-speed
communication networks employing the asynchronous transfer
mode (ATM) technology [13]. For ATM systems, the
unbuffered variant of loss models has possible applications at
both the call level and the burst level. In the basic application,
the resources are the bandwidth available at the network
facilities. This model applies at the call level if we can assign

an effective bandwidth requirement to each call (on each link).
The loss network applies at the burst level if we can assign an
effective bandwidth requirement to each burst within an
established connection. The possibility of assigning such
effective bandwidths and ways to do so are actively being
studied.

In the standard loss network model each arrival process is a
Poisson process, but it is desirable to generalize the model in
order to represent arrival processes that are significantly more or
less bursty than the Poisson process. For this purpose,
Delbrouck [5,6] and Dziong and Roberts [7] considered linear
state-dependent arrivals, the so-called Bernoulli-Poisson-Pascal
(BPP) model. The less bursty binomial case is also directly of
interest because it corresponds to arrivals from finitely many
sources. For practical applications, it is important that the two
parameters 0; and B; in the state-dependent arrival-rate function
for class j, A; (k) = o +B;k, where k class-j jobs are in service,
can be conveniently expressed in terms of the overall arrival
rate and peakedness. (The peakedness is a familiar partial
characterization of burstiness.) Hence, the BPP model is
relatively easy to apply to represent non-Poisson arrival
processes, as arise in overflow processes occurring with
alternative routing; see Section 5.

One of our contributions here is to develop faster algorithms
(see Section 7). However, a more important contribution is to
be able to solve the model when there are the non-CS resource-
sharing policies involving UL and GM parameters. Previous
algorithms for non-CS resource sharing have been very limited.
For a single resource, the UL policy is equivalent to the tree
networks considered by Tsang and Ross [15] (for the case of
Poisson arrivals).

1.2 The Buffered Variant

The buffered variant with a single constant-rate server per
class was considered by Kamoun and Kleinrock [9] to analyze a
node of a store-and-forward computer network, where the
outgoing channels of the node share a certain number of buffers.
Each job class corresponds to the traffic destined to a particular
outgoing channel. The resource here is the buffer space. As
before, the job holding time is the period the job occupies the
resource. In this case it is the waiting time plus the service
time.

Unlike the unbuffered variant where almost all prior work
considers only the CS policy, Kamoun and Kleinrock did
consider the UL, GM and combined UL and GM policies.
However, we generalize their work in several ways: First, we
allow multiple servers per class. Second, they assumed a single
resource, while we consider multiple resources. The multiple
resources could either be multiple nodes of a computer network
or more than one resource at a single node (e.g., several types of
storage elements). Kamoun and Kleinrock assumed that each
job holds a single buffer element but we can allow each job to
hold multiple and possibly different numbers of buffer
elements. Kamoun and Kleinrock required the different job
classes to have either all identical traffic intensities or all
different traffic intensities. We do not have this restriction. For
the more complex UL, GM and combined UL and GM policies,

4d.2.2

514



Kamoun and Kleinrock had further restrictions on the system
parameters. Also in some cases it appears that the
computational complexity of their algorithm grows
exponentially with r, the number of job classes. (Their
numerical examples are only for 2 classes.) By contrast, we do
not have any restrictions on the system parameters and our
computational complexity grows linearly with the number of
different job classes and does not grow at all if the parameters
of a new job class are identical to those of one of the existing
classes, thereby allowing us to consider a very large number of
job classes. With all these generalizations, we believe that we
have made an important contribution to analyzing buffered
resource-sharing models, which are important for modeling
high-speed network buffers.

1.3 Organization of the Paper

Here is how the rest of this paper is organized. In Section 2
we specify the model and derive the generating function of the
normalization constants with the complete-sharing policy. In
Section 3 we consider the non-complete-sharing policies. In
Section 4 we discuss how to compute blocking probabilities. In
Section 5 we discuss modeling with BPP arrival processes (the
connection to peakedness). In Section 6 we describe the new
scaling algorithm. Section7 discusses the computational
complexity of our algorithm. Section 8 shows how to study the
sensitivity of blocking probabilities to traffic parameters.
Finally in Sections 9 and 10 we present illustrative numerical
examples. More details appear in an expanded version of this

paper [3].

