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Traffic Models for Wireless
Communication Networks

Kin K. Leung, Senior Member, IEEE, William A. Massey, and Ward Whitt

Abstract— In this paper, we introduce a deterministic fluid
model and two stochastic traffic models for wireless networks.
The setting is a highway with multiple entrances and exits.
Vehicles are classified as calling or noncalling, depending upon
whether or not they have calls in progress. The main interest
is in the calling vehicles, but noncalling vehicles are important
because they can become calling vehicles if they initiate (place or
receive) a call. The deterministic model ignores the behavior of
individual vehicles and treats them as a continuous fluid, whereas
the stochastic traffic models consider the random behavior of
each vehicle. However, all three models use the same two coupled
partial differential equations (PDE’s) or ordinary differential
equations (ODE’s) to describe the evolution of the system. The
call density and call handoff rate (or their expected values in
the stochastic models) are readily computable by solving these
equations. Since no capacity constraints are imposed in the
models, these computed quantities can be regarded as offered
traffic loads. The models complement each other, because the
fluid model can be extended to include additional features such
as capacity constraints and the interdependence between velocity
and vehicular density, while the stochastic traffic model can
provide probability distributions.

Numerical examples are presented to illustrate how the models
can be used to investigate various aspects of time and space
dynamics in wireless networks. The numerical results indicate
that both the time-dependence and the mobility of vehicles can
play important roles in determining system performance. Even
for systems in steady state with respect to time, the movement
of vehicles and the calling patterns can significantly affect the
number of calls in a given region of the system. The examples
demonstrate that the proposed models can serve as useful tools
for system engineering and planning. For instance, we calculate
approximate call blocking probabilities.

[. INTRODUCTION

NLIKE a fixed, terrestrial telephone network, a wire-

less network must support moving customers. Due to
customer mobility, both the location and the length of a call
in progress affect the network resources required to support
the call. Customer mobility is presenting a major challenge to
system designers of wireless networks [4], [5]. Since wireless
services are becoming more popular, there is an increasing
need for mathematical models to help understand system
dynamics and analyze the performance of wireless networks.
Motivated primarily by this need, a Poisson-arrival-location
model (PALM) was introduced in [6], in which customers
arrive according to a nonhomogeneous Poisson process and
move independently through a general location state space
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according to a location stochastic process. The PALM is made
tractable by assuming that different customers do not interact,
although this behavior can be approximated indirectly. Simi-
larly, the PALM can be used as an offered traffic model that
serves to approximate important system capacity constraints
(e.g., the number of available radio channels) indirectly. This
is achieved through applying methods like the modified offered
load technique developed in [3] to approximate blocking
probabilities in these wireless networks. The PALM also pro-
vides a useful framework for representing both time-dependent
behavior and customer mobility in wireless communication
networks.

The general PALM in [6] is quite abstract. Further specifi-
cation is needed in order to obtain practical models. Toward
this end, a version of the PALM was constructed to study
communicating mobiles on a highway in [7]. In this highway
PALM, vehicles alternate between thinking and calling modes
as they move along on a one-way, semi-infinite highway
according to a deterministic location function. Two-way traffic
and more complicated highway networks are represented by
superposing independent versions of these highway PALM’s.
As with the general PALM, the system is assumed to have
no capacity constraints in terms of the number of radio
channels available for calls. Thus, the highway PALM can
also be regarded as an offered load model, which enables us
to characterize key quantities such as the call density, the
handoff rate, the call-origination-rate density. and the call-
termination-rate density. In [7], it is shown that these quantities
are related by two fundamental conservation equations, similar
to relations in vehicular traffic theory [2]. These results thus
bring together teletraffic theory and vehicular traffic theory.
Other researchers have also observed the need for combining
these two theories to study wireless networks [8]-[11].

While much more concrete than the general PALM in
[6], the highway PALM in [7] is still quite abstract. Further
specification is still required in order to produce readily
computable performance-related quantities. The purpose of
this paper is to develop such a version of the highway
PALM that is indeed substantially more tractable, so that
all the desired quantities are computable. We obtain such a
more tractable highway PALM primarily by making additional
Markov assumptions, in the spirit of Section 8 of [6]. Hence we
call the main stochastic model introduced here the Markovian
highway PALM.

In the Markovian highway PALM considered here, in addi-
tion to having arrivals occur according to a nonhomogeneous
Poisson process, the state of each vehicle is assumed to
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evolve according to a nonstationary continuous-time Markov
chain, while the vehicle moves deterministically along the
highway. Each vehicle on the highway is classified as either
a calling or noncalling vehicle, depending upon whether or
not it has a call in progress. Each calling (noncalling) vehicle
becomes a noncalling (calling) vehicle randomly with specified
deterministic intensity depending on time and space. Similarly,
each calling (noncalling) vehicle leaves the highway with
a deterministic intensity depending on time and space. Of
course, our main interest is in the calling vehicles; they use
the most resources in wireless networks. However, it may be
necessary to keep track of locations of noncalling vehicles so
that they can receive calls. They are also important as a source
of future calling vehicles. There can be dramatic increases in
the number of calling vehicles when and where the density of
noncalling vehicles is high and the calling rate is high.

In the special case of stationary intensities, our Markovian
assumption for each vehicle means that call holding times,
think times (before making a call), and highway residence
times (before leaving the highway) would be independent ex-
ponential random variables with means equal to the reciprocals
of the intensities. Without stationarity, these random times can
be represented as time-ordered exponentials, as in (8.3) of [6].

It turns out that the densities of the mean numbers of
vehicles of each type are described by partial differential
equations (PDE’s), similar to the ones arising in the classic
approach to modeling vehicular traffic [2]. With the Markovian
assumption, the two PDE’s are coupled due to the calling
activities; i.e., a noncalling vehicle becomes a calling vehicle
and vice versa, if it initiates (places and receives) or terminates
a call. In this Markovian highway PALM, the PDE’s relate the
derivatives of the expected number of vehicles of each type,
while the actual numbers of noncalling and calling vehicles in
a given section of the highway have Poisson distributions, due
to previous PALM results in [6], [7].

The PDE’s can also be interpreted in another way. Instead
of characterizing the expected values in a stochastic model,
they can be regarded as characterizing the actual values in
a deterministic fluid model. This deterministic fluid model
neglects the behavior of individual vehicles (or customers),
but is still capable of capturing the overall dynamics of the
system. Calling and noncalling vehicles are treated as two
types of continuous fluid. Such a model is appropriate and
justifiable if the system has a large number of calling and
noncalling vehicles, as discussed in Section 9 of [6]. Indeed,
such deterministic differential equation models are common in
vehicular traffic theory {2]. (Wright [11] also uses differential
equations to capture the vehicle movement in a deterministic
way for a highway cellular system. The focus in [11] is on the
control strategy, e.g., call throttling, to maintain transmission
quality in spread spectrum systems such as CDMA systems.)