2. Complete Sharing
2.1 The General Case

Consider a loss network with p resources and r classes of
Jjobs. Let the resources be indexed by i and the job classes by j.
Let resource i have K; units, 1<i<p, and let
K = (X,,...,K,) be the capacity vector. (We let vectors be
either row vectors or column vectors; it will be clear from the
context.) Each class j job requires a;; units on resource i, where
a;; is a (deterministic) nonnegative integer. Let A be the pxr
requirements matrix with elements a;;.

Let the system state vector be n = (n;,...,n,), where n;
is the number of class j jobs currently in process. Let Sp(K) be
the set of allowable states, which depends on the capacity vector
K and the sharing policy P. The state space Sp(K) is a subset
of Z’, the r-fold product of the nonnegative integers. With
non-complete-sharing policies, the set of allowable states will
typically depend on other parameters besides K. For the
complete-sharing policy,

Ses(K) = {neZ]: An<K}. 2.1)

The stochastic process {N(#):t = 0}, where N(¢) gives the
system state at time ¢, is an irreducible finite-state continuous-
time Markov chain (CTMC) with a unique steady-state
probability vector 7. If there are k class-j jobs in the network,
then the arrival rate of class-j jobs is Kj(k). Let u;(k) be the
rate of class-j service completion when there are k class-f jobs in
the system. In the unbuffered variant u;(k) = kj; and in the

for a vector of complex variables z = (z,. ..

buffered variant with s; servers for class j, W;(k) = kp; for
k < sjand u;(k) = s;u; fork > s;. Each job is admitted if all
desired resource units can be provided; otherwise the job is
blocked and lost (without affecting future arrivals). All
resource units used by a job are released at the end of the job
holding time.

The steady-state probability vector has the simple product
form

n(n) = g(K)~' f(m), (2.2)

where

fm) = T1fm), fin) = Aj(n;)/M;(ny)  (2.3)
j=1
n;—1

A = TIh0) . M) = kljllu,»(k), @4

and the normalization constant (or partition function) is

gK)y=g,(K) = 3 f(n). 2.5)
ne Sp(K)

In the unrestricted case (without capacity constraints), N(z) is a
vector of independent birth-and-death processes and thus a
reversible Markov process. Thus, the restricted process is also a
reversible Markov process with a steady-state distribution that is
simply a truncation and renormalization of the distribution in
the unrestricted case.

We now obtain the generating function of g(K) in the case
of a CS-policy. By definition

oo

Gz) =Y ¥ 2Kz} ...z’ (2.6
Ki=0  K,=0

,Zp). We obtain

a more compact expression by changing the order of

summation. For this purpose, let K i = Y a;n; Then
j=1

oo oo

G(z) = iz Y o i fayzf .z

m=0 n=0k =K, K,=K,

oo r

P oo p
[Ta-z0"X ... ¥ 11 ij(nj) HZ?""’}
i=t i=1

m=0  n,=0j=1

1

14 r
= H(] -z)7! HGj(Z) , 2.7
i=1 j=1
where
Gi(@) = 3 f,(n)) [T . 238)

n;=0 i=1

From (2.7), we see that the transform factors into r terms,
one for each class. However, in general, the factors G;(z) in
(2.8) will have common z; variables. In this section we do not
make any further assumption on the arrival and service rates;
hence no simplification of (2.8) is possible. However, the
infinite series in (2.8) may always be truncated by realizing that

n; < miin[Ki/a[j =N;. So we can set A;(n;) =0 for

4d.2.3

515



n; 2 N; which also implies f;(n;) = Oforn; > N;. This gives

N; V4

G;(z) = % fi(ny) TT 2" . 2.9
n;=0 i=1

Using (2.9) we can do computations for arbitrary state-

dependent arrival and service rates. This is more general than

the models to be considered in Sections 2.2 and 2.3 where (2.8)

has a closed-form expression.

2.2 The Unbuffered Variant With BPP Arrivals

nj

In this case M;(n;) = L, n;!. For Poisson arrivals,
A;(k) = A;. Here

7 R S i
(n) = |—| - — = — 2.10
fi(n;) [HjJ " n1 (2.10)
where p; = A;/;. Combining (2.8) and (2.10) yields
r
G,(z) = explp, [T2"1, (2.11)

i=l
which is the same as (2.12) of [2].