In fact, three different models are considered here: the
deterministic fluid model, the Markovian highway PALM,
and a stochastic generalization of the Markovian highway
PALM in which the arrival process need not be Poisson. As
noted in Remark 2.3 of [6], the mean value formulas for a
general PALM remain valid when the arrival process is not
Poisson, provided that the arrival rate is still well defined
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and that successive arrivals do not interact. We use the extra
Poisson arrival assumption only to characterize the probability
distributions of the quantities of interest; the mean values are
determined from the PDE’s.

We believe that an interesting feature of this paper is the
identification of the three related models. The important point
is that all three models lead to the same PDE’s. We thus
have different possible interpretations of these PDE’s. For
the deterministic fluid model, we interpret the solution as
the actual numbers (which need not be integers), whereas
for the stochastic traffic model, the solutions are interpreted
as the expected values. With the additional Poisson-arrival
assumption in the Markovian highway PALM, we are able
to say more about the full probability distributions. For large
systems, the three approaches tend to be almost fully consis-
tent, because in the stochastic model, the true distributions will
typically cluster relatively tightly about their means, by virtue
of the law of large numbers; see Section 9 of [6]. The mean
value interpretation in the stochastic models tends to be more
general, because it does not require large populations.

In both the deterministic fluid model and the stochastic
traffic models, the system quantities of interest such as calling
density and handoff rate (or their expected values) are readily
computable. Thus, the models can provide insight into the time
and space dynamics of mobile customers. Hopefully, this new
insight and understanding can contribute to improved design
and management of wireless communication networks.

The rest of this paper is organized as follows. In Section
II, we develop the deterministic fluid model. The model has
two versions: a time-nonhomogeneous model and a time-
homogeneous model. The two PDE’s become ordinary dif-
ferential equations (ODE’s) in the time-homogeneous model.
There are interesting spatial phenomena even in the time-
homogeneous case. In Section III, we present some numerical
examples to illustrate the time and space dynamics captured
by the models. These numerical examples demonstrate that the
quantities of interest can readily be computed for our models.
In addition, they also show that the proposed models can serve
as valuable tools for system engineering and planning.

In Section 1V, we introduce the Markovian traffic model
and discuss its connection with the deterministic fluid model.
In Section V, we discuss the additional distributional results
that can be obtained when arrivals occur according to a
nonhomogeneous Poisson process. In Section VI, we indicate
how to approximately represent interactions among vehicles
in the stochastic model. The idea is to allow the vehicle
velocity to depend on the expected numbers of calling and
noncalling vehicles in various regions. Finally, in Section
VII, we present our conclusions and discuss future work. An
important component of this future work is a study of the
approximate representations of vehicle interactions discussed
in Section VL

II. THE DETERMINISTIC FLUID MODEL

Our basic setting is a one-way, semi-infinite highway. (As in
[7], independent versions of these highways can be superposed
to make richer models.) Thus, we can regard the location space
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as the interval [0, 0o). There are two types of vehicles, calling
and noncalling. Each vehicle is assumed to make at most one
call at a time and each call occupies one radio channel for
the duration of the call. As in [6], [7], we do not impose any
capacity constraints, i.e., we assume that there are an infinite
number of channels available so that all calls are accepted
without blocking. Thus our model can be regarded as a way
to quantify the offered load. It is possible to add capacity
constraints to the model in various ways, as we illustrate in
Section 1II.

Vehicles of both types at location z and time ¢ move forward
on the highway according to a deterministic velocity field
v(z,t). To ensure vehicle flow in a single direction, it is
assumed that v(z,t) > 0 for all z and ¢t with z > 0 and
—o0 < t < oc. Additionally, in order to make sure that
vehicles flow at all, v(z,t) > O at least for some ¢ > #
for all times ¢y at each location z > 0. For full generality,
it is also assumed that both calling and noncalling vehicles
can enter and leave the highway at any location. (Cases in
which vehicles can enter or leave only at finitely many fixed
entrances and exits are considered at the end of Section II-A.)

In Section II-A, we first present the model, which captures
both the time-dependent behavior (e.g., nonhomogeneous ar-
rivals of vehicles) and vehicle movement on the highway. Then
in Section II-B, we simplify the time-nonhomogeneous fluid
model into a time-homogeneous model to capture only the
spatial dynamics. The PDE’s then become ODE’s. As can
be seen in the numerical examples in Section III, even when
vehicles ‘‘behave’ in a time-independent manner, the space
dynamics alone significantly affect system traffic loads.

A. The Time-Nonhomogeneous Deterministic Fluid Model

To begin, we introduce some notation. Let N(z,t) and
Q(z,t) be the number of noncalling and calling vehicles
in location (0,z] at time ¢, respectively. The model treats
vehicles as a continuous fluid; N(z,¢) and Q(z,t) are not
necessarily integers, but any nonnegative real numbers. In
addition, let n(x,t) and g(z,t) be the noncalling density and
calling density at location z and time ¢, respectively. That is,

n(:v,t) = 6_]%(1_2) and q(;c,t) = M

T lok

Throughout this section, we assume that all derivatives are
well defined.

Furthermore, let C;\ (z,t) and C; (x,t) be the number of
noncalling vehicles entering or leaving in location (0, z] during
time interval (—o0, #], respectively. Similarly, we use C} (z,1)
and C; (z,t) to denote the respective number of calling
vehicles entering or leaving in location (0, z] in time (—oo0, t].
A noncalling (calling) vehicle is considered to be entering
the system, if either: a) it is an actual arrival of a noncalling
(calling) vehicle to the highway, or b) it was a calling
(noncalling) vehicle existing on the highway but with its
call just terminated (started). Likewise, a noncalling (calling)
vehicle leaves if it departs from the highway or becomes a
calling (noncalling) vehicle by initiating (terminating) a call.
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Finally, let us define the rate densities as

8%C} (z,t) 8°Cy (x,t)
+ = . n\77 n =__"n\" "/
@D == @)= —g
82C/ (x,1) 22C7 (z,t)
—+ YV = 9 ? - =__9 "7
cq (z,t) = Eye and ¢ (z,t) = Frerat

Lemma 2.1: The evolution of noncalling and calling vehi-
cles on the highway is governed by the PDE's:

8"5;-, 2 + %[n(m, Ho(e,t)] = ¢y (z,8) ~ c; (,1) 2.1
and

Oq(z 0

L) ol ol ] = e (00— e (1) @)

forz > 0and —oc0 < t < 0.