If, instead, kj(k) = 0o; + B;k where B]- #0, as in the
binomial and Pascal (negative binomial) cases of the BPP

model of [6,7], then
ri+tn;—-1 B_, 2.12)
ri—1 iy
where r; = o;/B;. Combining (2.8) and (2.12) yields

rivn—1 | By 2 K
j’j‘JI H*LHZ'.}

fi(nj) =

]
M

Gj(z) m
j =1

I
—_—
—
|

|=
-
o~

-,
agy
i . (2.13)
Mj =i
With infinite state spaces, we would need to assume that
B, <p ; in order to have a proper steady-state distribution, but
we can allow B; > u; because we have a finite state space.

In (2.13) we can allow PB; to be negative provided that
Aj(k) = a;+B;k = 0 for some k. The case of B; negative
includes the finite-source input case. When there are N; sources
for class j, each with arrival rate A}, o; = N;A/, B; = —A; and
rj=0;/B; = —N;. Further, defining p; = A/(A] + U;),
(2.13) becomes

Ld a;\N N;
Gi(2) = (1=p;+p, [T (1-pp" . @14

i=1
2.3 The Buffered Variant With Poisson Arrivals

Let s; represent the number of servers for class j, i, the
service rate per server, and }; the arrival rate. let p; = A;/u;.
Then

Y forn; < s,
finy) = Pyt s (2.15)

p;"/sj!(pj/sj)"f_“" forn; 2s; .

Combining (2.8) with (2.15), we get

516

p i
i =1 [pl'HZ?U]
i~ i=1
Gi(z) = Y —_—

ny=0 nj:

8

14

[p,- Hz?"]
i=1 P

e (1—pjgz?ff/sj)-1 ) (2.16)

J

As s; approaches infinitely, (2.16) approaches (2.11). For
Sj' = 1,

P
Gi(z) = (1-p; TTz)". 2.17)
i=1

It is interesting to note that the buffered variant with single
server per class and Poisson arrivals is the same as the
unbuffered variant with BPP arrivals and the r; = 1 and

3. Other Sharing Policies

We can introduce other sharing policies by imposing
additional constraints on the set of feasible states. As noted in
[2], each additional linear constraint is equivalent to adding
another resource. Resource ¢ results in the constraint

r

Y.a;n; < K; where K; and a;; are nonnegative integers.
j=1
Assuming that a new constraint is expressed in terms of rational
numbers, it can be re-expressed in terms of integers.

Hence, we can add linear constraints without changing the
general form of the model, but the computational complexity is
exponential in the number of resources. Therefore, it is
significant that certain special extra sets of linear constraints can
be treated efficiently. As shown in [2], this is true for the upper
limit (UL) and guaranteed minimum (GM) sharing policies.
(For GM, we require special structure.) In both cases an extra
linear constraint is added for each class, but the effective
dimension of the generating function after dimension reduction
increases by at most 1.

In this paper we show that we can consider the combined
UL and GM policy. (Clearly the individual UL and GM
policies are special cases.) As in [2], we impose an additional
condition to treat the GM policy. (This condition can be
removed for the pure UL policy.) In particular, we assume that
aj; is either b; or O for all i We let 8;; = 1if a; > 0 and
8,; = 0 otherwise. Let N ; be the number of units guaranteed
for class j jobs and let N = (N,,N,,...,N,).

Let L; be the upper limit on the number of class j jobs
allowed to simultaneously use resource i Let M; be the

minimum value of i_L i/a ,,-J over all i, where |x] is the greatest
integer less than or equal to x and let M = (M|, M,, ..., M,).

The state space for sharing with both UL and GM bounds,
which we denote by UG, is the intersection of the two separate
state spaces, i.e.,

Suc(K\M,N) = S5 (K.M) nSeu(K,N),  (3.1)

4d.2.4



where
Su(K,M) = {neZj:An < K, n < M} 3.2)
and

Sem(K,N) =
{neZi:% (a;n; v3;N;) <K;,1<i<p} 3.3)
i=1

with xvy = max{x,y}. From (3.3), we see that GM bounds
for r classes corresponds to 2" linear constraints, one of which
is the CS constraint and another of which is the GM consistency

r

condition ZNJ- < K;. In other words, there is a linear
Jj=1

constraint corresponding to each nonempty subset of classes.