Proof: We first relate N(z,t + At) to N(z.t). During
the time interval (¢, + At], a certain number of noncalling
vehicles in location (0,z] move forward and pass beyond
location x. In addition, some new arrivals of noncalling
vehicles enter into the system, while some leave from location
(0, ] at the time interval. We thus have

N(z,t+ At) — N(z,t) =
—n(z, tyv(z, ) At + [C} (z,t + At) - CF(z,1)]
- [Cy (@, t + At) — C; (z,1)] + o(At) 2.3)

where o(At)/At — 0 as At — 0, assuming that n and v are
continuous in the neighborhood of (i, t). Dividing both sides
of (2.3) by At, letting At — 0, and differentiating w.r.t.
yields (2.1). Equation (2.2) is obtained in the same way. [

We remark that (2.2) corresponds to the fundamental conser-
vation equation in (2.7) of [7]. Before showing how (2.1) and
(2.2) are coupled due to calling activity, we need additional
notation. Let E (z,1) and E;,(z.t) be the number of non-
calling vehicles arriving to and departing from the highway in
location (0, z] during time interval (—oc, ¢}, respectively (Case
(a) for ¢} and ¢, above). We use E;(x, t) and E (z,1)
to denote the respective number of calling vehicles arriving
to and departing from the highway in location (0, z] in time
(—o0,t]. The associated rate densities are

OPE} (z,t) O’E;, (z,1)
M, t)=s 22 e (g,t)= —2 "
(o) = e @ =0

O’E] (z,t) O°E; (x,t)
+ =__"9\v" 7 {1 = g i
e (@) = Oxot and e (z,t) = dxdt

Further, let S(z,t)n(z,t) and ~(z,t)q(z,t) be the rates
at which noncalling and calling vehicles actually depart
from the highway at location z at time /. In addition,
let A(z,t)n(z,t) be the call-origination rate of noncalling
vehicles and p(z,t)g(z,t) be the call-termination rate of
calling vehicles at location z and time ¢. (In the stochastic
model, these are stochastic intensities for individual vehicles;
here these are actual deterministic flow rates.)

We note that the rate densities, ¢ (z,t), ¢, (w,1), ¢} (,1),
and c7 (z,t) can be expressed in terms of these parameters as
follows and we omit the proof.
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Lemma 2.2: The four rate densities can be expressed as

a) cf (z,t) = e} (z,t) + p(z, t)q(z,t) 2.4)
b) ¢, (z,t) = Bz, t)n(z,t) + A(z, t)n(z,t)  (2.5)
) e (z,t) = ef (z,t) + Az, t)n(z, 1) (2.6)
d) cg (2,1) =v(z, t)g(e, 1) + p(z, H)g(z,t).  2.7)

We now combine Lemmas 2.1 and 2.2 to obtain the fol-
lowing coupled PDE’s characterizing the densities n(z,t) and
g(z,t) in our model. These PDE’s can be regarded as the
deterministic fluid model.

Theorem 2.1: The densities of noncalling and calling vehi-
cles, n(x,t) and g(x,t), satisfy the coupled PDE’s:

P01 2 ot ol ) =t (@.8) + iz, a0
- [6(:57 t) + /\(a:,t)]n(m, t)
2.8)
and
Bq(aa;, D + ‘—;—);[q(a: tyv(z, t)] =e;(x,t) + Az, t)n(z, t)

— [v(z,t) + pu(z, t)]g(z,1).
(2.9)

With an additional assumption, the PDE’s in (2.8) and
(2.9) can be converted into a set of three ordinary differential
equations (ODE’s), which are easier to solve in some cases.
(This is the classical method of characteristics.) For this
purpose, let the location z as a time function, z(t), be given by

do(t) _

Equation (2.10) is one of the three ODE’s.
Lemma 2.3: Given (2.10), the PDE’s (2.8) and (2.9) are
equivalent to

dn(z(t),t) _

(2.10)

ex ((t).t) + u(z(t), )a(z(t), 1)

dt
- {%’ﬁ + Bz(t), 1) + Mz(t), t)] n(z(t), 1)
(2.11)
and
% = ef (x(t),t) + A(=(t), t)n(z(t), 1)
- [ 25 4 2(o(0) )+ o0, ) ot
(2.12)
respectively.

Proof: By the chain rule, we have

dn(z(t),t) _ on(z,t) dz(t) an(z,t).

dt oz dt ot
Substitute (2.8) and (2.10) into this equation. After some
algebraic manipulation, we get (2.11). Equation (2.12) is
obtained in the same way. a
Due to the partial derivative of v(z,t) w.r.t. z on the r.h.s.
of (2.11) and (2.12), they are ODE’s if and only if v(z, ¢) is not
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a function of ¢(z,t) and n(z,t). It is also worth noting that,
by choosing some initial time 7 with —oo < 7 < oo such
that z(7) = 0 as the initial condition for (2.10), n(z(¢),t)
and g(z(t),t) can be solved for all 7 < ¢t < oo from
(2.10)—~(2.12), e.g., by a Runge-Kutta method. Of course, the
solution depends on the initial conditions »(0,7) and ¢(0, 7).
Thus, if 7 is selected properly, one can obtain n(z,t) and
g(x,t) for the location region and the time interval of interest.

We now suppose that the highway is divided into cells,
indexed by 7 = 1,2, 3, ---. For ¢ > 1, let the boundary between
cell 2 — 1 and cell 7 be located at z; — 1 and zo = 0. Further,
let Q;(t) be the instantaneous offered load in cell ¢ at time ¢;
that is, the total number of calls in progress in cell ¢ at time
t. Let h;(t) denote the rate of ongoing calls handed off from
cell ¢ — 1 to cell ¢ at time ¢.

Theorem 2.2: For cell i > 1, its instantaneous offered load
and call handoff rate at time ¢ are

Q,-(t):/ i g(z,t)dz (2.13)

and

hi(t) = q(zi-1,t)v(ziz1,t), (2.14)

respectively.

Proof: Equation (2.13) is immediately given by the def-
inition of ¢(z,t). To consider the rate of handoff calls, let
H;(t) be the number of calls handed off from cell 7 — 1 to cell
i before time ¢. Since H;(t + At) is equal to H;(t) plus the
calls handed off during the time interval (¢, ¢+ At], we have

Hi(t+ At) — Hy(t) =
i1, O — iy, Aoy, DAL
+ (o1, )MTi—1, ) Atv(zi—1, t) AL + o At).
2.15)

By definition, h;(t) = dH;(t)/dt. Thus, dividing by At and
taking the limit as At — 0 in (2.15) yields (2.14). O

We remark that (2.14) corresponds to the conservation
equation (2.6) in [7]. It gives a flow rate at a point, which
does not actually require that cells be defined: i.e., (2.14) is
valid for arbitrary x as well as z; — 1.

We conclude this subsection by commenting on the rate
densities of vehicle entering and leaving the highway for the
case where vehicles can enter or leave only at entrances/exits
at fixed locations, as in real highway systems. Suppose that
{yi 1 =1,2,3,--} is the location of the zth entrance/exit
on the highway. Let us use £ (¢) and £.(t) to denote the
external arrival rate of noncalling and calling vehicles at the
ith entrance at time ¢, respectively. Then, we have

ef(z,t) = Z . (1)o(x — yi) (2.16)

and

ef(z,t) = Zfz(t)ﬁ(m —¥i) 217

where lime_,o f;f: 8(y)dy = 1 if = 0 and O otherwise.
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As for vehicles leaving the highway, we use pf (t) and
p‘fl(t) to denote the fraction of noncalling and calling vehicles
departing when they pass by the ¢th entrance/exit at time
t, respectively. If these departing vehicles leave at the same
velocity as they move forward along the highway, then

B(x,t) = v(z,¢) Zpi(t)S(w _— (2.18)

and

Az, 1) = (. t) 3Py (D8 = v:). (2.19)

B. The Time-Homogeneous Deterministic Fluid Model

We now cease to focus on time dynamics, and assume
that the system has reached a steady state with respect to
time. As a result, all system variables and parameters become
independent of time. For this reason, we simply drop the
variable ¢ from our previously defined notation, and use primes
to denote derivatives w.r.t. .

Theorem 2.3: At temporal equilibrium, the densities of
noncalling and calling vehicles, n(z) and ¢(z), at any location
z > 0 satisfy the following ODE’s:

v(z)n'(z) = ef (2) + p(z)q(z) — [B(z) + Az) + v'(2)]n(2)
(2.20)

eg (2) + Mz)n(z) = [v(2) + u(z) + v'(2)]g(z).

(2.21)

Proof: Set all variables in (2.8) and (2.9) to be indepen-
dent of ¢ and note that

4 pn@p@)] = v’ (z) + () ()

and similarly for ¢{z)v(z). a
In general, n(z) and g(z) can be solved from the coupled

ODE’s in (2.20) and (2.21) plus initial conditions. However,

under reasonable assumptions, the two ODE’s can be com-

bined into one, and n(z) and g(z) can be obtained explicitly.

To prove this, we present the following proportionality result.
Lemma 2.4: For some zy > 0,

it 2) Az) = A, u(a) = o) = +(z) and L) = A
i z) = A pu(x) = p, B(z) = v(z pre i
for all z > zg, (2.22)
and
b) ¢(xo) is finite and 4(z0) = 2‘-, (2.23)
n(ze) 4
then L% — A ol 5 > g, (2.24)
n(z)

We actually obtain a stronger proportionality result for a
time-dependent setting. The result given as Lemma 2.5 and
its proof are presented in the Appendix. Lemma 2.4 can be
viewed as a consequence of the time-dependent result since all
quantities here are independent of time. We choose to present
Lemma 2.4 here because, as explained below, its conditions
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have a clear physical meaning and are natural for the time-
homogeneous model under consideration. When A(z) = A
and u(x) = p, vehicles initiate and terminate calls at rates
independent of their locations. The condition G(z) = ~(z)
indicates that a vehicle departs from the highway at the same
rate, regardless of whether it is a calling or noncalling vehicle.
The ratio e} (x)/ef(z) = q(zo)/n{xo) = A/p means that
the proportion of vehicles arriving to the highway at location
x which are calling vehicles is identical to that of existing
vehicles at location z, which in turn is equal to the ratio A/pu.

If the conditions for the proportionality result are satisfied, it
is unnecessary to use two ODE’s to describe the movement of
noncalling and calling vehicles. Instead, one ODE is sufficient.
For this purpose, let L(z) be the total number of vehicles
in location (0,z] at steady state and I(z) = dL(z)/dz. By
definition, L(z) = N(z) + Q(z) and I(z) = n(z) + q(=).

Theorem 2.4: If the conditions in Lemma 2.4 with 3 =
0 are satisfied, then the vehicular density is given by the
following ODE:

U - Lo [-482 - s ey +4])

(2.25)

whose solution is

~I(z) P
l(z) = ev(z) {[1+g\—]/0 e;(u)ewduu(o)um)},
(2.26)

where I(z) = [ %du. Furthermore,

n(z) = /\i“l(z) 2.27)
and
A
q(zr) = Y ”l(z). (2.28)

Proof: Based on the fact that [(z) = n(x) + ¢{x), (2.25)
is obtained by substituting conditions a) and b) of Lemma 2.4
into (2.20) and (2.21) and adding them together. Since (2.25)
is a linear, first-order ODE, the solution is readily obtained
and given by (2.26). The proof is completed by using the
proportionality result in Lemma 2.4. O
“ For example, we can apply Theorem 2.4 to a special case
where vehicles arrive only at location z = ( and they never
leave the highway. Then, we have ¢(0)/n(0) = A/pu, I(z) =
0, ef (x) = 0 and ef (x) = 0 for all z > 0. The solution in
(2.27) and (2.28) becomes

_ n(0)v(0) 20 o
n(z) = (@) (@) for z > 0;

i.e., the vehicular density is inversely proportional to the
velocity. It is noteworthy that the arrival rates of noncalling
and calling vehicles at location O in this special case are
eF (0) = q(0)v(0) and e (0) = n(0)v(0), respectively.

It should be clear that the conditions in Theorem 2.4 are
quite natural, so that we often will have the single ODE in
(2.25). On the other hand, the interest in explicitly considering
two kinds of vehicles is primarily for the situations where
these conditions do not hold.

and ¢(z) =

(2.29)
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Fig. 1. Vehicle velocity as a function of location for 35 < t < 55 min.

Once n(z) and g(z) are computed from (2.20) and (2.21)
or (2.27) and (2.28), the offered load and call handoff rate
for cell ¢ can be obtained from (2.13) and (2.14), with the
variable ¢ omitted.

III. NUMERICAL EXAMPLES

In this section, we present numerical examples to illustrate
the time and space dynamics captured by the deterministic
fluid model in Section II. As indicated in Section I, these
examples also apply to the stochastic models to be introduced
later, but with a different interpretation.