In the general case, the generating function of the
normalization constant g(K,M,N) is

G(z,y,x) =

T X eKMNz gy Ly (G4

K;=0 N,=0
In [3] we show that it is possible to get an explicit expression
for G(z,y,x). However, it is computationally difficult to invert
it since it has p +2r dimensions. In [3] we show that, by virtue
of the special structure, it is possible to explicitly invert with
respect to all the x and y variables and arrive at the following
remarkably simple final expression

y4 r
GzMN) = [T(1-z)'T] G;(z.M;,N}) . (3.5)
i=1 j=1

where
N,./b,.J

P N’[
G;(2,M,N)) = [Hz?'f] T £
i=1

n;=0

M; p b
+ X J”,-(n,-)[lj[lz?ff} . (3.6)

n= [Nj/b,J+ 1

Note that (3.5) and (3.6) represent only p-dimensional
transforms, so that computation of the combined UL/GM policy
is almost as fast as for the standard CS policy. The only
difference is that with the CS policy often we have closed-form
expression for G;(z), but with combined UL/GM policy that is
less likely to happen. However, in the buffered variant with
single server per class and Poisson arrivals (i.e., the model in
[9]) the sum in (3.6) does have a closed form (see [3]) and
hence in that case the computation with combined UL/GM
policy is just the same as with the CS policy. This is
remarkable since in [9] the computational effort required for the
UL/GM policy is much greater than for the CS policy, and there
are additional restrictions.

All the unbuffered and buffered variants considered in
Section 2 are easily obtained by inserting in the corresponding
expressions for f;(n;) in (3.6). Note that the overall generating
function, (2.7) or (3.5), is always a product of factors, with one
factor from each class. This property allows us to combine
several different types of arrival processes (e.g., from the BPP

family) model variants (buffered and unbuffered) and sharing
policies (CS and UL/GM) in the same model. We illustrate this
capability in our example in Section 10.

4. Blocking Probabilities

It is important to distinguish between call (job) blocking and
time blocking. Call blocking refers to the blocking experienced
by arrivals (which depends on the state at arrival epochs), while
time blocking refers to the blocking that would take place at an
arbitrary time if there were an arrival at that time (as in the
virtual waiting time). Since the steady-state distribution 7
refers to an arbitrary time, blocking probabilities computed
directly from it involve time blocking, but it is not difficult to
treat call blocking as well as time blocking. With Poisson
arrivals, the two probability distributions at arrival epochs and
at an arbitrary time agree, but not more generally.

The probability that a class-j job would not be admitted at
an arbitrary time (time blocking) with a combined UL/GM
policy is easily seen to be

B g(K—-Ae;,M~e; N-Ae;)
g(K,M,N)

, a,;) is the requirements vector for class

BY =1 , @1

where a; = (ay;,...
J.

If class-j jobs arrive in a Poisson process, then (4.1) also
yields the call blocking, but not more generally. However, the
call blocking always can be obtained by calculating the time
blocking in a modified model as is clear from the following
theorem, which is proved in [3].

Theorem 4.1. The class-j blocking probability B; coincides
with the time-blocking quantity B} in (4.1) for the modified
model in which the class-j arrival-rate function is changed from

Aj(m)toh;(m) = A;(m+1).
For the special case in which A;(m) = a; + B;m,
Aj(m) = Ai(m+1) = (a; + B;) + Bym, (4.2)

so that the modified model is a model of the same general form.
For the BPP model, this approach to computing call blocking
was pointed out by Dziong and Roberts [7], p. 273. Van de
Vlag and Awater [16] have recently developed an efficient
procedure for computing call blocking probabilities for many
classes. However, both of the above only considered the CS
policy.