The examples here assume no constraint on the number
of available channels. Furthermore, unless stated otherwise,
the average think time (time before initiating a call) and call-
holding time are 10 and 2 min, respectively. That is, A(z,t) =
0.1 and p(z,t) = 0.5 forall z > 0 and —o0 < t < oo. The
highway has a single entrance at location 0 at which only
noncalling vehicle arrive at a constant rate (denoted by «) of
30 cars/min, and vehicles are assumed not to depart from the
highway.

We first consider a time-dependent case where the velocity
field v(x,t) is a function of location and time. It is assumed
that v(z,t) = 1 km/min for all > 0 when t < 35 or ¢ > 55
min. However, for 35 < ¢ < 55 min, the velocity field is

1 ifz<3
1-07(z—3) if3<z<4

v(z,t) =4 0.3 ifd<z<6 3.1)
03+07(x—6) if6<z<T
1 if o> 7.

This velocity field is depicted in Fig. 1. It is U-shaped as
a function of location on the highway for 35 < ¢ < 55, so
that it can be used to simulate the slowing down of traffic in
the time interval due to an accident. For this example, Lemma
2.3 can be applied to convert the PDE’s (2.8) and (2.9) into
the ODE’s (2.10)—(2.12). By using the extrapolated Gragg’s
modified mid-point method [1], contained in the PORT library
developed at AT&T Bell Laboratories, we numerically solve
the ODE’s with the initial condition of n(0,t) = a/v(0,t) for
all £ > 0 in order to obtain n(x,t) and ¢(z,t).

Figs. 2-5 show the total vehicular density, the densities of
noncalling and calling vehicles, and the call handoff rate as a
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Fig. 3. Vehicle density in the highway system with a traffic accident.

function of location at time prior (Fig. 2), during (Fig. 3-4),
and after (Fig. 5) the traffic accident. For ¢ = 30 in Fig.
2, n(xz,t) and g(x,t) reach their “equilibrium” solution for
sufficiently large . The reason for this is explained as follows.
Recall that all vehicles arriving at = 0 are noncalling
vehicles. They start to make calls as they move forward on
the highway. As a result, the density of noncalling and calling
vehicles decreases and increases, respectively, as z increases.
Since vehicles initiate and terminate calls independently at
constant rates of A(z,t) = 0.1 and p(z.t) = 0.5, respectively,
such decrease and increase of vehicular densities approach an
equilibrium at locations farther down the highway. In fact, the
ratio n(x)/q(x) in this case tends to equal to p(x,t)/A(z,t)
for sufficiently large . Since v(x,t) = 1 at ¢ = 30, according
to (2.14), the density of calling vehicles equals handoff rate,
so that their curves shown in the figure coincide.

At t = 40 in Fig. 3, vehicles start to build up sharply at
location (3, 7] where velocity is relatively low. Accordingly,
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Fig. 5. Vehicle density in the highway system with a traffic accident.

as indicated in the figure, the call density in this region is also
higher than elsewhere because of the velocity reduction began
at ¢ = 35. Note that the vehicular density in location (6, 12] is
lower than that beyond location z > 12. This is because the
vehicles that would have been at this location if there were
no reduction in velocity starting at ¢ = 35 have been trapped
in location (3,7] due to the low velocity. At ¢ = 50 in Fig.
4, the vehicular traffic and call density continue to build up
in location (3,7]. In addition, the “dip” of vehicular density
has shifted to the right from the position shown in Fig. 3, as
vehicles continue to move forward on the highway.

Finally, Fig. 5 shows that the whole density curves continue
to propagate to the right at ¢ = 60, as vehicles resume
their original velocity of v(z,#) = 1 at all locations after
the accident has been cleared at ¢ = 55. In particular, those
vehicles that were located at location (3, 7] at t = 55 now have
moved into location (8,12] at ¢t = 60 at a constant velocity
of v(x,t) = 1 after ¢t > 55. Note that these results may
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TABLE I
APPROXIMATE BLOCKING PROBABILITIES FOR THE FIXED CELL SIZE
No. of .
Time Cell Location Offg:gnh))ad Channels Blg:k;ng
€ Per Cell ob-
t =30 (2,41 8.2455 20 0.00023
(4,6] 9.4716 20 0.00107
(6,8] 9.8408 20 0.00159
(8,10] 9.9520 20 0.00178
t =50 (2,4] 11.2459 20 0.00565
(4.6] 29.4977 20 0.37105
(4,6] 29.4977 45 0.00179
6,8] 13.2327 20 0.02055
(6,8] 13.2327 25 0.00127
(8,10] 9.9980 20 0.00187

not closely reflect the vehicle movement following a traffic
accident because the model allows vehicles to resume moving
at a specific velocity regardless of the high vehicular density.
In real situation, with the vehicles close to location 7 first
resuming the normal velocity after the accident, the vehicles
accumulated in location (3, 7] will slowly “diffuse” to the right.
Such diffusion type of vehicle movement can be captured,
if the model is augmented with an appropriate relationship
between velocity and vehicular density, as discussed in Section
VL

As pointed out earlier, the call density in a region should
be treated as its offered load. To illustrate how the offered
load results can be used for system engineering and planning
purposes, let the highway be served by nonoverlapping cells
of fixed size where each cell covers 2 km of the highway.
By (2.13), the offered load at a given time is obtained for
each cell. Given the number of channels available at a cell,
the blocking probability can be approximated by applying the
offered load to the Erlang-B formula. This approximation is
naturally supported by the stochastic model, indeed the full
highway PALM in Section V; also see Sections 5 and 7
of [7] for further discussion. (With the highway PALM, the
offered load in each cell has a Poisson distribution. For the
finite capacity, a natural approximation is a truncated Poisson
distribution, which is the Erlang-B formula.)

Table I presents the blocking probabilities at ¢ = 30 and
50, for which the call density has been depicted in Figs. 2
and 4, respectively. As shown in the table, assuming that each
cell has 20 channels, the blocking probabilities at ¢ = 30 are
a fraction of a percent, which are satisfactory. However, due
to the traffic congestion caused by the accident, the blocking
probability in the cell at location (4, 6] at ¢t = 50 increases to
37.1%! In fact, it is found that for the surge of offered load,
the cell has to be equipped with 45 channels to maintain the
blocking probability satisfactorily low. Similarly, the cell at
location (6, 8] also requires five additional channels to handle
the offered load adequately. These results show the potential
benefit of dynamic channel assignment. They also show that
the proposed traffic models can serve as a valuable tool for
system engineering and planning.

The second set of examples uses the time-homogeneous
fluid model to consider only the space dynamics. The velocity
field v(z) in Fig. 1 is used at all time ¢ and all other system
parameters remain unchanged. Then, solving the ODE’s in
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Fig. 6. Vehicle density in temporal steady state (fixed call-origination rate).

(2.20) and (2.21) yields n(z) and g(z) and they are portrayed
in Fig. 6. It is interesting to note that this figure is practically
identical to Fig. 4 in location (0,10]. This is so because, in
the time-dependent case, the system has almost reached its
steady state at ¢ = 50 with the accident started at ¢t = 35. Of
course, this time-homogeneous example does not have the dip
of vehicular densities after location 12 in Fig. 4.

Fig. 7 considers a case that uses all system parameters of the
case shown in Fig. 6, except that the call-origination rate A(x)
is inversely proportional to v(z). In particular, we stipulate
that A(z)v(z) = 0.1 for all z > 0. This setting can be applied
to study the phenomenon that people are likely to make phone
calls when the vehicle velocity is reduced, e.g., when they are
trapped in a traffic jam. Because of an increased value of A(x)
at location 3 < z < 7, the call density in this region in Fig.
7 can be more than two times of that shown in Fig. 6, where
A(z) is identical at all locations. These results clearly reveal
the importance of space dynamics (i.e., vehicle velocity and
density) and the customers’ calling behavior in determining the
offered load and thus the performance of wireless systems.

Finally, we consider a location-dependent call-origination
rate that decays exponentially in location. Specifically, A(z) =
1 + 0.9¢%/2, Such a form of call-origination rate function
can be used to approximate the calling activity of spectators
departing from a stadium after a sporting event. In such
situations, vehicles are likely to initiate calls when they begin
to leave the stadium (i.e., close to location 0). Fig. 8 assumes
v(z) = 0.77 for all £ > 0, which is the velocity averaged
over the location (0, 10] for the velocity field shown in Fig.
1. Although the settings for Figs. 7 and 8 have the same
average velocity, their call densities and handoff rates are very
different. Hence, the space dynamics and calling patterns are
shown again to have significant impacts on the traffic loads
even for systems in temporal steady state.

We have also considered other examples for time-
homogeneous cases where the highway has multiple entrances
and exits, although they are not given here. In these cases, the
ODE’s are solved for segments of the highway between two
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successive entrances/exits. Based on the vehicular densities at
the end of one segment (i.e., just before an entrance/exit), the
probability of a vehicle leaving from the exit, and the flow of
vehicles entering from the entrance, we can obtain the initial
conditions for the next segment. Then, solving the ODE’s
with these initial conditions yields the vehicular densities in
the next segment of the highway.

IV. THE STOCHASTIC TRAFFIC MODEL

In contrast to the deterministic fluid model introduced
above, the stochastic traffic model captures the stochastic
fluctuations. Specifically, the model considers the random
calling status of each individual vehicle as it moves along on
the highway. However, it turns out that the PDE’s and ODE’s
which govern the expected values are identical to those of the
deterministic fluid model. Hence, the numerical examples that
we have just considered apply equally well to the stochastic
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model. In Figs. 2-8, we must simply replace the actual values
on the y-axis by expected values.

The stochastic model has the same highway setting. Unless
stated otherwise, the same notation is used as for the determin-
istic fluid model. Using the same definitions, N(z,t), Q(z, t),
Cl(z,t), C,(z.t), Cl(z,t), C; (z,t), Ef(z,t), E, (z,t),
E}(x,t), and E; (z,t) become integer-valued random vari-
ables in the stochastic model. Now, the densities n(z,t) and
gq(x, t) are defined as the partial derivatives of expected values;
ie.,

9E[Q(z, t)]

_ OE[N(z,1)] _
= T and q(l’,t) = T,

n(z,t)
respectively, where E[Y] denotes the expected value of Y.
Correspondingly, we let the rate densities be the second partial
derivatives of expected values; i.e.,

O*E[C} (z,1)] _ 9’E[C; (z.1)]

it (,t) = 520t , e (z,t) = T

cg (z,t) = ——82Eﬁi§x’ t)] , gz t) = 8_2E[;;‘{9(:’ 2l 7

et (z,t) = fﬂj%—ﬂ, eq (x,t) = W
eq (z,t) = 6—2% and e (z,t) = %ﬂ

For the stochastic model, we introduce additional notation.
Let a(t) be the total arrival rate of vehicles arriving to the
highway at time ¢. By definition,

a(t) = %{E[E;f(oc,t)] + E[E}(cc, )]} 4.1

We make the following assumptions for the stochastic

model:

1) Vehicles arrive to the highway according to a pair of
two-dimensional stochastic jump processes E; (z, t) and
E;’(m, t) with nondecreasing sample paths having only
unit jumps and deterministic intensity functions e} (z, t)
and e (x,1), where the total arrival rate a(t) in (4.1) is
integrable over all —0o < t < .

2) Vehicles move forward on the highway at a deterministic
velocity specified by the velocity field v(z, t).

3) The state of each vehicle after it arrives evolves as a
nonstationary continuous-time Markov chain, while it
moves deterministically down the highway. The Markov
chains of different vehicles are conditionally stochasti-
cally independent given their arrival times. (The Markov
chains are not unconditionally independent due to depen-
dence induced through the arrival times, but once we
condition upon the arrival times, there is no dependence
left.) A calling vehicle becomes a noncalling vehicle
and vice versa (due to call termination and initiation)
randomly with intensity p(z, ¢) and A(z, t), respectively.
In addition, a calling (noncalling) vehicle leaves the
highway randomly with intensity ~(z,%)(8(z,t)).
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4) There are no capacity constraints. That is, each cell has
an infinite number of channels such that no call blocking
occurs.

As in [6] and [7], we can construct Q(z,t) by stochastic
integration as follows. For j > 1, let 7, (5) and 7, () be the
time when a vehicle arriving to the highway at time s initiates
and terminates its jth call, respectively. Then, we have

sSTHU) ST ()< TH@) S T7(2) < -

and
t
Q(ﬂf=t)=/ L, (1) e(—ooux]x {1} 1 4A(S)

where A(t) counts the number of vehicles arriving to the
highway up to time ¢, 1p is an indicator function such that
1p = 1if B is true and 0 otherwise, and the location process
L,(t) specifies the position and calling status of the vehicle
that arrived at time s. That is, L,(t) = (2, k) where z is the
position on the highway and

“4.3)

k= {“ft € US4 [T (). 77 (5))
0 otherwise.