5. Using BPP Arrivals to Model Non-Poisson Traffic

The previous section assumed that the sources really are of
type BPP, as arises in finite-source models or in models with
controlled arrival rates. However, another important use of the
BPP model is to represent non-Poisson traffic, which occurs in
overflow traffic associated with alternative routing [5,6,7].
Non-Poisson traffic can be characterized approximately via a
peakedness parameter [8]. Peakedness is defined as the ratio of
the variance to the mean of the number of jobs in service in the
associated infinite-capacity system. For Poisson arrivals, the
steady-state distribution in the infinite-capacity system is

4d.2.5

517



Poisson, so that the peakedness is 1. For more bursty arrival
processes, the peakedness is greater than 1; for less bursty
arrival processes, the peakedness is less than 1.

A way to approximately represent non-Poisson traffic in our
product-form model is to approximate the actual arrival process
by a BPP arrival process with the same arrival rate and
peakedness. For an unbuffered model with ;(k) = kpn; and
BPP  arrival processes with  state-dependent  rates
Kj(k) =0o; + kB;, the means and variances in the infinite-
capacity system are

M; = o,/(w;—B;) and V; = pio /(i -B)> . (5.1)

From (5.1), we see that the two BPP parameters for each class
can be expressed as

o = M;p,/z; and B; = p,(z;—1)/z (5.2)
where z; = V;/M; is the peakedness.

Having obtained o, and B;, we wish to compute the
blocking probabilities. This could be done directly by applying
Section 4, but as noted by Delbrouck [5], a better approximation
is obtained if we calculate the blocking probability indirectly
via the mean number of active jobs in the finite-capacity system
with the BPP arrival process. Hence, the next step is to
compute m;, the mean number of class-j jobs in service in the
actual system with capacity constraints. Note that
Delbrouck [5] computed m; in a much simpler system with
single rate, single resource and CS policy. We show for the first
time here that simple expressions for m; exist even in our much
more general model. Specifically, with combined UL/GM
policy,

o;5(K~Ae;,M—e;,N-Ae,)
m;= )
J 1t;g(K,M.N)

(5.3)

where €; is a vector with a 1 in the j“‘ place and (’s elsewhere,
and the symbol g in the numerator of (5.3) indicates that we
have to consider a system with a; replaced by o; + f;. Note
that this replacement is only done in the numerator. Finally, the
expression for call blocking is

B, = 1-—- (5.4)

e 1~& g(K-Ae;,M—¢,;,N-Ae;)
u; g(K.M,N)

6. A New Scaling Algorithm

Most of the algorithm is as in [1,2], so we will be brief.
Given a p-dimensional generating function G(z), we first do the
dimension reduction to determine the order in which the
variables should be inverted. We then perform (up to) p one-
dimensional inversions recursively, using the Fourier-series
method. We scale the generating function in each step by
defining a scaled generating function as

G,(z)) = 0,;G;(0z;) (6.1)

where o, and «; are positive real numbers. We invert this
scaled generating function after choosing 0.); and o; so that the
aliasing error is suitably controlled.

We propose a new heuristic scaling algorithm which applies
to generating functions of any form and hence is applicable to
the general state-dependent arrival and service rates. Here we
describe the heuristic for only one dimension. For further
discussion, see {1,2,3]. Let,

G(z) = (1-2)"' T[] G;(2) 6.2)
j=1
with
Gi(z) = X fi(np@E™)" . (6.3)
n;=0
Then o is the largest number in the interval (0, 1] such that
. 2Gi(2)
.o < K, 6.4
,; G0 = (6.4)
4 d
where G (z) = Z,ZGj(z). Then
oyl = H G;(a) . (6.5)
j=1

This scaling agrees with the previous scalings in the special
cases treated in detail in [1,2].

7. Computational Complexity

For simplicity, assume that the capacity of each resource is
K and the number of terms in sums of the form (2.8) or (3.6) is
M. Then it can be shown {3] that the computational complexity
of our algorithm is

C = O(M7K") , (7.1)
where

M = lif the sum has closed form expression (true for
most previous algorithms considered in the
literature as well as many new ones we
introduce).

K< KandK = O(\/f) for large K
p < pandp << p with special structure

¥ £ rand ¥ << r for large r and large multiplicities.

In the special case of the CS policy and unbuffered variant
(M = 1), Dziong and Roberts [7] developed an algorithm
(generalization of Delbrouck [6]) which has complexity

C = O(K?) . (1.2)

Van de Vlag and Awater [16] improved on that, obtaining
complexity

C = O(rK”?) . (7.3)

Comparing (7.1) to (7.2) and (7.3), we see that our
computational complexity is lower. However, our major
contribution is being able to treat many new and important
models.

4d.2.6

518



8. Sensitivity with Respect to Traffic Parameters

In addition to the blocking probabilities, we may also be
interested in the sensitivity of these probabilities to small
perturbations in one or more of the traffic parameters. These
sensitivities can be determined by calculating derivatives.
Derivatives can be readily calculated due to the particular
structure of our generating functions. We illustrate using the
CS policy, but the same procedure works for other policies as
well.

Taking logarithms in (4.1) (and disregarding M and N since
we have the CS policy), we get

In(1-B}) = In g(K-a;)-1In g(K) . 8.1)
Differentiating (8.1) yields

' dg(K) dg(K-a;)

dBj .
;; = (1-B;}) dp; _ dp; , (82)
' g(K) g(K-a))

where p; is a traffic parameter for job class i.

From (8.2), we see that it suffices to be able to compute
dg(K)/dp;. Let I represent the inversion operator. From (2.7)
and (2.8),

I ro P
gK) = I(JTU-zp7"TT X f;()(TT2)™) . (83)
=1 I=1

j=1n;=0

Differentiating both sides with respect to p;, we get

P oo P
dfi(K) - I[H(l_zl)—l H Ef)'(”j)(HZ;“j)"i
Pi I=1 J51m=0 =1
- ot L ay\n;
DI ACHIC N E RN 8.4)
;=0 =1

where f7 (n;) = dfi(n;)/dp;, since only the i™ term in the
numerator of g(K) depends on p;. Hence, the computation of
the derivative requires inverting another generating function of
nearly the same form.

9. Examples with Complete Sharing

We now give examples illustrating the numerical inversion
algorithm. All our examples here have a single resource.
Multi-resource examples are discussed in [1,2,3]. All
computations were done on a SUN SPARC-2 workstation,
Computation times were always a few seconds or less.

Our first numerical example is the classical resource-sharing
model with the CS sharing policy and a finite-source input. The
generating function is given in (2.7) and (2.14) with p = 1.
This example is relatively elementary since the generating
function is one-dimensional. In [2] we considered this example
with Poisson arrivals.

The specific model we consider has 2 classes with
requirements a; ; = 1 and a,, = 12. The capacity K ranges
from 20 (relatively small) to 50,000 (relatively large). The

specific parameters we use are p, = 0.3, p, = 0.1,
N, = 0.5K and N, = K. (See (2.13).) We give numerical
results for the blocking probabilities of each class in Table 1.

As a basis for comparison, we also implemented the
recursive algorithm of Delbrouck [6] for finite sources, and the
uniform asymptotic approximation (UAA) of Mitra and
Morrison [13]. In the cases with K < 500, the inversion and
recursion algorithms agreed well beyond the accuracy given
(eight significant digits). For K = 5000, the recursions either
had numerical underflows or overflows, or took too long to run.
(The recursion for finite sources takes much longer than the
recursion for Poisson sources, since the computational
complexity is O(K?) instead of O(K).) For K = 5000, the
inversion results agreed closely with UAA, and, as expected,
the agreement improves as K increases. In each case we also
checked the accuracy of the inversion algorithm directly by
running it twice, with roundoff control parameters /; = 1 and
11 = 2

In all cases considered here the inversion algorithm took
less than half a second. For the larger values of K, a critical
factor in achieving this speed is truncation [2].

For the example in Table 1, the exact blocking probability
for class2 (which requires I2units per request) is
monotonically decreasing in X, but this is not so for class 1.
Note that UAA does not capture this non-monotonicity for
class 1.

For the example in Table 1, it would suffice to use only the
recursions and UAA, using UAA after the recursions take too
long. However, it is not difficult to construct examples that are
sufficiently large so that the recursion breaks down and yet
UAA is not sufficiently accurate (because size alone does not
imply that the model is in the proper region for the UAA
asymptotics). One way is to make the numbers of sources very
unequal in the finite-source case. To illustrate, consider the
example in Table 1 with the source populations N, = 5 and N,
very large. Numerical results for 4 cases are given in Table 2.
When the capacity is 1193 or 11993, there is always room for
all 5 class 1 requests, so that there is no blocking for class 1, but
when K is a multiple of 12 such as 1200 or 12,000, there is
substantial blocking for class1 when N, is large. The
lumpiness that UAA does not capture is obviously not gone
even when K = 12,000.