In this context, an analog of Lemma 2.1 holds, which is a
natural extension of the conservation equation (2.7) of [7].

Lemma 4.1: In the stochastic traffic model, the densities
of noncalling and calling vehicles, n(z,t) and ¢(x,t), satisfy
(2.1) and (2.2).

Proof: To consider the expected values, (2.3) is replaced

by

E[N(z,t + At)] — E[N(z,t)] =
—n(z, tyv(z, t)At + {E[C) (z,t + At)] — E[C](z,1)] }
—{E[C;(z,t + At)] — E[C;, (z.t)] } + o(At).  (44)

The proof is completed by following the same argument in the
proof of Lemma 2.1. a

Similarly, we have the following, for which we omit the
proof.

Lemma 4.2: The results in Lemma 2.2, namely (2.4) to
(2.7), hold for the stochastic traffic model.

We can combine Lemmas 4.1 and 4.2 to obtain an analog
of Theorem 2.1.

Theorem 4.1: In the stochastic traffic model, the densities
of noncalling and calling vehicles, n(z,t) and g¢(r,t), at any
location z > 0 and time —oo < ¢ < ¢ satisfy (2.8) and (2.9).

Since the PDE’s for the stochastic model are identical to
those for the deterministic fluid model, Lemma 2.3 remains
applicable to convert them into ODE’s.

Now suppose that the highway is divided into cells at
some locations {zo(= 0),z1,%2, -}, Qi(t) is the number
of ongoing calls (i.e., offered load) in cell ¢ at time ¢, and
H;(t) is the number of calls handed off from cell  — 1 to cell
i before time ¢. The following is an analog of Theorem 2.2;
it follows from Theorem 3.1 of [7].
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Theorem 4.2: In the stochastic traffic model,
a) For each cell ¢ > 1 and at any given time —oc < t < o0,
Q;(t) is a stochastic process with mean

ElQ:) = [

Li-1

T
g(z,t)dz. 4.5)
b) For each cell ¢ > 1, H;(t) is a stochastic process as a
function of ¢ with rate
_ AE[Hi(t)]
hi(t) = dt
Proof: Part a) is elementary, so we only discuss b).
To consider handoff calls, let 7(s,z) denote the time when
a vehicle that arrives to the highway at time s reaches the
location . We assume 7(s,z) = oo if the vehicle will never
reach location z. H](t) is defined as the number of jth
ongoing calls handed off from cell 7 — 1 to cell ¢ before time
t. Then,

t
Hi(t) = /_w Liry ()< (s —1) <1 ()} FA(8)-

Clearly, H;(t) is the sum of Hf(t) over all j. The rate of
E[H;(t)] as given in (4.6) is obtained by considering only the
expected values and by following the approach in Theorem
2.2. O

= q(mi—lat)v(xi—lat)' (46)

V. THE MARKOVIAN HIGHWAY PALM

We obtain the full Markovian highway PALM simply by
assuming, in addition to the assumptions of Section IV, that
E;’(w, t) and E; (x,t) are independent two-dimensional Pois-
son counting processes. Let Ef (B) and E;f(B) be random
measures associated with the stochastic counting processes
E;(w,t) and E} (z,t); ie., E;/n(B) counts the number of
arrivals in the set B where B is a set of (z,t) pairs in
[0,00) x R. The Poisson assumption means that the numbers
of arrivals E;(Bi) and E}(B;) of calling and noncalling
vehicles in disjoints subsets B;,1 < i < n, of [0,00) x R
are mutually independent random variables with Poisson dis-
tributions determined by the deterministic intensity functions
ef(z,t) and e} (z,t), respectively; e.g.,

,Y+(B)k6—v+(3)

P(E:(B) Zk) k!

5.1
where

¥H(B) :/ /e:{(u, v)dudv. (5.2)
B

For example, for B = [0, z] X (—oo,t] and v (z,t) = v+ (B)

for this B,
x t
'y+(x,t):/ / e (u,v)dudv.
0 —00

Alternatively (equivalently), we can have a one-dimensional
nonhomogeneous Poisson arrival process A(t) with arrival rate
function «(t) as in (4.1) and let an arrival at time ¢ occur in
the spatial location z with density

e (z,t) +ef (z,1)

a(t) ’

(5.3)

fe(z) = z>0. (5.4)
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By (4.1), f;° fu(z)dz = 1 for all ¢. Given that this arrival
occurs at location z, we make it a calling vehicle with
probability ef (z,t)/[ef (x,t) + e;f(x,t)] and a noncalling
vehicle otherwise.

With this extra Poisson assumptions, the PALM results in
[6], [7] imply the following. (See Theorem 3.1 of [7].)

Theorem 5.1: 1f, in addition to the assumptions in Section
IV, E}(z,t) and E}(x,t) are independent two-dimensional
Poisson counting processes, then the stochastic processes
{Q(z,t) : & > 0} and {H;(t) : —oo < t < oo} are Poisson
processes. Moreover, Q;(t) for i > 1 are mutually independent
Poisson random variables with means in (4.5).

Unlike Theorem 3.1 of [7], the processes C;’(x,t) and
C, (z,t) are not two-dimensional Poisson processes, because
calls can enter and leave more than once. We also point out
that the Poisson property for Q;(¢) and H;(t) holds without
the Markov assumption for each vehicle made in Section IV,
However, without these Markov assumptions, the PDE’s in
(2.8) and (2.9) are no longer valid. In this case, g(z, ) cannot
be easily computed because the model has to keep track of
the residual think time and call-holding time for each vehicle;
see [7].

If only the location dynamics at temporal steady state are
of interest, the arrival process can be a time-homogeneous
Poisson process. All results of the Markovian PALM pre-
sented above remain valid simply because a stationary Pois-
son process is a special case of time-homogeneous Poisson
process. In this case, as for the deterministic fluid model in
Section II-B, the densities for noncalling and calling vehicles,
n(z) and g(z), can be solved from (2.20) and ¢2.21), or given
by (2.27) and (2.28), respectively.

VI. APPROXIMATING VEHICLE
INTERACTIONS IN THE STOCHASTIC MODELS

A key to tractability in the stochastic traffic models in
Sections IV and V is the assumption that vehicles (customers)
do not interact; i.e., the nonstationary Markov location pro-
cesses for different vehicles are conditionally independent,
given their arrival times. This means that different vehicles
cannot interact.