For the smaller capacities 1193 and 1200, we were able to
use the Delbrouck recursion to validate our answers (taking
several minutes of CPU time), but since the computational
complexity of the recursion is O(K?), we could not do this for
the larger capacities. In the latter case we used the built-in
accuracy check of the inversion, comparing values with
inversion parameters {; = land/; = 2.

10. Different Sharing Policies and State-Dependent Rates

Here we give an example containing all the variations
considered in the paper, but in the context of a single resource.
We combine the unbuffered and buffered variant in this
example primarily to illustrate the capability of the algorithm.
However, it is worth noting that the combination could arise;

4d.2.7

519



e.g., we might have the standard unbuffered variant except that
one class might require access to a database, which operates like
a single-server queue and is the critical resource.

In this example there are 4 types of classes each with
multiplicity N, so that there are a total of 4N classes. We let N
range from 1 to 1000. (See first column of Table 3.) Here are
the characteristics of the four types:

Type | is the unbuffered variant with finite-source
(binomial) input having parameters r; = —40 and
Bi/; = —0.2. This corresponds to 40 sources and

peakedness of 0.843 (see Section 5). Each job requires only one
resource unit; i.e., @;; = 1. We use a pure UL policy with an
upper limit of 200.

Type 2 is the unbuffered variant with Poisson arrivals
having parameters p, = 10.0 and a;; = 2. We use a pure UL
sharing policy with an upper limit of 15 job requests (30
resource units).

Type 3 is the unbuffered variant with Pascal arrival process
having parameters r; = 25.0 and B3/p; = 0.5. This
corresponds to a peakedness of 2.0. Each request requires 3
resource units; i.e., a;3 = 3. We use both an upper limit and a
guaranteed minimum. The UL and GM parameters are 200 and
6 requests (600 and 18 resource units).

Type 4 is the buffered variant with Poisson arrivals having
parameters p, = 0.9 and a4 = 4. It too has both an upper
limit and a guaranteed minimum. The UL and GM parameters
are 8 and 2 requests (32 and 8 resource units).

(7]

(8]

[10]

[11]

[12]

The numerical results are shown in Table 3. We start with a [13]
small example with 4 classes and 100 resource units and
proceed towards a large example with 4000 classes and 100,000
resource units. The last example runs in several seconds. We
take advantage of truncation and multiplicity in reducing the
computation time. We check accuracy by comparing values
with inversion parameters /; = | and [; = 2. The agreement
is more than the displayed number of figures. (14]
References
[1] G. L. Choudhury, K. K. Leung and W. Whitt, “‘An
Algorithm for Product-Form Loss Networks Based on [15]
Numerical Inversion of Generating Functions,”” Proc.
IEEE Globecom ‘94, 1123-1128.
[2] G. L. Choudhury, K. K. Leung and W. Whitt, ““An
Algorithm to Compute Blocking Probabilities in Multi- [16]
Rate Multi-Class Multi-Resource Loss Models,”” Adv.
Appl. Prob., 1995, to appear.
[3] G. L. Choudhury, K. K. Leung and W. Whitt, ““An
Inversion Algorithm to Compute Blocking Probabilities (17]
in Loss Networks with State-Dependent Rates,”” 1994,
submitted.
[4] A. E. Conway, E. Pinsky and S. Tripandapani,
‘“Efficient Decomposition Methods for the Analysis of
Multi-Facility Blocking Models,”” J. ACM, vol. 41,
pp. 648-675, 1994,
4d.2.8

520

L. E. N. Delbrouck, ‘A Unified Approximate
Evaluation of Congestion Functions for Smooth and
Peaky Traffic,”” IEEE Trans. Commun. vol. 29, pp. 85-
91, 1981.

L. E. N. Delbrouck, ‘‘On the Steady-State Distribution
in a Service Facility with Different Peakedness Factors
and Capacity Requirements,”” IEEE Trans. Commun.,
vol. 31, pp. 1209-1211, 1983.