However, there is no such interaction restriction in the deter-
ministic fluid model. For example, vehicle velocity commonly
depends on vehicular density, with velocity decreasing as the
density increases. This feature is easily incorporated into the
deterministic fluid model via the PDE’s in (2.8) and (2.9). For
example, one possible model has velocity decrease linearly
with density [2], [9], [10]. Velocity can reach its maximum
value v, (z,t), when the vehicular density is close to zero at
location z and time ¢. On the other hand, the velocity reduces
to zero if the density is increased to a critical value (i.e.,
bumper-to-bumper density). That is, for some critical density
lC > 0;

n(z,t) + q(z,t)

e '

This formula can easily be inserted into (2.8) and (2.9).
In a full stochastic analog of this phenomenon, the actual
distribution of vehicles at any time would be random, so that

v(z,t) = vm(z, t) |1 6.1)
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both the vehicular density, however defined, and the resulting
vehicle velocity defined by (6.1) also become random. We
would need some sort of stochastic differential equation,
corresponding to a complicated interacting stochastic particle
system.

To be more concrete, we might count the random number of
vehicles in the interval (z,z + 1] and let this be the “random
density” at z, say D{(z,t). We could then let the random
velocity at location z and time ¢ be

(6.2)

V(1) = vm(z, 1) [1 - D(“)}

le

Obviously, (6.2) is a stochastic analog of (6.1).

Unfortunately, however, the stochastic model with (6.2)
seems very difficult to analyze. Our idea is to approximately
capture the behavior of complicated stochastic dynamics given
by (6.2) by substituting appropriate relations among determin-
istic quantities in the deterministic analog (6.1). Indeed, we
can apply (6.1) directly to the stochastic model if we interpret
n(z,t) and q(z,t) as the densities of expected values. Then
the deterministic velocity is allowed to depend on the expected
values via n(z,t) and g(z,t). As for the deterministic model,
(6.1) can be inserted into (2.8) and (2.9) and solved. Just as for
the deterministic model, this can have a significant influence
upon v(z,t), n(z,t), and q(z,t).

Now we can construct a stochastic model according to the
assumptions of Section IV using this resulting deterministic
velocity field v(z,t). By Theorem 4.1, the densities of the
mean values, n(z,t) and g(z,t), in this stochastic model will
be of the appropriate form. Moreover, if we let the arrival
process have the Poisson property as assumed in Section V,
then we will be able to deduce the Poisson distributional
results as well. The resulting Markovian highway PALM based
on (6.1) then is a candidate approximation for the stochastic
model based on (6.2). Of course, it remains to evaluate the
quality of such approximations.

As emphasized in [7], even though the PALM models cannot
directly model vehicle interactions, they often can capture
essential features. As illustrated by the examples in Section III,
the stochastic model cannot directly represent vehicles slowing
down in response to other vehicles in front of them slowing
down, but we can represent the vehicles slowing down at a
certain time and space under the assumption that an accident
occurs there.

Similarly, we can indirectly capture the dependence of
velocity upon vehicular density as in (6.1), if we make
(6.1) apply to expected values. From the perspective of the
deterministic fluid model, we can think of the stochastic
model as an enhancement to be able to deduce approximate
distributional conclusions.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a deterministic fluid model, a stochastic
traffic model, and a Markovian highway PALM for a portion
of a wireless network along a highway. Vehicles can enter
and leave the system at multiple entrances and exits, and they
are classified as noncalling and calling vehicles, depending on
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whether or not they have calls in progress. The deterministic
model treats each type of vehicle as a continuous fluid, while
the stochastic models consider the behavior of each individual
vehicle. All models use the same two coupled PDE’s or ODE’s
to describe the evolution of the system. The call density
and call handoff rate are readily computable by solving the
equations. The two kinds of models are complementary, be-
cause additional features such as the interdependency between
velocity and vehicular density can be easily included in the
fluid model, whereas the stochastic traffic models also give
probability distributions.

Numerical examples were presented to illustrate the com-
putability of our results and investigate various aspects of the
time and space dynamics of wireless networks. The numerical
results indicate that both the time-dependent behavior and the
mobility of vehicles play important roles in determining the
system performance. Our results show that even for systems
in temporal steady state, the movement of vehicles and the
calling patterns can significantly affect the offered loads in
a given region of the system. Therefore, the models will
be useful tools to examine various phenomena in wireless
networks. Furthermore, our numerical examples also show
how the proposed models can be used to compute approximate
blocking probabilities, as illustrated in Section III. Thus, the
models have the potential for evolving into tools for planning
and engineering wireless networks.

This work can be extended in several areas. First, the quality
of the approximation approach to capturing the interdepen-
dence between velocity and vehicular density via expected
values in Section VI should be evaluated. Second, the models
assume no capacity constraints. As shown in Section III, it is
desirable to apply approximation techniques with the models
to develop suitable approximate approaches to quantifying the
blocking probability for new call attempts and handoff calls.
(A start was also made in [7].) These approximation techniques
should be further enhanced to consider retries of blocked calls.
Lastly, the call blocking is actually affected by the channel-
assignment strategy in use. These new models could be used
to study the tradeoffs of various assignment strategies.

APPENDIX
A TIME-DEPENDENT PROPORTIONALITY RESULT

Lemma 2.5: If for all x and ¢, we have

ef(z,t) A
Mz, t) = A p(z,t) = p, Bz, t) = y(z, t), L = =
(5,8) = e ) = 0 Bz 1) =20, S =
and {z(t)|t > to} satisfying (2.10), then
M)— = i implies that M = —/E for all ¢t > t,.
n(z(to),to)  n n(z(t),t) p

Proof: Let ®(x,t) = Mn(z,t) — pg{z.t). Substituting
this and our hypotheses in (2.8) and (2.9) yields
n(z,t)
ot

+ 2oz, (e, ) =
ef (z,1) — Bz, )n(z,t) — D(x,t)
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and
oq(z,t)
2el) 4 2 gt ot 1) =
er(z,t) — Bz, t)n(z, t) + (x, t).
Combining these equations gives us
0d(z,t) 0®(x,t)
o Ve =
A+ o+ Bla,t) + 91%9 ®(z,t). (Al)

By the chain rule and the fact that {z(t)|t >
(2.10), we have

to} satisfying

d@(a(t),t) _ 0% (x(t), 1) (z(t) H
= g e ) —g
Putting (A1) into the above equation now yields
dd(z(t),t) dv(z,t)
= At Bl ) + o [ 1),

Hence for all ¢t > t3, we have
t
/ {)\ + p+ B(z(s), 5)
to
RILOR) it
Jr

From this, it follows that ®(z(t9),to) = 0 implies
®(x(t),t) = 0 for all ¢ > tg, which proves the lemma.

D(a(t). £) = Ba(to). to) exp {—
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