Z. Dziong and J. W. Roberts, ‘‘Congestion Probabilities
in a Circuit-Switching Integrated Services Network,”’
Perf. Eval., vol. 7, pp. 267-284, 1987.

A. E. Eckberg, Jr, ‘‘Generalized Peakedness of
Teletraffic Processes,”” Proc. 10" Int. Teletraffic
Congress, Montreal, Canada, paper 4.4b.3.

F. Kamoun and L. Kleinrock, ‘‘Analysis of Shared
Finite Storage in a Computer Network Node
Environment Under General Traffic conditions. IEEE
Trans. Commun. vol. 28, pp. 992-1003, 1980.

J. S, Kaufman, ‘‘Blocking in a Shared Resource
Environment,”” IEEE Trans. Commun. vol. 29, pp.
1474-1481, 1981.

F. P. Kelly, ‘‘Loss Networks,”” Ann. Appl. Prob., vol. 1,
pp. 319-378, 1991.

S. S. Lam and Y. L. Lien, ‘“A Tree Convolution
Algorithm for the Solution of Queueing Networks,”
Commun. ACM, vol. 26, pp. 203-215, 1983.

D. Mitra and J. A. Morrison, ‘‘Erlang Capacity and
Uniform Approximations for Shared Unbuffered
Resources,”’ The Fundamental Role of Teletraffic in the
Evolution of Telecommunication Networks, Proceedings
of the 14th Int. Teletraffic Congress, J. Labetoulle and J.
W. Roberts (eds.), Elsevier, Amsterdam, pp. 875-886,
1994,

J. W. Roberts, ‘A Service System with Heterogeneous
User Requirements,”’ Perf. of Data Commun. Systems
and their Applications, G. Pujolle (Ed.), North-Holland,
Amsterdam, pp. 423-431, 1981.

D. Tsang and K. W. Ross, ‘‘Algorithms to Determine
Exact Blocking Probabilities for Multirate Tree
Networks,”” IEEE Trans. Commun., vol. 38, pp. 1266-
1271, 19%0.

H. A. B. van de Vlag and G. A. Awater, ‘‘Exact
Computation of Time and Call Blocking Probabilities in
Multi-Traffic Circuit-Switched Networks,”” Proceedings
IEEE Infocom ‘94, pp. 56-65, 1994.

A. M. Viterbi and A. J. Viterbi, ‘‘Erlang Capacity of a
Power Controlled CDMA System,”” IEEE J. Sel. Areas
Commun., vol. 11, pp. 892-900, 1993.



parameters blocking probability of class 1 blocking probability of class 2
K Ny N, inversion recursion UAA inversion | recursion UAA
20 10 20 | 2.8506801e-4 same 6.73e-2 0.6785863 same 0.6670
50 25 50 | 8.4188062e-3 same 5.23e-2 0.5446764 same 0.5242
500 250 500 | 3.4698631e-2 same 3.481e-2 0.3532091 same 0.353138
5,000 2,500 5,000 | 3.1096495e-2 — 3.1104e-2 0.3163444 —_ 0.3163388
50,000 | 25,000 | 50,000 | 3.0629867e-2 — 3.06306e-2 | 0.3116297 — 0.3116291

Table 1. Numerical results for the example in Section 7 with two classes, the CS policy and finite sources.

parameters blocking probability for class 1
K N, N, inversion UAA
1193 5 2400 | 0.0000000 0.0762986
1200 | 5 2400 | 0.2742085 0.0758303
11993 | 5 | 24000 | 0.0000000 0.0753203
12000 | 5 | 24000 | 0.2721590 0.0752734

Table 2. Numerical results for the example in Section 7 with two classes, the CS policy and very unequal finite
sources.

multiplicity | number of blocking probabilities
number of of each resource
classes class-type units type 1 type 2 type 3 type 4
4 1 100 05595671 | .12483684 | .17537541 | .14332934
40 10 1000 03710717 | .09479823 | .10925576 | .11686444
400 100 10,000 03307838 | .08842370 | .09616393 | .11164371
4000 1000 100,000 103256304 | .08760934 | .09451351 | .11098258

Table 3. Numerical results for the four-type example in Section 8.

4d.2.9

521



